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In a previous work we obtained exact solutions for the proper time quantum mechanics of a thin dust
shell, collapsing in a vacuum. We extend these results to the quantum collapse of a dust shell surrounding a
preexisting black hole. In lieu of exact solutions, which have so far proved difficult to obtain for this
system, we establish the essential features of the quantum shell through a Wentzel-Kramers-Brillouin
approximation, which is valid only when the mass of the shell is much greater than the Planck mass. There
are many similarities with the vacuum collapse: only bound states exist and the proper energy spectrum of
the shell is unaffected by the presence of the central black hole to this order. There are no peculiar or
distinguishing features of the wave function near the black hole horizon. It vanishes at the center and
oscillates between the origin and the classically forbidden region, beyond which it decays exponentially.
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I. INTRODUCTION

Thin shells of matter, collapsing in a variety of envi-
ronments, have been used extensively as simplified systems
with which to model the final stages of gravitational
collapse under many different conditions [1–10]. This is
because thin shell collapse captures many of the features of
more realistic collapse models while avoiding some of their
technical difficulties. Moreover, the quantum mechanics of
the shell is exactly solvable in some cases, which helps to
shine a light on some of the problems of quantum gravity.
For example, “time” has different meanings in classical
general relativity and in the quantum theory. All choices of
the time function yield the same local geometries, but
quantum theories built on different time parameters are not
unitarily equivalent. In [11], we showed that exact quan-
tizations, based on different time variables, of a shell that is
collapsing in a vacuum yield incompatible descrptions.
When the shell quantization is based on coordinate time,
solutions exist only when its mass is less than the Planck
mass [12], but when it is based on proper time, solutions
exist only when its mass is greater than the Planck mass,
which is more in keeping with what is observed.
Among other important issues that one would like to

understand from the point of view of quantum gravity is the
Hawking effect [13] and the information loss paradox in
black hole physics. Most discussions of the Hawking effect
examine particle production in a scalar field propagating in
the classical background geometry of a collapsing body
from the point of view of the asymptotic observer. This is
an effective field theory approach from which black hole
evaporation and information loss are inferred. The

geometry excites scalar field quanta, which then propagate
to infinity as thermal, nearly thermal, or unitary radiation
(recently, it was argued in [14,15] from this point of view
that the radiation from a thin shell during its collapse is
unitary). The result is that the black hole appears to
evaporate over time as energy is drawn from it by the
excited field quanta. Reasoning that this effect should have
a counterpart in a time-dependent quantum gravitational
collapse and from the point of view of a comoving observer
(the black hole either evaporates or it does not), we
constructed a midisuperspace quantization of a nonrotating
dust ball (the simplest form of collapse) [16,17] using the
equivalent of Kuchař variables [18] in the LeMaître-
Tolman-Bondi (LTB) frame [19]. We were able to build
exact diffeomorphism invariant states on a lattice, thereby
treating the dust ball as a series of shells labeled by their
LTB radial coordinate, and showed that matching the shell
wave functions across the apparent horizon requires
ingoing modes in the exterior to be matched to outgoing
modes in the interior and, vice versa, ingoing modes in the
interior are matched to outgoing modes in the exterior
[20,21]. In each case, the relative amplitude of the outgoing
wave is suppressed by the square root of the Boltzman
factor at the Hawking temperature determined by the total
Misner-Sharp mass contained within the shell.
There are two independent solutions. In one, exterior,

infalling waves representing the collapsing shells of dust
are accompanied by interior, outgoing waves. These
interior waves, which are of quantum origin, represent
an interior “Unruh” radiation. In the other solution, waves
move away from the apparent horizon on both sides of it.
Interior, infalling waves representing the continued col-
lapse of the dust shells across the apparent horizon are
accompanied by exterior, outgoing waves. These latter*Cenalo.Vaz@uc.edu
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ougoing waves represent the exterior Unruh radiation,
which is thermal. Continued collapse across the apparent
horizon from an initial diffuse state can be achieved by
combining the two solutions and requiring the net flux to
vanish at the apparent horizon. The effect is that the
collapse ends in a central singularity and is accompanied
by thermal Unruh radiation in the exterior. The net effect
in the proper time quantum theory is therefore a quasi-
classical tunneling of particles as described in [22,23], but
only if a continued collapse beyond the apparent horizon is
assumed.
There are some ambiguities involved in the midisuper-

space quantization program that are avoided in the quan-
tization of a thin shell. Therefore, in this paper, we address
the quantum mechanics of single thin dust shell that is
collapsing in the background of a preexisting black hole
from the comoving observer’s point of view. The purpose
is to understand what differences the background brings
about in the shell wave function, in particular in its behavior
at the event horizon of the black hole and at infinity, i.e., is
there a similar tunneling effect as described above for the
dust ball and if so does the shell evaporate thermally as
suggested by Hawking?
On the classical level, the shell has just one degree of

freedom and is completely described by its radius, RðtÞ and
its conjugate momentum, PðtÞ. We are unable to find exact
wave functions, as we did in the case of a shell collapsing
in a vacuum, but a Wentzel-Kramers-Brillouin (WKB)
approximation is sufficient to extract many of their key
features. We find several differences between the behavior
of shells in a dust ball and the single shell, all of them
traceable to the fact that, unlike the shells of a dust ball, the
single shell possesses a self-interaction that is inversely
proportional to its area radius. As a consequence the single
shell is classically bound. We will show that there is no
tunneling across the horizon and determine the energy
spectrum of the shell. Its WKB wave function extends from
the origin (where it vanishes), is well behaved at the black
hole horizon, and falls off exponentially beyond the
classically allowed region.
In Sec. II we derive the proper time dynamics of a

classical thin shell collapsing onto a preexisting mass. The
classical dynamics are obtained by an application of the
Israel-Darmois-Lanczos (IDL) formalism [24–26], which
yields a first integral of the motion involving the preexisting
mass at the center,M−, the Arnowitt-Deser-Misner (ADM)
mass at infinity, Mþ, and the proper mass, m, of the shell.
Of these, the mass at the center and the proper mass of the
shell are nondynamical parameters, constant over the entire
phase space. The ADM mass is a dynamical variable that
represents the energy of the system. There are three time
variables, viz., the coordinate times in the interior and the
exterior, and the shell proper time. What is not clear is
the time variable in which the ADM mass generates the
evolution. We follow Hajiček, Kay, and Kuchař [12] and

assume that it generates the evolution in the time coordinate
inside the shell. This allows us to construct Lagrangians
and Hamiltonian evolutions for the shell in the other time
variables, in particular in the shell proper time. Here we
also show that the Hamiltonian obtained in this way is
structurally similar to the proper time Hamiltonian derived
for the full Einstein-dust system in the LTB dust ball
models, which lends confidence in the choice of [12].
In Sec. III, we quantize the classical model. The

Wheeler-DeWitt equation is elliptic with a positive semi-
definite inner product for energies less than the shell’s
proper mass. We find the WKB approximation of the wave
function and, in Sec. IV, analyze its Uð1Þ current.
Requiring that a lowest energy state exists and that the
Uð1Þ current is finite and well behaved everywhere, a
complete set of bound states exists and we determine its
spectrum. By comparing the solutions with the shell
collapsing in a vacuum, we conclude that the approxima-
tion is valid only so long as the proper mass of the shell is
much greater than the Planck mass. We conclude in Sec. V
with a brief summary of our results and tie them in with a
previously suggested model for quantum black holes.

II. THE CLASSICAL SHELL MODEL

The equation of motion of a spherical, thin, massive shell
is obtained by applying the Israel-Darmois-Lanczos con-
ditions on the timelike surface Σ ¼ R × S2 that represents
its world sheet. The world sheet forms the three-dimen-
sional boundary between an internal spacetime, M−, and
an external spacetime, Mþ. M∓ are described in coor-
dinates xμ∓ by metrics g∓μν that solve Einstein’s equations.
Let ξa be a set of intrinsic coordinates on the surface of the
shell and differentiable functions of xμ∓, then e∓μ

a ¼
∂xμ∓=∂ξa are the components of the three basis vectors
on this surface and h∓ab ¼ g∓μνe∓μ

ae∓ν
b is the induced metric

on the shell on the two sides of it. The first junction
condition requires the shell to have a well-defined metric,
i.e., h−ab ¼ hþab or ½hab� ¼ 0.
The second junction condition, which follows from

Einstein’s equations, says that the surface stress-energy
tensor, Sab, of the shell is given by

Sab ¼ −
ε

8π
ð½Kab� − ½K�habÞ; ð1Þ

where Kab is the extrinsic curvature of the boundary,
K ¼ Ka

a and ε ¼ þ1 for a timelike shell. If M∓ are taken
to be vacuum spacetimes, then spherical symmetry implies
that g∓μν are Schwarzschild metrics, with mass parameters
M∓ respectively, and Mþ represents the total mass of the
system. We may write the respective line elements as

ds2∓ ¼ −g∓μνdxμ∓dxν∓ ¼ B∓dt2∓ −
1

B∓ dr2∓ − r2∓dΩ2; ð2Þ
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where B∓ ¼ 1–2GM∓=r∓ and we have assumed that the
interior and exterior share the same spherical coordinates, θ
and ϕ. The shell is described by the parametric equations
r∓ ¼ r ¼ RðτÞ, t∓ ¼ t∓ðτÞ, where τ is the proper time
for comoving observers and the interior and exterior
time coordinates are related to the shell proper time (and
indirectly to each other) by

dt∓
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B∓ þ R2

τ

p
B∓ ; ð3Þ

where the subscript indicates a derivative with respect to τ.
Choosing the intrinsic coordinates of the shell to be
ξa ¼ fτ; θ;ϕg, the induced metric is

ds2Σ ¼ dτ2 − R2ðτÞdΩ2; ð4Þ

while the nonvanishing components of the extrinsic curva-
ture are

Kθ∓θ ¼ Kϕ∓ϕ ¼ β∓
R

; Kτ∓τ ¼
β∓τ
_Rτ

; ð5Þ

where

β∓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B∓ þ _R2

τ

q
: ð6Þ

Therefore, according to (1),

Sττ ¼
βþ − β−

4πGR
¼ −σ;

Sθθ ¼ Sϕϕ ¼ βþ − β−

8πGR
þ βþτ − β−τ

8πGRτ
¼ p; ð7Þ

where we have set Sab ¼ diagð−σ; p; pÞ.
The mass density of the shell is “σ” and “p” is its

tangential pressure, which, for dust shells, we take to be
zero. Integrating the second equation in (7),

βþ − β− ¼ −
Gm
R

; ð8Þ

where m is a constant of the integration, which represents
the rest mass of the shell, as is seen by inserting this
solution into the first. Equation (8) may be put in the form

Mþ −M− ¼ ΔM ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B− þ R2

τ

q
−
Gm2

2R
: ð9Þ

It is reasonable to think of the above as a first integral of
the motion and associate ΔM with the total energy, E, of
the shell. When expressed in terms of the momentum
conjugate to RðτÞ, (9) will represent the Hamiltonian of the
system. It is, however, given in terms of the velocities,
which are dependent variables in the canonical theory and,

to determine the momentum, it becomes necessary to know
in which of the three time coordinates the Hamiltonian is
evolving the system.
Within the thin shell construction, there is no à priori

way to determine a canonical Hamiltonian because
the constraint equation has been derived from the IDL
conditions and not a fundamental action principle. One
approach would be to compare the thin shell Hamiltonians
with a similar system for which a canonical theory has been
derived from an action principle. Our goal will be to
recover a proper time Hamiltonian that is compatible with
the midisuperspace Hamiltonian [16,17] obtained for the
spherically symmetric Einstein-dust action by an applica-
tion of a canonical chart analogous to that employed by
Kuchař in [18,27]. Because a dust ball can be thought of as
a sequence of noninteracting shells, the proper time
Hamiltonian for a single shell should be of the same form
apart from any self-interaction terms peculiar to the thin
shell itself. Thus, for example, if the evolution is taken to be
in the shell proper time and the energy is taken to be ΔM,
we have

Rτ ¼
∂HI

∂p
ð10Þ

and the Hamiltonian is [28,29]

HI ¼ m
ffiffiffiffi
B

p
cosh

p
m
−
Gm2

2R
: ð11Þ

It does not have the same form as the Hamiltonian derived
for the dust ball in [16,17].
As mentioned in the Introduction, we will show that the

choice of [12], taking ΔM to evolve the system in the
coordinate time of the interior, yields a compatible proper
time Hamiltonian. Because the right-hand side of (9)
involves only the interior we drop the superscripts �
and, employing (3), we can rewrite it as

ΔM ¼ mB3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − R2

t

p −
Gm2

2R
: ð12Þ

Then Rt ¼ ∂HII=∂p gives

HII ¼ −PðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Bþ B2p2

q
−
Gm2

2R
; ð13Þ

and

p ¼ mRtffiffiffiffi
B

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − R2

t

p : ð14Þ

The action for the shell may now be given as a Legendre
transform of HII ,
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S ¼
Z

dt

�
−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B −

R2
t

B

r
þ Gm2

2R

�
ð15Þ

and then transformed into an action in proper time, once
again with the help of (3). One finds

S ¼
Z

dτ

�
−mþGm2

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p
B

�
ð16Þ

and the proper time Hamiltonian

H ¼ −PðτÞ ¼ m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

B
− BP2

r
; ð17Þ

where we have set fðRÞ ¼ Gm2=2R and the momentum, P,
conjugate to R, is now given by

P ¼ fRτ

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p : ð18Þ

This proper time Hamiltonian is bounded from above by
the mass of the shell and the shell momentum is bounded
from above by f=B. From the comoving observer’s point of
view, the shell is always bound to the center.
The equations of motion that follow from (17) are

derivable from the super-Hamiltonian

hðτÞ ¼ ðPðτÞ þmÞ2 þ BP2 −
f2

B
¼ 0: ð19Þ

In this form, the Hamiltonian structure of the shell is
identical to that of the dust ball, as derived in the Einstein-
dust system, with one important exception: the shells in a
dust ball do not possess a self-interaction that depends on
their area radius: for the shells in a dust ball, fðRÞ gets
replaced by the Misner-Sharp mass density, F0ðrÞ, where r
is the LTB shell label coordinate and FðrÞ represents the
mass of the dust ball up to r. The dependence of the self-
interaction term, fðRÞ, on the area radius is responsible for
the fact that the shell is classically bound in the proper time
description. It will also play an important role in the
matching conditions at the horizon.

III. THE QUANTUM SHELL

The structure of the super-Hamiltonian in (19) indicates
that the DeWitt metric is

γab ¼
�
1 0

0 1=B

�
; ð20Þ

so we choose a factor ordering that is symmetric with
respect to the measure “dR=

ffiffiffiffi
B

p
.” Raising the momenta to

operator status following Dirac we get the Wheeler-DeWitt
equation

ĥðτÞΨðτ; RÞ ¼
��

−iℏ
∂

∂τ
þm

�
2

− ℏ2
ffiffiffiffi
B

p ∂

∂R

ffiffiffiffi
B

p ∂

∂R
−
f2

B

�
×Ψðτ; RÞ ¼ 0: ð21Þ

We have been unable to find exact solutions to this
equation, but the WKB approximation suffices to
yield a general picture of the quantum shell. With
Ψðτ; RÞ ¼ eiWðτ;RÞ=ℏ, (21) reads

− iℏ
∂
2W
∂τ2

þ
�
∂W
∂τ

þm

�
2

− iℏB
∂
2W
∂R2

−
iℏ
2
B0 ∂W

∂R

þ B

�
∂W
∂R

�
2

−
f2

B
¼ 0; ð22Þ

where the prime indicates a derivative with respect to R,
and taking

W ¼ −Eτ þ S0ðRÞ þ
ℏ
i
lnAðRÞ; ð23Þ

where E is the shell proper energy, we find up to OðℏÞ,

BS002 þ ðm − EÞ2 − f2

B
¼ 0;

ffiffiffiffi
B

p
ð
ffiffiffiffi
B

p
S00Þ0 þ

2B
A

A0S00 ¼ 0: ð24Þ

The first equation is solved by the Hamilton-Jacobi
function,

S0ðRÞ ¼ �
Z

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q
; ð25Þ

and the second gives

A ¼ C

jBj1=4 ffiffiffiffiffiffiffiffijS00j
p : ð26Þ

Let us now show that the classical limit of this solution
yields the classical dynamical equations that follow from
(17). To order ℏ0, Wðτ; RÞ is just the Hamilton-Jacobi
function, so the function RðτÞ defined by the principle of
constructive interference,

∂S0
∂E

¼ 0 ¼ −τ �
Z ðm − EÞdRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2 − ðm − EÞ2B
p ð27Þ

and

PðτÞ ¼ S00 ¼ � 1

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q
ð28Þ
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should satisfy the Hamiltonian equations based on (17).
Taking a derivative of (27),

1 ¼ � Rτðm − EÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − Bðm − EÞ2

p ð29Þ

and therefore

m − E ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ R2

τ

p : ð30Þ

Inserting this into (28) shows that

BP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − Bðm − EÞ2

q
¼ fRτffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ R2
τ

p ð31Þ

or

Rτ ¼
BPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2

B − BP2

q ¼ fR;Hg: ð32Þ

Again, taking the derivative of P in (28) and using (32)
we find

Pτ ¼
2ff0 − ðf2=Bþ BP2ÞB0

B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

B − BP2

q ¼ fP;Hg: ð33Þ

It follows that the trajectories implied by the principle of
constructive interference in (27) are identical to those
determined by the Hamiltonian equations of motion that
follow from (17).
The WKB solutions may now be given as

Ψ�ðτ; RÞ ¼
C�e−iEτ

jB1=4
ffiffiffiffiffi
S00

p exp

�
�i
Z

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q �
:

ð34Þ
Inside theblackhole horizon, becauseB < 0, theWKBwave
function is always oscillatory, but the situation is different
outside. The phaseS0 is real in the classically allowed region,
for which f2 − ðm − EÞ2B > 0, and imaginary in the clas-
sically forbidden region. The wave function thus falls off
exponentially when f2 − ðm − EÞ2B < 0 i.e., when

R > Rþ ¼ 1

2

 
κ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ μ4

ðm − EÞ2

s !
; ð35Þ

where κ ¼ 2GM− and μ2 ¼ Gm2 ¼ ðm=mpÞ2. We will
henceforth distinguish between the “interior” region (R < κ)
and the “exterior” region (R > κ), which itself consists of the
classically allowed region (κ < R < Rþ) and the classically
forbidden region (Rþ < R). In the interior we write

Ψðτ; RÞ ¼ e−iEτ

jBj1=4 ffiffiffiffiffiffiffiffijS00j
p �

F1 exp

�
þi
Z

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q �

þ F2 exp

�
−i
Z

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q ��
; 0 < R < κ ð36Þ

and in the exterior,

Ψðτ; RÞ ¼

8>>>>>>>><
>>>>>>>>:

e−iEτ

jBj1=4
ffiffiffiffiffiffi
jS0

0
j

p
n
D1 exp

h
þi
R

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

p i
þD2 exp

h
−i
R

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

p io
; κ < R < Rþ

e−iEτ

jBj1=4
ffiffiffiffiffiffi
jS0

0
j

p
n
D3 exp

h
−
R

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − EÞ2B − f2

p i
þD4 exp

h
þ R dR

B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm − EÞ2B − f2

p io
; R > Rþ

ð37Þ

where Dj and Fj are constants. The wave functions in the
exterior, i.e., in the classically allowed and forbidden regions,
can be matched in the standard way by invoking the
asymptotic forms of the Airy functions far from the boundary
between the regions. One readily finds the connection rules,

D1 ¼
�
D3 −

i
2
D4

�
eiπ=4; D2 ¼

�
D3 þ

i
2
D4

�
e−iπ=4:

ð38Þ

Since the classically forbidden region extends to infinity we
take D4 ¼ 0, which implies that D1e−iπ=4 ¼ D2eiπ=4 ¼ D3.
It remains to match the interior and exterior solutions at the
horizon,where the integral defining the phase has an essential
singularity of order one.
We define the integral by analytically continuing to the

complex plane, deforming the path so as to go around the
pole at R ¼ κ in an infinitesimal circle of radius ε. Let Cε

denote the deformed path, Sε the semicircle of radius ε
about R ¼ κ in the complex R plane, then we define
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Z
R dRffiffiffiffi

B
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

B
− ðm − EÞ2

r
¼def lim

ε→0

Z
R

ðCεÞ

dRffiffiffiffi
B

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2

B
− ðm − EÞ2

r

ð39Þ

and choose the orientation of the semicircle as a boundary
condition. Performing the integration from left to right for
R ¼ κ þ ε

Z
κþε

ðCεÞ

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2− ðm−EÞ2B

q
¼
Z

κ−ε

ðCεÞ

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2− ðm−EÞ2B

q

þ
Z
ðSεÞ

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2− ðm−EÞ2B

q
:

ð40Þ

Since ε is small, we perform a near horizon approximation
of the integrand in the second integral,

Z
ðSεÞ

dR
B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 − ðm − EÞ2B

q
≈
Z
Sε

dRRf
ðR − κÞ ¼ � iπμ2

2
; ð41Þ

where the positive sign occurs if the path is deformed in the
lower half complex plane, and the negative sign occurs
when the path is deformed in the upper half complex plane.
In the present situation, there appears to be no good reason
to choose one over the other. Each choice amounts to the
identifications

F1 ¼ D1e∓πμ2=2 ¼ D3eiπ=4e∓πμ2=2;

F2 ¼ D2e�πμ2=2 ¼ D3e−iπ=4e�πμ2=2: ð42Þ
Owing to the sign change in B across the horizon, outgoing
waves in the exterior are matched to infalling waves in the
interior and, vice versa, infalling waves in the exterior are
matched to outgoing waves in the interior, and the complete
wave function is

Ψðτ; RÞ ¼

8>>>>>><
>>>>>>:

D3e−iEτ

jBj1=4
ffiffiffiffiffiffi
jS0

0
j

p ½e∓πμ2=2e
iπ
4eiS0 þ e�πμ2=2e−

iπ
4e−iS0 � 0 < R < κ

2D3e−iEτ

jBj1=4
ffiffiffiffiffiffi
jS0

0
j

p cos ½S0 þ π
4
�; κ < R < Rþ

D3e−iEτ

jBj1=4
ffiffiffiffiffiffi
jS0

0
j

p e−
R

jS0
0
jdR; R > Rþ

ð43Þ

where S0ðRÞ is defined in (25).

IV. THE ENERGY SPECTRUM

For any two solutions of the wave equation in (21) there
is a conserved bilinear current density given by

Ji ¼ −
i
2
Φ�∇↔iΨþmδiτΦ�Ψ ð44Þ

the time component of which determines a physical inner
product

hΦ;Ψi ¼
Z

dRffiffiffiffi
B

p
�
−
i
2
Φ�∇↔τΨþmΦ�Ψ

�
: ð45Þ

Consider two stationary states,

ΨEðτ; RÞ ¼ e−iEτψEðRÞ; ΦE0 ðτ; RÞ ¼ e−iE
0τψE0 ðRÞ ð46Þ

of energies E and E0, then

hΦ;Ψi ¼
�
m −

1

2
ðE þ E0Þ

�
e−iðEþE0Þτ

Z
dRffiffiffiffi
B

p ϕ�
E0ψE ð47Þ

is positive semidefinite so long as E < m. By the wave
equation we get

ϕ�
E0
ffiffiffiffi
B

p
∂R

ffiffiffiffi
B

p
∂RψE ¼

�
ðm − EÞ2 − f2

B

�
ϕ�
E0ψE ;

ψE

ffiffiffiffi
B

p
∂R

ffiffiffiffi
B

p
∂Rϕ

�
E0 ¼

�
ðm − E0Þ2 − f2

B

�
ϕ�
E0ψE :

Subtracting the second from the first,

ffiffiffiffi
B

p
∂Rð

ffiffiffiffi
B

p
ϕ�
E0 ∂
↔

RψEÞ ¼ ðE −E0ÞðEþE0 − 2mÞϕ�
E0ψE ð48Þ

showing that the inner product in (47) is just a surface term
which, mindful of the three regions, we give as

hΦ;Ψi ¼ −
i

ðE − E0Þ
�Z

κ

0

dR∂R
ffiffiffiffi
B

p
JR þ

Z
Rþ

κ
dR∂R

ffiffiffiffi
B

p
JR

þ
Z

∞

Rþ
dR∂R

ffiffiffiffi
B

p
JR

�
: ð49Þ

To guarantee orthonormality of the wave functions, we
must require that the inner product vanishes whenever
E0 ≠ E. Therefore, calling Ω ¼ ffiffiffiffi

B
p

JR, we seek the con-
ditions under which

lim
R→∞

Ω − lim
R→Rþ

þ
Ωþ lim

R→R−
þ
Ω − lim

R→κþ
Ωþ lim

R→κ−
Ω − lim

R→0
Ω ¼ 0;

ð50Þ
where the superscripts indicate the left/right limits. The
first term vanishes because the wave function vanishes
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exponentially at infinity. Direct computation also shows
that the second and third terms cancel and the last term
vanishes but the fourth and fifth terms, which must be
evaluated at the black hole horizon, neither separately
vanish nor cancel one another. This occurs because the
black hole horizon is an essential singularity of the phase
integral. One finds

− lim
R→κþ

Ωþ lim
R→κ−

Ω ∼ sin

�
μ2

2
ln

�
m − E
m − E0

��
; ð51Þ

and therefore

m − E
m − E0 ¼ e

2nπ
μ2 ð52Þ

for integer values of n. Assuming the existence of a ground
state, it implies the energy spectrum,

En ¼ mð1 − e−2nπ=μ
2Þ; ð53Þ

where n is a whole number. This is identical to the spectrum
of the shell collapsing in a vacuum when μ ≫ 1, i.e., when
the proper mass of the shell is much larger than the Planck
mass. The presence of the external black hole does not
disturb the spectrum to this order.

V. CONCLUSIONS

The purpose of thisworkwas to understand the similarities
and differences in the quantum mechanics of a single thin
shell and the midisuperspace quantization of the shells in a
collapsing dust ball. We examined the WKB approximation
to the proper time quantum mechanics of the thin dust shell
when it surrounds a preexisting black hole. We have shown
that although the constructions of the Hamiltonians gov-
erning the evolution of the two systems have very different
origins (the dynamics of the thin shell are obtained via an
application of the IDL conditions whereas the dynamics of
the dust ball are fully derived from the Einstein-dust system),
the Hamiltonians one ends up with are structurally similar
with a crucial exception: the thin shell possesses a self-
interaction that depends on its area radius, but the shells of a
dust ball do not. This self-interaction causes the thin shell to
always stay bound to the center, regardless of whether the

interior of the shell is a vacuum or a black hole. On the
contrary, the shells of a dust ball may be unbound. Again as a
consequence of the self-interaction, thematching of thewave
function at the horizon of the black hole is accomplishedwith
essentially no information about the horizon length, only the
proper mass of the shell plays a role. Neither does the black
hole play any role in the energy spectrum of the shell, which
we have shown is identical to the spectrum of a shell
collapsing in a vacuum to this order.
What is most surprising is that bound state solutions exist

for shell proper masses greater than the Planck mass and the
shell does not collapse into the central singularity, suggesting
that quantum uncertainty plays a role in the collapse over
distance scales determined by the size of the black hole’s
event horizon and larger than previously suspected. The
wave function vanishes at the center, extends out to the
turning point, which, depending on the energy of the shell,
may lie close to the horizon but always outside it, and falls off
exponentially beyond this point. This is reminiscent of a
gravitational atom and supports another solution of the
quantum dust ball collapse, which does not involve con-
tinued collapse as described in the Introduction: if the
collapse does not continue past the apparent horizon, the
solution is described by the first of the two solutions given in
the Introduction and the shells will coalesce on the apparent
horizon. No event horizonwill form and the collapsewill end
in an ultracompact star instead of a black hole [30,31].
In general, proper time quantization seems to enjoy several

advantages over coordinate time quantizations. For one, the
proper time quantum theory exists for shells of mass greater
than the Planck mass, unlike the quantum mechanics that is
based on coordinate time. But the most important is that it
satisfies a basic requirement of the quantum theory, i.e.,
observer independence of the time parameter. It is therefore
“democratic” in regard to all foliations of spacetime: all
coordinate time variables would be functions of the phase
space [in the simple case of the shell these are given by (3)] as
are the spatial coordinates. The same would be true of the
metric components. Thus they would all be operator valued
and we would be able to speak of time intervals and spatial
distances only in terms of averages. In the proper time
formulation, these averages can be calculated and fluctuations
about them quantified because the Wheeler-DeWitt equation
yields a conserved, positive, semidefinite inner product.
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