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We explore the quantum nature of black holes by introducing an effective framework that takes into
account deviations from the classical results. The approach is based on introducing quantum corrections to
the classical Schwarzschild geometry in a way that is consistent with the physical scales of the black hole
and its classical symmetries. This is achieved by organizing the quantum corrections in inverse powers of a
physical distance. By solving the system in a self-consistent way we show that the derived physical
quantities, such as event horizons, temperature and entropy can be expressed in a well-defined expansion in
the inverse powers of the black hole mass. The approach captures the general form of the quantum
corrections to black hole physics without requiring us to commit to a specific model of quantum gravity.
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I. INTRODUCTION

Understanding the quantum nature of space-time is an
open challenge both from a theoretical and an experimental
point of view. Quantum gravity effects are thought to be
relevant, for example, in gravitational collapse of astro-
physical objects as well as evaporation processes of Planck-
size black holes (BH). The goal of this work is to construct
an effective framework that allows to investigate quantum
corrections for BH physics in order to extract reliable
predictions. Effective approaches have been applied exten-
sively to account for quantum corrections in gravity and
particle physics, see [1] for an overview.
Rather than considering a specific theory of quantum

gravity, our philosophy is to develop a general effective
framework based on formulating BH metrics via dimension-
less quantities and their physical scalings (see [2–4] for related
ideas in different areas of physics). Although this approach
can be viewed as a renormalization improvement [5–11] of
the BH metrics, it differs from the Wilsonian interpretation
[12,13] of the running of couplings of the effective action [14]
further explored in [15], and therefore it is compatiblewith the
arguments of Ref. [16].

We elucidate our approach by focusing on the static
spherically symmetric classical Schwarzschild BH. After
introducing the approach, we determine the impact of the
leading order quantum corrections on the physical quan-
tities such as event horizons, temperature and entropy in a
consistent fashion. In the way the framework is setup,
quantum corrections to physical observables appear as a
well-defined expansion in the mass of the BH relative to the
classical results. We show that the approach can be
consistently generalized to higher order quantum correc-
tions leading to higher mass suppressed corrections.
Although we do not discuss it in this work, our approach
can be further generalized to account for nonlocal correc-
tions to effective gravity actions [17–32]. Our findings
amount to establishing a self-consistent effective counting
scheme, based on the physical mass of the BH.
The work is organized as follows. In Sec. II we start by

introducing the effective framework and by setting up the
notation. The section is further divided into several sub-
sections. The rationale behind our way to upgrade the
classical metric to an effective quantum one is summarized
in the first subsection. We then move to determine the
leading order quantum corrected horizons and discuss their
impact on the BH physics. We show that, depending on the
sign of the first leading order corrections, the geometry can
develop a second (internal) horizon. We then move to show
the associated conformal diagrams. The self-consistency of
the approach, when considering the backreaction stemming
from the quantum corrected proper distance, is presented in
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Sec. II D. In Sec. III we discuss how to take into account
higher order quantum gravity corrections to the metric. One
of the main results is establishing an effective consistent
framework in computing quantum corrections to BH
physics organized in their mass expansion.
The quantum corrected thermodynamic properties, such

as temperature and entropy, are discussed in Sec. IV.
Conclusions and outlook are offered in Sec. V while in
the Appendix we provide further details on how to compute
the horizons in our framework.

II. QUANTUM SCHWARZSCHILD
BLACK HOLE

We focus on the simplest BH in four dimensions,
featuring a spherical and stationary geometry with
Schwarzschild metric

ds2 ¼ −f0ðrÞdt2 þ
dr2

f0ðrÞ
þ r2dθ2 þ r2 sin2 θdϕ2; ð1Þ

where we use spherical coordinates and the metric tensor
depends only on the radial one through the function

f0ðrÞ ¼ 1 −
2GNM

r
; ð2Þ

with M being the mass sourcing the gravitational field and
GN the Newton constant.

A. Quantum framework

We now upgrade the metric (1) to a quantum one without
committing to a specific underlying quantum gravity
theory.1 At the classical level the metric depends on two
dimensionful quantities,2 the mass of the BH and the
coordinate r. In the following we describe the quantum
framework that we employ to determine quantum correc-
tions to BH observables.
(1) The quantum corrections are controlled by the Planck

length lP ¼ 1=MP (withMP the Planckmass), which
governs the transition from the classical to the
quantum regime. As such, now lP is upgraded to a
physically relevant length beyond providing just a

unit of measure. To reflect this, we introduce the
following dimensionless quantities:

z ≔ MPr ¼
r
lP

; χ ≔
M
MP

; ð4Þ

and rewrite (2) as:

f0ðzÞ ¼ 1 −
2χ

z
g; with g ≔ GNM2

P ¼ 1: ð5Þ

(2) Transitioning from the classical to the quantum
regime requires to modify (5) as follows:

f

�
z;

u
lP

�
¼ 1 −

2χ

z
g

�
z;

u
lP

�
; ð6Þ

where g is an a priori undetermined function.3 Here
u is an arbitrary renormalization scale required to
compensate for the presence of a fundamental length
in the problem, i.e., lP. Since u is arbitrary no
physical quantity can depend on it. This means that
the derivative of any such quantity with respect to u
must vanish, therefore imposing nontrivial consis-
tency conditions also on gðz; u

lP
Þ (see, e.g., [2] for

similar arguments in other physical systems). In
order for any allowed coordinate transformation of
f0ðzÞ to be carried over at the quantum level one has
to conclude that g is a protected quantity and
therefore:

g

�
z;

u
lP

�
→ g

�
d;

u
lP

�
; ð7Þ

for a suitable (dimensionless) physical quantity d
which is therefore independent of u.

(3) The choice of the physical dimensionless quantity d
is not unique. A candidate choice for it is the
normalized proper distance from the center of the
BH [14]

dðzÞ ≔ 1

lP

Z
zlP

0

ffiffiffiffiffiffiffiffiffiffi
jds2j

q
¼

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffijfðz0Þjp : ð8Þ

The first integral is understood for fixed values of the
angular coordinates (θ;ϕ). Notice that, as remarked
above, since dðzÞ cannot depend on u this implies a
constraint for fðz; u

lP
Þ which restricts the u depend-

ence of gðd; u
lP
Þ.We note that quantum improvements

of the metric based on unphysical quantities such as
the radial coordinate z lead to quantum geometries
depending on the specific choice of coordinates. This
issue was discussed in detail in [33].

1At the quantum level, we require the existence of a spherically
symmetric metric with a timelike Killing vector. This ensures that
the quantum metric still preserves the form (1)

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2 sin2 θdϕ2: ð3Þ

Here f and h are two functions of r. In this work, since we
compute static properties we focus on the quantum corrections
contained in fðrÞ.

2The Planck scale hidden in the Newton constant at the
classical level defines the units, and thereby has no influence
on the classical physics.

3As already in the classical case (2), we do not explicitly
exhibit the dependence on χ.
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(4) At large proper distances from the BH the function g
approaches asymptotically unity. At the quantum
level we have, therefore, for fðzÞ:

fðzÞ ¼ 1 −
2χ

z

X∞
n¼0

Ωn

dðzÞ2n : ð9Þ

The specific values of the dimensionless coefficients
Ωnð ulP

Þ, with Ω0 ¼ 1, are dictated by a given theory
of quantum gravity. The u dependence of the Ωn
coefficients is constrained by requiring physical
quantities to be independent on this arbitrary scale.
The expansion in (9) is built to incorporate the fact
that at large distances the metric must asymptotically
approach the classical one (2). The choice of even
inverse powers of dðzÞ comes from our expectation
that this quantum metric emerges from a(n effective)
quantum gravity action with only even powers of the
derivatives. We have also neglected subleading
logarithmic terms. The approach can be readily
extended to include a different counting scheme if
required by more general theories of quantum
gravity. A different definition of the physical dis-
tance dðzÞ leads to modified coefficients Ωn.

(5) By construction (9) is an involved equation for fðzÞ
which we attack in a self-consistent iterative manner:
we shall add one order in n of the series at a time and
include the backreaction stemming from the cor-
rected dðzÞ from the previous order. In practice, this
procedure mimics the potential expansion of an
effective quantum gravity action in local derivative
operators. However, the overall approach does not
rely on this interpretation and can therefore be
further extended to include nonanalytic terms, which
we plan to explore in the future.

In the following subsection we start by considering the
leading quantum correction.

B. Leading order quantum metric

To determine the leading order quantum corrected
function f1ðzÞ, we introduce the classical proper distance
d0ðzÞ given by

d0ðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijf0ðz0Þj
p ¼

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z0 j
q : ð10Þ

Performing the integration we have

d0ðzÞ ¼
8<
:

πχ − 2χ tan−1
ffiffiffiffiffiffiffiffiffiffiffiffi
2χ
z − 1

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð2χ − zÞp

; 0 < z < 2χ;

πχ þ 2χ tanh−1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2χ

z

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zðz − 2χÞp
; 2χ < z < ∞:

ð11Þ

The left panel of Fig. 1 is the graphical representation of the
integrand in (10) while the right panel represents (11). The
integrand (10) has an integrable singularity at zS ¼ 2χ
yielding a regular proper distance.
Near the center of the BH the distance function behaves

like

d0ðzÞ ≃
2

3

z3=2ffiffiffiffiffi
2χ

p þO
�

z5=2

ð2χÞ3=2
�
; ð12Þ

while a linear dependence is recovered at distances far from
the horizon as shown in Fig. 1. The leading order quantum
corrected f function reads

f1ðzÞ ¼ 1 − 2
χ

z

�
1þ Ω1

d20ðzÞ
�
: ð13Þ

C. Quantum horizons

We are now ready to discuss the quantum corrections to
the BH classical horizon starting with the zeros of f1ðzÞ.
Here, the location of the zeroes depends on the sign of the
parameter Ω1 that leads to qualitatively different BH
solutions. To remain general, we discuss both cases
separately. We plot in Fig. 2 the function f1ðzÞ for different
values of Ω1 (while we fixed χ ¼ 10). This plot shows two
qualitatively very important results
(1) The position of the (external) horizon is a function of

Ω1: positive values ofΩ1 shift the zero of f1 to larger

FIG. 1. Left panel: we plot the integrand of (10), normalized to
the dimensionless Schwarzschild radius of the BH zS ¼ 2χ. Right
panel: the regular proper distance d0ðzÞ given in (11).
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values of z, while negative values of Ω1 move it to
smaller values. However, in both cases, the effect is
small compared to the classical position of the
horizon 2χ, even for values of jΩ1j ≥ 1.

(2) For negative values of Ω1, the function f1 allows for
a second zero in the physical region z > 0, which
can be interpreted as the formation of a new internal
horizon. The position of the latter depends much
stronger on the numerical value of Ω1 than the
corrections to the external horizon.

In the following we shall discuss both effects more
quantitatively, by treating separately the different signs
of Ω1.

1. Ω1 > 0

As shown in Fig. 2, for positive values ofΩ1 the function
f1 has a single zero for z > 0 corresponding to a single
horizon which can be expanded around the classical
solution as follows:

zþ ¼ 2χ

�
1þ

�
Ω1

π2χ2

�
þO

�
Ω1

π2χ2

�
3=2

�

≡ 2χ½1þ αþOðα3=2Þ�; with α ≔
jΩ1j
π2χ2

; ð14Þ

We can render α arbitrarily small by increasing χ (the BH
mass) for fixed jΩ1j. While in practice the factor of π2 in the
definition of α in (14) further suppresses the quantum
corrections, we remark that πχ ¼ d0ð2χÞ is in fact the
classical distance of the classical BH horizon [see Eq. (11)].
Therefore, the expansion in (14) is organized in terms of
physical quantities of the classical BH geometry. Naturally,
we recover the classical horizon when we either switch off
the quantum corrections or increase the BH mass (such that
α → 0). We discuss the numerical range of validity of (14)
as a function of the BH mass in the Appendix A 1 and
higher order corrections in α in the Appendix A 2. As we
shall demonstrate in the next subsection, the corrections to
zþ stemming from self-consistently replacing d0ðzÞ in
f1ðzÞ [see (13)] with

d1ðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijf1ðz0Þj
p ; ð15Þ

appear at Oðα3=2Þ. Therefore, to this order in α, all the
quantum corrections are taken into account for the external
horizon. The horizon location could depend on the unphys-
ical scale u through Ω1 which, however, to the current
quantum order is constrained to be u independent by
requiring d1 to be a physical quantity to the same order.
This can be seen from (A10).
Overall, the horizon increases due to quantum correc-

tions and these are further suppressed at large masses.

2. Ω1 < 0

In this case the quantum corrected external horizon
reads:

zþ ¼ 2χ½1 − αþOðα3=2Þ�; ð16Þ

where α is defined as in (15). The external horizon, now,
decreases due to quantum corrections, while the other
remarks made for the Ω1 positive case still apply. For
negative values of Ω1, as shown in Fig. 2, an internal
horizon forms at the position

z− ¼ χ

�
9π

2

�
1=3

�
α1=3 þ 1

5

�
π2

6

�
1=3

α2=3

þ 61

700

�
3π4

4

�
1=3

αþOðα4=3Þ
�
: ð17Þ

Clearly, the existence of the internal horizon has a quantum
nature and strongly depends on the underlying theory of
quantum gravity.
We display the zeroes of f1ðzÞ in Fig. 3 as function of χ

and observe that the internal horizon is less dependent on
this parameter when compared to the external one.
Furthermore, for masses close to the Planck value the

FIG. 2. Plot of the quantum corrected function f1ðzÞ given in
(13) as a function of the distance in Planck units z and for
different values of Ω1 for a fixed mass ratio χ ¼ 10.

FIG. 3. Black hole event horizons indicated by zH correspond-
ing to either the classical (straight line), zþ and z−, as functions of
the mass ratio χ for the value ofΩ1 ¼ −1 (a) andΩ1 ¼ 1 (b). The
values are found solving numerically f1ðzÞ ¼ 0.
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two horizons merge leading to an extremality condition that
is analytically approximated to be

χext ≃
16

ffiffiffiffiffiffiffiffiffi
−Ω1

p
π2

: ð18Þ

The ultimate fate for the existence of the internal horizon
depends, as we shall see, on the size and sign of the higher
order corrections.

3. Conformal diagrams

The global properties of the quantum space-time
described by the metric with the f function in Eq. (13)
can be neatly summarized via Penrose’s diagrams [34,35]
shown in Fig. 4. The positiveΩ1 case can be summarized as
similar to the classical Schwarzschild one with a spacelike
singularity while the BH horizon is just slightly larger. The
conformal diagram relative to the maximal extension of this
space-time is shown in the right panel of Fig. 4, which is the
Szekeres-Kruskal conformal diagram [34,35]. Since for
negative Ω1 the quantum BH has two event horizons, its
space-time structure qualitatively resembles the classical
Reissner-Nordström (RN) one [14,34,35]. To better appre-
ciate the differences we note that, at large distances, the RN
dependence on the charge decreases as z−2 while for the
quantum corrected one it goes as z−3 in terms of the
quantum effects. The qualitative conformal diagram of
the maximal extension of such a space-time is therefore
still expected to be of the form given in the left panel
of Fig. 4.
As it is shown, the singularity at the origin is a timelike

one and the two horizons zþ and z− can be crossed by a
timelike infalling observer who can reach multiple space-
times. The case of an extremal BH is not shown and it can

be found in the literature as its conformal diagram, as stated
before, is analogous to the classical RN one.

D. Quantum proper distance

Even including only the leading quantum corrections by
restricting to an effective second-derivative action (and thus
truncating the series (9) at n ¼ 1), Eq. (13) is only an
approximation, since it contains the classical proper dis-
tance d0. Self-consistency requires to include the impact of
the quantum corrected geodesic distance, previously also
indicated as proper distance, on the quantum f function
given in (13) by substituting d0 with

d1ðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z0 ½1þ Ω1

d2
0
ðz0Þ�j

q : ð19Þ

We therefore obtain the quantumself-improvedf function4

f̄1ðzÞ ¼ 1 − 2
χ

z

�
1þ Ω1

d21ðzÞ
�
: ð20Þ

For Ω1 < 0, one observes that d1 remains smaller than
the classical d0 for values of z smaller than the internal
horizon while it is larger for any other value of z.
Nevertheless the qualitative behavior of the quantum
distance mimics the classical geodesic one. A similar
analysis for Ω1 > 0 is simplified by the fact that only
the external horizon is present. Here the quantum corrected
proper distance d1 again follows the behavior of the

FIG. 4. Conformal diagrams of the quantum corrected space-time described by a metric given by the function in Eq. (13) for Ω1 < 0
(left) and Ω1 > 0 (right). The case of negative Ω1 corresponds to a BH with two distinct event horizons. The notation is the following:
J þ (J −) is the future (past) null infinity, iþ (i−) is the future (past) timelike infinity and i0 is the spatial infinity, while z ¼ 0; zþ; z− are
respectively the singularity at the origin, the external event horizon and the internal one.

4The procedure is straightforwardly generalized when consid-
ering higher order quantum corrections, as we shall see below.
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classical distance. In panels (a) and (b) of Fig. 5 we display
the classical and quantum proper distances. The two plots
correspond to two different values of the BH mass. We also
observe that near the origin the quantum corrected geodesic
distance approaches zero faster than the classical one,
specifically it goes as z3 rather than z3=2. For completeness
we plot the ratio of d1=d0 as function of z in the panels (c)
and (d) of Fig. 5 corresponding again to two different
choices of the BH mass.
To acquire a general understanding of the effects of the

improved results for the function f̄1 of (20) we plot it in
Fig. 5. The solid green line corresponds to the classical
function f0, the orange and blue to the different signs of
Ω1 taking into account the quantum corrected proper
distance. The dashed curves correspond to the unim-
proved quantum f function obtained via the classical
proper distance. As we had anticipated earlier, the location
of the horizons, as shown in Fig. 6, are marginally affected
by the improvement due to the quantum proper distance
backreaction. Specifically, the quantum proper distance
improvement appear, for the external horizon to the
Oðα3=2Þ, and for the internal one (for Ω1 negative) a

numerical investigation suggests that the improvement
appears beyond the order OðαÞ.

III. HIGHER ORDER QUANTUM CORRECTIONS

After having treated the leading quantum corrections in
the previous section, we shall now discuss the procedure to
self-consistently consider higher order quantum correc-
tions. That is, we consider higher corrections to the f
function, but still truncate the sum in Eq. (9) at a finite n.5 In
this way, we assume that the underlying quantum corrected
gravitational theory can be approximated via a local
effective action featuring higher derivative operators up
to order 2n. Thus, we expect the resulting f function to
assume the form

FIG. 5. In the panels (a) and (b) we plot the dimensionless quantum corrected proper distance d1 forΩ1 ¼ 1 andΩ1 ¼ −1, and for two
different values of the mass ratio χ ¼ 5 (a), 10 (b). We also plot d0 corresponding to the classical proper distance (Ω1 ¼ 0). The ratio
d1=d0 is displayed in the inserts (c) and (d). In the bottom panel (e) the solid lines (blue forΩ1 > 0 and orange forΩ1 < 0) correspond to
the improved quantum function f̄1ðzÞ while the dotted lines correspond to the unimproved f1ðzÞ. The green solid line represents the
classical function f0ðzÞ.

5Notice that by keeping n finite allows us to avoid questions
about the radius of convergence of the sum in Eq. (9). The latter is
equivalent to the question whether the underlying theory of
quantum gravity allows for a nonperturbative definition beyond a
(perturbative) effective approach.
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f̄nðzÞ¼ 1−
2χ

z

�
1þ Ω1

d̄2nðzÞ
þ Ω2

d̄4nðzÞ
þ �� �þ Ωn

d̄2nn ðzÞ
�
; ð21Þ

with

d̄nðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf̄nðz0Þj

p : ð22Þ

To be able to compute this quantity in an iterative manner
we approximate it via

dnðzÞ ¼
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijfnðz0Þj
p

≡
Z

z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1− 2χ

z0 ð1þ Ω1

d2n−1ðz0Þ
þ Ω2

d4n−1ðz0Þ
þ � � � þ Ωn

d2nn−1ðz0Þ
Þj

q ;

ð23Þ

where dn−1 is the quantum corrected proper distance at
order n − 1.
Even for n > 1, there are two limits where the full

behavior of dn as function of z can be studied:
(1) asymptotically large distance: Far away from the

black hole dn approaches z. This limiting behavior is
crucial for the self-consistency of our approach:
indeed, it is required to match the effective coef-
ficients Ωn to specific predictions from a given
underlying quantum gravity theory. The universality
of this limit

lim
z→∞

dnðzÞ ¼ lim
z→∞

d0ðzÞ; ∀ n ≥ 0; ð24Þ

ensures that the coefficients Ωi≤n can be defined in a
consistent fashion, independent of the order n.

(2) distances close to the center of the BH: Here the
dominant term in the integrand of (23) is the last
term in the denominator. This allows us to deduce,
up to a multiplicative number, the following relation

lim
z→0

dn
d0

∼ lim
z→0

dnn−1ffiffiffiffiffiffiffiffiffijΩnj
p ; ð25Þ

with d0 computed near the origin of the BH and
therefore given by the first term in (12). Iteratively,
this relation suggests

lim
z→0

dn ∼ lim
z→0

ðd0ÞeΓðnþ1;1ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ
n
i¼1 jΩijn!=i!

q ; ð26Þ

where Γ (nþ 1, 1) is the incomplete Gamma
function (and we have implicitly assumed that all
Ωi¼1;…;n ≠ 0). This implies that near the origin, at
each given order in n, the truncated physical
quantum distance approaches zero extremely fast.

Now, we consider the explicit case of n ¼ 2 to learn how it
affects our previous results6

f2ðzÞ ¼ 1 −
2χ

z

�
1þ Ω1

d21ðzÞ
þ Ω2

d41ðzÞ
�
: ð27Þ

Using (25) we have that

lim
z→0

d1 ∼ lim
z→0

d20ffiffiffiffiffiffiffiffiffijΩ1j
p ; and lim

z→0
d2 ∼ lim

z→0

d50
jΩ2j12jΩ1j

: ð28Þ

Therefore, near the origin the corrections stemming from
d2 do not affect f2 since they enter at higher orders.7 In
Fig. 7 we compare the quantum function f2 with the
improved f̄1, for different values of Ω1 ¼ �1 and
Ω2 ¼ −0.5, 0.2, 0.5. Of course, when comparing with
f̄1 we use the same values of Ω1 appearing in f2.
We observe that, for both signs of Ω1, the external

horizon expansion works extremely well yielding only
minor corrections stemming from f2 when keeping Ω2 of
order unity. This result is confirmed by the analytic
expression of the external horizon in the expansion in
the inverse BH mass which reads, for either positive or
negative values of Ω1;2:

FIG. 6. In the subplot (a) we set Ω1 ¼ −1 and we represent the
external and internal event horizon dimensionless radii zH as a
function of the mass ratio χ in the case of a space-time with
backreaction on f described by the function in Eq. (20) (solid
lines) and compare them with the ones that come from Eq. (13)
(dashed lines). In subplot (b) we study the case in which Ω1 ¼ 1
and plot the event horizon radius as χ varies and compare it with
the one without backreaction on the f discussion. Eventual
oscillations in the plots are due to numerical errors.

6More details on the analysis can be found in the Appendix A 3.
7These limits are also recovered in a slightly different fashion

in the Appendix A 3.
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zþ ¼ 2χ

�
1þ Ω1

π2χ2
þ ā3

�jΩ1j
π2χ2

�
3=2

þ ā4

�
Ω1

π2χ2

�
2

þ Ω2

π4χ4

þO
�jΩ1j5=2; jΩ1j1=2Ω2

π5χ5

��
: ð29Þ

The leading f2 corrections appear at the order Ω2=ðπχÞ4
while the corrections stemming from the quantum corrected
geodesic d1 appear at the order ðΩ1=ðπ2χ2ÞÞ3=2 which is
one order less in 1=πχ, consistently with this expansion.
The coefficient ā3=4 of ðΩ1=ðπ2χ2ÞÞ3=2 is numerically
evaluated in the Appendix A 2 (see Eq. (A3) for Ω1 > 0
and Eq. (A4) for Ω1 < 0).
The situation changes for the interior of the BH: as

shown in Fig. 7, the structure of zeroes of the function f2
depends crucially on the sign and magnitude of Ω2 (and
Ω1). The BH geometry can therefore have zero, one or two

internal horizons. Concretely, the phase diagram, repre-
senting the regions in the ðΩ1;Ω2Þ plane featuring different
numbers of internal horizons stemming from the f2
function, is shown in Fig. 8 for χ ¼ 5 in the left panel (a)
and χ ¼ 10 in the right panel (b). One observes that the
majority of the phase diagram features either none (upper
pink region) or at most one (lower orange region) internal
horizon. The light blue region supports two internal
horizons.

IV. THERMODYNAMICS

So far we investigated the static properties of the BH in
the effective quantum regime. We now move to determine
its leading quantum thermodynamic properties.
We start by computing the Hawking’s [36] equilibrium

temperature around the external horizon via its surface

FIG. 7. In top panel (a) we present f2 for Ω1 ¼ 1 and three values of Ω2 as shown in the legend on the top, with the improved function
f̄1 displayed as a solid orange line. In the bottom panel (b) is as in (a) but with Ω1 ¼ −1. In both plots we have set the BH mass relative
to the Planck one to χ ¼ 10.
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gravity parameter κ. For the present BH metric the temper-
ature is given in terms of the f function, by

TH ¼ κ

2π
¼ 1

4π

dfðrÞ
dr

����
r¼rþ

; ð30Þ

where rþ is the radius of the external event horizon.
Specializing this expression to the case in (13) with
rþ ¼ lPzþ, we have

TH ¼ 1

4πlP

�
2χ

z2þ

�
1þ Ω1

d0ðzþÞ2
�
þ 4χ

zþ

Ω1

d0ðzþÞ3
dd0
dz

����
z¼zþ

�
:

ð31Þ

The prefactor

Tð0Þ
P ¼ 1

4πlP
; ð32Þ

can be naturally interpreted as the Hawking temperature for
a classical Schwarzschild BH of Planck mass. From now
on, we shall therefore work with the normalized ratio

TH=T
ð0Þ
P .

As expected, for large enough values of χ, the temper-
ature in Eq. (31) tends to the semiclassical one, which is
defined as

Tð0Þ
H

Tð0Þ
P

¼ 1

2χ
: ð33Þ

This is shown in Fig. 9. The consistent quantum expansion
of Eq. (31) reads:

TH

Tð0Þ
P

¼

8>><
>>:

1
2χ

h
1 − 4

π2

ffiffiffiffiffiffi
jΩ1j

p
χ þ

�
1 − 48

π2

	
jΩ1j
π2χ2

þO
��

jΩ1j
π2χ2

	
3=2

	i
Ω1 < 0;

1
2χ

h
1þ 4

π2

ffiffiffiffiffiffi
jΩ1j

p
χ −

�
1þ 48

π2

	
jΩ1j
π2χ2

þO
��

jΩ1j
π2χ2

	
3=2

	i
Ω1 > 0:

ð34Þ

FIG. 8. Phase diagram defining the regions in the ðΩ1;Ω2Þ
plane with different numbers of internal horizons emerging from
the quantum function f2 for χ ¼ 5 (panel a) and χ ¼ 10 (panel b).

FIG. 9. We plot the value of the Hawking temperature ratio TH=T
ð0Þ
P as a function of χ in the case for Ω1 ¼ −1 (left) and Ω1 ¼ 1

(right). It is noticeable that the temperature drops to zero at the extremal value of the mass while the (semi)classical result continues
evaporating.
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At the quantum level the corrected BH temperature
decreases or increases, depending on whether the first
order corrections to the metric are negative or positive.
Additionally, in contrast to the classical case the decrease
(increase) to the external horizon due to the quantum
corrections leads to a decrease (increase) in the associated
quantum temperature.
Although our counting scheme for quantum corrections

limits the validity of our analysis to the results above it is
interesting to discuss the small χ limit for negative Ω1. We
consider still the leading order correction to the metric [i.e.,
we consider n ¼ 1 in Eq. (9)], which we approximate as
(12). In this case, the quantum BH temperature achieves a
maximum around χ ∼ 2 and rapidly decreases to zero for
smaller χ. At this point the internal and external horizons
merge and the BH becomes extremal (18). If this picture
holds for the full quantum result this would suggest that the
evaporation process leaves behind a stable remnant rather
than observing a complete evaporation of the BH. We

hasten to add, however, that higher order corrections cannot
consistently be neglected in this regime and may qualita-
tively change the picture.
We finally turn our attention to the BH entropy S

which is obtained by integrating the first law of BH
thermodynamics

dM ¼ THdS ⇒ dS ¼ dM
TH

¼ MP
dχ
TH

: ð35Þ

The temperature depends on the mass ratio χ once Ω1 is
fixed and therefore we have

S ¼ MP

Z
dχ

THðχÞ
: ð36Þ

Inserting the mass expansion of the temperature in Eq. (34),
we have that the entropy assumes, up to a reference value,
the following form

S ¼

8>><
>>:

4πχ2
h
1þ 8

π2

ffiffiffiffiffiffi
jΩ1j

p
χ − 4

�
1 − 64

π2

	
jΩ1j
π2χ2

log χ þO
��

jΩ1j
π2χ2

	
3=2

	i
Ω1 < 0;

4πχ2
h
1 − 8

π2

ffiffiffiffiffiffi
jΩ1j

p
χ þ 4

�
1þ 64

π2

	
jΩ1j
π2χ2

log χ þO
��

jΩ1j
π2χ2

Þ3=2
	i

Ω1 > 0:
ð37Þ

Thus, the entropy increases (decreases) for negative
(positive) values of Ω1. The leading quantum correction
is linear in χ while only the subleading quantum correction
receives corrections in the logarithm of the mass. In fact,
the latter vanish at the Planck mass. Logarithmic correc-
tions to the entropy of quantum BHs have also been found
by using various other methods, see for example [37–39].

V. CONCLUSIONS

We investigated the quantum nature of black holes by
employing an effective approach able to describe quantum
deviations from the classical results. We have studied in
detail the Schwarzschild black hole, which is the simplest
example in four dimensions, however, our approach can
readily be extended to other types of geometries (which we
plan to discuss in the future). Here we notably assumed that
no other physical quantum gravity scale emerges besides
the Planck one.
Upon setting up the framework we determined the

quantum corrections to the event horizon structure. To
leading order in the quantum corrections, and depending on
their sign, we showed that the black hole can either have a
single horizon or develop a second internal one. We tested
the robustness of our results by further considering both
the backreaction on the quantum proper distance as well
as the effects of higher order corrections. In this way we
have demonstrated that the quantum corrections can be

consistently organized into expansions dictated by inverse
powers of the mass. We also note that these results do not
hinge on a particular model of quantum gravity: indeed,
different models simply provide specific values of the
coefficients Ωn for the quantum corrections. For example,
according to the radiative computations in [40], one would
have Ω1 ¼ −167=ð30πÞ ∼ −1.77 and therefore the physics
is the one stemming from a negative value of Ω1. Similarly
one could match the coefficients to the prediction for the
quantum metric stemming from different quantum gravity
actions featuring, for example, higher curvature terms such
as fðRÞ theories [41–43]. For a recent discussion about
potential constraints on some of the Ωn coefficients see
[44]. Alternatively, in the future, some of these coefficients
could be experimentally determined. To further test the
robustness of our quantum framework we have shown how
to take into account higher order corrections to the metric.
We have even provided the explicit form of the next to next
leading order quantum corrections to the external horizon.
The results demonstrate the effectiveness and reliability of
the expansion. We have also observed that the fate of the
internal horizon, for Ω1 negative, is sensitive to higher
order corrections. We have consequently provided, to the
next-to-next leading quantum order, the parameter space
diagram illustrating the various scenarios for the internal
horizon. Because of the nature of the expansion in (9) one
can only address the ultimate fate of the singularity at the
origin of the black hole within a specific model of quantum
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gravity which would allow to resum the entire series
nonperturbatively. We also provided the conformal dia-
grams for the quantum corrected black holes and deter-
mined the impact of the quantum corrections on the
thermodynamic properties such as temperature and entropy.
Our approach differs from the renormalization group

improvement of a black hole space time in which the
Newton constant is upgraded to an effective running
coupling [14,15]. Within this latter framework it has been
recently shown [33] that the renormalization group
improvement at the level of the metric is coordinate-
dependent while the approach is applicable at the level
of curvature invariants. Although in our framework we still
work at the level of the black hole metric our quantum
modified metric depending only on physical quantities
leads to coordinate independent observables.
If the quantum scale for gravity turns out to be lower than

the Planck scale, our framework can take this into account
by a simple rescaling of the dimensionless proper distance
used in the definition of the quantum f function of (6). A
smaller quantum gravity scale can lead to sizable phenom-
enological effects.
Overall, we have showed that quantum corrections to

black hole physics can be organized in a powerful expan-
sion in their mass that, already at the leading order, allows
us to explore the quantum nature of black holes at distances
that can be as close to the origin of the black hole, as few
times the Planck length. The framework can be employed
to investigate quantum corrections for other extended
gravitational objects.
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APPENDIX A: QUANTUM CORRECTED
HORIZONS OF THE SCHWARZSCHILD METRIC

1. Range of validity of the quantum corrected
horizon position

We provide a numerical estimate of the range of validity
of the approximation (14) for the position of the (external)
horizon calculated as the zeroes of the f function (12). For
simplicity (and since these computations only act as an
order of magnitude estimate), we limit ourselves to the case
Ω1. Specifically, we consider the zero (14) as an entire
series of the form

zþ ¼ 2χ
X∞
n¼0

anαn=2; with

a0 ¼ 1;

a1 ¼ 0;

a2 ¼ 1:

ðA1Þ

An estimate for the range of validity of the result (14) can
be obtained by the radius of convergence of this series.
Indeed, in Fig. 10 we have plotted (norm) of the ratio
jan=anþ1j which asymptotically approaches to the radius of
convergence r ∼ 0.1968� 0.0004. This suggests, that the
result (14) can be trusted for BH masses

χ ≥
ffiffiffiffiffiffi
Ω1

p
π

ffiffiffi
r

p ∼ 0.718
ffiffiffiffiffiffi
Ω1

p
: ðA2Þ

2. Numerical calculation of the position
of the horizon(s)

Here we perform a numerical analysis of the zeroes of
the quantum self-improved metric function (20) with d1
defined in (19). We are in particular interested in the order
in the parameter α [defined in Eq. (14)] at which this
modification changes the position of the horizon(s) of the
black hole compared to f1 defined in (13). To this end, we
distinguish the cases Ω1 > 0 and Ω1 < 0

(i) Ω1 > 0: In this case, the zeroes of f̄1 as a function of
α (for χ ¼ 2) are plotted in Fig. 11 for the choice
χ ¼ 2. The solid black line is approximated by

FIG. 10. Absolute value of the quotient jan=anþ1j of the
coefficients in Eq. (A1). The black line interpolates the coef-
ficients by a function of the form a

αb
þ c for a ¼ 0.475� 0.003,

b ¼ 1.279� 0.008 and c ¼ 0.1968� 0.0004.

FIG. 11. Numerical position of the position of the horizon zþ as
a function of α for χ ¼ 2 and Ω1 > 0.
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zþ ¼ 4ðā1 þ ā2αþ ā3α3=2Þ: with

4ā1 ¼ 4� 2.2 � 10−9;
4ā2 ¼ 4.0036� 0.007;

4ā3 ¼ 7.853� 2.523:

ðA3Þ

The numerical results for ā1 and ā2 are compatible
with the coefficients obtained for the zeroes of f1,
while the coefficient ā3 is not (namely a1¼1, a2 ¼ 1

and a3 ¼ − 2
π ∼ −0.637). This suggests, that the

corrections to the position of the horizon zþ that

stem from using the improved metric function f̄1 are
of order Oðα3=2Þ.

(ii) Ω1 < 0: In this case, the two zeroes of f̄1 as a
function of α (for χ ¼ 2) are plotted in Fig. 12 for
χ ¼ 2. The solid black line is approximated by

zþ ¼ 4ðā1 þ ā2αþ ā3α3=2Þ; with

4ā1 ¼ 4� 4.8 � 10−7;
4ā2 ¼ −3.979� 0.045;

4ā3 ¼ 9.947� 2.685;

ðA4Þ

z− ¼ b̄1α
1
3 þ b̄2α

2
3 þ b̄3αþ b̄4α

4
3; with

b̄1 ¼ 7.0827� 0.00005;

b̄2 ¼ 1.6724� 0.0114:

b̄3 ¼ 2.26� 0.60;

b̄4 ¼ 4.45� 9.08:

ðA5Þ

For the position of the outer horizon zþ, the situation
is similar to the caseΩ1 > 0: the coefficients ā1;2 are
numerically compatible with the values a1;2 coming
from f1, while ā3 is not. This suggests, that the
corrections to the position of the horizon zþ that
stem from using the improved metric function f̄1 are
of order Oðα3=2Þ. For z− the coefficients b̄1;2;3 are
numerically compatible with the values obtained
from f1. In view of the large numerical uncertainty,
this suggests that the corrections to the position
of the inner horizon appear at an order larger
than OðαÞ.

3. Second order quantum corrections

Before treating the second order quantum corrections,
we first provide a relation between the proper distances d1
and d0: we start from the definition of d1 in (19), however,

instead of a function of z we consider it as a function of d0
defined in (11).8 We then find for the first derivative

dd1
dz

¼ dd1
dd0

dd0
dz

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z ð1þ Ω1

d2
0

Þj
q : ðA6Þ

Using (10) we therefore find

dd1
dd0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j1 − 2χ
z j

j1 − 2χ
z ð1þ Ω1

d2
0

Þj

vuut ðA7Þ

where implicitly z is understood as a function of d0. We can
consider two limits of this equation

FIG. 12. Numerical position of the position of the horizon zþ (left panel) and z− (right panel) as a function of α for χ ¼ 2 and Ω1 < 0.

8This is possible since d0 is a monotonic function in z.
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(i) χ ≪ z (or equivalently χ ≪ d0): in this case, the
Eq. (A7) becomes

dd1
dd0

¼ 1; ðA8Þ

which has as solution d1 ∼ d0, i.e., for distances
far away from the BH the two distances become
equivalent.

(ii) χ ≫ z (or equivalently χ ≫ d0): in this case, the
Eq. (A7) becomes

dd1
dd0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

j1þ Ω1

d2
0

j

s
; ðA9Þ

which is a differential equation for d1 and can be
integrated up in a direct fashion9

d1 ¼

8>>>>><
>>>>>:

d0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω1

d2
0

q
−

ffiffiffiffiffiffi
Ω1

p
if Ω1 > 0;

ffiffiffiffiffiffiffiffiffi
−Ω1

p
− d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− Ω1

d2
0

− 1
q

if Ω1 < 0 and d0 <
ffiffiffiffiffiffiffiffiffi
−Ω1

p Þ;
ffiffiffiffiffiffiffiffiffi
−Ω1

p þ d0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω1

d2
0

q
if Ω1 < 0 and d0 >

ffiffiffiffiffiffiffiffiffi
−Ω1

p Þ:

ðA10Þ

Here the integration constants have been chosen in
such a way that d1 is a continuous function of d0 and
limd0→0 d1 ¼ 0. Graphically, the solutions are shown
in Fig. 13. For small values of d0 we find

d1 ∼
d20

2
ffiffiffiffiffiffiffiffiffijΩ1j

p þOðd40Þ: ðA11Þ

We can now turn to the second order quantum correc-
tions. To this end, we generalize the differential
equation (A7) for d2 (as a function of d1)

dd2
dd1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 2χ

z ð1þ Ω1

d2
0

Þj
j1 − 2χ

z ð1þ Ω1

d2
1

þ Ω2

d4
1

Þj

vuuut : ðA12Þ

As before, we can consider two limits of this equation
(i) χ ≪ z (or equivalently χ ≪ d1): in this case, the

Eq. (A12) becomes

dd2
dd1

¼ 1; ðA13Þ

which has as solution d2 ∼ d1, i.e., for distances far
away from the BH the two distances become
equivalent.

(ii) χ ≫ z (or equivalently χ ≫ d1): in this case, the
Eq. (A12) becomes

dd2
dd1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ Ω1

d2
0

j
j1þ Ω1

d2
1

þ Ω2

d4
1

j

vuuut : ðA14Þ

which together with (A10) is a differential equation
for d2 and can in principle be integrated as a function
for d1. Since this is, however, technically difficult,
we focus on expanding d2 around d1 ¼ 0 and for
simplicity focus on the case Ω1;2 > 0

10:

FIG. 13. Distance d1 in Eq. (A10) as a function of d0 (left panel) and of z assuming that χ ¼ 20 (right panel). The dashed black line
corresponds to d0 for comparison.

9Requiring d1 to be u independent implies also independence
of Ω1 on u. 10Other cases can be analyzed in a similar fashion.
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dd2
dd1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω1

d1ðd1þ2
ffiffiffiffi
Ω1

p Þ
1þ Ω1

d2
1

þ Ω2

d4
1

vuut : ðA15Þ

Expanding for small d1 (or equivalently small d0),
we find

d2 ∼
ffiffiffi
2

p

5

Ω1=4
1ffiffiffiffiffiffi
Ω2

p d5=21 þOðd7=21 Þ

∼
d50

20Ω1

ffiffiffiffiffiffi
Ω2

p þOðd70Þ; ðA16Þ

which is indeed compatible with (28).
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