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We use exact diagonalization to study energy level statistics and out-of-time-order correlators (OTOCs)
for the simplest supersymmetric extension ĤS ¼ ĤB ⊗ I þ x̂1 ⊗ σ1 þ x̂2 ⊗ σ3 of the bosonic Hamil-
tonian ĤB ¼ p̂2

1 þ p̂2
2 þ x̂21x̂

2
2. For a long time, this bosonic Hamiltonian was considered one of the

simplest systems which exhibit dynamical chaos both classically and quantum-mechanically. Its structure
closely resembles that of spatially compactified pure Yang-Mills theory. Correspondingly, the structure of
our supersymmetric Hamiltonian is similar to that of spatially compactified supersymmetric Yang-Mills
theory, also known as the Banks-Fischler-Shenker-Susskind (BFSS) model. We present numerical evidence
that a continuous energy spectrum of the supersymmetric model leads to monotonous growth of OTOCs
down to the lowest temperatures, a property that is also expected for the BFSS model from holographic
duality. We find that this growth is saturated by low-energy eigenstates with effectively one-dimensional
wave functions and a completely nonchaotic energy level distribution. We observe a sharp boundary
separating these low-energy states from the bulk of chaotic high-energy states. Our data suggest, although
with limited confidence, that at low temperatures the OTOC growth might be exponential over a finite
range of time, with the corresponding Lyapunov exponent scaling linearly with temperature. In contrast, the
gapped low-energy spectrum of the bosonic Hamiltonian leads to oscillating OTOCs at low temperatures
without any signatures of exponential growth. We also find that the OTOCs for the bosonic Hamiltonian are
never sufficiently close to the classical Lyapunov distance. On the other hand, the OTOCs for the
supersymmetric system agree with the classical limit reasonably well over a finite range of temperatures
and evolution times.

DOI: 10.1103/PhysRevD.106.046001

I. INTRODUCTION

Out-of-time-order correlators (OTOCs), first introduced in
Ref. [1], have recently attracted a lot of attention as probes of
quantum chaos in strongly correlated many-body quantum
systems. For a systemwith a Hamiltonian operator Ĥ at tem-
perature T, the OTOC of two operators Â and B̂ is defined as

CðtÞ ¼ −Trðρ̂½ÂðtÞ; B̂ð0Þ�2Þ; ð1Þ

where ÂðtÞ ¼ eiĤtÂe−iĤt is the time-dependent operator Â in
the Heisenberg representation and ρ̂ ¼ Z−1e−Ĥ=T is the
thermal density matrix.
OTOCs measure the sensitivity of a time evolution of a

physical observable ÂðtÞ to small perturbations of an initial

quantum state by an operator B̂ð0Þ. Let us assume that the
operator Â is some canonical coordinate x̂, and the operator
B̂ is the corresponding conjugate momentum p̂. In this
case, the commutator ½xðtÞ; p ð0Þ� in the OTOC (1) corre-
sponds to the classical Poisson bracket

fxðtÞ; pð0Þg ¼ ∂xðtÞ
∂xð0Þ

∂pð0Þ
∂pð0Þ ¼

∂xðtÞ
∂xð0Þ ð2Þ

that measures the sensitivity of time evolution of a
dynamical system to its initial conditions. For a chaotic
system, fxðtÞ; pð0Þg is expected to grow exponentially as
eλt, where λ is the leading (largest) Lyapunov exponent.
In what follows, we refer to λ as simply the Lyapunov
exponent. Generalizing the thermal average of the squared
partial derivative ∂xðtÞ

∂xð0Þ in (2), OTOCs (1) provide us with a
quantum definition of the Lyapunov exponent λ. Namely,
for a quantum chaotic system, the OTOCs (1) are expected
to grow as e2λt for some period of time.
Many studies of OTOCs were to a large extent motivated

by the derivation of a rigorous bound,

λ ≤ 2πT; ð3Þ
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on the growth ofOTOCs in thermal systems at temperatureT
by Maldacena et al. [2] and the demonstration that for
sufficiently low temperatures this bound is saturated by the
Sachdev-Ye-Kitaev (SYK) model [3,4]. More generally, it
was found that theMaldacena, Shenker, and Stanford (MSS)
bound (3) is saturated for systems with a holographic dual
description. Interestingly, the bound might be also saturated
by simple experimentally accessible systems such as trapped
ions in an external potential [5].
However, the demonstration of OTOC growth in generic

chaotic quantum many-body systems and in quantum field
theory turned out to be a very challenging endeavor. The
progress was mostly limited to conformal field theory,
quantum circuits, and simple spin chain models [6–8], often
with quenched disorder [9,10]. For example, so far, it has not
been possible to explicitly demonstrate the saturation of the
MSS bound (3) in the Banks-Fischler-Shenker-Susskind
(BFSS) matrix model [11], which has a well-established
holographic description in terms of blackD0-branes in type
IIA superstring theory orM theory [12,13]. Even in the SYK
model, the equality λ ¼ 2πT can only be demonstrated using
a model-specific diagrammatic technique [3,4,14], while
generally applicable techniques such as exact diagonaliza-
tion so far have not been able reach the relevant low-
temperature, large-system regime [15–17]. Needless to
say, the analysis of OTOCs and quantum Lyapunov expo-
nents in higher-dimensional quantum field theories such as
QCD is an even more formidable task.
In this situation, a lot of attention was attracted to

simple quantum-mechanical systems in which the OTOCs
can be calculated exactly using either analytic or numeri-
cal techniques, for example, by explicitly solving the
Schrödinger equation. At the level of pure states, expo-
nential OTOC growth was demonstrated in a kicked rotor
system [18] and in quantum stadia [19]. Thermal OTOCs
for simple quantum systems and for quantum billiards were
extensively considered in Ref. [20]. In Ref. [21], OTOCs
were calculated semianalytically for the quartic anharmonic
oscillator. In these cases, no exponential growth was clearly
observed. Interestingly, an exponential OTOC growth can
be observed in a double-well potential for temperatures or
energies that are close the height of the saddle point
separating the two wells [22,23]. In this case, the saddle
point resembles an inverted harmonic oscillator, which also
exhibits an exponential OTOC growth [24].
Since real-time dynamics of many-body systems remains

to a large extent inaccessible for simulations on classical
computers, an important methodological application of
simple chaotic quantum-mechanical systems might be
the development and testing of numerical methods for
diagnosing real-time quantum chaos.
One of the most popular and simple quantum-mechani-

cal models for studying various aspects of quantum chaos is
a system with two bosonic degrees of freedom x̂1 and x̂2
and the Hamiltonian of the form (up to the choice of
prefactors for the kinetic and the potential terms)

ĤB ¼ p̂2
1 þ p̂2

2 þ x̂21x̂
2
2: ð4Þ

This Hamiltonian can be obtained by projecting the
Hamiltonian of the SU2 bosonic matrix model to the sector
with zero angular momentum [25] (see also Refs. [26,27]).
In turn, the SUð2Þ bosonic matrix model is a dimensional
reduction of SUð2Þ Yang-Mills theory. It is also a bosonic
part of the Hamiltonian of N ¼ 2 BFSS matrix model.
Classical dynamics of the Hamiltonian (4) is known to be

chaotic at all temperatures or energies [28,29], with the
Lyapunov exponent scaling as

λ ¼ cT1=4; ð5Þ
where c ≈ 1.32 for our definitions of the kinetic and
potential terms in (4). The emergence of fractal structures
in the classical configuration space of this Hamiltonian has
been demonstrated recently in Ref. [30]. A generalization
of the Hamiltonian (4) with N bosonic degrees of freedom
was considered recently in Ref. [31], and an exponential
growth of OTOCs was demonstrated analytically in the
next-to-leading order of expansion in 1=N.
The flat directions x1 ¼ 0 and x2 ¼ 0 of the classical

Hamiltonian are lifted due to quantum effects, so the energy
levels of the quantumHamiltonian (4) are discrete, and all the
corresponding wave functions are localized. At sufficiently
high energies, the bosonic Hamiltonian (4) exhibits a
random-matrix-type level statistics [32] and an exponential
OTOC growth [33] at sufficiently high temperatures or
energies. In this regime, the energy spectrum can be
considered as continuous, and manifestations of quantum
chaos are closely related to classical chaotic dynamics.
However, the discrete energy spectrum of the system (4)
implies that quantum chaos cannot be observed at low
temperatures of the order of the gap between the two lowest
energy levels. The crossover1 between the regular oscillatory
dynamics at low temperatures and chaotic behavior at large
temperatures/energies is a purely quantum phenomenon and
is similar to the confinement-deconfinement transition in
pure Yang-Mills theory or bosonic matrix models [34,35].
In this paper, we consider a minimal supersymmetric

(SUSY) extension of the simple bosonic Hamiltonian (4),
which exhibits continuous energy spectrum and OTOC
growth all theway down to zero temperatures. In this respect,
it is qualitatively similar to supersymmetric matrix models
and the SYK model and is very different from bounded
quantum mechanical systems with discrete energy spectrum
like (4). The Hamiltonian of our model can be written as

ĤS ¼ ĤB ⊗ I þ x̂1 ⊗ σ1 þ x̂2 ⊗ σ3

¼
�
ĤB þ x̂2 x̂1

x̂1 ĤB − x̂2

�
; ð6Þ

1We are using the term “crossover” because phase transitions
cannot exist for systems with a finite number of degrees of
freedom.
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where σ1, σ2, and σ3 are the 2 × 2 Pauli matrices. TheHilbert
space of this model is therefore a direct product of theHilbert
space of the bosonic model (4) and a two-dimensional
“fermionic” Hilbert space on which the Pauli matrices act.
The Hamiltonian (6) can also be represented as a square
ĤS ¼ Q̂2 of the supersymmetry generator

Q̂ ¼ x̂1x̂2 ⊗ σ2 þ p̂1 ⊗ σ1 − p̂2 ⊗ σ3: ð7Þ

This representation makes it obvious that the energy spec-
trum of the supersymmetric Hamiltonian is bounded from
below, even though the fermionic terms x̂1 ⊗ σ1 þ x̂2 ⊗ σ3
in (6) are unbounded. The supersymmetric model (6) was
first introduced inRef. [36] as a toymodel of supersymmetric
membrane. In this work, it was demonstrated that quantum
corrections that lift the classical flat directions x1 ¼ 0 and
x2 ¼ 0 are canceled out due to supersymmetry, so the
directions x1 ¼ 0 and x2 ¼ 0 remain flat for the super-
symmetric Hamiltonian (6). As a result, the energy spectrum
of ĤS is continuous, and wave functions extend to infinity
along the lines x1 ¼ 0 and x2 ¼ 0. This demonstration was
further extended to the BFSS model to argue that super-
symmetric membranes are intrinsically unstable, in con-
tract to bosonic membranes.2 If we consider the bosonic
Hamiltonian (4) as a minimal model that is similar to the
bosonic matrix model of bosonic membranes, the model (6)
is a minimal model that is similar to supersymmetric matrix/
membrane models such as the BFSS [11] matrix model.
We will see that, much like in the case of the BFSS

model, additional “fermionic” terms in the model (6)
eliminate the transition (more precisely, the crossover in
our case) to the nonchaotic “confinement” regime, so the
model exhibits monotonously growing OTOCs for all
temperatures.3 Somewhat counterintuitively, we find that
the energy level statistics still exhibits a rather sharp change
between chaotic and regular behavior at large and low
energies. Furthermore, we will demonstrate that at high
temperatures the supersymmetric model (6) has much
better agreement with classical dynamics than the purely
bosonic one (4).

II. NUMERICAL METHOD

In this work, we perform numerical diagonalization of the
supersymmetric Hamiltonian (6). To highlight the difference
between the bosonic and the supersymmetric model, we also

diagonalize the bosonic Hamiltonian (4). Since both
Hamiltonians act on infinite-dimensional Hilbert spaces,
the first step is to truncate the Hilbert space to a finite
number of states that can be treated numerically. To this end,
we consider thematrices of both Hamiltonians in the basis of
two-dimensional harmonic oscillator states of the form
jk1i ⊗ jk2i, where the states jk1i and jk2i belong to the
Hilbert space of functions of x1 and x2, respectively. The
corresponding wave functions are of the form

Ψk1;k2ðx1; x2Þ ¼ ψk1ðx1Þψk2ðx2Þ; ð8Þ
where

ψkðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kk!
ffiffiffi
π

p
L

p exp

�
−

x2

2L2

�
Hkðk; x=LÞ ð9Þ

are the wave functions that correspond to eigenstates
of a one-dimensional harmonic oscillator Hamiltonian

Ĥ0 ¼ L2p̂2

2
þ x̂2

2L2, Hkðk; zÞ ¼ ð−1Þkez2 dk

dzk e
−z2 are the

Hermite polynomials, and L is the length parameter. We
discuss the tuning of L a bit later.
Matrix elements of the bosonic Hamiltonian in this basis

take the form

ðHBÞk1;k2;l1;l2 ¼ hk1j ⊗ hk2jĤBjl1i ⊗ jl2i
¼ hk1jp̂2jl1iδk2l2 þ hk2jp̂2jl2iδk1l1
þ hk1jx̂2jl1ihk2jx̂2jl2i; ð10Þ

where

hkjp̂2jli ¼ 1

2L2
ðδk;lð2kþ 1Þ

− −δkþ2;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þðkþ 2Þ

p
− δk−2;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − 1Þ

p
Þ;

hkjx̂2jli ¼ L2

2
ðδk;lð2kþ 1Þ

þ −δkþ2;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 1Þðkþ 2Þ

p
þ δk−2;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk − 1Þ

p
Þ

ð11Þ

are thematrix elements of the operators x̂2 and p̂2 in the basis
of one-dimensional wave functions (9). Correspondingly,
the matrix of the supersymmetric Hamiltonian (6) can be
represented in the block form

hk1j ⊗ hk2jĤSjl1i ⊗ jl2i ¼
� ðHBÞk1;k2;l1;l2 þ δk1;l1hk2jx̂jl2i δk2;l2hk1jx̂jl1i

δk2;l2hk1jx̂jl1i ðHBÞk1;k2;l1;l2 − δk1;l1hk2jx̂jl2i
�
; ð12Þ

2In Ref. [36], the supersymmetric Hamiltonian was written as ĤS ¼ ĤB ⊗ I þ x̂1 ⊗ σ1 þ x̂2 ⊗ σ2. In this paper, we choose a unitary
equivalent Hamiltonian (6) that is manifestly real. A unitary transformation relating both Hamiltonians is U ¼ Î ⊗ I−iσ1ffiffi

2
p .

3Note that our SUSY Hamiltonian is very different from fully integrable supersymmetric Hamiltonians considered in Refs. [37,38].
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where hkjx̂jli ¼ Lffiffi
2

p ðδkþ1;l

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p þ δk−1;l
ffiffiffi
k

p Þ are matrix
elements of the coordinate operator x̂ in the basis (9).
To make the matrix representations (10) and (12) finite

and thus numerically tractable, we truncate the infinite-
dimensional discrete Hilbert space spanned on the basis
vectors jk1i ⊗ jk2i to a finite number of states with

k1 þ k2 < 2M; ð13Þ

where M is the truncation parameter. To reduce the
computational cost of exact diagonalization, we further
use the discrete parity symmetry of the Hamiltonians (4)
and (6) to represent the matrices (10) and (12) in block
diagonal form. We then perform numerical diagonalization
of the matrices (10) and (12). For not very large M ≲ 100,
we use the QR algorithm as implemented in the LAPACK

routine DSYEV, finding all eigenvectors and eigenvalues of
the matrices (10) and (12). For larger values of M, we use
the Arnoldi algorithm as implemented in the ARPACKPP

library to find n ≪ M2 lowest eigenvalues, with n taking
values between 102 and 103. Our production code that
performs exact diagonalization and calculates the OTOCs is
publicly available on GitHub [39]. Numerical data for
OTOCs and energy levels are included as ancillary files in
the arXiv submission [40].
To analyze the bosonic Hamiltonian (4), the length

parameter L is adjusted to the value L ¼ 21=6 ≈ 1.12246
that minimizes the expectation value h0j ⊗ h0jĤBj0i ⊗
j0i ¼ L−2 þ L4=4 of ĤB in the “perturbative” vacuum
state j0i ⊗ j0i. Another strategy would be to minimize the
ground-state energy upon exact diagonalization. However,
we have found that our results depend very weakly on
the choice of L once the number of basis vectors is
sufficiently large.
For the supersymmetric Hamiltonian (6), for each value

of the truncation parameter M, we choose the value of the
length parameter L that minimizes the gap ΔE ¼ E3 − E1

between its lowest and next-to-lowest energy levels E3 and
E1, obtained by exact diagonalization. As explained in
Appendix A below, the energy levels of the supersymmetric
system are all doubly degenerate; therefore, E2 ¼ E1, and
the first nonzero energy gap is ΔE ¼ E3 − E1 ¼ E3 − E2.
The dependence of ΔE on M and L is illustrated in Fig. 1.
We found that the dependence of the optimal value of L on
the truncation parameter M can be well described by the
formula

L ¼ 0.961624þ 0.0409431ð2M − 1Þ0.377368: ð14Þ

With this choice of L, the dependence of the energy gapΔE
on M is illustrated in Fig. 2. Fitting suggests that it can be
well described by the power law

ΔE ¼ 4.36466M−1.16619; ð15Þ

which is shown in Fig. 2 as a solid red line. For comparison,
in Fig. 2, we also show the dependence of the gap ΔE
on M for the free particle Hamiltonians in one and two
dimensions,

Ĥ1D ¼ p̂2; ð16Þ
Ĥ2D ¼ p̂2

1 þ p̂2
2; ð17Þ

which are subject to the same truncations of the Hilbert space
as the supersymmetric Hamiltonian. Namely, we consider
the one-dimensional Hamiltonian (16) on the Hilbert space
spanned by all one-dimensional basis states (9) with k < 2M
and with the length parameter that depends onM as in (14).
The power-law dependence of the energy gap of Ĥ1D onM
appears to be quite close to the result (15) for the super-
symmetric Hamiltonian: ΔE ¼ 2.54431 M−1.17463. This
power-law fit is shown in Fig. 2 with a solid line.
For the free two-dimensional Hamiltonian (17), the

Hilbert space is truncated to states jk1ijk2i with k1þ
k2 < 2M, as in (13), and the length parameter is again given
by (14). In this case, we also obtain a power-law depen-
dence of ΔE on M, although with a somewhat different
power: ΔE ¼ 1.6393 M−0.987156.
In what follows, we will often compare the results

obtained for the supersymmetric and the bosonic
Hamiltonians (6) and (4) with results for the one- and
two-dimensional free Hamiltonians (16) and (17) at the
same temperature and for the same Hilbert space
truncation. We will see that at low temperatures the
eigenstates of the supersymmetric Hamiltonian (6) are
with good precision one dimensional, and a meaning-
ful comparison can be made with the one-dimensional
free Hamiltonian (16). Similarly, the two-dimensional

ΔE

L
0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.02

0.05

0.10

0.20

FIG. 1. The gap ΔE ¼ E3 − E1 between the lowest and the
next-to-lowest energy levels E1 and E3 of the matrix (12) of the
supersymmetric Hamiltonian (6) as a function of the length
parameter L in the basis wave functions (9). The value of the
truncation parameter M changes between M ¼ 40 (top curve
plotted in blue) to M ¼ 200 (lowest curve plotted in red) in steps
of 10 (the only missing value is M ¼ 100). Green points indicate
the position of the minima, estimated using spline interpolation.
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free-particle Hamiltonian (17) qualitatively reproduces
some features of OTOCs at early times and high temper-
atures, which are most likely the artifacts of a finite infrared
cutoff.
The largest eigenvalues of the Hamiltonian matrices (10)

and (12) also grow with M. For example, for the matrix of
the bosonic Hamiltonian (10) for M ¼ 70 and M ¼ 100,
the largest eigenvalues are EmaxðM ¼ 70Þ ¼ 27073.5 and
EmaxðM ¼ 100Þ ¼ 56734.3. For the matrix of the super-
symmetric Hamiltonian (12), we have EmaxðM ¼ 70Þ ¼
38426.4 and EmaxðM ¼ 100Þ ¼ 91055.4, respectively. The
truncation parameterM thus provides both the infrared and
the ultraviolet cutoff for the continuous Hamiltonians (4)
and (6). The OTOCs appear to be not very sensitive to the
ultraviolet cutoff at high energies, which allows us to obtain
reliable results using only a relatively small number n ≪
M2 of lowest energy levels.
On the other hand, the infrared cutoff due to the

truncation to k1 þ k2 ≤ 2M is crucial to obtain a numeri-
cally tractable approximation for the supersymmetric
Hamiltonian (6) with a continuous energy spectrum. As
discussed in the Introduction, the flat directions x1 ¼ 0 and
x2 ¼ 0 of the classical Hamiltonian remain flat also for
the supersymmetric Hamiltonian, so the system can still
escape to infinity, and at least some of the wave functions
has infinite spatial extent. Our truncation of the Hilbert
space to a finite number of basis states (8) with k1 þ k2 ≤
2M limits the spatial extent of wave functions, thus
effectively introducing soft boundaries on spatial coordi-
nates x1 and x2. Indeed, using at most 2M lowest harmonic
oscillator eigenstates (9), we can construct wave functions
with spatial extent that does not exceed hx̂2i ≃ 2ML2.
This is obvious from equalities hnjx̂2=L2jni¼hnjp̂2L2jni¼
hnjĤ0jni¼ðnþ1=2Þ for the one-dimensional oscillator

Hamiltonian Ĥ0¼ L2p̂2

2
þ x̂2

2L2 with eigenstates (9). Hence, the
subspace spanned on eigenstates with n ≤ 2M can only
contain states with hx̂2i≲ 2ML2. Our approach is there-
fore similar to numerical regularization of any other
unbounded system with continuous spectrum by putting it
in a finite box.
To illustrate how the finite values of M impose a cutoff

on spatial coordinates, in Fig. 3, we show thermal expect-
ation values hx̂22i ¼ Trðρ̂x̂22Þ as functions of the temperature
T at different values ofM for supersymmetric, bosonic, and
free one- and two-dimensional Hamiltonians (6), (4), (16),
and (17). As discussed above, the data for the free one- and
two-dimensional Hamiltonians (16) are used for compari-
son at low and high temperatures, respectively.
In the high-temperature regime, we use all eigenstates of

the truncated supersymmetric, bosonic, and two-dimensional
free Hamiltonians (6), (4), and (17) to calculate the expect-
ation value. In the low-temperature regime, we use only
n ≪ M2 eigenstates that correspond to n lowest energy
levels. We check that our values of n are big enough by
comparing the results obtainedwith n and n=2 lowest energy
levels, which are found to be very close to each other.
Figure 3 shows that for the supersymmetric Hamiltonian

(6) as well as for the one- and two-dimensional free
Hamiltonians thermal expectation values hx̂22i ¼ Trðρ̂x̂22Þ
strongly depend on M but have weak temperature depend-
ence. This is an expected behavior for a free particle confined
within a region of spacewith size∼

ffiffiffiffiffiffiffiffiffiffi
ML2

p
determined by the

infrared cutoff scale. For the free Hamiltonians (16) and (17)
in one and two dimensions, the expectation values hx̂22i
are indeed reasonably close to the estimates hx̂22i ≈ 2ML2.
For the supersymmetric Hamiltonian, hx̂22i is considerably

FIG. 2. The gap ΔE between the lowest and the next-to-lowest
energy levels of the supersymmetric Hamiltonian (6) as a
function of the truncation parameter M. For each value of M,
the optimal value of L is chosen according to (14). For
comparison, we also show the gap of free one- and two-dimen-
sional Hamiltonians (16) and (17) as functions of M, obtained in
exactly the same way and using the same values of L for eachM.
Solid lines are best fits of the form ΔE ¼ AM−B.

FIG. 3. Temperature dependence of the thermal expectation
values hx̂22i ¼ Trðρ̂x̂22Þ for the supersymmetric and bosonic
Hamiltonians (6) and (4) at different values of truncation para-
meters M. For T ≥ 1, we show the results for M ¼ 70 and M ¼
100 with all eigenvalues taken into account. For T ≤ 1, we show
the results for M ¼ 400 and M ¼ 800, with only n ≪ M2 lowest
energy levels taken into account. For comparison, we also show
hx̂22i for the free one- and two-dimensional Hamiltonians (16) and
(17) with the same truncations of the Hilbert space.
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smaller than these estimates. This suggests that potential
energy terms have a significant effect on the spatial structure
of wave functions at high energies, despite the flatness of the
x1 ¼ 0 and x2 ¼ 0 directions.
On the other hand, for the bosonic Hamiltonian (4), the

expectation value hx̂22i exhibits strong temperature depend-
ence and significantly decreases at low temperatures. This
is an expected behavior for a gapped system with localized
wave functions. The dependence on the truncation param-
eter M is negligible for sufficiently small temperatures and
only becomes important at high temperatures. Only at
T ≳ 20, the expectation values hx̂22i for the bosonic and the
supersymmetric Hamiltonians (4) and (6) become reason-
ably close to each other and exhibit very weak temperature
dependence and strong M dependence. This suggests that
at such temperatures the lifting of the flat directions due
to quantum effects becomes negligible for the bosonic
Hamiltonian, and the infrared cutoff scale becomes impor-
tant. At the same time, the effect of fermionic terms also
becomes smaller, and the supersymmetric system exhibits
classical chaotic dynamics that is similar to the dynamics of
the bosonic Hamiltonian.
Finally, we should note that the truncation of the full

Hilbert space of the supersymmetric Hamiltonian (6) to the
subspace spanned by a finite number 2MðM þ 1Þ of basis
states of the form (8) breaks the exact supersymmetry of the
model. In particular, the equality ĤS ¼ Q̂2 is violated at
the upper edge of the energy spectrum if we truncate the
matrices of the Hamiltonian ĤS and the supersymmetry
generator Q̂ to have finite dimensions. In practice, we find
that all the energy levels of ĤS remain positive upon the
truncation, so the truncation preserves the cancellation of
the negative unbounded terms in the fermionic operators in
ĤS. Furthermore, the effect of truncation becomes negli-
gible for thermal expectation values in the limit of largeM,
as antiperiodic boundary conditions for fermions on the
thermal circle break supersymmetry anyway, and the upper
edge of the spectrum is suppressed at finite temperatures.
Exact supersymmetry also implies that the ground state of
the supersymmetric Hamiltonian should not be doubly
degenerate, in contrast to all higher energy levels. On the
other hand, with our truncation of the Hilbert space, all
energy levels are doubly degenerate, as discussed in detail
in Appendix A. Since the energy spectrum of the super-
symmetric Hamiltonian is continuous (which we recover in
the limit M → 0), there are infinitely many energy levels
that are infinitely close to the ground state, and a single
nondegenerate energy level should likewise have a vanish-
ing contribution to thermal expectation values.

III. EIGENSTATES OF THE SUPERSYMMETRIC
HAMILTONIAN

Preparing to consider out-of-time-order correlators, in
this section, we consider the spectral properties of the

supersymmetric Hamiltonian (6) and compare them with
those of the bosonic Hamiltonian (4) and the free one- and
two-dimensional Hamiltonians (16) and (17) (at low and
high temperatures, respectively). We start with the global
distribution of energy levels. For both the supersymmetric
and the bosonic Hamiltonians, histogramming all eigen-
values of the Hamiltonian matrices (10) and (12) suggests

that the level density dnðEÞ
dE falls off as 1=E. However, this

analysis is not very informative, as all of the interesting
low-lying eigenvalues are counted within a single near-zero
bin. To properly resolve the distribution of eigenvalues at
all scales, we analyze the histograms of logðEÞ. Such

histograms approximate the distributions dnðEÞ
d logðEÞ ¼ E dnðEÞ

dE

and are shown in Fig. 4 in the logarithmic scale.
The log-scale histograms reveal two different scaling

regimes of the level density. At high energies with logðEÞ ≳
5 (or, equivalently, E≳ 150), dnðEÞ

d logðEÞ appears to be almost

constant up to the sharp UV cutoff. This corresponds to the

density of energy levels dnðEÞ
dE ∼ E−1 that does not contain

any dimensionful parameter.
On the other hand, at low energies, all the histogram plots

have an almost constant slope in our double log scale, which

corresponds to the power-law scaling of the form dnðEÞ
d logðEÞ ∼

Eα ¼ eα logðEÞ or, equivalently, log
�

dnðEÞ
d logðEÞ

�
¼ α logðEÞ. It is

instructive to compare our results with the scaling law

dnðEÞ
d logðEÞ ¼ E

dnðEÞ
dE

∼
ffiffiffiffi
E

p
ð18Þ

for the one-dimensional free Hamiltonian (16), where
dn ∼ dp ∼ d

ffiffiffiffi
E

p
. On the other hand, for the two-dimensional

FIG. 4. Histograms approximating the log-scale energy level

density dnðEÞ
d logðEÞ ¼ E dnðEÞ

dE for the supersymmetric and bosonic

Hamiltonians (6) and (4) for different values of the truncation
parameter M. For comparison, we also show similar histograms
for the free one- and two-dimensional Hamiltonians (16) and (17)
with same Hilbert space truncations. For the supersymmetric and
bosonic Hamiltonians with truncation parameter M ¼ 800, we
only show the histograms of n ≪ M2 lowest eigenvalues.
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free Hamiltonian (17), the number of states is dn∼
2πpdp ∼ dE, which leads to the linear scaling

dnðEÞ
d logðEÞ ¼ E

dnðEÞ
dE

∼ E: ð19Þ

From Fig. 4, we can see that for small E the slopes of the
histogram plots for the supersymmetric Hamiltonian are
quite close to that for the free one-dimensional Hamiltonian
(16) withM ¼ 100 andM ¼ 800. AsM is increased, in both
cases, the histograms are shifted toward lower energies. This
is our first argument in favor of effectively one-dimensional,
gapless structure of low-lying eigenstates of the supersym-
metricmodel. For the bosonic Hamiltonian, low-lying energy
levels remain discrete even forM → ∞. Correspondingly, the
histogram is shifted toward larger E and has a steeper slope.
To get further insight into the structure of eigenstates of

the supersymmetric Hamiltonian at different energy scales,
in Fig. 5, we show density plots of some of the wave
functions obtained with the truncation parameter M ¼ 70.
In the plot labels, we give the corresponding values of
energy as well as the squared norms jϕðx1; x2Þj2 and
jχðx1; x2Þj2 of the two components of the wave function
Ψðx1; x2Þ ¼ fϕðx1; x2Þ; χðx1; x2Þg. Both squared norms
add up to 1 by virtue of normalization. We see that the
low-energy states are indeed strongly localized along the
flat directions x1 ¼ �0, x2 ¼ �0 of the potential energy.
The number of times the wave functions change sign along
the direction of their maximal extent coincides with the

serial number of the energy level, which is also an argument
in favor of effectively one-dimensional structure.
It might seem that the “T-shape” structure of the functions

ϕðx1; x2Þ violates the parity symmetry of the model.
However, here, we only show the results for the eigenstates
with positive x1 parity (see Appendix B). Eigenstates with
negative x1 parity will have the T shape turned upside down,
so the full parity symmetry will be restored in the sum over
both parity sectors. It turns out that the OTOCs of operators
x̂2 and p̂2 take exactly the same values in both x1 parity
sectors, and henceforth, we onlyworkwith eigenstates of the
supersymmetric Hamiltonian with positive x1 parity.
To get further insight into quantum chaos exhibited by

the bosonic and supersymmetric Hamiltonians (4) and (6),
it is useful to analyze microscopic correlations between
energy levels. Quantum chaos is usually characterized by
the repulsion between adjacent energy levels. This repul-
sion forces the energy level spacings ΔEi ¼ Eiþ1 − Ei
to have one of the few universal statistical distributions,
which correspond to ensembles of Gaussian unitary, ortho-
gonal, or symplectic random matrices. For Hamiltonians
without any quenched disorder, such analysis assumes that
energy levels far away from the edges of the spectrum can
be considered as quasirandom quantities belonging to a
statistical ensemble.
A convenient measure of level repulsion associated with

quantum chaos is the r ratio [41,42]

ri ¼
minðΔEi−1;ΔEiÞ
maxðΔEi−1;ΔEiÞ

: ð20Þ

FIG. 5. Density plots of the wave functions of some of the eigenstates of the supersymmetric Hamiltonian (6), with the corresponding
values of energy given in the plot labels. We use truncation parameter M ¼ 70 for these plots. For each plot, the color scale is adjusted
such that the brightest color corresponds to the maximal absolute value of the wave function. The black background corresponds to
zero wave function. The red and blue regions correspond to positive and negative wave function values. The square region for all plots
is 20 ≤ x1 ≤ 20, 20 ≤ x2 ≤ 20. The plots in the top and in the bottom rows correspond to the components ϕðx1; x2Þ and χðx1; x2Þ of
the two-component wave function Ψðx1; x2Þ ¼ fϕðx1; x2Þ; χðx1; x2Þg. The squared norms jϕðx1; x2Þj2 and jχðx1; x2Þj2 are given in the
plot labels.
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For the Gaussian Orthogonal Ensemble (GOE) of ran-
dom real symmetric matrices, the statistical average of ri
over many energy levels in the bulk of the spectrum (or,
equivalently, over many random matrices) is rGOE ¼ 0.53.
On the other hand, for nonchaotic integrable systems, the
energy levels are typically uncorrelated. Correspondingly,
the number of energy levels within a fixed interval is usually
well described by Poisson distribution [43], and the average
of ri over many energy levels is close to rPoisson ¼ 0.39.
For Hamiltonians that are invariant under a nontrivial

symmetry group, the level spacings ΔEi ¼ Eiþ1 − Ei that
enter the r ratio (20) should be the differences between
consecutive energy levels that correspond to eigenstates
transforming under the same irrep of the symmetry group.
In other words, we make an ordered list of eigenstates that
transform under some fixed irrep of the symmetry group,
label the elements of this list by consecutive integer indices
i, and calculate the r ratio for the elements of this list.
As discussed in detail in Appendix A, the bosonic

Hamiltonian is invariant under a finite non-Abelian group
C4v with four Abelian and one non-Abelian irreps [44,45].
The supersymmetric Hamiltonian is invariant under a larger
finite non-Abelian group D4d with four Abelian and three
non-Abelian irreps [46,47]. For our analysis of the r ratio
for the bosonic Hamiltonian (4), we select the energy levels
that transform under the two-dimensional non-Abelian
irrep E0 of C4v. For the supersymmetric Hamiltonian (6),
the eigenstates belong to one of the two-dimensional non-
Abelian irreps E1 or E2 of D4d, so we pick the states that
transform under E1. For comparison, we also calculate the r
ratio for the free two-dimensional Hamiltonian (17) with
the same Hilbert space truncation. While the symmetry
group of this free Hamiltonian is the full Oð2Þ group, the
energy levels can still be classified according to irreps of
C4v, which is a subgroup ofOð2Þ. To calculate the r ratio in
this case, we use energy levels that transform under irrep E0

of C4v.
Scatter plots of ri versus the energy Ei are shown in

Fig. 6. For the truncation parameter M ¼ 100, we show all
eigenvalues of the Hamiltonian matrices (10) and (12). For
M ≥ 500, we use between 200 and 800 smallest eigenval-
ues of the Hamiltonian matrices (10) and (12) obtained
using the Arnoldi algorithm.
To set the stage, we first discuss the results for the purely

bosonic Hamiltonian (4), shown in the top plot in Fig. 6. In
this case, lowest energy levels that transform under E0 irrep
are of order of 101, and for energies E≳ 102, the r ratio is
fluctuating almost randomly between 0 and 1, filling the
entire plot area almost uniformly. This is the expected
behavior for a system that is chaotic in this energy range,
both in quantum and in classical mechanics. Averaging
ri over many energy levels in the window between
E ¼ 102.5 ≈ 316.2 and E ¼ 103.5 ≈ 3162.3, we obtain the
value r ¼ 0.523� 0.006 that is very close to the universal
value rGOE ¼ 0.53 for the Gaussian Orthogonal Ensemble.

This expectation value as well as the extent of the energy
window for which it was obtained are shown in Fig. 6.
In full agreement with previous studies [32,33], we there-
fore conclude that the energy spectrum of the bosonic
Hamiltonian (4) exhibits chaotic behavior at least for
energies of order E≳ 101…102.

FIG. 6. Scatter plots of the ratios ri, defined as in (20), as
functions of the energy Ei. From top to bottom, we compare the
results for the bosonic, supersymmetric, and free two-dimen-
sional Hamiltonians (4), (6), and (17), respectively. For the
truncation parameter M ¼ 100, all energy levels are shown.
ForM ≥ 500, we only show between 200 and 800 lowest energy
levels calculated using the Arnoldi algorithm. For the super-
symmetric case, the vertical dashed line shows the energy above
which the irreducible representation (irreps) of the D4d group
associated with each energy level become irregularly ordered, and
thin curved lines of the same color as data points correspond to
the formula (22) with best-fit parameters c. For M ¼ 100,
horizontal magenta lines show the values of ri averaged over
the energy window given by the line extent.
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For energies E≳ 102, the behavior of the r ratio for
the supersymmetric Hamiltonian (6) appears to be very
similar to the one for the bosonic Hamiltonian (4).
Namely, the r ratio also fluctuates randomly between 0
and 1, averaging to r̄ ¼ 0.530� 0.004 in the same
window of energies E ¼ 102.5…103.5 that we considered
for the bosonic Hamiltonian. The behavior for the low-
energy part of the spectrum is, however, completely
different. There is a family of low-lying energy levels
with E≲ 100.5 ≈ 3.2 for which the r ratio ri behaves in a
smooth and regular way as a function of energy Ei, rising
from ri ≈ 0.5 up to ri ≈ 1.0. This behavior is observed
in the energy range that agrees well with the extent of
the low-energy “tail” with dn

d logðEÞ ¼
ffiffiffiffi
E

p
in histograms of

global energy level density in Fig. 4. Interestingly, the
change between the nonchaotic low-energy states and the
chaotic high-energy states, where the r ratio approaches
unit value, appears to be quite sharp.
Such a smooth rising behavior of the r ratio can be

expected for finite-size one-dimensional systems. As we
show in Fig. 7, the dependence of the energy levels Ei on
their serial number i with a good precision can be described
by a quadratic expression,

Ei ¼ aþ bðiþ cÞ2; i ¼ 0; 1; 2;…; ð21Þ

which leads to

ri ¼
iþ cþ 1=2
iþ cþ 3=2

: ð22Þ

Solid lines in the middle plot in Fig. 6 correspond to the
expression (22) plotted as a function of Ei given by (21).
The parameters a, b, and c are extracted from the fits

shown in Fig. 7. We find that the best fit parameters b are
with good precision inversely proportional to the trunca-
tion parameter M. The parameter a is very small, and the
shift parameter c quite quickly grows with M: c ¼ 0.79
for M ¼ 100, c ¼ 1.40 for M ¼ 500, and c ¼ 4.05 for
M ¼ 800. For a few lowest eigenstates, small deviations of
data points that are hardly noticeable in Fig. 7 get amplified
(compare thin lines with low-energy data points in the
middle plot in Fig. 6), and our fits appear to be not as good
as for somewhat larger energies with Ei < 1. It is instruc-
tive to compare these findings with similar analysis for the
free one-dimensional Hamiltonian (16). In this case, b is
also inversely proportional to M, and the fit parameters
a ≈ 0.25 and c ≈ 1 are almost independent of M. Another
instructive case is a one-dimensional, infinitely deep poten-

tial well of width L, for which Ei ¼ π2ðiþ1Þ2
L2 and ri ¼ 2iþ1

2iþ3

are completely independent of L. Strong dependence of the
parameter c on the infrared cutoff set by the parameter M
for the supersymmetric Hamiltonian (6) is quite different
from these one-dimensional models. For one-dimensional
models, this parameter is controlled by boundary condi-
tions at the end points of the region to which one-dimen-
sional motion is effectively confined.
It is interesting to note that for the supersymmetric

system the change between the regular, quasi-one-
dimensional spectrum and the chaotic, random-matrix-like
spectrum can be also observed from the ordering of irreps
under which the eigenstates transform. Namely, for the
low-energy part of the spectrum, eigenstates with even
and odd serial numbers transform under the non-Abelian
irreps E1 and E2 of D4d, respectively. For energies above
some threshold level, this ordering is violated, and now
and then, there appear several eigenstates in a row that
transform under one and the same irrep. For M ¼ 100, we
show the position of the first ordering irregularity of this
kind in the middle plot in Fig. 6 with a vertical dashed
thick line.
For comparison, on the plot in the bottom of Fig. 6, we

show the energy dependence of the r ratio (20) for the free
two-dimensional Hamiltonian (17), subject to the same trun-
cation as the supersymmetric and bosonic Hamiltonians (6)
and (4). Here, all the energies are significantly smaller than
for the interacting systems. While the ri ratio does exhibit
some quasirandom behavior toward the higher end of the
spectrum, averaging ri over the energy window between
E¼100.5≈3.16 and E¼101.5≈31.6, we obtain r̄ ¼ 0.40�
0.01, in good agreementwith the expected value r ¼ 0.39 for
spectra of integrable systems with Poisson distribution of
energy levels.

IV. OUT-OF-TIME-ORDER CORRELATORS

In this section, we consider out-of-time-order corre-
lators of operators x̂2ðtÞ and p̂2ð0Þ, which correspond to
the classical Poisson brackets (2) defining the classical

FIG. 7. Low-lying energy levels Ei of the supersymmetric
Hamiltonian (6) as a function of their serial number i for different
values of the truncation parameter M. Only eigenstates that
transform under the irrep E1 of the symmetry group D4d of the
Hamiltonian and have Ei ≤ 1 are considered. Solid lines are fits
of the form Ei ¼ aþ bðiþ cÞ2.
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Lyapunov exponents.4 While the expression (1) in the
Introduction is the most straightforward quantum generali-
zation of Poisson brackets of the form (2), in practice, it is
more convenient to work with regularized OTOCs that have
the same classical limit but exhibit less singular quantum
behavior [2],

CðtÞ ¼ −Trð½ρ̂1
8x̂2ðtÞρ̂1

8; ρ̂
1
8p̂2ð0Þρ̂1

8�2Þ; ð23Þ

where ρ̂ ¼ e−βĤ=Z is the thermal density matrix, ρ̂
1
8 ¼

e−βĤ=8=Z
1
8 is its fractional power, and Z ¼ Tre−βĤ is the

thermal partition function. We will substitute either
the supersymmetric, the bosonic, or the free one- or two-
dimensional Hamiltonians for the abstract Hamiltonian Ĥ
in (23).
To discuss the time dependence of OTOCs, it is also

often convenient to represent CðtÞ as a difference of two
contributions,

CðtÞ ¼ F0ðtÞ − FðtÞ;
FðtÞ ¼ 2ReTrðρ̂1

4x̂2ðtÞρ̂1
4p̂2ð0Þρ̂1

4x̂2ðtÞρ̂1
4p̂2ð0ÞÞ;

F0ðtÞ ¼ 2ReTrðρ̂1
4x̂2ðtÞρ̂1

4p̂2ð0Þρ̂1
4p̂2ð0Þρ̂1

4x̂2ðtÞÞ: ð24Þ

All operators are time ordered in F0ðtÞ, and for sufficiently
ergodic systems, this function is expected to have a con-
ventional behavior of a finite-temperature, time-ordered
correlator. In particular, if the finite-temperature two-point
correlators Trðρ̂x̂2ðtÞp̂2ð0ÞÞ decay sufficiently quickly
with time t, F0ðtÞ is expected to approach a constant value
f0 ¼ 2hp̂2

2irhx̂22ir, where hÔ2ir ¼ Trðρ̂1
2Ôρ̂

1
2ÔÞ is a regu-

larized thermal expectation value [2,48].
The functions FðtÞ and F0ðtÞ, calculated according to

(24), are plotted in Fig. 8 for different Hamiltonians and for
different values of the truncation parameter M. Free one-
and two-dimensional Hamiltonians are used for compar-
isons at low and at high temperatures, respectively. The
temperatures are T ¼ 0.2 and T ¼ 20.0 for the plots on the
left and on the right, which are well in the low- and high-
temperature regimes.
As discussed above, our truncation imposes an infrared

cutoff, limiting the system size to hx̂2i ≲ 2ML2 and hence
regularizing the flat directions x1 ¼ 0 and x2 ¼ 0 of the
classical and the supersymmetric Hamiltonians. For the free
one- and two-dimensional Hamiltonians (16), the trunca-
tion parameter M effectively puts our free particle in a box

of size ∼
ffiffiffiffiffi
M

p
L. It is therefore not surprising that in Fig. 8

we observe a strong dependence of the correlators FðtÞ and
F0ðtÞ on the truncation parameter M for all Hamiltonians
and at all temperatures. The only exception is the low-
temperature regime of the bosonic Hamiltonian, where only
strongly localized wave functions contribute, and the effect
of infrared cutoff is negligible.
To some extent, theM dependence of the OTOCs CðtÞ is

due to the strong M dependence of regularized thermal
expectation values hx̂22ir and hp̂2

2ir. As discussed above,
the asymptotic values of the time-ordered correlator F0ðtÞ
and the OTOCs CðtÞ are proportional to the product of
these two thermal expectation values. As illustrated in
Fig. 3, the expectation value hx̂22ir grows linearly withM as
M → þ∞, and FðtÞ and F0ðtÞ exhibit similar growth.
Except for the case of the bosonic Hamiltonian at low

temperatures, on all plots in Fig. 8, we observe the main
expected features of FðtÞ and F0ðtÞ: the two correlators are
very close to each other at t ¼ 0 and diverge at later times.
Exhibiting some initial oscillations, the function F0ðtÞ
approaches a constant value, while FðtÞ keeps decreasing.
Furthermore, we see that, as a result of our Hilbert space

truncation, the correlators FðtÞ and F0ðtÞ do exhibit the
same characteristic features of OTOC growth even for the
free-particle Hamiltonians (16) and (17). Clearly, for free-
particle Hamiltonians without any truncation of the Hilbert
space, the OTOC is just constant:

CðtÞ ¼ −h½x̂ðtÞ; p̂ð0Þ�2i
¼ −h½x̂ð0Þ þ 2p̂ð0Þt; p̂ð0Þ�2i
¼ h½x̂ð0Þ; p̂ð0Þ�2i ¼ 1: ð25Þ

Therefore, any nontrivial time dependence of OTOCs for
the free-particle Hamiltonians (16) and (17) is a truncation
artifact at finite M.
The timescales characterizing the time dependence

of FðtÞ and F0ðtÞ appear to be not too different for the
free-particle and the supersymmetric cases. This could be
expected based on our previous observation that low-
energy eigenstates with a finite infrared cutoff are quite
similar to the ones for a free particle in a finite one-
dimensional box. The fact that even a free particle can
exhibit OTOC growth in the presence of spatial boundaries
was also noted in Ref. [20]. For this reason, our strategy
will be to carefully extrapolate the OTOCs growth rates to
the limit M → þ∞ in order to distinguish the behavior of
OTOCs for the supersymmetric Hamiltonian and the free-
particle one-dimensional Hamiltonian (16) (see Fig. 11 for
the final results).
In most cases, however, we also observe significant

deviations from the expected behavior of FðtÞ and F0ðtÞ:
except for the high-temperature regime of the super-
symmetric Hamiltonian, the late-time value of F0ðtÞ is
noticeably different from the product f0 ¼ 2hp̂2

2irhx̂22ir of

4We use the operators x̂2 and p̂2 because they are invariant
with respect to x1 parity transformations (reflections of x1). We
use x1 parity to block diagonalize the matrix (12) of the
supersymmetric Hamiltonian (6) and reduce the computational
cost of exact diagonalization (see Appendix B). The OTOCs of
the operators x̂1 and p̂1 are, of course, equivalent to that of x̂2 and
p̂2 but are more complicated to calculate with our choice of the
basis states.

P. V. BUIVIDOVICH PHYS. REV. D 106, 046001 (2022)

046001-10



thermal expectation values. This suggests that our low-
dimensional Hamiltonians are not entirely ergodic, and
some kind of regular motion prevents the finite-temperature
correlators of the form Trðρ̂x̂2ðtÞp̂2ð0ÞÞ from decaying
sufficiently quickly. This is expectable for a system with
just a few degrees of freedom. For example, such a finite-
temperature correlator would exhibit oscillations instead of
decay for a harmonic oscillator or a two-level system. In
fact, the functions FðtÞ and F0ðtÞ calculated at low
temperatures with the bosonic Hamiltonian (4) provide a

nice example of such an oscillatory behavior (middle left
plot in Fig. 8). Since the energy spectrum of the bosonic
Hamiltonian is discrete (and hence gapped), only the two
lowest energy levels will contribute to OTOCs for suffi-
ciently low temperatures. This results in nondecaying
oscillations of OTOCs and other correlators, as illustrated
in the middle left plot in Fig. 8.
Interestingly, even though the bosonic and the supersym-

metric Hamiltonian are both expected to be chaotic at high
temperatures, only for the supersymmetric Hamiltonian,

FIG. 8. Time dependence of the functions FðtÞ (solid lines with colors changing from blue to red) and F0ðtÞ (dotted lines with colors
changing from black to green), defined in (24), for different Hamiltonians and for different values of the truncation parameter M.
Horizontal dashed lines with colors changing from black to green show the corresponding products of regularized thermal expectation
values 2hx̂22irhp̂2

2ir ¼ 2Trðρ̂1
2x̂2 ρ̂

1
2x̂2ÞTrðρ̂1

2p̂2 ρ̂
1
2p̂2Þ.
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the late-time asymptotic value of F0ðtÞ agrees with f0 ¼
2hp̂2

2irhx̂22ir (see the upper right plot in Fig. 8). As one can
see in the middle right plot in Fig. 8, for the bosonic
Hamiltonian, the function F0ðtÞ at large t has a noticeable
deviation from f0 even at T ¼ 20. This difference might
be related to the observation that only for the super-
symmetric Hamiltonian the OTOCs exhibit an expected
agreement with classical dynamics at high temperatures. In
contrast, for the bosonic Hamiltonian, we never observe
good agreement between quantum OTOCs and classical
Lyapunov distances. This is demonstrated in Fig. 10 and
explained in more details below.
For large-N gauge theories and matrix models, FðtÞ is

expected to behave as FðtÞ ≈ f0 − ce2λt for sufficiently late
times t at which F0ðtÞ is already sufficiently close to its
expected asymptotic value f0 [2,48]. Clearly, with F0ðtÞ ¼
f0 and FðtÞ ¼ f0 − ce2λt, we immediately get an expo-
nential OTOC growth CðtÞ ¼ F0ðtÞ − FðtÞ ¼ ce2λt, with λ
being the Lyapunov exponent. Such growth, however,
cannot continue forever, and at even later times, FðtÞ
approaches zero and stops decreasing. Correspondingly,
the OTOC CðtÞ saturates at a value close to f0 [48].

For our numerical data, we indeed see how FðtÞ
decreases toward zero in all cases except for the low-
temperature limit of the bosonic Hamiltonian. However, we
cannot identify any clear exponential decay of FðtÞ of the
form f0 − ce2λt. In the low-temperature regime of the
supersymmetric Hamiltonian, the late-time decay of FðtÞ
seems to be linear in t (see upper left plot in Fig. 8). Such
behavior is even more obvious for the one-dimensional
free-particle Hamiltonian5 (16); see the lower left plot in
Fig. 8. At high temperatures, the decay of FðtÞ toward zero
is faster than at low temperatures, but it is still difficult to
identify a region with a clear exponential decay.
We illustrate the time dependence of the OTOCs CðtÞ ¼

F0ðtÞ − FðtÞ in Fig. 9, comparing the results obtained with

FIG. 9. Time dependence of the OTOC CðtÞ for the supersymmetric, bosonic, and free one- and two-dimensional Hamiltonians, for
different values of the truncation parameter M and at different temperatures. The solid black line on the plots in the high-temperature

regime shows the expectation value hð∂x2ðtÞ
∂x2ð0ÞÞ

2i of the squared classical Lyapunov distance calculated at the same temperature. For the

plots at T ¼ 0.2, the legend also shows the number n of lowest eigenstates that were used to calculate CðtÞ.

5In fact, for the one-dimensional free-particle Hamiltonian, the
linearly decreasing function FðtÞ rebounces after approaching
zero and exhibits a linear growth until approaching f0. This
behavior resembles a classical motion of a particle that bounces
between the two walls of a one-dimensional potential well. In our
case, a one-dimensional particle is confined to an interval of finite
width because of the truncation of Hilbert space, which limits the
coordinate values to hx̂2i < 2ML2.
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the supersymmetric and the bosonic Hamiltonians (6) and
(4) and with the free-particle one- and two-dimensional
Hamiltonians. Figure 9 shows that in all cases the OTOCs
grow and eventually saturate. The growth rate appears to be
nonuniform. In particular, for sufficiently high temper-
atures T ≳ 1 and at early times, all OTOCs exhibit some
initial decrease. Also, for the bosonic Hamiltonian, the
OTOCs feature some oscillations at T ≲ 1, which become
stronger and completely dominate the OTOCs at lower
temperatures (see the middle left plot in Fig. 8).
A common expectation is that for sufficiently high

temperatures the real-time dynamics of the bosonic
Hamiltonian (4) can be described in terms of the correspond-
ing classical equations ofmotion ẍ1¼−4x1x22, ẍ2 ¼ −4x2x21.
This statement is also expected to apply to the supersym-
metric Hamiltonian (6), for which the role of “fermionic”
terms should become negligible at high temperatures.
To check whether this is indeed the case, we also

compare our quantum data for T ≥ 1 with the classical
analog of OTOCs. It is defined as a square of the relevant

Poisson bracket fx2ðtÞ; p2ð0Þg ¼ ∂x2ðtÞ
∂x2ð0Þ, averaged over the

thermal distribution of the initial conditions fx1ð0Þ; x2ð0Þ;
p1ð0Þ; p2ð0Þg for the classical evolution:

CclðtÞ ¼
��

∂x2ðtÞ
∂x2ð0Þ

�
2
�
: ð26Þ

The calculation of CclðtÞ is discussed in more details in
Appendix C. For T ¼ 5 and T ¼ 1, CclðtÞ is plotted in
Fig. 9 with a solid black line.
Quantum OTOCs only appear to be reasonably close to

CclðtÞ for the case of the supersymmetric Hamiltonian (6) at
sufficiently high temperature. At T ¼ 1, the OTOCs for
the supersymmetric Hamiltonian and the classical OTOCs
are only close to each other for a short initial period of
time t≲ 1. The agreement is somewhat better at T ¼ 5,
where the classical and the quantum OTOCs are reasonably
close to each other for t≲ 1.5. In both cases, the OTOCs
exhibit some initial decrease and start growing at t≳ 0.5.
Interestingly, the agreement between the classical and the
quantum OTOCs is lost exactly when the classical OTOCs
enter the regime of clear exponential growth at t≳ 1.5. For
these times, the quantum OTOCs grows considerably
slower. On the other hand, our data suggest that OTOCs
calculated with the bosonic Hamiltonian (4) are never quite
close to the classical OTOCs. This agrees with the
observation made in Ref. [20] that the classical limit is
never reached for four-point OTOCs in simple quantum
mechanical systems because quantum interference effects
become important earlier than the exponential OTOC
growth sets in. The fact that for the supersymmetric
Hamiltonian we get a considerably better agreement
with the classical dynamics suggests that supersymmetry
might effectively suppress or cancel out the wave packet
spread that is responsible for deviations from classical
behavior [20].

Overall, our plots for the quantum OTOCs do not show
regions of clear exponential growth that would be similar to
the exponential divergence of the classical Lyapunov dis-
tance CclðtÞ. It is not surprising, as the exponential OTOCs
growth is in general very difficult to detect for finite-size
systems amenable to exact diagonalization studies [8], even
for the renowned SYK model which is a paradigmatic
example of maximal quantum chaos [16]. We do, however,
see a clear difference in the low-temperature behavior of
the OTOCs for the bosonic Hamiltonian (4) with gapped
energy spectrum and for the supersymmetric and free
Hamiltonians which all have continuous energy spectra
in the limit M → 0. For the bosonic Hamiltonian, the
spectrum is discrete, and OTOCs are oscillatory at low tem-
peratures. For the supersymmetric and free Hamiltonians,
OTOCs grow with time down to the lowest temperatures,
although this growth is much slower than for the classical
dynamics. Furthermore, there is also an observable differ-
ence between the behavior of low-temperature OTOCs for
the free one-dimensional Hamiltonian and the supersym-
metric Hamiltonian. The latter has more nontrivial features
and a weaker dependence on the truncation parameter M.
To arrive at some estimates for the growth rate of OTOCs

in the absence of clear exponential growth, we consider the
time derivative of the logarithm of the OTOC CðtÞ,

λðtÞ ¼ 1

2

d
dt

logðCðtÞÞ; ð27Þ

which should be equal the Lyapunov exponent λ if
CðtÞ ¼ ce2λt. The time dependence of λðtÞ is shown in
Fig. 10. At low temperatures, we again compare the data for
the supersymmetric Hamiltonian (6) and the free one-
dimensional Hamiltonian (16). At high temperatures, we
compare the results for the bosonic, the supersymmetric,
and the free two-dimensional Hamiltonians as well as with
the classical result λclðtÞ ¼ 1

2
d
dt logðCclðtÞÞ.

At all temperatures, the functions λðtÞ feature a number
of peaks and sometimes plateaus. The peaks are labeled by
“x” or “o” symbols, where x is used for peaks that we
believe to be dominant/most important features of OTOCs
for a particular Hamiltonian and o is used for the peaks that
we believe to be subdominant or artifact. Plateaus are
labeled by vertical lines and a letter “P.” We will use these
peak values of λðtÞ, denoted as λmax, as upper bound
estimates on the values of Lyapunov exponent in our
system. Since we observe qualitatively different behavior
at low and at high temperatures, let us separately discuss the
main features of λðtÞ in these regimes.

A. High temperatures

At sufficiently high temperatures, real-time dynamics of
both the supersymmetric and the bosonic Hamiltonians is
expected to reduce to the classical dynamics. Qualitatively,
this regime corresponds to the range of energies E≳ 10, for
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which the energy levels behave similarly to the ones of
GOE of random matrices. In this case, we use truncation
parameters M ¼ 70 and M ¼ 100, finding all the eigen-
values and eigenvectors of the corresponding truncated
matrices (12) or (10). At very high temperatures, the
correspondence with the classical dynamics might be
violated due to our truncations of the full Hilbert space.
As we have already discussed above, we were not able to

identify a regime where the OTOCs for the bosonic
Hamiltonian would approach the classical OTOCs (see
Appendix C) sufficiently closely. As conjectured in
Ref. [20], this might be a generic feature of simple quantum
mechanical systems. The data shown in Fig. 10 for T ≳ 1
support these observations. We find a limited agreement
between the classical and the quantum data only for the
case of the supersymmetric Hamiltonian at moderately

FIG. 10. Time dependence of the derivatives of the logarithm of OTOC λðtÞ ¼ 1
2
d
dt logðCðtÞÞ for different Hamiltonians and at different

temperatures and the values of the truncation parameters M and n. Solid black lines show λclðtÞ ¼ 1
2
d
dt logðCclðtÞÞ for the classical

Lyapunov distance CclðtÞ, defined in (26). Symbols x and o denote the peak values of λðtÞ that we use as upper bound estimates of the
quantum Lyapunov exponents.
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large temperatures, 5≲ T ≲ 20; see the middle right and
the bottom left plots in Fig. 10. The agreement is observed
for 0.1≲ t≲ 1.5 at T ¼ 5 and for 0.5≲ t≲ 1 at T ¼ 20;
thus, the time range of quantum-classical correspondence
shrinks toward high temperatures. Both for T ¼ 5 and
T ¼ 20, λðtÞ has a distinct peak roughly at the time at
which its classical counterpart λclðtÞ approaches its plateau
value that corresponds to a steady exponential growth of
CclðtÞ. We believe that this peak is a physical feature of a
supersymmetric model; therefore, we label it with the x
symbol in the plots with T ¼ 5 and T ¼ 20 in Fig. 10. Its
height is comparable with the plateau value of λclðtÞ, and its
position scales approximately as t⋆ ∼ T−1=2. This character-
istic “semiclassical” peak of λðtÞ exists also at lower tem-
peratures, down to T ∼ 1, but the agreement with classical
dynamics is gradually lost. A similar peak structure
(labeled with x in Fig. 10) exists also for the bosonic
Hamiltonian at moderately large temperatures 1≲ T ≲ 10,
but the agreement with the classical dynamics is nowhere
sufficiently good. Interestingly, as one can see on the plot
with T ¼ 5, the data for the bosonic and the supersym-
metric Hamiltonians agree very well after both peaks,
where λðtÞ disagree with λclðtÞ for both Hamiltonians.
These moderate-temperature peaks of λðtÞ are completely
absent for the free two-dimensional Hamiltonian and
appear to be a genuine feature of high-temperature, semi-
classical chaotic dynamics.
At very high temperatures T ≳ 20, both the bosonic and

the supersymmetric Hamiltonians develop very large peaks
of height λmax ∼ T at early times t ∼ T−1, labeled with o
for the supersymmetric Hamiltonian. For the bosonic
Hamiltonian, this early-time peak seems to continuously
transform into the peak near the plateau onset of λclðtÞ and
is therefore labeled with x. The free two-dimensional
Hamiltonian also exhibits a very similar peak, labeled
with x in Fig. 10. In contrast to the semiclassical peak
discussed above, these early-time peaks appear to have
strong dependence on the truncation parameter M for all
Hamiltonians. The existence of similar peaks in func-
tions λðtÞ for free Hamiltonians as well as the strong M
dependence of their heights suggest that such early-time
peaks are the artifacts of the infrared cutoff due to the
Hilbert space truncation. At sufficiently high temperatures
T ≳ 50, these early-time peaks completely dominate the
OTOCs, and any agreement with the classical dynamics
is lost both for the bosonic and the supersymmetric
Hamiltonians.

B. Low temperatures

At low temperatures T ≲ 1, the dynamics of the super-
symmetric Hamiltonian (6) is dominated by nearly one-
dimensional, regular wave functions, as illustrated in Fig. 5.
We therefore compare the OTOCs for the supersym-
metric model with the ones for the free one-dimensional
Hamiltonian (16). The OTOCs for the bosonic Hamiltonian

at low temperatures only exhibit oscillations similar to the
ones in the middle left plot in Fig. 8, and we do not consider
them. Likewise, comparison with the classical dynamics
makes little sense at low temperatures due to the dominance
of quantum effects.
The functions λðtÞ for the supersymmetric and the free

one-dimensional systems at a low temperature T ¼ 0.2 are
shown in the two top plots in Fig. 10 for different values of
the truncation parameter M. For the supersymmetric case,
λðtÞ develops a plateau (labeled with P in the top left plot in
Fig. 10) followed by the two peaks (labeled with x and o).
Analyzing the data for the supersymmetric system at
different temperatures, we found that the height of the
early-time plateau is roughly proportional to the temper-
ature T and its width scales as ∼T−1. We also checked that
the large-M extrapolation of the plateau height λP using
the ansatz λP ¼ Aþ B=M yields a finite result at M → ∞.
The fact that λðtÞ reaches a plateau means that for this time
range the growth of OTOCs is with a good precision
exponential. However, a comparison with the behavior of
the functions FðtÞ and F0ðtÞ, shown in the top left plot in
Fig. 8, shows that this growth happens well before the
function F0ðtÞ reaches its constant asymptotic value. In
fact, even the positions of both subsequent peaks of λðtÞ
correspond to much earlier times than the saturation of
F0ðtÞ. We conclude that, whatever time range we choose
to define the quantum Lyapunov exponent for the super-
symmetric Hamiltonian, we cannot find agreement with the
expected behavior of the functions FðtÞ, F0ðtÞ, and CðtÞ in
large-N systems, where CðtÞ only grows exponentially
when F0ðtÞ saturates. This is not surprising, as there is no
natural large parameter like N for our supersymmetric
Hamiltonian (6).
The heights of the two peaks of λðtÞ, labeled with x and o

in the top left plot in Fig. 10, can be used as upper bounds
on the rate of exponential OTOCs growth for the super-
symmetric Hamiltonian. While both peaks are changing
considerably as the truncation parameter M is increasing,
the dependence on M appears to be significantly stronger
for the second, subdominant, peak (labeled with o). The
dependence of the peak height on M is reasonably well
described by the formula λmax ¼ Aþ B=M, and extrapo-
lations toM → þ∞ yield the results for λmaxðM → þ∞Þ ¼
A that are close to zero. It is therefore likely that this second
peak is a truncation artifact.
On the other hand, the first, dominant peak of λðtÞ

(labeled with x in the top left plot in Fig. 10) has a weaker
dependence onM and might well present a physical feature
of OTOCs in the supersymmetric case, together with the
plateau that precedes it. The position of this peak scales
approximately as t⋆ ¼ T−1=2. We base our final estimates of
the upper bound on low-temperature quantum Lyapunov
exponents in the supersymmetric case on the height λmax of
this peak. It is therefore important to ensure that this peak is
a physical feature and not an artifact.
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To this end, we consider two different methods to
extrapolate λmax to M → þ∞. The first method, illustrated
in the top left plot in Fig. 11, is to perform extrapolations to
M → þ∞ separately for each value of the temperature. To
this end, we use least-squares fits to two different models:

λmaxðMÞ ¼ λmaxðM → þ∞Þ þ B
M

ð28Þ

λmaxðMÞ ¼ λmaxðM → þ∞Þ þ Bffiffiffiffiffi
M

p ; ð29Þ

We estimate the extrapolation errors in the values
λmaxðM → þ∞Þ by considering their variation upon the
removal of data points with either the smallest or the largest
values ofM from the fit. These bounds are shown in the top
plots in Fig. 11 as shaded areas around lines that corre-
spond to the fits with all data points. Let us stress that, since
our data come from exact diagonalization, the numbers are
not plagued with any statistical uncertainties.
To highlight the difference between the behavior of

OTOCs for the supersymmetric and the free one-dimensional
Hamiltonians, in the top right plot in Fig. 11, we also show
similar extrapolations for the maximal value λmax of the
function λðtÞ for the free one-dimensional Hamiltonian (16).

For this Hamiltonian, the function λðtÞ has two distinct
peaks with strong dependence onM. The first peak, denoted
by o in the top right plot in Fig. 10, corresponds to very early
times, much earlier than the plateau onset for the super-
symmetric Hamiltonian. It has no direct counterpart in
the supersymmetric case, and we do not consider it in detail.
On the other hand, the position of the second peak, labeled
with x in the top right plot in Fig. 10, is between the twopeaks
of the function λðtÞ obtained with the supersymmetric
Hamiltonian. The height λmax of this peak is comparable
to the maximal values of λðtÞ for the supersymmetric
Hamiltonian. We therefore use its height λmax as an upper
bound for Lyapunov exponent for the free one-dimensional
Hamiltonian (16) with truncated Hilbert space and illustrate
the M dependence of λmax in Fig. 11.
From the top left plot in Fig. 11, we see that for the

supersymmetric Hamiltonian the extrapolations using both
fits (28) and (29) yield nonzero results. The results of linear
extrapolations in 1=M (28) are expectably higher than for
the square-root extrapolations. Fit uncertainties appear to
be not very large. The resulting temperature dependence
of the extrapolated values λmaxðM → þ∞Þ is illustrated
in the bottom left plot in Fig. 11 with black points and
solid and dashed black lines. With the linear extrapolation

FIG. 11. Extrapolations of the upper bounds λmax on Lyapunov exponents toM → þ∞ for the supersymmetric system (on the left) and
for the one-dimensional free Hamiltonian with the same Hilbert space truncation (on the right). Solid and dashed lines show
extrapolations to M → þ∞ that use fits of the form λmaxðMÞ ¼ Aþ B=M and λmaxðMÞ ¼ Aþ B=

ffiffiffiffiffi
M

p
, respectively. Shaded areas

around these lines show error estimates obtained by excluding the data points with either smallest or largest value of M from the fits.
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model (28), this dependence appears to be approximately
linear. Namely, a fit of λmaxðM → þ∞; TÞwith the function
αTγ yields γ ¼ 0.826 (solid black line), close to the linear
scaling of the Lyapunov exponent with temperature,
λðTÞ ∼ T. With the square root extrapolation model (29),
the same power-law fit yields γ ¼ 0.520 (dashed line), thus
favoring the dependence of the form λðTÞ ∼ ffiffiffiffi

T
p

. The
square root extrapolation model in fact yields somewhat
smaller values of squared deviations χ2=d:o:f:, but not
significantly smaller.
For the free one-dimensional Hamiltonian, the extrapo-

lations using the square root model (29) yield the results
that are either compatible with zero or negative; see the top
right plot in Fig. 11. Extrapolations with the linear model
(29) yield finite results which are, however, significantly
smaller than the corresponding extrapolated values for the
supersymmetric Hamiltonian. Squared deviations χ2=d:o:f:
appear to be considerably smaller for the square root model
(29). The resulting temperature dependence of the extrapo-
lated values λmax is shown in the bottom right plot in Fig. 11
with black points and solid black [for the linear extrapo-
lations (28)] and dashed [for the square root extrapolations
(29)] lines.
Another strategy to estimate the temperature dependence

of the maximal values of λðtÞ in the limitM → þ∞ is to fit
the temperature dependence of λmax at fixed M with a
suitable fitting function and to extrapolate the parameters of
this fit to M → þ∞ afterward. For each fixed M, the
temperature dependence of λmax for the supersymmetric
Hamiltonian is with a good precision linear. We therefore fit
λmax at fixedM to the linear function λmaxðM;TÞ ¼ AðMÞT
of the temperature T. In turn, the dependence of the fit
parameter AðMÞ on M can be well fitted by the formula
AðMÞ ¼ AðM → þ∞Þ þ B=M, which yields the extrapo-
lated value AðM → þ∞Þ ¼ 0.05. The resulting extrapola-
tion of λmaxðM → þ∞; TÞ is shown in the lower left plot in
Fig. 11 with a solid green line, together with the values of
λmax at each finite M and the linear fits λmaxðM;TÞ ¼
AðMÞT thereof.
Applying the same procedure to the free one-dimensional

Hamiltonian, we find that in this case the data for λmaxðM;TÞ
at fixedM can be sufficientlywell fitted to the functionA

ffiffiffiffi
T

p
.

In this case, theM dependence of the fit parameter AðMÞ is
better described by the formula AðMÞ ¼ AðM → þ∞Þ þ
B=

ffiffiffiffiffi
M

p
, rather than AðMÞ ¼ AðM → þ∞Þ þ B=M. Using

the former formula to extrapolate the fit parameter to
M → þ∞, we find a small negative result. The resulting
function AðM → þ∞Þ ffiffiffiffi

T
p

is shown in the bottom right plot
in Fig. 11 as a solid green line. Remarkably, it agrees well
with the result of M → þ∞ extrapolations at fixed temper-
atures, described above. This agreement suggests that the
nonchaotic behavior of OTOCs for the free one-dimensional
Hamiltonian (16) is indeed recovered as the limitM → þ∞
is taken and the Hilbert space truncation is removed. This
is in stark contrast with the case of the supersymmetric

Hamiltonian (6), for which all our extrapolation methods
yield a positive and finite value of the OTOC growth rate in
the limit M → þ∞.
Finally, we illustrate the temperature dependence of all

our estimates of λmax as a function of temperature in
Fig. 12. We show the data obtained for all values of the
truncation parameter M and use more opaque lines to
distinguish larger values of M. To avoid any extrapolation
ambiguities, in this plot, we do not show any extrapola-
tions, only the actual numerical data for finite M values.
Different line colors correspond to different Hamiltonians.
The data points for the peak values of λðtÞ that we believe
to be most important for each model are labeled with x
symbols. o symbols denote the peak values for either arti-
fact or subdominant but nevertheless prominent maxima.
The same x or o symbols are used to label the correspond-
ing peaks of λðtÞ in Fig. 10.

V. CONCLUSIONS

In this work, we considered the simplest supersym-
metric extension ĤS ¼ ĤB ⊗ I þ x̂1 ⊗ σ1 þ x̂2 ⊗ σ3 of
the bosonic Hamiltonian ĤB ¼ p̂2

1 þ p̂2
2 þ x̂21x̂

2
2. The latter

is known to feature both quantum and classical chaos and is
closely related to the Hamiltonian of spatially compactified
pure SUð2Þ Yang-Mills theory. We focused on the energy

FIG. 12. A summary plot with our estimates (upper bounds) of
the values of quantum Lyapunov exponents for the supersym-
metric Hamiltonian (6) (red lines/symbols), compared with
similar estimates for the bosonic Hamiltonian (4) (blue lines)
and for the free one-dimensional (green lines) and two-dimen-
sional (brown lines) Hamiltonians (16) and (17). The estimates
are based on the values of λðtÞ ¼ 1

2
d
dt logðCðtÞÞ in most character-

istic local maxima. The symbol x denotes the heights of the
maxima that we consider most important for each model. The
symbol o denotes either artifact or subdominant but prominent
maxima. The use of x and o symbols for each model is in one-to-
one correspondence with the plots in Fig. 10. Data points for the
bosonic Hamiltonian labeled as “oscill.” correspond to oscillatory
behavior of OTOCs, with λmax corresponding to the maximal
value of the oscillating function. We collate the data for all M
without any extrapolations. More opaque lines/symbols corre-
spond to larger values of M.
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level statistics and out-of-time order correlators CðtÞ ¼
−h½x̂2ðtÞ; p̂2ð0Þ�2i. The OTOCs are the quantum counter-
parts of the classical Lyapunov distance CclðtÞ ¼ hfx2ðtÞ;
p2ð0Þg2i ¼ hð∂x2ðtÞ

∂x2ð0ÞÞ
2i, which characterizes the sensitivity

of one of the coordinates x2ðtÞ to its initial value x2ð0Þ.
Since the energy spectrum of the bosonic Hamiltonian is

gapped, its real-time dynamics is completely regular at low
temperatures. In particular, the OTOCs exhibit regular
oscillations and show no signature of exponential growth
(see the middle left plot in Fig. 8). For bosonic matrix
models and Yang-Mills theory, this regime would corre-
spond to the low-energy confinement regime.
On the other hand, the energy spectrum of the super-

symmetric Hamiltonian (6) is known to be continuous [36].
One of our main results is that the low-energy spectrum of
the supersymmetric model is completely regular and shows
no signatures of random-matrix-type energy level statistics.
The corresponding wave functions are effectively one
dimensional and are localized along the flat directions of
the supersymmetric Hamiltonian (see Fig. 5).
Nevertheless, these low-energy states produce a monoto-

nous OTOC growth down to the lowest temperatures. We
presented numerical evidence that this OTOC growth is not
an artifact of our Hilbert space truncation. All our extrap-
olations toward the physical limit suggest that the time-
dependent Lyapunov divergence rate λðtÞ ¼ 1

2
d
dt logðCðtÞÞ

remains finite. We observed that λðtÞ reaches a plateau of a
finite time extent at intermediate times t ∼ T−1=2 (labeled
with P in the upper left plot in Fig. 10), which suggests an
exponential growth of the OTOCs CðtÞ over a finite time
range. However, in contrast to large-N gauge theories and
matrix model, in our system, there is no intrinsic large
parameter and no parametric scale separation that would
allow to clearly identify the regime of exponential OTOC
growth.
The plateau is followed by a distinct peak of λðtÞ (labeled

with x in the upper left plot in Fig. 10). We base our
estimates on the quantum Lyapunov exponent λ, shown in
Fig. 12, on the height of this peak. While for a finite Hilbert
space truncation even the free particle Hamiltonian exhibits
a monotonous OTOC growth, we demonstrated that in the
free case the Lyapunov divergence rate λðtÞ is likely to
extrapolate to zero as the truncation is removed.
We found limited evidence that the estimates of quantum

Lyapunov exponent in the supersymmetric model, based
either on the plateau or peak heights, scale linearly with
temperature, λ ¼ cT with c ≈ 0.05. Such a linear scaling
would ensure that the model does not violate the MSS
bound λ < 2πT. We cannot, however, completely exclude a
scaling λ ≈ c0Tγ with a fractional power 1=2≲ γ ≲ 1. While
this scaling would formally violate the MSS bound λ <
2πT at sufficiently low temperatures, there is no deep
reason why the MSS bound should not be violated for our
simple Hamiltonians. Indeed, the derivation of the MSS
bound [2] is based on the assumption that the OTOCs

exhibit exponential growth after the time-ordered correlator
F0ðtÞ [defined in (24)] saturates at a constant value
f0 ¼ 2hx̂22ihp̂2

2i. This assumption is justifiable for large-
N matrix models and non-Abelian gauge theories.
However, as one can observe by comparing the data in
Figs. 8, 9, and 10, in our case, F0ðtÞ reaches its asymptotic
value at much later times than the times at which the
OTOCs exhibit maximal growth. Again, this could be
expected in the absence of any parametric scale separation.
Our estimates of the quantum Lyapunov exponents are

summarized in Fig. 12 for the whole range of temperatures
and for all Hamiltonians and all values of the truncation
parameters that we consider. The data in Fig. 12 suggest
that the quantum Lyapunov exponent for the supersym-
metric Hamiltonian (6) continuously interpolates between
an approximately linear scaling λ ∼ T at low temperatures
and the fractional power scaling λ ∼ T1=4 that is character-
istic for the classical dynamics [see Eq. (26)]. This is also
an expected behavior for the BFSS model, which, being
holographically dual to black branes [12,13], is suspected
to saturate the MSS bound at low temperatures, and reduce
to the classical Yang-Mills dynamics at high temperatures.
The temperature dependence of λ at low and high temper-
atures is also quite different from the results obtained with
the free one- and two-dimensional Hamiltonians (16)
and (17).
At sufficiently large energies, the energy spectra of both

the bosonic and the supersymmetric Hamiltonians are
chaotic, with r ratios in perfect agreement with random
matrix theory predictions for the GOE ensemble. At
sufficiently high temperatures, these energy levels domi-
nate the real-time dynamics, which in this regime is
expected to be similar to the classical chaotic dynamics
for both systems. The change between the low-energy,
effectively one-dimensional states with nonchaotic level
statistics and the high-energy chaotic states appears to
be quite sharp (see the middle plot in Fig. 6). It would
be interesting to understand what might be the counter-
part of this change in the BFSS model and how it can
be interpreted in terms of the holographic dual theory. An
intriguing possibility is the transition to the M-theory
regime that was discussed recently in Ref. [12].
An interesting observation is that the correspondence

with the classical dynamics at (moderately) high temper-
atures can only be established for OTOCs in the super-
symmetric model, but not in the bosonic one. This suggests
that supersymmetry cancels out some of the quantum
corrections to OTOCs at high temperatures, a property
that is also likely to hold for supersymmetric Yang-Mills
theory and the BFSS model. For the bosonic model, low-
temperature OTOC oscillations with amplitude ∼T1=4

(labeled as oscill. in Fig. 12) are continuously transforming
into very quick early-time growth, without approaching the
classical OTOCs sufficiently closely anywhere. At very
high temperatures (T ≳ 20), this quick early-time growth
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also makes it impossible to establish the quantum-classical
correspondence for the supersymmetric Hamiltonian. The
fact that a similar growth occurs also for the free two-
dimensional Hamiltonian suggests that it might be a
truncation artifact. The invalidity of the quantum-classical
correspondence for the four-point OTOCs in simple quan-
tum mechanical systems has also been discussed recently
in Ref. [20].
Our results suggest that the supersymmetric Hamiltonian

(6) has more intricate chaotic dynamics than the simple
bosonicHamiltonian ĤB ¼ p̂2

1 þ p̂2
2 þ x̂21x̂

2
2, both at low and

at high temperatures. The supersymmetric model definitely
reproduces more features of the BFSS model that are
expected from the holographic dual description. It would
be interesting to work out an analytic description of the
effectively one-dimensional eigenstates of this Hamiltonian
that saturate the OTOC growth at low temperatures. Such a
description might also help to understand the behavior of
OTOCs in the BFSS model, which provides one of the most
elaborate examples of holographic duality [11,49].
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APPENDIX A: SYMMETRIES OF THE
SUPERSYMMETRIC AND THE BOSONIC

HAMILTONIANS

As discussed in the literature [32,33], the symmetry
group of the bosonic Hamiltonian (4) is a finite non-
Abelian group C4v with eight elements. This group is
generated by the following transformations:

(i) Rotation R̂ by π=2: x01 ¼ −x2, x02 ¼ x1. Rotations act
on wave functions as ðR̂ΨÞðx1; x2Þ ¼ Ψðx2;−x1Þ.
The group C4v contains R̂ as well R̂2 and R̂3.

(ii) Reflections P̂1 and P̂2 with respect to the horizontal
and vertical lines x2 ¼ 0 and x1 ¼ 0, respectively:
ðP̂1ΨÞðx1; x2Þ ¼ Ψð−x1; x2Þ, ðP̂2ΨÞðx1; x2Þ ¼
Ψðx1; −x2Þ.

(iii) Reflections P̂þ and P̂− with respect to the dia-
gonal lines x2 ¼ �x1: ðP̂þΨÞðx1; x2Þ ¼ Ψðx2; x1Þ,
ðP̂−ΨÞðx1; x2Þ ¼ Ψð−x2;−x1Þ.

Together with the identity ðÎΨÞðx1; x2Þ ¼ Ψðx1; x2Þ, these
operators implement the functional representation of C4v. It
is straightforward to check that all these operators commute
with the bosonic Hamiltonian (4).
The group C4v has four Abelian irreps: the trivial irrep

A1 as well as Z2-valued irreps A2, B1, and B2, which can
be inferred from the character tables in Ref. [44,45]. There
is also one real, two-dimensional, non-Abelian irrep E0. It
coincides with the non-Abelian irrep E0 of the symmetry
group of the supersymmetric Hamiltonian; see Table I.
The symmetry group of the supersymmetric Hamiltonian

(6) is D4d, a finite non-Abelian group with 16 elements
[46,47]. The transformations that generate this group are
closely related to the transformations that leave the bosonic
Hamiltonian invariant, with some additional operations that
arise due to the fermionic structure of the Hilbert space
of two-component wave functions Ψðx1; x2Þ ¼ fψðx1; x2Þ;
χðx1; x2Þg:
(1) Rotations R̂ by π=2. Rotations act on the two-

component wave functions as

ðR̂ΨÞðx1; x2Þ ¼
I − ϵffiffiffi

2
p ðR̂ΨÞðx1; x2Þ

¼ I − ϵffiffiffi
2

p Ψðx2;−x1Þ; ðA1Þ

where I is the 2 × 2 identity matrix and ϵ is the
2 × 2 antisymmetric matrix with ϵ12 ¼ 1. The uni-
tary matrix I−ϵffiffi

2
p multiplies the two-component vector

Ψðx1; x2Þ ¼ fψðx1; x2Þ; χðx1; x2Þg. In contrast to the
rotation operator R̂ acting on the Hilbert space of the
bosonic Hamiltonian (4), for the supersymmetric
Hamiltonian, the operator R̂ is a fermionic represen-
tation of the rotation operator, for which the rotation
by 2π results in a change of sign: R̂4 ¼ −Î , where Î
is the identity operator. Correspondingly, the group
D4d contains all powers of R̂ up to R̂7, and only
the eighth power of R̂ yields the identity opera-
tor: R̂8 ¼ Î .

(2) Reflections P̂1 and P̂2 with respect to the horizontal
and vertical lines x2 ¼ 0 and x1 ¼ 0, respectively:

ðP̂1ΨÞðx1; x2Þ ¼ σ3ðP̂1ΨÞðx1; x2Þ
¼ σ3Ψð−x1; x2Þ; ðA2Þ

ðP̂2ΨÞðx1; x2Þ ¼ σ1ðP̂2ΨÞðx1; x2Þ
¼ σ1Ψðx1;−x2Þ; ðA3Þ

where σ1 and σ3 are the Pauli matrices that multiply
the two-component vector Ψðx1; x2Þ ¼ fψðx1; x2Þ;
χðx1; x2Þg.
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(3) Reflections P̂� with respect to the diagonal lines
x2 ¼ �x1:

ðP̂þΨÞðx1; x2Þ ¼
σ3 þ σ1ffiffiffi

2
p ðP̂þΨÞðx1; x2Þ

¼ σ3 þ σ1ffiffiffi
2

p Ψðx2; x1Þ;

ðP̂−ΨÞðx1; x2Þ ¼
σ3 − σ1ffiffiffi

2
p ðP̂−ΨÞðx1; x2Þ

¼ σ3 − σ1ffiffiffi
2

p Ψð−x2;−x1Þ: ðA4Þ

Note that, because of the noncommutativity of Pauli
matrices that enter P̂1;2 and P̂�, these transformations
do not commute with each other. In contrast, reflections that
act on the Hilbert space of the bosonic Hamiltonian
commute with each other: P̂1P̂2 ¼ P̂2P̂1, P̂þP̂− ¼ P̂−P̂þ.
The groupD4d has four Abelian irreps: the trivial irrepA1

as well as Z2-valued irreps A2, B1, and B2, which can be
inferred from the character tables in Ref. [46,47]. There are
also three real, two-dimensional, non-Abelian irreps E0, E1,
and E2. For completeness, in Table I, we list all the elements
of theD4d group together with the correspondingmatrices of
irrepsE0, E1, andE2. The format of this table is the following:

TABLE I. The action of the group elements of C4v and D4d symmetry groups in the basis of harmonic oscillator
eigenstates.

g ĜðgÞ ÛBðgÞ ⊗ UFðgÞ D4d C4v ĜðgÞjk1; k2;↑i E0 E1 E2

1 Î Î ⊗ I E E
� jk1ijk2i

0

�
I I I

2 R̂ R̂ ⊗ I−ϵffiffi
2

p S8 C4
ð−1Þk1ffiffi

2
p

� jk2ijk1i
jk2ijk1i

�
−ϵ I−ϵffiffi

2
p −Iþϵffiffi

2
p

3 R̂2 R̂2 ⊗ ð−ϵÞ C4 C2 ð−1Þk1þk2

�
0

jk1ijk2i
�

−I −ϵ −ϵ

4 R̂3 R̂3 ⊗
�
−I−ϵffiffi

2
p

�
S38 C4

ð−1Þk2ffiffi
2

p
�
−jk2ijk1i
jk2ijk1i

�
ϵ −I−ϵffiffi

2
p Iþϵffiffi

2
p

5 R̂4 Î ⊗ ð−IÞ C2 E
�
−jk1ijk2i

0

�
I −I −I

6 R̂5 R̂ ⊗ −Iþϵffiffi
2

p S38 C4
ð−1Þk1þ1ffiffi

2
p

� jk2ijk1i
jk2ijk1i

�
−ϵ −Iþϵffiffi

2
p I−ϵffiffi

2
p

7 R̂6 R̂2 ⊗ ϵ C4 C2 ð−1Þk1þk2þ1

�
0

jk1ijk2i
�

−I ϵ ϵ

8 R̂7 R̂3 ⊗
�
Iþϵffiffi
2

p
�

S8 C4
ð−1Þk2ffiffi

2
p

� jk2ijk1i
−jk2ijk1i

�
ϵ Iþϵffiffi

2
p −I−ϵffiffi

2
p

9 P̂1 P̂1 ⊗ σ3 C0
2 σv ð−1Þk1

� jk1ijk2i
0

�
−σ3 σ3 σ3

10 P̂2 P̂2 ⊗ σ1 C0
2 σv ð−1Þk2

�
0

jk1ijk2i
�

σ3 σ1 σ1

11 P̂þ P̂þ ⊗ σ3þσ1ffiffi
2

p σd σd 1ffiffi
2

p
� jk2ijk1i
jk2ijk1i

�
σ1

σ3þσ1ffiffi
2

p −σ3−σ1ffiffi
2

p

12 P̂− P̂− ⊗ σ3−σ1ffiffi
2

p σd σd; ð−1Þk1þk2ffiffi
2

p
� jk2ijk1i
−jk2ijk1i

�
−σ1

σ3−σ1ffiffi
2

p −σ3þσ1ffiffi
2

p

13 −P̂1 P̂1 ⊗ ð−σ3Þ C0
2 σv ð−1Þk1þ1

� jk1ijk2i
0

�
−σ3 −σ3 −σ3

14 −P̂2 P̂2 ⊗ ð−σ1Þ C0
2 σv ð−1Þk2þ1

�
0

jk1ijk2i
�

σ3 −σ1 −σ1

15 −P̂þ P̂þ ⊗ −σ3−σ1ffiffi
2

p σd σd − 1ffiffi
2

p
� jk2ijk1i
jk2ijk1i

�
σ1

−σ3−σ1ffiffi
2

p σ3þσ1ffiffi
2

p

16 −P̂− P̂− ⊗ −σ3þσ1ffiffi
2

p σd σd ð−1Þk1þk2ffiffi
2

p
�
−jk2ijk1i
jk2ijk1i

�
−σ1 −σ3þσ1ffiffi

2
p

σ3−σ1ffiffi
2

p
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(i) In the second column, we give the functional
representation of the corresponding element as a
direct product of the form ÛB ⊗ UF, where the
operator ÛB acts on each of the two components of
the wave function as fðÛBϕÞðx1; x2Þ; ðÛBχÞ×
ðx1; x2Þg, and the matrix UF multiplies these two
components as a vector, as in Eqs. (A1), (A2), and
(A4). The operators ÛB generate a functional rep-
resentation of the group C4v.

(ii) In the third column, we give the symbol that
corresponds to this element in the character tables
in Ref. [46].

(iii) We note that first factors in the direct product
expressions in the second column are the elements
of C4v, the symmetry group of the bosonic Hamil-
tonian (4). In the fourth column, we give the symbol
that corresponds to these element of C4v in the
character tables in Ref. [44,45].

(iv) In the fifth column, we show how the operators
in the second column act on the basis state
jk1; k2;↑i ¼ fjk1ijk2i; 0g with the wave function
fψk1ðx1Þψk2ðx2Þ; 0g, where hx1jk1i ¼ ψk1ðx1Þ and
hx2jk2i ¼ ψk2ðx2Þ are the one-dimensional har-
monic oscillator wave functions (9). Note that we
can still apply Wigner’s theorem to the finite
matrices (12) and (10) of the Hamiltonian operators
(6) and (4) in the harmonic oscillator basis because
two-dimensional harmonic oscillator eigenstates
jk1i ⊗ jk2i inherit an Oð2Þ symmetry group of
the two-dimensional harmonic oscillator which con-
tains both C4v and D4d as subgroups.

(v) In the sixth, seventh, and eighth columns, we give
the matrices of non-Abelian irreps E0, E1, and E2 that
correspond to the transformations listed in the first
and the second columns. All matrices are given as
combinations of 2 × 2 identity matrix I, the anti-
symmetric matrix ϵ, and the Pauli matrices σ1 and
σ3. The matrices in the sixth column also form a
non-Abelian irrep E0 of the group C4v (generated by
the operators ÛB, which are the first factors in the
direct products in the second column.)

By virtue of Wigner’s theorem, eigenstates of the
Hamiltonians (6) or (4) should form multiplets jΨα

i i with
degenerate energy levels that transform under one of the
irreps of the groups D4d (for ĤS) or C4v (for ĤB),

ĜðgÞjΨα
i i ¼

XdR
β¼1

GR
αβðgÞjΨβ

i i; ðA5Þ

where the index i labels distinct energy levels Ei, α ¼
1…dR labels all linearly independent eigenstates with
ĤjΨα

i i ¼ EijΨα
i i, and GR

αβ is the dR × dR matrix of the
group element g in the irrep R. In our case, the operators
ĜðgÞ are listed in the first column of Table I and defined in

the second column of this table. For irreps with dimension
dR ¼ 2, the matrices GR

αβðgÞ are given in the sixth, seventh,
and eighth columns. For one-dimensional irreps (dR ¼ 1),
GR

αβðgÞ≡GRðgÞ can be easily reconstructed from character
tables in Refs. [44–47].
To classify all eigenvectors of the Hamiltonian matrices

(6) and (4) according to irreps of the groups C4v or D4d, we
can use the identity (A5) and the Schur orthogonality
relations

X
g

GR
αβðgÞḠR0

γδðgÞ ¼ δRR0δαγδβδ
jGj
dR

; ðA6Þ

where jGj is the total number of elements in the symmetry
group of the Hamiltonian. To this end, we multiply the
equality (A5) by ḠR

γδðgÞ [that is equal to GR
γδðgÞ for our real

irreps] and sum over all group elements g:

X
g

GR0
γδðgÞGðgÞjΨα

i i ¼
XdR
β¼1

X
g

ḠR0
γδðgÞGR

αβðgÞjΨβ
i i

¼ jGj
dR

δRR0δαγjΨδ
i i: ðA7Þ

Therefore, if we apply all transformations within the
symmetry group to some eigenvector of the Hamiltonian
matrix, and sum up the results with the weights given by the
elements of the matrices of some irrep R0, we only get a
nonzero result if R0 is the irrep of the multiplet to which this
eigenvector belongs. Of course, for one-dimensional irreps,
the vector transforms into itself, and group transformations
amount to multiplications by a complex phase factor.
The identity (A7) can also be used to prove that

eigenvectors of the supersymmetric Hamiltonian can only
transform under the two-dimensional non-Abelian irreps E1

and E2. Indeed, the matrices that multiply the two-compo-
nent wave function as a vector (UF factors in the second
column in Table I form the irrep E1. The structure of irreps
E1 and E2 is such that for any group element g with
representation matrix GR

αβðgÞ there is another element g0

with GR
αβðg0Þ ¼ −GR

αβðgÞ. Looking at the Table I as well as
the character tables in Ref. [46], we notice that for all other
irreps R0 ¼ A1;2;B1;2; E0 we have GR0

αβðg0Þ ¼ þGR0
αβðgÞ,

where g and g0 is the same pair of group elements.
Bosonic transformations ÛB that transform the coordinate
dependence of wave functions are also insensitive to the
sign factors of E1. Therefore, for any R0 ¼ A1;2;B1;2; E0,
the product GR0

γδðgÞÛBðgÞ ⊗ UFðgÞjΨi in the first line of

Eq. (A7) will be equal to −GR0
γδðg0ÞÛBðg0Þ ⊗ UFðg0ÞjΨi. In

the sum over all group elements, summands that corre-
spond to g and g0 will cancel each other. Therefore, for any
eigenstate of the supersymmetric Hamiltonian, the sum in
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the first line of Eq. (A7) will be equal to zero for
R0 ¼ A1;2;B1;2; E0.
We conclude therefore that eigenstates of the super-

symmetric Hamiltonian can only transform under the irreps
E1 or E2 and therefore should all be doubly degenerate once
we impose the IR cutoff (finite M truncation) that makes
the continuous spectrum discrete.

APPENDIX B: BLOCK-DIAGONAL
REPRESENTATION OF HAMILTONIAN
MATRICES WITHIN PARITY SECTORS
AND BASIS STATE ENUMERATION

In this work, we perform numerical diagonalization of
the Hamiltonian matrices (10) and (12). To achieve faster
convergence of diagonalization algorithms, it is advanta-
geous to reduce the size of matrices being diagonalized, for
example, by representing them in block-diagonal form. The
largest reduction of the matrix block size could be achieved
by considering combinations of basis states jk1i ⊗ jk2i that
transform under irreps of the groups C4v (for the bosonic
Hamiltonian) orD4d (for the supersymmetric Hamiltonian).
By virtue of Wigner’s theorem, the Hamiltonian matrices
(10) and (12) would then reduce to a block diagonal form
such that each block corresponds to one of the irreps.
Explicit construction of such basis states is quite involved
and would result in a significantly more complicated code.
In this work, we choose a different but equally efficient

strategy and use an eigenbasis of a single element P̂1 ¼
P̂1 ⊗ σ3 of the symmetry groupD4d of the supersymmetric
Hamiltonian ĤS. Since P̂1 commutes with ĤS as well as
with the corresponding Hamiltonian matrix and P̂2

1 ¼ Î ,
the Hamiltonian matrix should have a block-diagonal form
with blocks corresponding to �1 eigenvalues of P̂1. Note
that, since the parity operators P̂1;2 and P̂� do not commute
with each other, only one of these operators can be
diagonalized simultaneously with the Hamiltonian.
An immediate consequence of the identity (A5) is that

any two states jΨ1
i i, jΨ2

i i that belong to a doublet of states
transforming under irreps E1 or E2 of the D4d symmetry
group should have opposite parities. As one can infer from
Table I, for both irreps, the parity transformation P̂1 is
represented by the Pauli matrix σ3. Rewriting (A5) in
explicit form, we obtain

P̂1jΨ1
i i ¼ ðσ3Þ11jΨ1

i i þ ðσ3Þ12jΨ2
i i ¼ þjΨ1

i i;
P̂1jΨ2

i i ¼ ðσ3Þ21jΨ1
i i þ ðσ3Þ22jΨ2

i i ¼ −jΨ2
i i: ðB1Þ

Together with the fact that eigenstates of ĤS can only
transform under irreps E1 or E2, this observation implies
that both diagonal blocks of the supersymmetric
Hamiltonian matrix (12) have identical energy spectra.
Using the fact that the operators x̂2 and p̂2 are invariant
under P̂1, one can also show that the products of matrix
elements of x̂2 and p̂2 that enter the OTOCs CðtÞ in (23)

are identical for both parity sectors. Therefore, the con-
tributions of both diagonal blocks to OTOCs are identical,
which allows us to save CPU time by diagonalizing
only the positive-parity block of the supersymmetric
Hamiltonian matrix. Note that this does not apply to the
bosonic Hamiltonian, for which both parity sectors need to
be diagonalized in order to get the full OTOCs.
All harmonic oscillator eigenstates (9) have a definite

parity under coordinate reflections; therefore, the direct
product states jk1i ⊗ jk2i are also eigenstates of the bosonic
parity operator P̂1 with P̂1jk1i ⊗ jk2i ¼ ð−1Þk1 jk1i ⊗ jk2i.
Using this fact, it is straightforward to find the two-
component eigenstates of the operator P̂1 ¼ P̂1 ⊗ σ3 with
eigenvalues �1,

jk1; k2;þi ¼
� jk1i ⊗ jk2i

0

�
; k1 ¼ 2m;

jk1; k2;þi ¼
�

0

jk1i ⊗ jk2i

�
; k1 ¼ 2mþ 1;

jk1; k2;−i ¼
� jk1i ⊗ jk2i

0

�
; k1 ¼ 2mþ 1;

jk1; k2;−i ¼
�

0

jk1i ⊗ jk2i

�
; k1 ¼ 2m; ðB2Þ

where m ¼ 0; 1; 2;…. Matrix elements hk1; k2;þjĤSjk1;
k2;−i are equal to zero because ĤS commutes with P̂1.
To work with the basis states (B2), we need a way to

efficiently enumerate the states jk1i ⊗ jk2i with k1 þ k2 ≤
M and a definite parity of k1. We use the enumeration
shown in Fig. 13. Red and blue points have positive and
negative parity P̂1 (even and odd k1). The labels of points
on the plot have the format i∶k1; k2, where i is the serial
number of the state. We enumerate states separately in each
of the two parity sectors. If we limit the values of i to lie in
the range i ¼ 0…M2 þM − 1, the set of basis states is
symmetric with respect to the interchange x1 ↔ x2. Since
this is one of the basic symmetries of our system, we
always use ranges of this form.
The transformation from k1, k2 to the one-dimensional

index i can be written as

i ¼ 2ðdivðk1; 2Þ þ divðrþ r2; 2ÞÞ þmod ðk2; 2Þ;
r ¼ divðk1; 2Þ þ divðk2; 2Þ; ðB3Þ
where divða; bÞ and mod ða; bÞ are the integer division of a
over b and the integer modulo of a over b. The inverse
transformation is

k1 ¼ 2ðdivði; 2Þ − divðrþ r2; 2ÞÞ þ p1;

k2 ¼ 2ðrþ divðrþ r2; 2Þ − divði; 2ÞÞ þmod ði; 2Þ;

r ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2divði; 2Þ þ 1

4

r
−
1

2



; ðB4Þ
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where b…c is the floor function and ð−1Þp1 is the parity
sign: p1 ¼ 0, p1 ¼ 1 for the positive and negative parity
sectors, correspondingly.
Note that for the bosonic Hamiltonian (4) we could have

used the two commuting operators P̂1 and P̂2 (or P̂þ and
P̂−) to define four parity sectors and thus reduce the size
of matrix blocks even further. However, here, we only used
P̂1 to reduce the diagonal block size of the bosonic
Hamiltonian matrix (10). The reason is that the primary
focus of this paper is the supersymmetric Hamiltonian (6),
and for debugging purposes, we wanted to maintain state
enumeration that would be similar for both Hamiltonians.
Even with this choice, the bosonic Hamiltonian is much
easier to treat numerically than the supersymmetric one,
and using only P̂1 parity is enough to obtain good-quality
numerical data for the bosonic model.

APPENDIX C: CALCULATING THE CLASSICAL
ANALOG OF THERMAL OTOCs

To check whether in the high-temperature limit the
quantum dynamics of the bosonic and supersym-
metric Hamiltonians (4) and (6) agrees with the classical
dynamics of the bosonic Hamiltonian, we calculate the
classical analog of OTOCs. It is given by the thermal
expectation value of the square of the Poisson brack-
ets fx2ðtÞ; p2ð0Þg ¼ ∂x2ðtÞ

∂x2ð0Þ,

CclðtÞ ¼
1

Zcl

Z
dx1ð0Þdx2ð0Þdp1ð0Þdp2ð0Þ exp

�
−
p2
1ð0Þ þ p2

2ð0Þ þ x21ð0Þx22ð0Þ
T

��
∂x2ðtÞ
∂x2ð0Þ

�
2

; ðC1Þ

where x1ð0Þ, x2ð0Þ, p1ð0Þ, and p2ð0Þ specify the initial conditions for the time-dependent coordinates and momenta x1ðtÞ,
x2ðtÞ, p1ðtÞ, and p2ðtÞ. These in turn satisfy the classical equations of motion

d
dt

x1ðtÞ ¼ 2p1ðtÞ;
d
dt

x2ðtÞ ¼ 2p2ðtÞ;
d
dt

p1ðtÞ ¼ −2x1ðtÞx22ðtÞ;
d
dt

p2ðtÞ ¼ −2x2ðtÞx21ðtÞ: ðC2Þ

The classical partition function Zcl is

Zcl ¼
Z

dp1dp2 exp

�
−
p2
1 þ p2

2

T

�Z
dx1dx2 exp

�
−
x21x

2
2

T

�
: ðC3Þ

To obtain the classical Poisson bracket fx2ðtÞ; p2ð0Þg ¼ ∂x2ðtÞ
∂x2ð0Þ, we can differentiate the classical equations of motion with

respect to x2ð0Þ, thereby obtaining a system of differential equations that govern the time evolution of ∂x1ðtÞ
∂x2ð0Þ,

∂x2ðtÞ
∂x2ð0Þ,

∂p1ðtÞ
∂x2ð0Þ

and ∂p2ðtÞ
∂x2ð0Þ:

FIG. 13. Enumeration of two-dimensional harmonic oscillator
basis states jk1i ⊗ jk2i. States that correspond to red and blue
points are even and odd under reflections of x1, respectively. The
label “i∶ k1; k2” near each point shows the serial number i of the
state and the corresponding values of k1 and k2. States with even
and odd x1 parity are enumerated independently. For this plot, the
index i changes between 0 and M2 þM − 1 with M ¼ 3.
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d
dt

∂x1ðtÞ
∂x2ð0Þ

¼ 2
∂p1ðtÞ
∂x2ð0Þ

;
d
dt

∂x2ðtÞ
∂x2ð0Þ

¼ 2
∂p2ðtÞ
∂x2ð0Þ

;

d
dt

∂p1ðtÞ
∂x2ð0Þ

¼ −2
∂x1ðtÞ
∂x2ð0Þ

x22ðtÞ − 4x1ðtÞx2ðtÞ
∂x2ðtÞ
∂x2ð0Þ

;

d
dt

∂p2ðtÞ
∂x2ð0Þ

¼ −2
∂x2ðtÞ
∂x2ð0Þ

x21ðtÞ − 4x1ðtÞx2ðtÞ
∂x1ðtÞ
∂x2ð0Þ

: ðC4Þ

These equations have to be solved simultaneously with the
classical equations of motion (C2) with the initial con-
ditions ∂x1ð0Þ

∂x2ð0Þ ¼ 0, ∂x2ð0Þ
∂x2ð0Þ ¼ 1, ∂p1ð0Þ

∂x2ð0Þ ¼ 0, ∂p2ð0Þ
∂x2ð0Þ ¼ 0.

To calculate the “classical OTOC” (C1), we carry out a
small-scale Monte Carlo simulation, generating Oð105Þ
random initial conditions x1ð0Þ, x2ð0Þ, p1ð0Þ, and p2ð0Þ
with the probability distribution that is proportional to

expð− p2
1
ð0Þþp2

2
ð0Þþx2

1
ð0Þx2

2
ð0Þ

T Þ. The evolution equations (C2)

and (C4) are then solved numerically, and ð∂x2ðtÞ
∂x2ð0ÞÞ

2 is

averaged over sufficiently many random initial conditions.
A technical difficulty is that both the classical partition
function (C3) and the probability distribution of initial
coordinate values x1ð0Þ, x2ð0Þ contain a non-normalizable

weight function expð− x2
1
x2
2

T Þ. To regularize the diverging

integrals
R
dx1dx2 expð− x2

1
x2
2

T Þ and to generate x1ð0Þ and
x2ð0Þ with the required probability distribution, we express
x1 and x2 in terms of “hyperbolic” coordinates −∞ < r <
þ∞ and −∞ < ϕ < þ∞ as x1 ¼ reϕ, x2 ¼ re−ϕ. In terms
of the new coordinates, the above integrals can be written as

Z
dx1dx2exp

�
−
x21x

2
2

T

�
¼4

Z þ∞

−∞
dϕ

Z þ∞

0

dr2e−
r4
T : ðC5Þ

We see that the integral divergence is related to the infinite
integration limits for the “hyperbolic angle” variable ϕ, and
the probability distribution of the “radial” coordinate r is
perfectly normalizable. To regularize the integrals over ϕ
and make the probability distribution in (C1), we intro-
duce a cutoff −ϕmax < ϕ < ϕmax on the ϕ variable. While
the integrals in the classical partition function Zcl and in the
Lyapunov distance definition (C1) are divergent, this
divergence cancels out in the ratio of the two integrals.
As a result, CclðtÞ is practically independent of the cutoff
ϕmax once ϕmax is large enough. In practice, we used ϕmax
in the range 2 < ϕmax < 5 and observed that the results are
independent of ϕmax within statistical errors of Monte Carlo
expectation values.
The expression (5) is obtained by fitting logðCclðtÞÞ at

sufficiently late times with a linear function. The corre-
sponding slope is twice the classical Lyapunov exponent
in (5).
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