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We study a two-site Sachdev-Ye-Kitaev model with complex couplings and a weak intersite interaction.
At low temperatures, the system is dual to a Euclidean wormhole in Jackiw-Teitelboim gravity plus matter.
Interestingly, the energy spectrum becomes real for sufficiently strong intersite coupling despite the
Hamiltonian being non-Hermitian. In gravity, this complex-to-real transition corresponds to a Euclidean-
to-Lorentzian transition: a dynamical restoration of the gravitational SLð2;RÞ symmetry of the Lorentzian
wormhole, broken to U(1) in the Euclidean wormhole. We show this by identifying an order parameter for
the symmetry breaking and by matching the oscillating patterns of the Green’s functions. Above the
transition, the system can be continued to Lorentzian signature and is dual to an eternal traversable
wormhole. Additionally, we observe a thermal phase transition from the wormhole to two black holes and
provide a detailed matching of the associated physical quantities. The analysis of level statistics reveals that
in a broad range of parameters the dynamics is quantum chaotic in the universality class of systems with
time reversal invariance.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) [1,2] is a model of N
fermionswith infinite range interactions [3–8] in zero spatial
dimension. At largeN and low temperatures, it has a gravity
dual described by Jackiw-Teitelboim (JT) gravity [9,10], a
theory of two-dimensional gravity describing a universal
sector of near-extremal black holes [11–18]. This toy
version of AdS=CFT, known as nearly AdS2 holography,
has been used to investigate many questions in quantum
gravity. The simplicity of this model of holography makes it
an ideal playground to test ideas and learn new insights. For
some pointers into the nearly AdS2 literature, we can
mention topics such as the quantum chaotic nature of gravity
[19–24], traversable wormholes [25–27], quantum cosmol-
ogy [28–33], flat space holography [34–37], computational
complexity [38,39] or the information paradox [40–47].

A theme that has emerged in recent years is that the
semiclassical gravitational path integral appears to be dual
to an ensemble average of theories [22,23]. The meaning of
this average remains to be understood [48,49], see [50–61]
for a sample of recent discussions on this point. The
inclusion of complex metrics appears necessary but it is
unclear how to specify the contour of integration [62–65].
In this paper, we study the gravitational path integral in a
setup where we have analytic control on the gravity side
and a dual microscopic description in terms of SYK, in
order to shed some light on the rules governing the gravity
path integral.
A notable example of nearly AdS2 holography is the

eternal traversable wormhole [26] dual to a two-site SYK
model with a weak intersite coupling. It was shown that
both the wormhole solution in Jackiw-Teitelboim gravity
and the two-site SYK model were described by the same
Schwarzian effective action. The ground state was argued
to be gapped and close to a thermofield double state. The
gap induced by the weak intersite coupling is enhanced by
the strong interactions in each site, as can be observed in the
real time probability of tunneling between the two sites
[27,66]. As the temperature is increased, the system
experiences a first order phase transition to a phase with
two black holes. This transition affects the quantum
dynamics [67] that is quantum chaotic only in the high
temperature phase. Extensions of these results include
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replacing Majoranas with Dirac fermions [68–71] or the
use of a sparse [72,73] two-site SYK [74] while potential
applications in condensed matter were addressed in [75].
A purely Euclidean version of this story was obtained in

[76] by studying a two-site non-Hermitian SYKmodel with
complex couplings but without intersite interaction. In this
case, the Hamiltonian is non-Hermitian and does not define
a Lorentzian system with unitary evolution. Nonetheless,
the system is still well defined in Euclidean time so it has a
meaningful statistical mechanics interpretation. The low
temperature phase was shown to be dominated by replica
symmetry breaking configurations [77,78] corresponding
to a Euclidean wormhole in JT gravity [76]. Here, the
imaginary part of the Hamiltonian gives imaginary sources
in the wormhole. As there is no coupling between the two
sites, the Euclidean wormhole has to be the result of the
SYK average. This leads to a factorization puzzle which
can be resolved by finding half-wormhole solutions [54]
which realize the proposal of [50] in nearly AdS2
holography. Recent studies on the non-Hermitian SYK
model include a symmetry classification of quantum
chaotic dynamics [79], a generalization with additional
U(1) charge [80], measurement-induced transitions
[81,82] and Lindbladian approach to dissipative quantum
dynamics [83,84].
In this paper, we study a two-site SYK model with both

complex couplings and a weak intersite interaction. This
system combines the two effects discussed above and is
dual to a Euclidean wormhole in JT gravity. Our main result
is the observation of a dynamical complex-to-real transition
where the spectrum of the Hamiltonian (obtained by exact
diagonalization) becomes real for sufficiently strong inter-
site coupling, despite the Hamiltonian being non-
Hermitian. This shows that a purely Euclidean system
can experience a transition above which the system has a
real energy spectrum and hence defines a Lorentzian
system with unitary evolution.
In JT gravity, we show that this complex-to-real tran-

sition corresponds to a Euclidean-to-Lorentzian transition:
the dynamical restoration of the SLð2;RÞ symmetry of the
Lorentzian wormhole, broken to U(1) in the Euclidean
wormhole. To be more precise, there are two distinct
SLð2;RÞ symmetries which come from the isometries of
the Lorentzian wormhole (the global AdS2 geometry).
There is an SLð2;RÞ gauge symmetry, which is part of
the gravitational constraints of the theory, and an SLð2;RÞ
global symmetry, corresponding to the physical action of
the isometries on the asymptotic boundary [85,86]. These
are gravitational symmetries because they are part of the
diffeomorphism group of the theory. Both symmetries are
broken to U(1) in the Euclidean wormhole. The Euclidean-
to-Lorentzian transition corresponds to a restoration of the
gravitational SLð2;RÞ symmetry (both gauge and global)
in the purely Euclidean system [defined by imposing only
the U(1) gauge constraint].

We study this complex-to-real transition by identifying,
both in SYK and JT gravity, an order parameter for the
gravitational symmetry breaking. We propose a mechanism
for the transition involving a change of contour in the
gravity path integral. The transition can also be diagnosed
in a phase shift measured by the Green’s functions. Above
the transition, the Hamiltonian is pseudo-Hermitian, i.e., it
has real eigenvalues despite being non-Hermitian, and
defines a Lorentzian system with unitary evolution in the
framework of pseudo-Hermitian quantum mechanics [87].
This shows that a pseudo-Hermitian Hamiltonian can be
holographic, its gravity dual in this case may be an
traversable wormhole.
In addition to the complex-to-real transition, we also

observe a thermal phase transition from the wormhole
phase to a phase with two black holes. This transition has
been discussed in [26,76] for limiting cases of our system.
Here, we study the parameters of this transition, such as the
energy gap and critical temperature, as functions of the two
parameters λ and κ. We find an excellent match between the
numerical SYK results and the analytical JT analysis. Note
that this transition constitutes another example of gravita-
tional symmetry breaking where the Uð1Þ × Uð1Þ sym-
metry of the two black holes is broken to the diagonal U(1)
of the Euclidean wormhole.
In this work we view JT gravity as an effective theory, an

approximation of the (still elusive, see e.g., [88]) exact
holographic dual of SYK, in the same way that semi-
classical gravity is viewed in higher-dimensional examples
of AdS=CFT. This has to be contrasted with the exact path
integral computations of [23] where JT gravity is viewed as
an exact theory, dual to a randommatrix (RMT) model. The
imaginary sources allow us to evaluate the path integral
using saddle points which is closer to what we can expect in
higher dimensions. The gravitational symmetry breaking/
restoration described in this paper, interpreted as a
Euclidean-to-Lorentzian transition, might also be possible
more generally. In higher dimensions, Euclidean worm-
holes with similar properties were constructed in [89] and
static traversable wormholes were obtained in [90,91].
Finally, we study the level statistics in the SYK model

and find that the dynamics is quantum chaotic in a broad
range of parameters as it is well described by the random
matrix predictions for either real or complex eigenvalues.

II. THE TWO-SITE NON-HERMITIAN
SYK MODEL

The system we consider consists of two SYK models
with complex couplings, labeled left (L) and right (R), and
with a weak intersite interaction. The Hamiltonian is

H ¼ HL þHR þHI ð1Þ

with
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HL ¼ −
X

i<j<k<l

ðJijkl þ iκMijklÞψL
i ψ

L
j ψ

L
kψ

L
l

HR ¼ −
X

i<j<k<l

ðJijkl − iκMijklÞψR
i ψ

R
j ψ

R
kψ

R
l

HI ¼ iλ
X
i

ψL
i ψ

R
i ; ð2Þ

where ψL
i ;ψ

R
i ; i ¼ 1;…; N are Majorana fermions. After

ensemble average, and using the standard decoupling
procedure with

hJijkli ¼ hMijkli ¼ 0; hJ2ijkli ¼ hM2
ijkli ¼

3!J2

N3
ð3Þ

we obtain the following action:

Ieff ¼ −
1

2
log detðδab∂ − ΣabÞ

þ 1

2

X
ab

ZZ �
ΣabGab −

ð1 − tabκ2ÞJ2
4

G4
ab

�

þ iλ
2

Z
GLRðτ; τÞ −GRLðτ; τÞ: ð4Þ

where a ¼ L;R; b ¼ L;R and tLL ¼ tRR ¼ 1 and
tLR ¼ tRL ¼ −1.
In the large N limit, the saddle-point Schwinger-Dyson

(SD) equations are given by

− iωGLL − ΣLLGLL − ΣLRGRL ¼ 1;

− iωGLR − ΣLLGLR − ΣLRGRR ¼ 0

ΣLLðτÞ ¼ ð1 − κ2ÞJ2G3
LLðτÞ;

ΣLRðτÞ ¼ ð1þ κ2ÞJ2G3
LRðτÞ − iλδðτÞ; ð5Þ

where the first two equations are expressed in the frequency
domain, while the last two are in the imaginary time one.

A. Thermodynamic properties

In our system, there are two parameters λ and κ. The
parameter λ controls the strength of direct hopping between
the two systems. As mentioned earlier, the wormhole phase
is characterized [26] by a nontrivial dependence of the gap
on λ. By contrast, κ controls the strength of the imaginary
part of each separate SYK Hamiltonian [76,77] and it is not
directly related to the coupling between the two systems.
In this section, we study the combined effect of the two

couplings in the thermodynamic properties of the system.
More specifically, we compute the free energy and the
spectral gap Eg as a function of temperature and the
parameters λ and κ.
The free energy is obtained from the on-shell action

where the Green’s functions in the action are given by the
solutions of the saddle-point SD equations (4),

−βF¼ log2þ1

2
Tr log

ð−iω−ΣLLÞð−iω−ΣRRÞ−ΣLRΣRL

ð−iωÞð−iωÞ

−
1

2

�
1−

1

q

�
J2

ZZ
ð1− κ2ÞðG4

LLþG4
RRÞ

þð1þ κ2ÞðG4
LRþG4

RLÞ: ð6Þ

We know that for λ ¼ 0 and finite κ [76,77], the system
will stay in the wormhole phase, whose low-temperature
free energy is lower than that of the black hole phase. In the
wormhole phase, the free energy is independent of the
temperature.
The reason for the existence of the wormhole phase even

without an explicit coupling term (λ ¼ 0) can be under-
stood from the SD equations by rewriting them as

ΣLLðτÞ ¼ J02G3
LLðτÞ;

ΣLRðτÞ ¼ J02G3
LRðτÞ þ

2κ2

1 − κ2
J02G3

LRðτÞ; ð7Þ

where J02 ¼ ð1 − κ2ÞJ2. Solutions of these equations are
Green’s functions with an exponential τ dependence.
Specifically, if we assume GLR is purely imaginary and
exponential around τ ¼ 0, GLR will be nonzero only in the
neighborhood of τ ¼ 0. Therefore, we canmake the approxi-
mation 2κ2

1−κ2 G
3
LRðτÞ ∼ iλeffδðτÞ, where λeff can be identified

as the effective coupling constant, and its sign depends on
that of Im½GLR�. Comparing with the SD equations in [26],
such an approximation will lead to the exponential solutions
of GLL; iGLR ∈ R characteristic of the wormhole phase.
Indeed, the gap Eg that separates the wormhole ground state
from excited states can be extracted from the exponential
decay of GLR, Eg ¼ − limτ→∞ log jGLRj=τ.
We now proceed to investigate the case when λ is also

turned on. In principle, from the form of the SD equations,
one may think that the effect of a finite λ on the free energy
may depend on its sign and it may not always enhance the
gap that characterizes the wormhole phase. However, our
results clearly indicate that this is not the case. Finite λ will
always lower the free energy for any given κ. The reason is
that, for given λ, κ, T, there are three solutions and only the
one with the lowest free energy will be chosen since it is the
dominant saddle-point solution when evaluating partition

function. Two among these three solutions, denoted byGð1Þ
LR

and Gð2Þ
LR, give approximately constant free energy and

represent the wormhole phase, the third one corresponding
to the black hole phase. When λ ¼ 0, two wormhole

solutions satisfy Gð1Þ
LR ¼ −Gð2Þ

LR and they give rise to the
same free energy. However, if λ ≠ 0, this equality becomes

approximately correct, i.e., Gð1Þ
LR ≈ −Gð2Þ

LR, and the free
energy will split, so one of the solutions for GLR increases
the free energy while the other decreases it for any
temperature or κ (see results depicted in Fig. 1).
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Specifically, when λ > 0, the solution with positive imagi-
nary part Im½GLRðτÞ� > 0 in τ ∈ ð0; ϵÞ, as illustrated in the
left diagram of Fig. 2, is preferred for lower free energy,
while λ < 0we have opposite selection for the same reason.
Therefore, finite λ can always make the free energy lower
by choosing proper solutions. We will see in the next
section that the same mechanism takes place in JT gravity:
two wormhole saddle points are exchanged under a change
of sign of λ, ensuring that thermodynamical quantities are
even functions of λ.
In the large N limit, the path integral, and therefore the

free energy, is dominated by the saddle-point configura-
tions given by the solutions of the SD equations. The
physical solution is the one with the lowest free energy.

Therefore, as illustrated in Fig. 3, the free energy will
always decrease as λ is increased from zero, so the
wormhole phase becomes more thermodynamically stable
by combining the effect of λ and κ.
Having provided a qualitative description of the impact

of a finite λ, we now proceed to a more systematic analysis
of the free energy FðTÞ for various κ and λ. In all cases, see
Fig. 4, there always exists a first order phase transition
separating a nearly flat free energy in the low temperature
limit from a high temperature phase which is approximately
linear. The critical temperature is a increasing function of
κ and λ reinforcing the idea that the two effects are additive
regarding the stability of the wormhole low tempera-
ture phase.
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FIG. 1. F versus T for κ ¼ 0.75. Left: λ ¼ 0.02. Right: λ ¼ −0.02. For comparison, we also show the result for λ ¼ 0 (blue dots). As is
observed, F does not depend on the sign of λ and a finite λ lowers the free energy.
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FIG. 2. Gab for κ ¼ 0.75, λ ¼ 0.02 and T ¼ 0.005 for the two branches shown in Fig. 1. A different sign of GLR will enhance/reduce
the effective coupling, leading to the same behavior for F for different signs of λ. When λ is positive, the left solution is chosen, and
vice versa.
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Likewise, the dependence of Eg on κ and λ in the low
temperature limit is summarized in Figs. 5 and 6. Inspired
by the analytical dependence of Eg on λ and κ in the κ ¼ 0

[26] and λ ¼ 0 [76,77] limit, we first test whether the
combined effect of both couplings is Eg ¼ Aλ

2
3 þ Bκ2.

However, this relation seems to work only in the small κ
region. From the study of the gravity dual, we shall derive
an analytical expression for Eg which is in agreement with
the ansatz above for small κ and also describe well Eg for
other values of λ and κ, as shown in Fig. 23.
We also study the critical temperature Tcðκ; λÞ of the first

order phase transition. In Fig. 7, we observe that for
sufficiently small λ and large κ we have Tc ∼ κ4. This is

consistent with a recent analytical prediction [77] for λ ¼ 0.
In the gravity section, we will derive an analytic expression
of Tc given in (51) which is in agreement with these
numerical results even at finite λ.

B. Spectrum, spin symmetry
and complex-to-real transition

We now study qualitative features, and the impact of
symmetries of the spectrum of the Hamiltonian (1). In the
λ ¼ 0 limit, the Hamiltonian has an approximate spinlike
symmetry represented by Ŝ ¼ P

N
i ψL

i ψ
R
i , which is exact for

κ ¼ 0. For a certain κ ≠ 0, eigenvalues of the Hamiltonian
tend to cluster around those of the operator Ŝ for sufficiently
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FIG. 3. (a) F versus κ for various λ and T ¼ 0.001; (b) F versus λ for various κ and T ¼ 0.001. For a given temperature, the free energy
F increases with κ, while it decreases with λ.
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FIG. 4. (a) Free energy F as a function of temperature T for various κ’s and λ ¼ 0.03. (b) Free energy F as a function of temperature T
for various λ’s and κ ¼ 0.5. In all cases, we observe a first order phase transition with a critical temperature that is an increasing function
of λ and κ.
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large λ. This complicates the calculation of spectral corre-
lations, for if Ŝ strictly commutes with the Hamiltonian, the
spectral analysis must be restricted to eigenvalues within
each cluster. In Ref. [67], this problem was solved by
breaking this spin symmetry completely by considering
couplings in each of the SYK’s that differ by an overall
constant α ≠ 1. If α≊ 1, the wormhole phase still survives
[26] but the gap becomes smaller.
Another solution is to choose a basis in which the

Hamiltonian is block diagonalized where each block
corresponds to an eigenvalue of Ŝ. Even if the symmetry

is broken for κ ≠ 0, there still exists the parity symmetry
which corresponds to a spinlike operator eiπS [67].
For numerical convenience, we choose the following
Hamiltonian, which is equivalent to (2):

HL ¼ −
X

i<j<k<l

ðJijkl þ iκMijklÞψ iψ jψkψ l HR ¼ H�
L

H ¼ E ⊗ HL þHR ⊗ Eþ iλŜ

ψL
i ¼ E ⊗ ψ i ψR

i ¼ ψ i ⊗ ψc

ψc ¼ ð−iÞN=2
YN
i¼1

ψ i: ð8Þ

Here, E is the identity matrix of size 2
N
2 × 2

N
2 , with N the

total number of particles. The parity operator ψc for the
whole system is conserved (½ψc; H� ¼ 0) with eigenvalues
�1. So we only need to reorder diagonal elements in
descending order, then use exactly the same ordering to
reorganize the Hamiltonian into block-matrix form of two
parity sectors. Thus we can carry out the level statistic
analysis on one of the two blocks separately. In case we are
interested to study low temperature properties, we must
choose the block that includes the ground state.
In order to assess the importance of the spin symmetry

mentioned above in our Hamiltonian (1), we represent in
Fig. 8 the spectral density for κ ¼ 1 and different values of
the explicit coupling λ. We observe a rather symmetric
distribution for λ ¼ 0which is in agreement with the results
of Refs. [76,77,79]. As λ increases, gaps around the real
axis start to form. The spectral density for larger values of λ
shows that a growing part of the spectrum becomes real but
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FIG. 5. Eg versus λ for T ¼ 0.001. For κ ≤ 0.6, and λ ≥ 0.02,
Eg depends weakly on λ and the curves for different κ are near
parallel which indicates Eg’s dependence on κ and λ is approx-
imately separable.
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FIG. 6. Eg versus κ for T ¼ 0.001 and different λ0s. As in the
previous figure, we observe an almost flat dependence on κ for
sufficiently small λ. This quasiflat region increases with λ.
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c versus κ for various λ. Tc is critical temperature of

phase transition. For λ ¼ 0, our results indicate Tc ∼ κ4, which is
consistent with the analytic result of Ref. [77]. For finite λ, we
observe strong deviations from this behavior. The analytical
prediction (51) from the JT gravity (the effective Schwarzian
action) matches well with the SYK results, see Fig. 24.
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we still observe complex eigenvalues in certain regions.
The existence of the latter is directly related to the spin
operator Ŝ which is an approximate symmetry of the
Hamiltonian for sufficiently large λ. Complex eigenvalues
are restricted to the area between nearby eigenvalues of Ŝ
on the real axis, and hence their number depends on N.
Real eigenvalues start to cluster around the eigenvalues of
the spin operator (which we do not plot explicitly). By
contrast, the maximum density of the complex spectrum is
located around double cones with tips on the real axis
between the nearby eigenvalues of Ŝ.
Interestingly, a further increase in λ leads to an unex-

pected result. Even though the Hamiltonian is non-
Hermitian, the whole spectrum becomes real for
λ > λcðκÞ, see Fig. 9. Upon a further increase in λ, the
spectral support of the already real spectrum is split in
separate intervals. For λ large enough, we observe that these
intervals are centered around the eigenvalues of the spin
operator. As was shown in Ref. [67], this clustering can be
shown analytically by taking λ ≫ 1 so that the other terms
in the Hamiltonian are a small perturbation.
In Fig. 10(a), we present the ratio of complex and real

eigenvalues for different κ and λ.

We also find that though the percentage of the real
spectrum increases with λ monotonically, this increase
slows down when the percentage of complex eigenvalues
is small (< 10%). In Fig. 10(b), we depict λcðκÞ, the
minimum λ for which all eigenvalues are real for a given κ.
As was expected, it shares similarities with the contours in
Fig. 10(a).
We also note that the existence of a critical λ ¼ λc is not

an approximate result: the imaginary parts of the eigen-
values are strictly zero within the numerical precision
10−15. We shall see in the following section that this
transition has an observable impact on the oscillation
patterns of real time Green’s functions, which are related
to quantum tunneling for κ ¼ 0. Moreover, the transition
does not require large N or disorder average, although λc is
sensitive to the disorder realization.
It is instructive to consider the case N ¼ 4 for which the

complex-to-real transition can be seen explicitly. In this
case we have simply HL ¼ −ðJ þ iKÞψ1ψ2ψ3ψ4 where J
and K are arbitrary real numbers. The Hamiltonian is easily
diagonalized and the eigenvalues are

�2J; �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2þ4λ2

p
; �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−K2þλ2

p
; ðN¼4Þ; ð9Þ

FIG. 8. Complex spectral density for κ ¼ 1 and different values of λ < λc; we do not plot full real eigenvalues. The spectrum becomes
increasingly organized in separated blobs in the complex plane. For sufficiently large λ > 0.145 it becomes real.
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where the first eigenvalue is threefold degenerate and the
third one is fourfold degenerate. The complex-to-real
transition in this case corresponds to the fact that the
spectrum becomes real for λ > λc ¼ K.
An order parameter for the complex-to-real transition is

the thermal expectation value of the imaginary part of the
Hamiltonian, which is defined as

ImH ¼ κ
X

i<j<k<l

MijklðψR
i ψ

R
j ψ

R
kψ

R
l − ψL

i ψ
L
j ψ

L
kψ

L
lÞ; ð10Þ

and its expectation value can be computed as the derivative
of the partition function with respect to κ:

hImHiβ ¼
iκ
β

∂

∂κ
logZ; ð11Þ

where Z ¼ Tre−βH. This is an order parameter for the
transition since hImHiβ vanishes at the transition point,
because the spectrum of the Hamiltonian becomes real.
This quantity can be derived from the partition function so
it will be possible to compute it in the next section using the
gravity path integral.
We plot the order parameter in Fig. 11. It initially

increases, then exhibits a rather sharp decrease for some
small λ from the effect of the spin operator. It increases
again within the range of λ ∼ ð0.06; 0.12Þ, then abruptly
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FIG. 9. Spectral density for κ ¼ 1 and different values of λ (λ > λc ≈ 0.145). The spectrum becomes real even though the Hamiltonian
is non-Hermitian. As λ increases, see especially λ ¼ 0.5, the spectrum is clustered around the eigenvalues [�ð2nþ 1Þ, n ¼ 0, 1, 2] of the
spin operator for the odd parity sector.
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FIG. 10. Proportion of complex spectrum respect to the full spectrum. (a) Percentage of eigenvalues with a nonzero complex part for
different values of λ and κ. For a given κ and λ, we have employed 81 × 81 ¼ 6561 sets each having 100 disorder realizations. (b) The
critical λ ¼ λc for which the full spectrum becomes real for different values of κ. The blue line stands for the minimum λ ¼ λc for which
all eigenvalues of 100 disorder realizations are real. The error bars are the variance of this distribution.
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decreases to nearly zero and finally vanishes at λ ¼ λc. The
value of λc is consistent with the one obtained from the
level statistics or the analysis of the real time Green’s
functions. It is also possible to study the higher moments of
ImH by taking additional derivatives with respect to κ. The
fact that all the moments vanish at λ ¼ λc then implies that
the spectrum becomes real.

C. Tunneling amplitude and real time evolution

In this section we study the evolution in real time of the
SYK model (1) by solving the SD equation in real time. In
this context, a similar study was first carried out in Ref. [69]

for the case of a two-site Hermitian SYK model dual to
traversable wormholes. We first present results for G>

abðtÞ
when κ ¼ 0 or λ ¼ 0 respectively. We then provide a
heuristic description of its main features. Finally, we carry
out a detailed numerical computation of the combined
effect of a finite λ and κ in real time Green’s functions. Note
that although the system only makes sense in Euclidean
signature, it is a well-defined procedure to analytically
continue the Green’s function to real time.
Before proceeding, we first review the results for κ ¼ 0

and finite λ as discussed in Ref. [69]. The quantum dynamics
in this case is controlled by the SD equations in real time
resulting from the analytical continuation of (5),

ρþðωÞ ¼ −
1

π
ImGrþðωÞ

ρLL=LRðωÞ ¼
1

2
ðρþðωÞ � ρþð−ωÞÞ

nLL=LRðtÞ ¼
Z

∞

−∞
dωρLL=LRðωÞnFðωÞe−iωt;

nFðωÞ ¼
1

eβω þ 1

ΣrþðωÞ ¼ −2iJ2
Z

∞

0

eiðωþiϵÞt½Re½n3LLðtÞ� − iIm½n3LR��

GrþðωÞ ¼
1

ωþ iϵ − Σrþ − λ
: ð12Þ

We define

G>
abðtÞ ¼ −i

1

N

X
i

hψ i;aðtÞψ i;bð0Þi ð13Þ

whose Fourier transform is
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FIG. 11. Order parameter hOLRi ¼ ∂ logZ
∂k of the complex-to-real

transition in the SYK model. We use N ¼ 12 and T ∼ 10−3 to
suppress statistical fluctuations. The Euclidean-to-Lorentzian in
JT gravity gives a similar plot Fig. 27. The extra peaks in the
SYK plot are due to the nonuniversal spin symmetry of the
SYK model.
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FIG. 12. Left: jG>
abðtÞj (left) and ρLLðωÞ (right) for κ ¼ 0, λ ¼ 0.01, β ¼ 104. ϵ ¼ 2 × 10−5 and the time cutoff L ¼ 5 × 105. Right:

ρLL and ρLR versus ω in the small ω region.
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G>
abðωÞ ¼ −ið1 − nFðωÞÞρabðωÞ ð14Þ

with a; b ¼ L, R. Results for κ ¼ 0, the case already studied
inRef. [69], are depicted inFig. 12.As is observed, jG>

LLj and
jG>

LRj are out of phase, with maxima (minima) of one of the
functions corresponding to minima (maxima) of the other.
The maxima of G>

ab appear in different t, which can be
understood, when the system is dual to an eternal traversable
wormhole, as the propagating time through the bulk. These
real time results in Fig. 12 are directly related to the
imaginary solutions in Ref. [26] by applying aWick rotation.
We have found out, see Fig. 12(b), that the largest two

peaks of ρabðωÞ have the lowest frequency and are
symmetric with respect to ω ¼ 0. Therefore, ρab is well
approximated by

ρLLðω0Þ ≈ Aδðω0 − E0Þ þ Aδðω0 þ E0Þ;
ρLRðω0Þ ≈ iAδðω0 − E0Þ − iAδðω0 þ E0Þ; ð15Þ

with A ¼ 0.5. By employing the definition

GR
abðωÞ ¼

Z
∞

−∞
dω0 ρabðω0Þ

ω − ω0 þ iη
ð16Þ

for the retarded Green’s function, we obtain

GR
LLðωÞ ¼

A
ω − E0 þ iη

þ A
ωþ E0 þ iη

;

−iGR
LRðωÞ ¼

A
ω − E0 þ iη

−
A

ωþ E0 þ iη
: ð17Þ

Therefore, the imaginary time Green’s functions are
given by

GLLðωnÞ ¼
A

iωn − E0

þ A
iωn þ E0

−iGLRðωnÞ ¼
A

iωn − E0

−
A

iωn þ E0

ð18Þ

and

GLLðτÞ ¼
1

β

X∞
n¼−∞

�
A

iωn − E0

þ A
iωn þ E0

�
eiωnτ ¼ −

A
β

X∞
n¼−∞

2iωn

ω2
n þ E2

0

eiωnτ

¼ −
A
β

X∞
n¼−∞

2iπð2nþ 1Þ=β
π2ð2nþ 1Þ2=β2 þ E2

0

eiπð2nþ1Þτ=β ¼ A
X∞
n¼0

4πð2nþ 1Þ sin πð2nþ1Þτ
β

π2ð2nþ 1Þ2 þ β2E2
0

−iGLRðτÞ ¼
1

β

X∞
n¼−∞

�
A

iωn − E0

−
A

iωn þ E0

�
eiωnτ ¼ −

A
β

X∞
n¼−∞

2E0

ω2
n þ E2

0

eiωnτ

¼ −
A
β

X∞
n¼−∞

2E0

π2ð2nþ 1Þ2=β2 þ E2
0

eiπð2nþ1Þτ=β ¼ −A
X∞
n¼0

4E0β cos
πð2nþ1Þτ

β

π2ð2nþ 1Þ2 þ β2E2
0

: ð19Þ

As is illustrated in Fig. 13, GabðτÞ, calculated from (19), is real for a ¼ b ¼ L or a ¼ b ¼ R and purely imaginary for
a ¼ L, b ¼ R. Moreover, jGabj decays exponentially in the small τ region, which is consistent with previous numerical
results [26]. For finite κ, we expect [77] that GabðτÞ, and therefore ρabðωÞ, has also similar properties. The real time
Schwinger-Dyson equations are derived by extending the method of Ref. [69] to a finite κ,

ρþðωÞ ¼ −
1

π
ImGrþðωÞ

ρLL=LRðωÞ ¼
1

2
ðρþðωÞ � ρþð−ωÞÞ

nLL=LRðtÞ ¼
Z

∞

−∞
dωρLL=LRðωÞnFðωÞe−iωt; nFðωÞ ¼

1

eβω þ 1

ΣrþðωÞ ¼ −2iJ2
Z

∞

0

eiðωþiϵÞt½ð1 − κ2ÞRe½n3LLðtÞ� − ið1þ κ2ÞIm½n3LR��

GrþðωÞ ¼
1

ωþ iϵ − Σrþ − λ
: ð20Þ
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The results for the case λ ¼ 0, κ ≠ 0, depicted in Fig. 14,
also display an oscillatory behavior but with a crucial
difference: both functions are now in phase. Physically, it is
an indication that there is no real tunneling between left and
time particles but rather a synchronization of the dynamics
of both sites despite the fact that they are not directly
coupled. The only coupling arises after ensemble average.
This in-phase pattern will be explained in the next section
as a localization in the gravity path integral.
Since jG>

abðtÞj ∼ jhψaðtÞψbð0Þij is the probability ampli-
tude of observing a particle again at time t if this particle
appears at t ¼ 0 once, the overlap of jG>

abðtÞj with
a; b ¼ L, R indicates the synchronization of the dynamics

of the left and right sites even though they are not
physically coupled.
Another interesting feature in the λ ¼ 0 limit, see

Fig. 14, is that ρLLðωÞ has negative peaks. Superficially,
this result looks surprising since for ϵ > 0, all the peaks by
definition must be positive from the very definition of
ρabðωÞ. However, this applies only to κ ¼ 0 where the
Hamiltonian is Hermitian and the eigenvalues are real. For
κ ≠ 0, the eigenvalues are in general complex and, there-
fore, peaks can be either positive or negative.
We now turn to the study of the combined effect of a

finite κ and λ. In Fig. 15, we can clearly observe that, for a
fixed κ, the behavior of jG>

abðtÞj is different for small and
large λ. For small λ, jG>

abðtÞj are similar to that in the case of
λ ¼ 0, namely, both Green’s functions are in phase.
Likewise, ρabðωÞ have a simple structure: two leading
peaks and two subleading peaks whose sign depends on
whether a ¼ b or a ≠ b are dominant. However, when λ is
sufficiently large, the oscillations of jG>

abðtÞj become
qualitatively different, as for κ ¼ 0, jG>

LLðtÞj, jG>
LRðtÞj

are out of phase though the oscillating pattern becomes
more intricate. This is fully consistent with ρabðωÞ where
more subleading peaks are observed. More specifically, a
finite λ (κ) is responsible for positive (negative) subleading
peaks in ρLLðωÞ. These peaks are suppressed when λ gets
larger. We could not study the nature of the transition
between these two regimes because, for a fixed κ, we could
not find solutions in this critical region λ ∼ 0.1. A possible
reason is that enhanced oscillations around the transition
make it difficult to find jG>

abðtÞj numerically.
Finally, we check the consistency of our results by

comparing the temperature dependence of the real time
Green’s function with the thermodynamic properties inves-
tigated previously. Results for FðTÞ and EgðTÞ, depicted
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FIG. 13. GabðτÞ after a Wick rotation of GR
abðωÞ and

ρLL ≈ 0.5δðω − ω0Þ þ 0.5δðω þ ω0Þ, ρLR ≈ 0.5iδðω − ω0Þ−
0.5iδðωþ ω0Þ.
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FIG. 14. jG>
abðtÞj (left) and ρLLðωÞ (right) for κ ¼ 0.6, λ ¼ 0, β ¼ 104, ϵ ¼ 2 × 10−4 and time cutoff L ¼ 5 × 106. Insets on the right

panel show ρLLðωÞ and ρLLðωÞ in the small ω region.
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again in Fig. 16(e), indicate that the thermodynamic phase
transition temperature occurs at Tc ∼ 0.055. Previous real
time Green’s functions were considered in the low

temperature region T → 0 where the system is in the
wormhole phase and the pattern of oscillations of
jG>

abðtÞj is quite rich. As temperature is increased

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 15. jG>
abðtÞj and ρabðωÞ for κ ¼ 0.5, λ ¼ 0, 0.4, 0.7, 0.14, 0.17, 0.2, N ¼ 225, ϵ ¼ 2 × 10−4, L ¼ 5 × 106, β ¼ 104. In the

diagrams, we can observe a transition when we increase the value of λ, which corresponds to more peaks appearing in ρab.
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FIG. 16. jG>
abðtÞj and ρabðωÞ for κ ¼ 0.4, λ ¼ 0.12, N ¼ 225, ϵ ¼ 2 × 10−4, L ¼ 5 × 106, when β ¼ 104; 102; 50; 40; 30, 15, 10, as

well as F and Eg in the last figure. From the real time and imaginary time calculations, we can see when T increases the system suffers a
phase transition, and their transition temperatures are close, so both results are basically consistent.
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(T > 0.02), we observe a gradual suppression of oscilla-
tions. This suppression is directly related to a broadening of
the peaks in ρabðωÞ. This behavior has already been
predicted in Ref. [92] for the κ ¼ 0 case. Oscillations
disappear already for T ¼ 0.0666 which suggests a tran-
sition to the black hole phase.
Finally, we study the effect of sign switch λ → −λ in the

real time evolution. In Fig. 17, we depict jG>
abðtÞj and ρabðωÞ

for positive and negative values of λ. As is observed, the sign
flip in λ just changes the sign of ρLR and leaves jG>

abðtÞj
invariant. This is reasonable since we expect that λ → −λ
induces and overall sign difference in GR

LRðtÞ → −GR
LRðtÞ.

One interesting question is whether the observed tran-
sition between different oscillation patterns is accompanied
with a change in the free energy F. The answer to this
question is negative. The reason is that the exponential
behavior of the imaginary time Green’s function GabðτÞ is
related to the leading peak of the corresponding ρabðωÞ.
However the oscillating patterns depend instead on the

superposition regarding the leading and all the subleading
peaks. Since F is a function of GabðτÞ, we do not expect F
to experience any significant change during the complex-
to-real transition. Indeed, the thermal phase transition is
different from the complex-to-real transition. As we will
see next in gravity, the former is a transition between the
wormhole and two black holes while the latter can be
interpreted as a Euclidean-to-Lorentzian transition in the
wormhole phase.

III. GRAVITY DUAL

In this section, we study the gravity dual of the SYK
system described by the Hamiltonian (1). At low temper-
atures, it is dual to a Euclidean wormhole in JT gravity with
two parameters η and k, respectively dual to λ and κ. This is
a generalization of the eternal traversable wormhole [26]
(corresponding to k ¼ 0) and the Euclidean worm-
hole without interaction [76] (corresponding to η ¼ 0).
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FIG. 17. jG>
abðtÞj and ρabðωÞ for κ ¼ 0.4, λ ¼ 0.12 (top) and λ ¼ −0.12 (bottom), withN ¼ 225, ϵ ¼ 2 × 10−4, L ¼ 5 × 106, β ¼ 104.

GARCÍA-GARCÍA, GODET, YIN, and ZHENG PHYS. REV. D 106, 046008 (2022)

046008-14



The combined effect of η and k studied in this paper leads to
a wormhole with similar thermodynamical properties and
we will find an excellent match between the SYK and JT
results.
Our system is a purely Euclidean system studied from

the point of view of statistical mechanics. It does not have a
Lorentzian interpretation (with unitary evolution) as the
energy spectrum is generally complex. Note that the
Euclidean quantities can still be viewed as suitably ana-
lytically continued versions of Lorentzian observables,
which is akin to studying a partition function at the
imaginary value of the chemical potential, see e.g., [93,94].
The main result of the previous section is the observation

of a complex-to-real transition, where the energy spectrum
becomes real for sufficiently strong intersite coupling,
despite the Hamiltonian being non-Hermitian. The
Euclidean wormhole has a gravitational U(1) symmetry
while the Lorentzian wormhole has a gravitational
SLð2;RÞ symmetry [85,86]. We will show that the
complex-to-real transition corresponds to the dynamical
restoration of the SLð2;RÞ symmetry of the Lorentzian
wormhole, and thus can be interpreted as a Euclidean-to-
Lorentzian transition.

A. Wormhole solutions

The theory we consider is Jackiw-Teitelboim gravity
with a massless scalar field χ and a static Gao-Jafferis-Wall
interaction [26,95] involving N fields of dimension Δ. To
compare with SYK, we should take Δ ¼ 1=4. The theory is
described by the action

S ¼ SJT þ Sχ þ Sint; ð21Þ

where

SJT ¼ −S0 χEuler −
1

2

Z
M
d2x

ffiffiffi
g

p
ΦðRþ 2Þ

−
Z
∂M

dτ
ffiffiffi
h

p
ΦðK − 1Þ;

Sχ ¼
1

2

Z
M
d2x

ffiffiffi
g

p ð∂χÞ2;

Sint ¼ g
XN
i¼1

Z
duOðiÞ

L ðuÞOðiÞ
R ðuÞ: ð22Þ

The solution we consider is the Euclidean wormhole

ds2¼ dτ2þdρ2

cos2ρ
; −

π

2
< ρ<

π

2
; τ∼ τþb: ð23Þ

Following [76], we deform the theory with boundary
sources taken to be imaginary:

lim
ρ→−π=2

χ ¼ ik̃; lim
ρ→π=2

χ ¼ −ik̃: ð24Þ

The imaginary sources model the imaginary part of the
SYK couplings as they correspond to a deformation of the
Hamiltonian

δH ¼ ik̃OL − ik̃OR; ð25Þ

where OL, OR are the marginal operators dual to χ on each
boundary. We see that this is a good model of the imaginary
part of the SYK Hamiltonian (1) as we can identify the
marginal operators with the SYK operators

OL∼Mijklψ
L
i ψ

L
j ψ

L
kψ

L
l; OR∼Mijklψ

R
i ψ

R
j ψ

R
kψ

R
l : ð26Þ

The boundary conditions for JT gravity are

ds2 ¼ dũ2

ϵ2
; Φ ¼ ϕr

ϵ
; ð27Þ

and we study the theory in Euclidean signature with the
periodicity condition

ũ ∼ ũþ β̃: ð28Þ

1. Schwarzian effective action

Nearly AdS2 holography is a theory of a boundary
graviton, or reparametrization mode, which can be
described by an effective Schwarzian action [12–14].
The wormhole has two boundaries so it is described by
an action for two reparametrization modes τLðuÞ and τRðuÞ
after integrating out the matter degrees of freedom.
Without boundary sources (k̃ ¼ 0), the system is the

eternal traversable wormhole whose action was derived in
[26] in both SYK and JT gravity. The boundary sources
give an additional contribution that can be computed by
evaluating the action for a general solution for χ in the
wormhole as a function of boundary sources χL and χR:

χðτ; ρÞ ¼
Z
R
dτLKLðτ; ρ; τLÞχLðτLÞ

þ
Z
R
dτRKRðτ; ρ; τRÞχRðτRÞ; ð29Þ

where the bulk-to-boundary propagators in AdS2 are

KLðτ; ρ; τLÞ ¼
1

2π

�
cos ρ

coshðτ − τLÞ þ sin ρ

�
;

KRðτ; ρ; τRÞ ¼
1

2π

�
cos ρ

coshðτ − τRÞ − sin ρ

�
: ð30Þ

The value of the sources chosen here are

χL ¼ ik̃; χR ¼ −ik̃: ð31Þ
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The contribution of the scalar field is then obtained by
evaluating the on-shell action after acting with the diffeo-
morphisms corresponding to the two Schwarzian modes
[14], see Appendix A of [54] for additional details.
At the end, the effective Schwarzian action of the system

takes the form

S¼−N
Z

β

0

du

��
tanh

�
1

2
τLðuÞ

�
;u

�

þ
�
tanh

�
1

2
τRðuÞ

�
;u

�
þη

�
τ0LðuÞτ0RðuÞ

cosh2ð1
2
ðτLðuÞ−τRðuÞÞÞ

�
Δ

þ3

2
k2
b
β

�
ð32Þ

which we study in Euclidean signature. We see the effect of
the boundary sources is to add a constant term in the action
proportional to the wormhole size b. We use the physical
time u which is related to the coordinate ũ via

u ¼ J
αS

ũ ¼ N
ϕr

ũ; ð33Þ

and which is periodically identified u ∼ uþ β, where β ¼
β̃N is the physical temperature. The coupling constants are

η ¼ g
22Δ

�
N
ϕr

�
2Δ−1

; k2 ¼ 2

πN
k̃2 ð34Þ

which are taken fixed in the large N limit. As in [26], the
validity of the action requires that η ≪ 1 and that the
system develops an approximate conformal symmetry
close to the ground state, which will be assumed here.
The gravitational regime corresponds to large N. The
overall factor of N ensures that the path integral localizes
on its saddle points in the large N limit.
We have not been able to derive the Schwarzian action

directly from the SYK model because, unlike in JT gravity,
it is harder to split the real and imaginary couplings which
enter in a rather symmetric way. Nonetheless, we expect, due
to the strikingly similar properties of both systems, that the
Schwarzian effective action will be the same in SYK, with k
proportional to κ. This is also expected from universality if
we view the Schwarzian action as a type of effective
hydrodynamics, the contribution from the imaginary sources
corresponding to a marginal deformation.

2. Wormhole solutions

The Euclidean wormhole corresponds to the solution

τLðuÞ ¼ τRðuÞ ¼
b
β
u; ð35Þ

which gives the Euclidean action

S ¼ N

�
b2

β
−
3

2
k2b − ηβ1−2Δb2Δ

�
: ð36Þ

This action needs to be minimized with respect to the
wormhole size b. For this purpose, it is useful to introduce
the variable X defined from the relation

b ¼ βX2; ð37Þ

so that the action becomes

S ¼ βN

�
X4 −

3

2
k2X2 − ηX

�
; ð38Þ

where we have set Δ ¼ 1
4
. The action is a quartic poly-

nomial in X. The saddle point in X gives a cubic equation

X3 −
3k2

4
X −

η

4
¼ 0: ð39Þ

This equation is also equivalent to the vanishing of U(1)
charge

Q0 ¼ 0; ð40Þ

which is required as the U(1) symmetry is a gauge
symmetry. In fact, (40) is the integrated Hamiltonian
constraint of JT gravity and implies the gravitational
equations of motion. For JT gravity with matter, it takes
the form [85,86]

0 ¼ Q0 ¼ −NðE½τLðuÞ� þ E½τRðuÞ�Þ þ
Z
Σ
dxTmatter

00 ð41Þ

on a Cauchy slice Σ. Here, the functional

E½τðuÞ� ¼ τð3ÞðuÞ
τ0ðuÞ2 −

τ00ðuÞ2
τ0ðuÞ3 − τ0ðuÞ ð42Þ

measures the energy at each boundary in terms of the
boundary graviton. As an aside, we note that this form is
similar to the integrated Hamiltonian constraint in higher-
dimensional AdS. In [96], this was used to prove a
perturbative version of the holography of information
[97]. This suggests that a similar statement should be
possible in JT gravity with matter for excitations of the
eternal traversable wormhole, i.e., on the solution corre-
sponding to the global AdS2 geometry.
The cubic equation can be solved analytically using

Cardano’s method [98]. The three roots can be written as

X1¼C1þC2; X2¼C1jþC2j2; X3¼C1j2þC2j; ð43Þ

where j ¼ e2iπ=3 and
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C1 ¼
1

2
ðηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − k6

q
Þ1=3; C2 ¼

k2

2ðηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − k6

p
Þ1=3

:

ð44Þ

The discriminant of the equation vanishes when η ¼ ηc
with

ηc ¼ k3: ð45Þ

We will argue that ηc is the counterpart of λc in SYK, the
critical value for the complex-to-real transition.
These three solutions give rise to three wormhole

solutions which, for lack of a better terminology, we will
refer to as the first, second and third saddle points. We can
see from Fig. 18 that the size b remains real for jηj < ηc but
can become complex above the transition, even though the
dominant solution (in the canonical ensemble) always has
real b. The appearance of similar complex saddle points
was observed in [54] and will be related here to the
complex-to-real transition.

3. Free energy

The free energy of the wormhole is

F ¼ TS ¼ N

�
X4 −

3

2
k2X2 − ηX

�
: ð46Þ

We see that the free energy is independent of the temper-
ature which reflects that the phase is gapped. The real and
imaginary parts of the free energies for the three wormhole
saddle points are plotted in Fig. 19. For jηj > ηc, the free
energy of the two subleading wormholes becomes com-
plex, although the total free energy remains real. This
reflects the fact that these subleading wormholes become
complex geometries as b acquires an imaginary part.
For η > 0, we use here the dominant solution X ¼ X1.

For η < 0, we should use X ¼ X2 as the two saddle points
get exchanged. This mechanism was also observed in SYK
and implies that the thermodynamic quantities will be
symmetric under η → −η as illustrated in Fig. 20. For this
reason, it is enough to focus on the region η > 0.

(a) (b)

FIG. 18. Real and imaginary parts of the wormhole size b ¼ βX2.

(a) (b)

FIG. 19. Real and imaginary parts of the free energy for the three wormhole solutions.
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4. Energy gap

The energy gap is given, for η > 0, by [26]

Egap ¼ Δ
b
β
¼ ΔX2

1; ð47Þ

where we take Δ ¼ 1=4.
Explicitly, the energy gap takes the form

Egap ¼
ðk2 þ ðηþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − k6

p
Þ2=3Þ2

16ðηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − k6

p
Þ2=3

: ð48Þ

The energy gap for various values of η and k is plotted in
Fig. 21. It is similar to previous SYK results. A more
quantitative comparison by using k ¼ Aκ, η ¼ Bλ between
the JT and SYK parameters where the coefficients can be
fixed in various ways. In Fig. 22, we compare Eg in gravity
(48)with the numerical SYKpredictions forEg usingA,B as
fitting parameters for λ ∈�0; 0.09� and different λ. For κ
sufficiently small, we find an excellent agreement between
the gravity and the SYK predictions for A ≈ 1.585 and
B ≈ 27.056. Details of the fitting are given in Appendix A.
The fact that k ¼ Aκ should be taken small is a consequence
of the scaling regime (34). Since k̃ should be fixed in the
gravitational theory, k ¼ Aκ scales as N−1=2 and must be
small in the largeN limit. For larger κ, we observe deviations
in the SYK model, for example due to the fact that the

Schwarzian terms are renormalized by a factor 1 − κ2. This
effect is subleading in the largeN limit. It should be possible
to interpret it as a subleading (e.g. one-loop) effect in gravity
but in this work we focus on the leading large N behavior.

5. Transition to two black holes

The system with the chosen boundary conditions has
another saddle point corresponding to two black holes with
free energy

(a) (b)

FIG. 20. Transition between two black holes and the wormhole. For η > 0, the dominant saddle point is the blue wormhole. Upon
changing the sign of η, the blue and orange wormhole are exchanged so that the system behaves in a symmetric way under η → −η. This
free energy is in excellent agreement with the SYK result depicted in Fig. 4.

FIG. 21. Egap as a function of η and k.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

FIG. 22. Eg versus λ. Dots and circles from bottom to top
(i.e., blue, red, yellow, …, azure) correspond to results for
κ ¼ 0; 0.1;…; 0.7. Dots are numerical SYK results and circles
correspond with the fitting to the gravity prediction (48), with
k ¼ Aκ, η ¼ Bλ and A ¼ 1.58497 and B ¼ 27.05755 best fitting
parameters in all cases.
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FBH ¼ −2S0T − 4π2T2: ð49Þ

In the canonical ensemble, the dominant solution is the one
with the smallest free energy. We observe a phase transition
at low temperatures where the two black holes become a
wormhole. This transition was already studied in limiting
cases in [26,76].
The critical temperature is the value Tc for which the free

energy of the dominant wormhole is equal to the free
energy of the two black holes,

Tc ¼ −
ReFWH

2S0
; ð50Þ

where we assume S0 ≫ 1. For η > 0, the dominant saddle
point is X1 in (43). Explicitly, the critical temperature takes
the form

Tc ¼
3N
8S0

ðηX1 þ k2X2
1Þ: ð51Þ

For negative η, the dominant saddle point is the second one,
so X1 should be replaced by X2 in the expression of Tc.
Results for TcðkÞ, for different values of η are depicted in

Fig. 23. The critical temperature obtained fromSYK in Fig. 7
has a similar behavior. A quantitative comparison is per-
formed in Fig. 24, wherewe compare the analytic expression
(51) for Tc with the numerical results from SYK.We plot the
expression (51) using k ¼ Aκ; η ¼ Bλ, whereA andB are the
values determined from Egap, and where the overall factor is
fixed by matching the numerical results at a particular point
(in this case κ ¼ 0, λ ¼ 0.06). We also find a good agree-
ment.A similar agreement is observed if other parameters are
chosen to fix the overall factor.

B. Gravitational symmetry breaking

1. Lorentzian phase

In JT gravity, the SLð2;RÞ symmetry corresponding to
the isometries of AdS2 has to be viewed as a gauge
symmetry. In the path integral formulation, this is because
configurations related by an SLð2;RÞ symmetry should be
viewed as equivalent [14]. From a Lorentzian point of view,
this SLð2;RÞ symmetry is part of the diffeomorphism
group. As a result, the associated charges must vanish

Q0 ¼ 0; Qþ ¼ 0; Q− ¼ 0: ð52Þ
This is part of the gauge constraints of the theory and can be
derived, for example, by integrating the gravitational
constraints (or equations of motion) on a Cauchy slice.
Imposing Q� ¼ 0 implies that τLðuÞ ¼ τRðuÞ≡ τðuÞ so

the left and right boundary modes get identified [26]. The
last constraint gives

Q0 ¼ eφNð−2φ00 þ ∂φVÞ ¼ 0 ð53Þ
in terms of the Liouville variable φðuÞ ¼ log τ0ðuÞ and
where the potential is

VðφÞ ¼ e2φ −
3

2
k2eφ − ηe2Δφ: ð54Þ

In this case, the Euclidean action can be written as a
Liouville action

S ¼ N
Z

duðφ0ðuÞ2 þ VðφðuÞÞÞ ð55Þ

so we see that indeed the vanishing of Q0 is equivalent to
the equations of motion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

=0
=0.02
=0.04
=0.06

FIG. 24. Tc versus κ for different λ. Lines are the numerical
SYK results and circles represent the gravity prediction (51), with
k ¼ Aκ, η ¼ Bλ and A ¼ 1.58497 and B ¼ 27.05755 obtained
from the fitting of Eg, see Appendix A.
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FIG. 23. Critical temperature as a function of k for various
values of η.
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2. Euclidean broken phase

In the Euclidean wormhole, we do not have to impose the constraintsQ� ¼ 0 since these generators are not isometries of
the geometry. This is the identification τ ∼ τ þ b breaks the SLð2;RÞ symmetry to U(1). We should still impose Q0 ¼ 0
which gives explicitly

0 ¼ −N−1Q0 ¼ E½τL� þ E½τR� þ ηΔ
�

1

τ0LðuÞ
þ 1

τ0RðuÞ
��

τ0LðuÞτ0RðuÞ
cosh2ð1

2
ðτLðuÞ − τRðuÞÞ

�
Δ
þ 3k2

2
; ð56Þ

where E is the energy functional defined in (42). We can see that this corresponds to a system of two interacting boundary
modes τLðuÞ and τRðuÞ.
For η ¼ 0, the system has a simpler description in terms of Liouville variables φ ¼ log τ0 given by the equation

−N−1Q0 ¼ ðe−φLðuÞφ00
LðuÞ − eφLðuÞÞ þ ðe−φRðuÞφ00

RðuÞ − eφRðuÞÞ þ 3k2

2
; ðη ¼ 0Þ; ð57Þ

which corresponds to two correlated (but noninteracting) Liouville particles.

3. Phase shift

In the broken phase, additional classical solutions are
possible because we do not impose τL ¼ τR. In particular,
we can have a shift by an arbitrary constant α:

τLðuÞ ¼
b
β
uþ α; τRðuÞ ¼

b
β
u: ð58Þ

This corresponds to a global U(1) symmetry, which can be
interpreted as relative shifts between the two sides. This
symmetry is present in the Euclidean wormhole at η ¼ 0
but is explicitly broken by the intersite coupling.
In the path integral, α enters as another moduli on which

we should integrate. After evaluating the action on the

classical solutions (58), we should perform the path integral
over b and α. We can consider doing first the integral over
α. This is

Z
R
dα exp

�
−βNη

�
b

β coshðα=2Þ
�

2Δ
þ � � �

�
; ð59Þ

where we highlighted the α dependence. This integral has a
saddle point at α ¼ 0 and this will be the dominant solution
in the Euclidean path integral. As a result, the effect of
nonzero α is subleading in the thermodynamics and cannot
be easily measured in Euclidean signature.
Rather, we will see that the variable α can be measured in

the Wick-rotated two-point functions. We first define

GLLðu1; u2Þ ¼ hOLðu1ÞOLðu2Þi; GLRðu1; u2Þ ¼ hOLðu1ÞORðu2Þi; ð60Þ

and the classical solution (58) gives the contribution

GLLðu1; u2Þ ¼
�

τ0Lðu1Þτ0Lðu2Þ
sinh2ð1

2
ðτLðu1Þ − τLðu2ÞÞ

�
Δ
¼

�
b2

β2 sinh2ð b
2β ðu1 − u2Þ

�Δ
; ð61Þ

GLRðu1; u2Þ ¼
�

τ0Lðu1Þτ0Rðu2Þ
cosh2ð1

2
ðτLðu1Þ − τRðu2ÞÞ

�
Δ
¼

�
b2

β2 cosh2ð b
2β ðu1 − u2Þ þ α

2

�Δ
: ð62Þ

The effect of α can be studied by continuing to real time. This is a well-defined procedure, even though we do not expect the
theory to always have a Lorentzian interpretation. The Wick rotation can be achieved by using u1 − u2 ¼ iv and we obtain

GLLðvÞ ¼
ffiffiffiffiffiffi
2ω

p

sin2ðωv − iϵÞ ; GLRðvÞ ¼
ffiffiffiffiffiffi
2ω

p

cos2ðωvþ 1
2
α̃ − iϵÞ ; ð63Þ

where we used Δ ¼ 1
4
and defined α ¼ iα̃. This shows that α measures the phase shift between GLL and GLR in real time.

Here, the frequency of the oscillations is given by
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ω ¼ b
2β

¼ 2Egap: ð64Þ

The Wick rotation also acts on α since it is defined as the
difference of 2 times. In other words, the real time Green’s
functions should be computed by integrating over the
contour α ∈ iR. For α̃ ¼ 0, the Green’s function are in
phase while for α̃ ¼ π they are out of phase.
In fact, since the integrand is periodic, we should only

integrate on the circle α ∼ αþ 2iπ. In terms of the variable
α̃ ¼ −iα, the integral becomes

GLRðvÞ ¼
1

Z

Z
2π

0

dα̃ðe−S1Gð1Þ
LR þ e−S2Gð2Þ

LR þ e−S3Gð3Þ
LRÞ;

ð65Þ

where the three saddle points in the b integral are
corresponding to the three roots (43).
Note that for η ¼ 0, the three saddle points reduce to a

single one. In this case, the different choices of α are
exactly degenerate which corresponds to a global Uð1Þaxial
symmetry. To explain this, note that translations on τL and
τR give a Uð1Þ × Uð1Þ symmetry. The intersite interaction
only preserves the diagonal Uð1Þdiag symmetry [which
corresponds to the U(1) isometry of the Euclidean worm-
hole] and explicitly breaks the Uð1Þaxial symmetry (which is
the one that shifts α). In the path integral, this soft breaking
corresponds to the fact that the intersite interaction gives a
different action for different values of α.
For η > 0, the dominant saddle point is the first saddle

corresponding to X1. The effect of α can be accounted by
replacing η with η=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cosðα̃=2Þjp
starting from the α̃ ¼ 0

configuration. We can see that the action is strongly
localized around α̃ ¼ π as we have

e−S1 ∼ exp

�
3βNη4=3

4jα̃ − πj2=3
�

ðη > 0Þ: ð66Þ

The divergence at α̃ ¼ π implies that we cannot use a
saddle-point approximation here. Rather, the factor e−S1
inserts a delta function in the path integral which localizes it
on the value α̃ ¼ π. This value implies that GLL and GLR
should be in phase. For η < 0, the first and second saddle
point are exchanged, it is then S2 that dominates and inserts
a similar delta function in the path integral.
This localization mechanism explains that the Green’s

functions are in phase for small η. For η > ηc, the restora-
tion of SLð2;RÞ symmetry described below imposes
τL ¼ τR. As a result, we must have α̃ ¼ 0 so that GLL
and GLR must be out of phase.
These two regimes for the Green’s functions are plotted

in Fig. 25. The dephasing pattern matches precisely what is
observed in the SYK model, see Figs. 15–17.

4. Order parameter

The deformation by boundary sources �ik̃ corresponds
to adding to the Euclidean action

δS ¼ iOLR; ð67Þ
where we have defined the operator

OLR ≡ k̃
Z
S1
dτðOLðτÞ −ORðτÞÞ: ð68Þ

Writing Z as a path integral shows that its expectation value
can be obtained by taking a derivative with respect to k:

hOLRiβ ¼ ik̃
∂

∂k̃
logZβ ¼ ik

∂

∂k
logZβ; ð69Þ

where we used that k ¼
ffiffiffiffiffi
2
πN

q
k̃.

We will see that the expectation value of this operator is
an order parameter for the SLð2;RÞ symmetry breaking. To
study the SLð2;RÞ transformation, we formally continue to
Lorentzian signature using τ ¼ it and use that under an
infinitesimal SLð2;RÞ transformation

(a) (b)

FIG. 25. Dephasing of GLL and GLR under the Uð1Þ → SLð2;RÞ symmetry restoration. The plots are performed by using an iϵ
regularization for the light-cone singularities.
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δtL ¼ ε0 þ εþeτ þ ε−e−τ; δtR ¼ ε0 − εþeτ − ε−e−τ:

ð70Þ

This leads to

δOLR ¼ i
Z

dtðεþeit þ ε−e−itÞðO0
LðtÞ þO0

RðtÞÞ; ð71Þ

so this operator is invariant under U(1) but transforms
nontrivially under the other generators of SLð2;RÞ.
The path integral computation of hOLRi requires a

suitable choice of contour for the integral over b. The
general procedure to select the contour is not well under-
stood, see for example [62–65]. In principle, the contour
could be determined by the appropriate analytic continu-
ation from Lorentzian signature if the system has a
Lorentzian interpretation. In the theory defined by the
Euclidean path integral, Picard-Lefschetz theory could be
used to understand the correct contour prescription. Here,
we will give a natural contour prescription that reproduces
the SYK results, and leave a better understanding of the
choice of contour for future work.
For jηj < ηc, we integrate over b ∈ ½0;þ∞Þ which is the

contour in Fig. 26(a). This gives a nonzero expectation
value

hOLRi ¼ 3iNk2b�; jηj < ηc; ð72Þ

where b� is the size of the dominant wormhole. This
nonzero expectation value spontaneously breaks the
SLð2;RÞ symmetry to U(1).
For η > ηc, we propose that we should choose the

vertical contour in Fig. 26(b). This leads to

hOLRi ¼ 0; η > ηc; ð73Þ

and the SLð2;RÞ symmetry is restored. For η > ηc, two-
saddle points leave the real line, and we choose the contour
that connects the two complex saddle points. The important
point here is that the new contour should not include the
real saddle point. This ensures that hOLRi ¼ 0 in agreement
with the SYK result.
The result is depicted in Fig. 27. We see that at η > ηc,

the order parameter vanishes. The transition also happens in
the negative η region, with the first (blue) and second
(orange) saddle points exchanged. We can compare this to
Fig. 11 in SYK and we see a good qualitative match. This
shows that the change of contour appears to be the right
gravity mechanism to account for the complex-to-real
transition observed in SYK. Note that the different choices
of contour should reflect the ambiguity in the derivative of
the partition function with respect to k due to the branch
cuts appearing in (44).

(a) (b)

FIG. 26. Contour of integration in the complex b-plane to compute hOLRi. The dots represent the three saddle points which are
controlled by the cubic equation (39). For η > ηc, two of the saddle points acquire an imaginary part and become complex conjugate.
The restoration of SLð2;RÞ symmetry can be explained by the transition to a vertical integration contour on which the saddle point with
lowest free energy stops contributing.

FIG. 27. Expectation value hOLRi as a function of η. For
jηj > ηc ¼ k3, we observe a transition where hOLRi ¼ 0 and the
SLð2;RÞ symmetry is restored. This is in good agreement with
the SYK result, Fig. 11. Note that the additional peak in the latter
is due to spin symmetry which is a nonuniversal feature related to
the chosen minimal left-right coupling.

GARCÍA-GARCÍA, GODET, YIN, and ZHENG PHYS. REV. D 106, 046008 (2022)

046008-22



Note that there is a larger value of ηmax ¼ 3
ffiffi
3
2

q
k3 above

which the classical solution for the small wormholes cannot
be trusted. This is the value at which the complex
conjugated wormholes have Reb ¼ 0. When Reb ≪ β,
the one-loop effect cannot be ignored and will modify the
analysis. Such one-loop effects were studied in [76] for
η ¼ 0. In this paper, we stay in the classical limit which is
sufficient for the comparison with SYK results in the large
N limit.
This mechanism explains the surprising observation in

SYK that the Hamiltonian becomes real for jηj > jηcj.
Indeed, we have from (11),

hOLRiβ ¼ βhImHiβ ð74Þ

which shows that this is, up to the factor β, the same order
parameter that was previously identified in SYK. The
higher moments of ImH can be obtained by taking more
derivatives with respect to k. The same mechanism suggests
that these higher moments vanish above the transition, and
the vanishing of all the moments implies that the energy
spectrum must be real. This shows that the preservation of
SLð2;RÞ symmetry implies that the energy spectrum must
be real.
To summarize, we have proposed a mechanism for the

restoration of SLð2;RÞ gauge symmetry in terms of a
change of integration contour. We have shown that the
restoration of SLð2;RÞ symmetry is equivalent to the
energy spectrum becoming real by identifying an order
parameter for the transition. At the moment, we cannot
fully justify the change of contour in gravity, as the precise
rules governing the path integral are not well understood.
We leave a better understanding of this mechanism for
future work. In terms of the variable X ¼ ffiffiffiffiffiffiffiffi

b=β
p

, the path
integral takes the form

Z ¼
Z

dX exp
�
−βN

�
X4 −

3

2
k2X2 − ηX

��
: ð75Þ

The Picard-Lefschetz theory of similar integrals was
considered in [99] and one might hope that this could
shed some light on this transition.

C. Euclidean-to-Lorentzian transition

In this section, we explain in what sense the complex-to-
real transition can be understood as a Euclidean-to-
Lorentzian transition.
The Lorentzian wormhole (eternal traversable worm-

hole) corresponds to the global AdS2 geometry. The
SLð2;RÞ isometry group of the background translates into
an SLð2;RÞ gauge constraint Qξ ¼ 0 for any Killing
vector ξ. In general, we can write

Qξ ¼
Z
Σ
Tμνξ

μεν; ð76Þ

where Σ is a Cauchy slice with volume form εν. Here Tμν

contains a gravity and matter part,

Tμν ¼ Tgrav
μν þ Tmatter

μν ; ð77Þ

obtained by varying the action with respect to the metric. In
JT gravity, Tgrav

μν is the stress tensor of the JT dilaton (it is
proportional to the Einstein tensor in higher dimensional
gravity). The equations of motion imply that Tμν ¼ 0. This
implies that the SLð2;RÞ charges have to vanish:

Q0 ¼ 0; Qþ ¼ 0; Q− ¼ 0: ð78Þ

The Euclidean wormhole is obtained by doing the Wick
rotation from global AdS2 and identifying periodically the
time coordinate. This identification breaks the SLð2;RÞ
symmetry to U(1) so we should only impose the vanishing
of U(1) charge:

Q0 ¼ 0: ð79Þ

In Euclidean signature, we must view this as a constraint on
the configurations entering in the path integral. We see that
the purely Euclidean system, where we only impose
Q0 ¼ 0, has more configurations than the Lorentzian
system. In the Schwarzian theory, this corresponds to
configurations with τL ≠ τR while we must have τL ¼ τR
in Lorentzian signature.
The system we study is viewed as a purely Euclidean

system dual to a non-Hermitian Hamiltonian. The
Euclidean-to-Lorentzian transition is the restoration of
SLð2;RÞ symmetry of the Lorentzian geometry. Using
the order parameter, we have seen that this implies that the
energy spectrum is real. Conversely, a real spectrum
implies the existence of a Lorentzian continuation with
unitary evolution, so the SLð2;RÞ symmetry must be
restored. This shows that the complex-to-real transition
in SYK corresponds to a Euclidean-to-Lorentzian transition
in JT gravity.
The SLð2;RÞ symmetry discussed above is a gauge

symmetry in JT gravity that is part of the gravitational
constraints of the Lorentzian wormhole. There is also a
global SLð2;RÞ symmetry which corresponds to the
isometry group of AdS2 acting on the matter sector,
appropriately dressed to commute with the SLð2;RÞ gauge
symmetry. This global symmetry exists because the iso-
metries are large diffeomorphisms at the asymptotic boun-
daries, see [85,86]. In the Euclidean wormhole, we
similarly have a U(1) gauge symmetry accompanied by
a U(1) global symmetry. The SLð2;RÞ → Uð1Þ breaking/
restoration involves both the gauge and global symmetry.
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These symmetries are gravitational in origin become they
come from the isometries of the semiclassical background.
Although the system can always be viewed as a

Euclidean wormhole, the restoration of SLð2;RÞ symmetry
implies that above the transition, it can be continued to
Lorentzian signature and is dual to an eternal traversable
wormhole.1 The Hamiltonian is non-Hermitian but its
eigenvalues are real so it can be used to define unitary
evolution with a suitably modified inner product [87]. In
other words, the eigenstates of the Hamiltonian are not
orthogonal with respect to the usual scalar product but they
become orthogonal with a new inner product. Intriguingly,
this indicates that pseudo-Hermitian Hamiltonians can
appear in holography.
A final comment is that this Euclidean-to-Lorentzian

transition is only interesting in the wormhole regime. For
T > Tc, the system is dual to two black holes. In this case,
the Euclidean and Lorentzian symmetries are both equal to
Uð1Þ × Uð1Þ so there can be no symmetry breaking/
restoration.

IV. LEVEL STATISTICS AND QUANTUM CHAOS

We end the paper by investigating the nature of the
quantum dynamics for long timescales of the order of the
Heisenberg time.
The real level statistics in the κ ¼ 0 limit was addressed

in Ref. [67]. Sufficiently far from the wormhole ground
state, the longtime dynamics is quantum chaotic as level
statistics agrees well with the random matrix prediction
[100]. More specifically, it agrees with the Gaussian
orthogonal ensemble which corresponds to systems with
time reversal invariance. Unlike single-site SYK models
whose global symmetries depend in general on the number
of Majoranas, for an SYK model with two identical sites,
time reversal invariance is always present. However, the
fact its low energy excitations deviate strongly from this
universal result suggests that the low temperature phase
transition between the wormhole and the two black holes is
accompanied by a qualitative change in the quantum
dynamics.
Level statistics in the limit λ ¼ 0 has also been inves-

tigated recently [79]. The level statistics of the combined
system is trivially Poisson because both SYK are not
explicitly correlated. However, the spectral correlations
of each SYK separately agrees well with the predictions of
non-Hermitian random matrix theory. This SYK model,
depending on the number of Majoranas N and the q-body
interacting Hamiltonian, reproduces many of the different
universality classes predicted [101] in non-Hermitian
quantum chaotic systems.
We now study the combined effect of a finite λ and κ in

the spectral correlations. More specifically, we aim to

clarify whether a weak explicit coupling λ ≪ 1 is enough
to make the dynamics of the combined non-Hermitian
system quantum chaotic, at least for sufficiently high
energies. Therefore the level statistics will be well
described by random matrix theory. This is important as
a further confirmation that even in a non-Hermitian setting,
quantum black holes are related to quantum chaotic motion
[102]. Likewise, we would like to explore whether the
observed deviations from random matrix theory that
characterize the quantum motion in the real case are also
present in our model. It is also of interest to investigate
whether in the region λ > λc, where the spectrum is real, a
finite κ is of any relevance in the description of the level
statistics.
In order to avoid the spin-symmetry mentioned previ-

ously, we will perform the similarity transformation men-
tioned above and diagonalize numerically each parity block
separately. We employ the complex spacing ratio as a
spectral observable [103], which does not require the
unfolding of the spectrum. This is especially important
for a two-dimensional spectra where the unfolding pro-
cedure suffers in some cases from ambiguities. The com-
plex spacing ratio is a short-range spectral observable that
probes the quantum dynamics for timescales longer than
the Heisenberg time, which is originally introduced to
study correlations of real spectra [104–106]. In the complex
case it is defined as

zk ¼
ENN
k − Ek

ENNN
k − Ek

; ð80Þ

where Ek is the complex spectrum for a given disorder
realization, ENN

k is the nearest eigenvalue to Ek and ENNN
k is

the next to nearest eigenvalue to Ek. In order to eliminate
statistical fluctuations, we carried out ensemble averaging
until we obtain at least 106 eigenvalues for each choice of
parameters N, λ, κ. In Figs. 28 and 30(a), we depict the
distribution of the complex spacing ratio zk for κ ¼ 1 and
different values of λ. For larger values of λ, it is necessary to
use a better ensemble averaging to obtain similar results,
since from Fig. 10, the real eigenvalues become less with λ
larger. As was expected, for λ ¼ 0, we do not see any trace
of level repulsion for small distances. However, even for
very small values of λ ¼ 0.015, the characteristic [103]
half-eaten donuts shape that indicates level repulsion and
potential quantum chaotic behavior is clearly visible.2

In Fig. 29, similar results are obtained for different
values of N and κ > 0.2. There exists obvious deviations
from RMT for sufficiently small κ. This is expected
because the RMT results assume a spectral density more

1Note that for negative η, the gravity dual is really the time
reversed of the eternal traversable wormhole.

2For λ ¼ 0, the symmetry operator is E ⊗ γc þ aγc ⊗ E, E is
the identity matrix, a is an arbitrary factor not equal to �1.
This operator will give rise to the four-block structure of the
Hamiltonian.
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FIG. 28. Complex gap ratios Eq. (80) with z≡ ReEþ ImE for different values of λ, with κ ¼ 1 and N ¼ 12. We do observe the half-
eaten doughnut shape typical of random matrix behavior [103]. However, sizable deviations are observed as λ increases because part of
the spectrum becomes real and the complex spacing ratio is no longer applicable.

FIG. 29. Complex gap ratios Eq. (80) for different values of κ with λ ¼ 0.02 and N ¼ 12. It fits with RMTwell only for κ not too small
(κ ≥ 0.4), since there exists a transition from non-RMT to near-RMT when κ is small.
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or less locally symmetric in the complex plane. However, in
the κ → 0 limit, the spectral correlations are greatly
enhanced along the real line so they cannot be described
by complex gap ratio. As a result, it is necessary to use a
minimum κmin so that for κ > κmin, the absolute value of the
imaginary part of the eigenvalues is much larger than the
mean level spacing and non-Hermitian RMT results apply.
The distribution of the spacings does not allow a

quantitative comparison with random matrix predictions.
For that purpose, it is more convenient to use the angular
ρðθÞ and radial ρðrÞ distributions [79,103] of the complex
spacing ratios (θ and r corresponding to the angular and
radial variable in polar coordinates).
We observe in Figs. 30(b) and 30(c) that, for λ ¼ 0 and

κ ¼ 1, both distributions are very close to the prediction of
Poisson statistics typical of an integrable or localized
systems. By contrast, see Figs. 31 and 32, even for small
values of λ ¼ 0.015, the agreement with the random matrix
prediction is excellent for all κ and N considered. Unlike
other SYK models, the universality class is always that of
systems with time reversal invariance corresponding to the
universality class AI† [101], related to transposition sym-
metry and not to the Ginibre orthogonal ensemble [107]
related to complex conjugation symmetry. Although,
strictly speaking, we do not have the equivalent of a
Bohigas-Giannoni-Schmit conjecture [100] for non-
Hermitian systems, we believe that this agreement with
random matrix theory still provides evidence of quantum
chaotic motion triggered by a weak explicit coupling λ. For
larger values of λ ≥ 0.04, we start to observe growing
deviations from the random matrix results, which is likely
due to the fact that a growing number of eigenvalues
become strictly real and the chosen spectral observables are
intended for the analysis of complex eigenvalues. For
instance, for λ ¼ 0.1 in Fig. 10, about 85% percent of
the spectrum is real. In any case, this intermediate region is
not universal and therefore is of less interest.
We now investigate whether anomalies, even for small λ,

are observed in the infrared part of the spectrum corre-
sponding with the eigenvalues with the largest negative real
part. This is precisely the region related to the Euclidean
wormhole phase where the spectrum of the ensemble
average system has a gap. An immediate problem is that
it is not yet clear how to order the complex spectrum
and therefore to define precisely the part of the spectrum
related to the Euclidean wormhole. Strictly speaking, the
Euclidean wormhole is associated with the eigenvalue with
the largest negative real part. This eigenvalue E1 is always
fully real for all ranges of parameters considered. In order
to characterize the quantum dynamics of the Euclidean
wormhole, we study the statistical distribution of E1. In
Fig. 33, we compare the full distribution of jE1j with the
random matrix prediction, namely, the Tracy-Widom dis-
tribution [108] for systems with time reversal symmetry
β ¼ 1. After the preceptive rescaling and shifting, we

obtain a good agreement with the Tracy-Widom distribu-
tion for the distribution of the eigenvalue with the largest
real negative part. However, substantial differences are
observed even for the distribution of the eigenvalue with the
third largest real negative part. We note that the distribution
of the eigenvalue with the largest real negative part,
corresponding to a random matrix belonging to the AI†
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FIG. 30. Complex gap ratio for N ¼ 16, λ ¼ 0 and κ ¼ 1.
(a) Full complex gap ratio distribution. The half eaten doughnut
typical of random matrix correlations in not observed. (b) Mar-
ginal radial distribution. (c) Marginal angular distribution. After
reorganizing the Hamiltonian into four blocks due to parity
symmetry and taking out the complex-conjugate degeneracy for
complex spectrum, the level statistics agrees well with Poisson
level statistics. We choose a relatively large N (N ¼ 16) to
suppress finite size effects. Note that level statistics for λ ¼ 0 is
qualitatively different from that at small λ because the Hamil-
tonian for λ ¼ 0 is the tensor product of two decoupled
Hamiltonians.
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universality class is qualitatively different. As was
expected, the agreement is worse if we compare it to a
Gaussian distribution. To some extent, the complex level
statistics results are expected as there is no visible gap in the
spectrum for λ ¼ 0 before any ensemble average. This is
another indication that the wormhole phase, which is still
characterized by a gap, requires dominance of off-diagonal
replica configurations [77] and therefore ensemble average.
We now turn to the analysis of spectral correlation for

λ > λc. The spectrum becomes real even if the Hamiltonian
is non-Hermitian when κ > 0. We again employ the
adjacent gap ratio which for a real spectrum [104–
106,109–112] is given by

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

; ð81Þ

where δi ¼ Ei − Ei−1 and the spectrum is assumed to be
ordered.

For randommatrices, and for uncorrelated eigenvalues, it
is possible [105] to find explicit analytic expressions for
both its average and the full distribution function. For
instance, for a quantum chaotic system with no translational
symmetry, the averaged gap ratio hri ≈ 0.530 while hriP ≈
0.386 for Poisson distribution corresponding to uncorrelated
eigenvalues. We shall also study the level spacing distribu-
tion PðsÞ, namely, the probability to find two consecutive
eigenvaluesEi; Eiþ1 at a distance s ¼ ðEiþ1 − EiÞ=Δ, where
Δ is themean level spacing in that region of the spectrum. For
a fully quantum chaotic system,PðsÞ is given by the random
matrix theory result which depends on the global symmetries
of the system. In the case of time reversal invariance, it
is well approximated by the so-called Wigner-surmise
[PW;GOEðsÞ ≈ π

2
s expð−πs2=4Þ] for the gaussian orthogonal

ensemble (GOE), while for uncorrelated eigenvalues, cor-
responding to integrable nondegenerate or Anderson local-
ized systems, it is given by Poisson statistics [PPðsÞ ¼ e−s].
Technically, the calculation of PðsÞ requires unfolding the
spectrum so the average local level spacing is one.We carried
it out by employing a low order, in most cases six order,
polynomial to fit the average spectral density. The level
spacing distribution, which is complementary to the adjacent
gap ratio, provides information, especially its tail, about the
dynamic of the system for timescales of the order of the
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FIG. 32. Marginal angular distribution of the complex gap ratio
for N ¼ 12. (a) κ ¼ 1 and different values of λ. (b) λ ¼ 0.02 and
different values of κ. Although we find a fair agreement with the
AI† class, results are rather sensitive to the value of κ, λ and the
matrix size.
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FIG. 31. Marginal radial distribution of the complex gap ratio
for N ¼ 12. (a) κ ¼ 1 and different values of λ. (b) λ ¼ 0.02 and
different values of κ. We compare the non-Hermitian RMT results
for universality classes A, AI† and AII† [79,101] corresponding
to examples with orthogonal, unitary and symplectic symmetry
respectively. The matrix size is 2048 × 2048 in all cases, the same
size as the two-site Sachdev-Ye-Kitaev model for N ¼ 12. For
λ ¼ 0.015, we find excellent agreement with RMT for both radial
and angular distributions.
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Heisenberg time. The adjacent gap ratio, on the other hand,
probes the dynamics to even longer scales.
As seen in Fig. 9, the approximate spin symmetry has

an important effect: the spectrum is concentrated around
the eigenvalues of Ŝ. The results are indeed very similar
to that of the κ ¼ 0 case and therefore quite insensitive to
κ. The same conclusion largely applies to level statistics.
In Fig. 34, we present results for the averaged gap ratio
hrii where i ¼ 1;…; 2

N
2 labels the eigenvalues with i ¼ 1

the ground state and h� � �i stands for ensemble average.
The values of κ and λ are such that the spectrum is always
real. We find agreement for most parts of the spectrum
with the random matrix prediction for systems with time
reversal symmetry hriRMT ≈ 0.529 [105]. The observed

deviations occur for gap ratios corresponding to eigen-
values of the Hamiltonian located at the edges of sectors
belonging to different eigenvalues of Ŝ. The gap ratio hri
is very small since maxfδi; δiþ1g is very large in this
case. Therefore, these deviations with respect to the RMT
prediction do not have a dynamical significance. We note
that the infrared part of the spectrum, related to the
wormhole phase, also fits well with the RMT prediction.
This is in contrast with the κ ¼ 0 case [67] where the
wormhole phase is characterized by strong deviations
from the RMT result.
Similarly, in Figs. 35 and 36, both the PðsÞ and the

distribution function of the gap ratio PðrÞ of our model
agree well with the random matrix prediction. We note the
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FIG. 34. Average gap ratio for κ ¼ 1, λ ¼ 0.15 for the full spectrum of N ¼ 12, the deviation from RMT happens at the interval of
nearby spectrum sectors clustering around eigenvalues of Ŝ. Unlike the case of a SYK model dual to a traversable wormhole [26], our
model does not have any clear deviation from the RMT result even for the most negative eigenvalues.
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FIG. 33. (a) Probability distribution of jE1j, the eigenvalue with the largest negative real part. (b) Probability distribution of jE3j, the
eigenvalue with the third largest negative real part. After a shifting and rescaling, only the distribution of jE1j agrees with the random
matrix prediction, the Tracy-Widom [108] distribution. The SYK result has been shifted and rescaled in order to compare with the TW
distribution.
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agreement extends to even the tail of PðsÞ which probes the
dynamics at timescales of not only the order, but longer
than the Heisenberg time. For sufficiently large λ, the
eigenvalues of the Hamiltonian cluster around the eigen-
values of the spinlike operator Ŝ. Thus it is required that
each of these clusters is considered separately for level
statistics analysis. Note that the universality classes that we
have found in the analysis of bulk spectral correlations does
not necessarily correspond with the global symmetries of
the Hamiltonian. The identification of this symmetry would
require, among others, the study of level statistics in special
points far from the bulk of the spectrum.

V. CONCLUSION AND OUTLOOK

We have investigated a two-site non-Hermitian SYK
model with a weak intersite coupling and its dual in JT
gravity. In the SYK model we have employed exact
diagonalization techniques and the numerical solution of
the Schwinger-Dyson equations describing the large N
saddle points of the action. On the gravity side, we have
derived an effective Schwarzian action andused it to compute
the gravity path integral in the saddle-point approximation.
In both SYK and JT gravity, we have studied the

thermodynamic properties and observed a thermal phase
transition between the wormhole and two black holes. We
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FIG. 35. Level spacing distribution PðsÞ for λ > λc where the spectrum is real. We find excellent agreement with GOE level statistics
which is obtained by exact diagonalization of random matrices of size 1000 × 1000, even at the tail of the spectrum. Unlike the non-
Hermitian case, almost no size dependence is observed.
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FIG. 36. Distribution of the gap ratios PðrÞ for λ > λc where the spectrum is real. We observe an excellent agreement with the GOE
prediction even in the tail of the PðrÞ, see insets in log scale.
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have obtained an excellent match for the thermodynamic
observables such as the free energy, the energy gap and the
critical temperature, see Figs. 23 and 24.
By tuning the intersite coupling in the SYK model, we

have found a dynamical transition where the energy
spectrum becomes real despite the fact that the
Hamiltonian is non-Hermitian. The existence of the tran-
sition has been demonstrated by an explicit exact diago-
nalization of the SYK Hamiltonian. In JT gravity, we have
shown that this transition corresponds to a restoration of the
gravitational SLð2;RÞ symmetry of the Lorentzian worm-
hole broken to U(1) in the Euclidean wormhole, and can be
viewed as a Euclidean-to-Lorentzian transition. This was
shown by identifying an order parameter in both SYK and
JT and showing a similar oscillating pattern of the real time
Green’s functions where the transition is characterized by
the value of a phase shift.
One of the motivations to introduce imaginary sources

was to be able to study the gravitational path integral
using saddle points. We view here JT gravity as a low-
energy approximation of the exact gravity dual of SYK,
in a spirit similar to the higher-dimensional version of
AdS=CFT. The transition observed here could also
happen in higher dimensions. The Euclidean version of
a Lorentzian geometry can have smaller isometry group
because the periodic Euclidean time identification may
only preserve a subset of the isometries. It is interesting
to note that this requires the geometry to be similar to a
wormhole as black hole spacetimes do not have this
property. In the Euclidean system, defined by the gravity
path integral, we impose a smaller number of gauge
constraints than in Lorentzian, which defines a purely
Euclidean system without sensible Lorentzian continu-
ation. It would be interesting to see whether a similar
Euclidean-to-Lorentzian transition, i.e., the dynamical
restoration of the Lorentzian symmetries in a purely
Euclidean system, can be observed in higher dimensional
AdS=CFT. Higher-dimensional Euclidean wormholes
supported by boundary sources were described in [89]
and have similar thermodynamical properties as our
wormhole. Eternal traversable wormholes in higher
dimensions are harder to construct [113,114] but can
be obtained using the appropriate setup [90,91].
The Euclidean wormhole studied in this paper can also

be used to address the factorization puzzle [48,49], which
comes from the fact that the gravity path integral appears to
compute an ensemble average, as recently discussed in
[50–57,59–61]. For η ¼ 0, there is no interaction between
the boundaries so the Euclidean wormhole is purely a result
of the average. It was proposed in [50] that factorization
could be restored by half-wormhole saddle points. In our
setup without intersite coupling (η ¼ 0), half-wormhole
saddle points were constructed in [54] and their behavior
was matched with the SYK model at a single realization of
the couplings. These half-wormhole solutions should be

generalizable to nonzero intersite coupling η. This would
correspond to a system of two coupled half-wormholes
which, as suggested by our results, could possibly tran-
sition to an eternal traversable wormhole. It would be
interesting to make this more precise and obtain a gravity
picture of the complex-to-real transition for a single
realization of the SYK couplings.
The longtime dynamics has been explored by the study

of level statistics in the SYK model. Both, for a real and
a complex spectrum, spectral correlations are consistent
with quantum chaotic motion as we find good agreement
with the random matrix prediction in each case.
Importantly, we have also found that the distribution
of the energy level with the largest negative real part fits
well the Tracy-Widom distribution which is an indication
of quantum chaotic behavior in the wormhole phase at
large N. In all cases, the universality class is that of
systems with time reversal invariance. It would be
interesting to investigate whether some aspects of the
level statistics can be understood using the gravity path
integral, which would require finer gravity observables
than studied in this paper.
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APPENDIX A: ENERGY GAP
IN JT GRAVITY AND SYK

We provide additional details about the method we have
employed to compare the gap Eg in JT gravity (48) with
that in the SYK model.
The JT and SYK parameters should be proportional

k ¼ Aκ, η ¼ Bλ where A, B are some constants. In order to
determine these constants, we compare the numerical
results for Eg in SYK with the analytical expression Eg

in JT gravity (48) using A, B as fitting parameter. More
specifically, we note that X ¼ C1 þ C2, related to Eg by
(47), is the only real-valued solution of (39). For the sake of
convenience, we define
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z ¼ X3
1 ¼

�
Eg

Δ

�
3=2

¼ 8E3=2
g

x ¼ 3κ2

4

�
Eg

Δ

�
1=2

¼ 1.5κ2E1=2
g

y ¼ λ

4
: ðA1Þ

We can then rewrite (39) as zðκ; λÞ ¼ A2xðκ; λÞ þ Byðκ; λÞ.
The functions xðκ; λÞ, yðκ; λÞ, zðκ; λÞ can be calculated from
the above expressions where Eg is taken to be the numerical
SYK result. We see that A, B are just the coefficients
of the linear equation zðx; yÞ ¼ A2xþ y which are easily
calculated by numerical fitting. We find that for
κ ¼ 0; 0.1;…; 0.7, λ ¼ 0; 0.01;…; 0.09 the best fit corre-
sponds to A ¼ 1.58497 and B ¼ 27.05755. In Fig. 23 of
the main text, we compare explicitly the numerical SYK
results with those from the fitting above calculation and
find that they are fully consistent especially when κ is

small. We also compare Tc in Fig. 24 using the same values
of A and B and obtain an excellent match.

APPENDIX B: REAL TIME CALCULATION

We consider the Hamiltonian (2). In the large N limit, we
obtain the effective action

Ieff ¼ −
1

2
log detðδab∂ − ΣabÞ

þ 1

2

X
ab

Z Z �
ΣabGab −

ð1 − tabκ2ÞJ2
4

G4
ab

�

þ iλ
2

Z
GLRðτ; τÞ −GRLðτ; τÞ ðB1Þ

from the use of the replica trick after ensemble average. A
saddle-point analysis leads to the Schwinger-Dyson (SD)
equations,

− iωGLL − ΣLLGLL − ΣLRGRL ¼ 1; −iωGLR − ΣLLGLR − ΣLRGRR ¼ 0

ΣLLðτÞ ¼ ð1 − κ2ÞJ2G3
LLðτÞ; ΣLRðτÞ ¼ ð1þ κ2ÞJ2G3

LRðτÞ − iλδðτÞ; ðB2Þ

where the first two equations are expressed in the frequency
domain, while the last two are in the imaginary time one.
The real time dynamics is studied after performing a

Wick rotation −iω → ωþ iϵ to the Schwinger-Dyson
equations for the imaginary time Green’s function. We
closely follow the method of Refs. [69,115].
We first introduce [66] Gþ ¼ GLL þ iGLR and Σþ ¼

ΣLL þ iΣ̂LR, where ΣLR ¼ Σ̂LR − iλδðτÞ. With these defi-
nitions, we have

Gþ ¼ 1

−iω − Σþ − λ
ðB3Þ

and the relations GLL ¼ GRR;GLR ¼ −GRL. The retarded
Green’s function, after the Wick rotation, takes the form

Grþ ¼ 1

ωþ iϵ − Σrþ − λ
: ðB4Þ

One of the main technical difficulties is the calculation of
Σrþ. Following Refs. [66,115], we first calculate ΣLLðωnÞ
and Σ̂LRðωnÞ, which are simply the self-energy ΣLLðτÞ ¼
J2G3

LLðτÞ and Σ̂LRðτÞ ¼ J2G3
LRðτÞ but in the frequency

domain. We then apply the Wick rotation to obtain
ΣþðωÞ ¼ ΣLLðωÞ þ iΣLRðωÞ, with

Σr
LLðωÞ ¼ −2ið1 − κ2ÞJ2

Z
∞

0

eiðωþiϵÞtRe½n3LLðtÞ�dt

Σr
LRðωÞ ¼ −2ð1þ κ2ÞJ2

Z
∞

0

eiðωþiϵÞtIm½n3LR�dt; ðB5Þ

where

nLL=LRðtÞ ¼
Z

∞

−∞
dωρLL=LRðωÞnFðωÞe−iωt;

nFðωÞ ¼
1

eβω þ 1
: ðB6Þ

More details of the calculation can be found in Appendix F
of [115] and Appendix D of [69].
In order to find nLL=LR, we still need to know ρLL=LR.

A direct way to calculate ρLL=LRðωÞ is from the retarded
Green’s function, ρLL ¼ − 1

π Im½Gr
LLðωÞ� and ρLR ¼

− 1
πRe½iGr

LRðωÞ�, by noticing that

Gr
LLðωÞ ¼

Z
dω0

2π

ρLLðω0Þ
ω − ω0 þ iϵ

Gr
LRðωÞ ¼

Z
dω0

2π

−iρLRðω0Þ
ω − ω0 þ iϵ

ðB7Þ

and using the relation

1

xþ iϵ
¼ P

1

x
− iπδðxÞ: ðB8Þ

An alternative way to calculate ρLL=LR is from ρþ ¼
− 1

π ImGrþðωÞ, by

ρLL=LRðωÞ ¼
1

2
ðρþðωÞ � ρþð−ωÞÞ ðB9Þ
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after imposing ρLLðωÞ ¼ ρLLð−ωÞ and ρLRðωÞ ¼ −ρLRð−ωÞ. Mathematically, these two methods are related by
Grþ ¼ Gr

LL þ iGr
LR. For simplicity, the latter is chosen in our calculation. We have already obtained all the Schwinger-

Dyson real time equations,

ρþðωÞ ¼ −
1

π
ImGrþðωÞ

ρLL=LRðωÞ ¼
1

2
ðρþðωÞ � ρþð−ωÞÞ

nLL=LRðtÞ ¼
Z

∞

−∞
dωρLL=LRðωÞnFðωÞe−iωt; nFðωÞ ¼

1

eβω þ 1

ΣrþðωÞ ¼ −2iJ2
Z

∞

0

dteiðωþiϵÞt½ð1 − κ2ÞRe½n3LLðtÞ� − ið1þ κ2ÞIm½n3LR��

GrþðωÞ ¼
1

ωþ iϵ − Σrþ − λ
: ðB10Þ

We employ the following Green’s function G>
LL=LRðtÞ,

G>
abðtÞ ¼ −i

1

N

X
i

hψ i;aðtÞψ i;bð0Þi ⇒ G>
abðωÞ ¼ −ið1 − nFðωÞÞρabðωÞ; ðB11Þ

with a; b ¼ L, R, to study the time evolution of the
Hamiltonian. In the main text, we provide a detailed
analysis of jG>

abðtÞj.
Here we focus on the technical details required to

solve numerically these real time saddle-point equations.
The main difficulty lies in the choice of a proper cutoff L
in t, and also a small but finite ϵ and the number of
discrete points N in the sums, for given parameters T, λ,
κ, J.
It can be seen from GðωÞ ¼ R ρðω0Þdω0

ω−ω0þiϵ that the first
relation that must hold is dω ¼ 2π

L ≪ ϵ. To make sure that
ϵ

ðω−ω0Þþϵ2
≈ πδðω − ω0Þ, ϵ should be small enough so that we

obtain a sharp peak, mimicking a delta function. We also
need dω ≪ ϵ so that the profile is still smooth. For a given
set of parameters, it is important to find the right balance
between the necessary suppression of discretization arti-
facts that may obscure real physical effects and the
optimization of computational resources in terms for
instance to computation times are RAM usage.
The wormhole phase [26] requires low temperature, i.e.,

βJ ≫ 1 and small coupling λ ≪ 1. Moreover, the choices

of physical parameters and numerical parameters are not
independent. From a rewriting of GrþðωÞ,

GrþðωÞ ¼
1

ωþ iϵ − Σrþ − λ

¼ ω − λ − Re½Σrþ�
ðω − λ − Re½Σrþ�Þ2 þ ðϵ − Im½Σrþ�Þ2

− i
ϵ − Im½Σrþ�

ðω − λ − Re½Σrþ�Þ2 þ ðϵ − Im½Σrþ�Þ2
; ðB12Þ

we observe that we must impose that ϵ ≪ λ so that the
effect of λ is not obscured by a too large ϵ. Finally, the
choice of the parameter N is driven by the required
accuracy of the numerical integral over t. Since dt ¼ L

N,
N should be small enough so that the accuracy of the
integral meets a certain minimum. In addition, the range of
ω is approximately ∼ 2π

L N. Therefore a small enough L=N
will also guarantee the irrelevance of the truncation for
large ω. Taking all this into consideration we set L ¼
5 × 106 and N ¼ 225 ≈ 3 × 107.
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