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We study the three-dimensional transport theory of massive spin-1=2 fermions resulting from the
vorticity dependent quantum kinetic equation. This quantum kinetic equation has been introduced to take
account of noninertial properties of rotating coordinate frames. We show that it is the appropriate relativistic
kinetic equation which provides the vorticity dependent semiclassical transport equations of the three-
dimensional Wigner function components. We establish the semiclassical kinetic equations of a linearly
independent set of components. By means of them, kinetic equations of the chiral scalar distribution
functions are derived. They furnish the 3D kinetic theory which permits us to study the vector and axial
vector current densities by focusing on the mass corrections to the chiral vortical and separation effects.
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I. INTRODUCTION

Transport of Dirac fermions in the presence of external
electromagnetic fields can be studied by means of the
covariant Wigner function which obeys the quantum kinetic
equation (QKE) [1,2]. The Wigner function can be decom-
posed into some covariant fields whose equations of motion
follow from the QKE. Founded on these field equations, one
derives relativistic transport theories of Dirac particles. A
brief overview of the covariant Wigner function approach
was given in [3] and recently it has been reviewed in details
in [4]. Relativistic formalism has the advantage of being
manifestly Lorenz invariant. Nevertheless, nonrelativistic
transport equations are necessary for being able to start
with initial distribution functions and construct solutions of
transport equations [5–7]. There exist some different meth-
ods of formulating nonrelativistic kinetic theories of Dirac
particles. One of these methods is to construct the four-
dimensional (4D) transport equations of a set of covariant
fields and then integrate them over the zeroth-component of
four-momentum, so that the three-dimensional (3D) trans-
port equations which are correlative to the 4D ones are
extracted. Another method is to integrate all of the quantum
kinetic equations of the covariant fields over the zeroth-
component of four-momentum at the beginning and then
derive the nonrelativistic transport theory from these 3D
quantum kinetic equations [7,8]. This is also called the
equal-time formalism. There also exists a strictly 3D

approach of acquiring a transport equation of Dirac particles
which does not refer to the Wigner function [9].
Quarks of the quark-gluon plasma formed in heavy-ion

collisions are treated as massless [10,11]. Thus, chiral kinetic
theory (CKT) is useful to inspect their dynamical features
[12–20]. The QKE of the relativistic Wigner function
generates the anomalous magnetic effects as well as the
vorticity effects correctly [20]. It is worth noting that the
vorticity of fluid matches the angular velocity of the fluid in
the comoving frame. The QKE possesses an explicit
dependence on the electromagnetic fields but not on the
vorticity of fluid. When the Wigner function is expressed in
the Clifford algebra basis, the QKE gives a set of equations
for the chiral vector fields. In solving some of these
equations one introduces the frame four-vector [21–23]. It
can be identified with the comoving frame velocity which
also appears in equilibrium distribution functions.
Derivatives of the comoving frame four-velocity generate
terms depending on the vorticity. These are the sources of
vorticity dependence in the relativistic QKE formulations of
the massless fermions. One cannot generate noninertial
forces like the Coriolis force within this formalism.
However, in [24], vortical effects were derived by using
the similarity between the Lorentz and the Coriolis forces.
This formulation has been shown to result in a rotating
coordinate frame from the first principles [25]. To build in
this similarity, a modification of QKE by means of enthalpy
current was introduced in [26]. The discrepancy in treating
magnetic and vortical effects reflects itself drastically,
especially in 3D CKT when both electromagnetic fields
and vorticity are taken into account. The vorticity dependent
quantum kinetic equation (VQKE) was shown to yield a 3D
CKTwhich does not depend on the spatial coordinates [26].
It is consistent with the chiral anomaly and generates the
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chiral magnetic and vortical effects and the Coriolis force.
The underlying Lagrangian formalism which yields VQKE
was presented in [27].
Constituent quarks of the quark-gluon plasma created in

heavy-ion collisions are approximately massless. Thus, to
get a better understanding of their dynamical properties, one
needs to uncover the mass corrections to chiral theories.
Covariant kinetic theories of massive spin-1=2 particles have
been studied in terms of QKE within two different
approaches in [28,29]. In principle, nonrelativistic transport
equations can be provided by integrating the 4D kinetic
equations. But, for massive fermions, extracting the 3D
kinetic equations which are correlative to the 4D kinetic
equations can only be done under some simplifying approx-
imations as they have been shown within the VQKE
approach in [27,30]. We have already mentioned that there
also exists another nonrelativistic approach which is the so-
called equal-time formalism. By integrating the equations of
the relativistic Wigner function components over the zeroth-
component of momentum, one sets up the equations of the
components of the 3D Wigner function. Then, one employs
these 3D equations to derive nonrelativistic kinetic equations
of Dirac particles in the presence of the external electro-
magnetic fields. This has been studied in [31] by developing
the original formulation of [8]. In contrast to the 4D Wigner
function approaches, this 3D formalism does not generate
vortical effects. Because, without solving some of the
equations of the 4DWigner function components one cannot
generate vorticity dependent terms. Therefore, to obtain a
similar 3D approach by taking account of vorticity of the
fluid, the QKE of the Wigner function should possess an
explicit dependence on the fluid vorticity. The VQKE is the
unique covariant formalism which has this property [32]. In
this work, we study the 3D formulation of the VQKE by
extending the method of [8,31], by taking care of the vortical
effects only.
We briefly review the VQKE in the absence of electro-

magnetic fields and present the equations of the components
of the covariant Wigner function in the next section. Their
integration over the zeroth component of momentum in a
frame adequate to study nonrelativistic dynamics lead to the
3D constraint and transport equations as reported in Sec. III.
These equations which the components of the 3D Wigner
function obey are studied and their semiclassical solutions
are acquired in terms of a set of independent functions. In
Sec. IV, kinetic equations of this set of fields are established
up to the first order in the Planck constant, ℏ. Mass
corrections to the chiral vortical and separation effects
are studied in Sec. V. Conclusions and discussions of
possible future directions are given in Sec. VI.

II. VORTICITY DEPENDENT QUANTUM
KINETIC EQUATION

The quantum kinetic equation for a fluid in the comoving
frame with the four-velocity uμ; uμuμ ¼ 1, whose linear
acceleration vanishes, uν∂νuμ ¼ 0, is

�
γμ

�
πμ þ iℏ

2
Dμ

�
−m

�
Wðx; pÞ ¼ 0: ð1Þ

Here,

Dμ ≡ ∂
μ − j0ðΔÞwμν

∂pν; ð2Þ

πμ ≡ pμ −
ℏ
2
j1ðΔÞwμν

∂pν; ð3Þ

where ∂
μ ≡ ∂=∂xμ, ∂

μ
p ≡ ∂=∂pμ, and j0, j1 are spherical

Bessel functions in Δ≡ ℏ
2
∂p · ∂x. The 4D space-time

derivative, ∂μ, contained in Δ acts on wμν, but not on
the Wigner function, Wðx; pÞ. On the contrary, ∂pν acts on
the Wigner function, but not on wμν. The action which
generates (1) has been presented in [27]. There, it was
shown that when the equations of motion of the fields
presenting fluid are satisfied, wμν is given with an arbitrary
constant κ as

wμν ¼ ð∂μhÞuν − ð∂νhÞuμ þ κhΩμν; ð4Þ

where h ¼ u · p and Ωμν ¼ 1
2
ð∂μuν − ∂νuμÞ. The fluid four-

vorticity is defined as ωμ ¼ ð1=2ÞϵμναβuνΩαβ.
The Wigner function can be written through the 16

generators of the Clifford algebra as

W ¼ 1

4

�
F þ iγ5P þ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
; ð5Þ

where Ca ≡ fF ;P;Vμ;Aμ;Sμνg, respectively, are the sca-
lar, pseudoscalar, vector, axial-vector, and antisymmetric
tensor components of the 4D Wigner function. These
covariant fields can be expanded in powers of the
Planck constant:

Ca ¼
X
n

ℏnCðnÞa : ð6Þ

We deal with the semiclassical approximation where only
the zeroth- and first-order fields in ℏ are considered. Thus,
to derive the equations which they satisfy, instead of (2),
(3), we only need to deal with

Dμ ≡ ∂
μ
x − wμν

∂pν; ð7Þ

and pμ. By plugging the decomposed Wigner function, (5),
into the VQKE, (1), one derives the equations satisfied by
the fields Ca, whose real parts are

p · V −mF ¼ 0; ð8Þ

pμF −
ℏ
2
DνSνμ −mVμ ¼ 0; ð9Þ
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−
ℏ
2
DμP þ 1

2
ϵμναβpνSαβ þmAμ ¼ 0; ð10Þ

ℏ
2
D½μVν� − ϵμναβpαAβ −mSμν ¼ 0; ð11Þ

ℏ
2
D ·AþmP ¼ 0; ð12Þ

and the imaginary parts are

ℏD · V ¼ 0; ð13Þ

p ·A ¼ 0; ð14Þ

ℏ
2
DμF þ pνSνμ ¼ 0; ð15Þ

pμP þ ℏ
4
ϵμναβDνSαβ ¼ 0; ð16Þ

p½μVν� þ
ℏ
2
ϵμναβDαAβ ¼ 0: ð17Þ

It can be observed that not all of the fields Ca are relevant to
formulate a 4D kinetic theory. Depending on the choice of
the independent set of fields, one establishes different
relativistic kinetic theories [28,29]. In the subsequent
sections we will refer to the 4D formulation given in
[30], which was acquired following the approach of [28].

III. 3D SEMICLASSICAL TRANSPORT
AND CONSTRAINT EQUATIONS

The equal-time transport theory of Dirac particles in the
presence of external electromagnetic fields which has
been proposed in [5] was incomplete. In [8], it was shown
that to have a complete nonrelativistic transport theory of
spinor electrodynamics, one should start with the covar-
iant QKE of [1,2]. We mainly adopt the approach of [8].
However, there is a subtle difference: Electromagnetic
field strength is independent of p0 in contrast to wμν which
explicitly depends on it. We will show how to surmount
this difficulty.
The nonrelativistic (3D) Wigner function is defined as

the integral of the 4D Wigner function over the zeroth-
component of momentum:

W3ðx; pÞ ¼
Z

dp0Wðx; pÞγ0: ð18Þ

Let us define the 3D components in the Clifford algebra
basis as

W3ðx; pÞ ¼
1

4
½f0 þ γ5f1 − iγ0γ5f2 þ γ0f3 þ γ5γ0γ

· g0 þ γ0γ · g1 − iγ · g2 − γ5γ · g3�: ð19Þ

The 4D and 3D components are related as

f0ðx; pÞ ¼
Z

dp0V0ðx; pÞ; f1ðx; pÞ ¼
Z

dp0A0ðx; pÞ;

f2ðx; pÞ ¼
Z

dp0Pðx; pÞ; f3ðx; pÞ ¼
Z

dp0F ðx; pÞ;

g0ðx; pÞ ¼
Z

dp0Aðx; pÞ; g1ðx; pÞ ¼
Z

dp0Vðx; pÞ;

gi2ðx; pÞ ¼ −
Z

dp0S0iðx; pÞ; gi3ðx; pÞ ¼
1

2
ϵijk

Z
dp0Sjkðx; pÞ:

To express wμν in terms of the 3D vorticity, ω, which is
uniform, we choose the frame

uμ ¼ ð1; 0Þ; ωμ ¼ ð0;ωÞ: ð20Þ

Thus, (4) yields

w0i ¼ −ϵijkpjωk; wij ¼ κp0ϵ
ijkωk:

In contrast to the electromagnetic field strength, wij is p0

dependent. In this frame, the components of Dμ ¼ ðDt;DÞ,
(7), are

Dt ¼ ∂t þ ðp × ωÞ · ∇p; ð21Þ

D ¼ ∇þ κp0ω × ∇p: ð22Þ

While obtaining the 3D formalism by integrating the 4D
transport equations over p0, the dependence of D on p0

should be handled carefully.
To establish the 3D formalism, we integrate the relativ-

istic equations (8)–(17) over p0. They will be separated into
two groups [8] by inspecting their dependence on the time
derivative ∂t. The equations containing ∂t yield the trans-
port equations:
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ℏ

�
Dtf0 þ

Z
dp0D · V

�
¼ 0; ð23aÞ

ℏ

�
Dtf1 þ

Z
dp0D ·A

�
þ 2mf2 ¼ 0; ð23bÞ

ℏDtf2 þ 2p · g3 − 2mf1 ¼ 0; ð23cÞ

ℏDtf3 − 2p · g2 ¼ 0; ð23dÞ

ℏ

�
Dtg0 þ

Z
dp0DA0

�
− 2p × g1 ¼ 0; ð23eÞ

ℏ

�
Dtg1 þ

Z
dp0DV0

�
− 2p × g0 þ 2mg2 ¼ 0; ð23fÞ

ℏ

�
Dtgi2 −

Z
dp0DjSji

�
þ 2pif3 − 2mgi1 ¼ 0; ð23gÞ

ℏ

�
Dtgi3 þ

Z
dp0ε

ijkDjSk0

�
− 2pif2 ¼ 0: ð23hÞ

The others are the constraint equations:

Z
dp0p0V0 − p · g1 −mf3 ¼ 0; ð24aÞ

Z
dp0p0A0 − p · g0 ¼ 0; ð24bÞ

Z
dp0p0P −

1

4
ℏ
Z

dp0εijkDiSjk ¼ 0; ð24cÞ
Z

dp0p0F þ 1

2
ℏ
Z

dp0DiS0i −mf0 ¼ 0; ð24dÞ
Z

dp0p0A − pf1 −
ℏ
2

Z
dp0D × V −mg3 ¼ 0; ð24eÞ

Z
dp0p0V − pf0 −

ℏ
2

Z
dp0D ×A ¼ 0; ð24fÞ

Z
dp0p0S0i − p × g3 þ

ℏ
2

Z
dp0DiF ¼ 0; ð24gÞ

1

2
ϵijk

Z
dp0p0Sjk − ðp × g2Þi −

ℏ
2

Z
dp0DiPþmg0i ¼ 0:

ð24hÞ

These equations show that not all of the 3D fields are
independent. In fact, we can express them in terms of f0
and g0 as it will be discussed below.
In the classical limit, (1) simplifies and yields the

classical on-shell condition

ðp2 −m2ÞWðx; pÞ ¼ 0; ð25Þ

whose solutions are p0 ¼ �Ep, where Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

Therefore, in the classical limit, the fields can be written as
the sum of positive and negative energy solutions:

Cð0Þa ðx; pÞ ¼ Cð0Þþa ðx; pÞδðp0 − EpÞ
þ Cð0Þ−a ðx; pÞδðp0 þ EpÞ: ð26Þ

Thus, at the leading order in ℏ, the p0 integrals in
(23a)–(24h) can easily be performed and all of the 3D
fields can be expressed in terms of f0 and g0 in the classical
limit as [8]

fð0Þ�1 ¼ � p
Ep

· gð0Þ�
0 ; ð27Þ

fð0Þ�2 ¼ 0; ð28Þ

fð0Þ�3 ¼ � m
Ep

fð0Þ�0 ; ð29Þ

gð0Þ�
1 ¼ � p

Ep
fð0Þ�0 ; ð30Þ

gð0Þ�
2 ¼ p

m
× gð0Þ�

0 ; ð31Þ

gð0Þ�
3 ¼ �E2

pg
ð0Þ�
0 − ðp · gð0Þ�

0 Þp
mEp

: ð32Þ

To solve the transport and constraint equations to
determine the 3D fields in terms of f0 and g0 at the ℏ
order, one can attempt to add a ℏ-order term to the on-shell
condition (25). However, by inspecting the relativistic
semiclassical solutions of (8)–(17) given in [30], it can
be observed that each field Ca satisfies a different mass shell
condition at the ℏ order. In [31], it was suggested to write

C�a ðx; pÞ ¼ Cð0Þ�a ðx; pÞδðp0 ∓ EpÞ þ ℏA�
a ðpÞ; ð33Þ

and define the 3D shell shifts as

ΔE�
a ðx; pÞ ¼

Z
dp0p0A�

a ðpÞ: ð34Þ

The operator D depends on p0, so that the related energy
averages are expressed as

Z
dp0DCaðx:pÞ¼

Z
dp0ð∇þ κp0ω×∇pÞ

× ðC�a ðx;pÞδðp0∓EpÞþℏA�
a ðpÞÞ

¼Dð0Þ
� C�a ðx;pÞþℏκðω×∇pÞΔE�

a ; ð35Þ
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where

Dð0Þ
� ¼ ∇� κEpω × ∇p �

κ

Ep
ω × p

≡ ∂
ð0Þ
� � κ

Ep
ω × p: ð36Þ

Let us now compare this formulation with the equal-time
QKE approach of [8,31]. There, the energy averagesR
dp0D

ðEMÞ
μ Caðx:pÞ ¼ ðDðEMÞ

t ;DðEMÞÞCaðx; pÞ are given
in terms of the electromagnetic fields E, B as

DðEMÞ
t ¼ ∂t þ E · ∇p, and DðEMÞ ¼ ∇þ B × ∇p. We set

the electric charge Q ¼ 1. Observe that one obtains Dt

given in (21) from DðEMÞ
t by the substitution E → p × ω.

However, DðEMÞ is quite different from (35). First of all,
although DðEMÞ is independent of ℏ, in (35) there exists a
term which is at the order of ℏ. Also the ℏ independent
terms are not similar. Only DðEMÞ corresponds to ∂

ð0Þ by
B → κEpω. Thus, one cannot generate our results from the
ones given in [31], by substituting E, B with p × ω; κEpω.
The transport equations at the first order in ℏ can be read

from (23a)–(23h) as

Dtf
ð0Þ�
0 þ Dð0Þ

� · gð0Þ�
1 ¼ 0; ð37aÞ

Dtf
ð0Þ�
1 þ Dð0Þ

� · gð0Þ�
0 þ 2mfð1Þ�2 ¼ 0; ð37bÞ

Dtf
ð0Þ�
2 þ p · gð1Þ�

3 − 2mfð1Þ�1 ¼ 0; ð37cÞ

Dtf
ð0Þ�
3 − 2p · gð1Þ�

2 ¼ 0; ð37dÞ

Dtg
ð0Þ�
0 þ Dð0Þ

� fð0Þ�1 − 2p × gð1Þ�
1 ¼ 0; ð37eÞ

Dtg
ð0Þ�
1 þ Dð0Þ

� fð0Þ�0 − 2p × gð1Þ�
0 þ 2mgð1Þ�

2 ¼ 0; ð37fÞ

Dtg
ð0Þ�
2 þ Dð0Þ

� × gð0Þ�
3 þ 2pfð1Þ�3 − 2mgð1Þ�

1 ¼ 0; ð37gÞ

Dtg
ð0Þ�
3 − Dð0Þ

� × gð0Þ�
2 − 2pfð1Þ�2 ¼ 0: ð37hÞ

By plugging (33) into (24a)–(24h) and employing the
definition (34), the constraint equations at the first order
in ℏ are acquired as

�Epf
ð1Þ�
0 þ ΔE�

f0
− p · gð1Þ�

1 −mfð1Þ�3 ¼ 0; ð38aÞ

�Epf
ð1Þ�
1 þ ΔE�

f1
− p · gð1Þ�

0 ¼ 0; ð38bÞ

�Epf
ð1Þ�
2 þ ΔE�

f2
þ 1

2
Dð0Þ

� · gð0Þ�
3 ¼ 0; ð38cÞ

�Epf
ð1Þ�
3 þ ΔE�

f3
−
1

2
Dð0Þ

� · gð0Þ�
2 −mfð1Þ�0 ¼ 0; ð38dÞ

�Epg
ð1Þ�
0 þ ΔE�

g0 − pfð1Þ�1 −
1

2
Dð0Þ

� × gð0Þ�
1 −mgð1Þ�

3 ¼ 0;

ð38eÞ

�Epg
ð1Þ�
1 þ ΔE�

g1 − pfð1Þ�0 −
1

2
Dð0Þ

� × gð0Þ�
0 ¼ 0; ð38fÞ

�Epg
ð1Þ�
2 þ ΔE�

g2 − p × gð1Þ�
3 þ 1

2
Dð0Þ

� fð0Þ�3 ¼ 0; ð38gÞ

�Epg
ð1Þ�
3 þ ΔE�

g3 þ p × gð1Þ�
2 −mgð1Þ�

0 ¼ 0: ð38hÞ

Once we are acquainted with ΔE�
a ðx; pÞ, the constraint

equations (38a)–(38h) can be solved to express the first-

order components of the fields in terms of fð0Þ�0 and gð0Þ�
0 .

Some of the shell shifts can be acquired by making use the
covariant formalism as we have presented in Appendix.
The remaining shell shifts should be determined by using
the constraint and transport equations (37a)–(38h). In
conclusion, we calculated the mass shell shifts as

ΔE�
f0

¼ −
κ

2
ω · gð0Þ�

0 ; ð39Þ

ΔE�
f1

¼ ∓ κ

2Ep
p · ωfð0Þ�0 ; ð40Þ

ΔE�
f2

¼ ð1þ κÞ
2m

ðp × ωÞ · gð0Þ�
0 ; ð41Þ

ΔE�
f3

¼ ∓ 1

2mEp
ðp × ωÞ · ðp × gð0Þ�

0 Þ

∓ κ

�
E2
pg

ð0Þ�
0 − ðp · gð0Þ�

0 Þp
2mEp

�
· ω; ð42Þ

ΔE�
g0 ¼ −

�
κ

2
ωþ ωp2 − pðω · pÞ

2E2
p

�
fð0Þ�0 ; ð43Þ

ΔE�
g1 ¼ ∓ 1

2Ep
ðp × ωÞ × gð0Þ�

0 ∓ κ

2Ep
ðp · gð0Þ�

0 Þω; ð44Þ

ΔE�
g2 ¼

mp × ω

2E2
p

fð0Þ�0 ; ð45Þ

ΔE�
g3 ¼ ∓ mκ

2Ep
ωfð0Þ�0 : ð46Þ

It is a curious fact that although Dð0Þ given in (36) is
different from its electromagnetic analogDðEMÞ, we still get
the correspondence between the shell shifts given in [31]
and the ones calculated here as in (39)–(46), by the
substitution E → p × ω and B → κEpω.
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Now, the constraint equations (38a)–(38h) are employed
to determine the field components at the first order in ℏ, in

terms of fð0Þ�0 and gð0Þ�
0 as follows:

fð1Þ�1 ¼ κ

2E2
p
p · ωfð0Þ�0 � 1

Ep
p · gð1Þ�

0 ; ð47Þ

fð1Þ�2 ¼∓ ð1 − κÞ
2mEp

ðp × ωÞ · gð0Þ�
0 −

1

2m
D�

· gð0Þ�
0 þ 1

2mE2
p
p · ðp · ∂ð0Þ� Þgð0Þ�

0 ; ð48Þ

fð1Þ�3 ¼� m
Ep

fð1Þ�0 ∓ ðp×Dð0Þ
� Þ ·gð0Þ�

0

2mEp
þ 1

2mE2
p
ðp×ωÞ

· ðp×gð0Þ�
0 Þ− κ

2m
ω ·gð0Þ�

0 − κ
ðp ·gð0Þ�

0 Þp ·ω
2mE2

p
; ð49Þ

gð1Þ�
1 ¼ � 1

Ep
pfð1Þ�0 þ 1

2E2
p
ðp × ωÞ × gð0Þ�

0

þ κ

2E2
p
ðp · gð0Þ�

0 Þω� 1

2Ep
Dð0Þ

� × gð0Þ�
0 ; ð50Þ

gð1Þ�
2 ¼ 1

m
p × gð1Þ�

0 þ pðp · ∂ð0Þ� Þfð0Þ�0

2mE2
p

∓ 1

2mEp
ðp × ωÞfð0Þ�0 −

1

2m
Dð0Þ

� fð0Þ�0 ; ð51Þ

gð1Þ�
3 ¼ �Ep

m
gð1Þ�
0 ∓ 1

mEp
pðp · gð1Þ�

0 Þ

þ 1

2mE2
p
p × ðp × ωÞfð0Þ�0 þ mκ

2E2
p
ωfð0Þ�0

� 1

2mEp
p × Dð0Þ

� fð0Þ�0 : ð52Þ

We determined all of the 3D field components in terms of
f0 and g0 up to the first order in ℏ. In the next section we
will derive their semiclassical kinetic equations.

IV. SEMICLASSICAL KINETIC EQUATIONS
OF f 0 AND g0

Kinetic equation of the particle number density f0
at the zeroth order in ℏ can be easily derived from
(30) and (37a) as

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð0Þ�0 ¼ 0: ð53Þ

By employing (37b) and (37h) we can get kinetic
equation of the spin density g0 at the zeroth order in ℏ
as follows:

�
Dt�

p
Ep

·∂ð0Þ�

�
gð0Þ�
0 ¼ 1

E2
p
ðp×ωÞðp ·gð0Þ�

0 Þ−κω×gð0Þ�
0 :

ð54Þ

Let us now derive the kinetic equations of f0 and g0 at
next-to-leading order in ℏ. To carry out our calculations the
transport equations at the second order in ℏ are needed.
They can be acquired by making use of (35) in (23a)–(23h):

Dtf
ð1Þ�
0 þDð0Þ

� ·gð1Þ�
1 þ κω

2Ep
p · ðω×∇pÞgð0Þ�

0 ¼ 0; ð55aÞ

Dtf
ð1Þ�
1 þ Dð0Þ

� · gð1Þ�
0 þ κðω · pÞ

2E2
p

p · ðω × ∇pÞfð0Þ�0

þ 2mfð2Þ�2 ¼ 0; ð55bÞ

Dtf
ð1Þ�
2 þ 2p · gð2Þ�

3 − 2mfð2Þ�1 ¼ 0; ð55cÞ

Dtf
ð1Þ�
3 − 2p · gð2Þ�

2 ¼ 0; ð55dÞ

Dtg
ð1Þ�
0 þ Dð0Þ

� fð1Þ�1 � κ2ðω · pÞ
2Ep

ω

×

�
p
E2
p
− ∇p

�
fð0Þ�0 − 2p × gð2Þ�

1 ¼ 0; ð55eÞ

Dtg
ð1Þ�
1 þ Dð0Þ

� fð1Þ�0 −
κ2

2
ðω × ∇pÞðω · gð0Þ�

0 Þ

− 2p × gð2Þ�
0 þ 2mgð2Þ�

2 ¼ 0; ð55fÞ

Dtg
ð1Þ�
2 þDð0Þ

� ×gð1Þ�
3 ∓mκ2

2Ep
ω×

�
ω×

�
p
E2
p
−∇p

��
fð0Þ�0

þ2pfð2Þ�3 −2mgð2Þ�
1 ¼0; ð55gÞ

Dtg
ð1Þ�
3 − Dð0Þ

� × gð1Þ�
2 þmκω

2E2
p
p

· ðω × ∇pÞfð0Þ�0 − 2pfð2Þ�2 ¼ 0: ð55hÞ

We would like to emphasize the fact that at this order the
resemblance betweenDðEMÞ and (35) is completely lost due
to the presence of the ℏ-order term in the latter.
By employing (44), (50), and (55a), we derived the time

evolution of fð1Þ�0 in terms of gð0Þ�
0 as

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð1Þ�0 ¼ −

κ

2E2
p
ðω × pÞ · ð∂ð0Þ� × gð0Þ�

0 Þ

þ 1

2E2
p
ðp × ωÞ · ð∇ × gð0Þ�

0 Þ

−
κ

2E2
p
ω · ðp · ∇Þgð0Þ�

0 : ð56Þ
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After some cumbersome calculations by making use of (47), (51), (52), (53), (55e), and (55g), we obtained the dynamical

evolution of gð1Þ�
0 depending on fð0Þ�0 as

�
Dt �

p
Ep

· ∂ð0Þ�

�
gð1Þ�
0 ¼ −κðω × gð1Þ�

0 Þ þ p · gð1Þ�
0

E2
p

ðp × ωÞ

−
κω

2E2
p
p · ∇fð0Þ�0 þ pðp · ωÞ

2E4
p

ðp · ∂ð0Þ� Þfð0Þ�0

−
p2ðp · ωÞ
2E4

p
Dð0Þ

� fð0Þ�0 ∓ p · ω
2E3

p
ðp × ωÞfð0Þ�0

� κ

2Ep
p ×

�
−ω2∇p þωðω · ∇pÞ þ

1

E2
p
ωðp · ωÞ

�
fð0Þ�0

∓ 1

2E3
p
p × ðp × ωÞDtf

ð0Þ�
0 : ð57Þ

We established the semiclassical kinetic equations of f0
and g0. It is also possible to deal with the kinetic equations
of some other components of the 3D Wigner function like
f1 and g3, where the latter is related to the magnetic dipole
moment.

V. KINETIC THEORIES OF THE RIGHT- AND
LEFT-HANDED FERMIONS

In heavy-ion collisions, because of considering the
constituent quarks of the quark-gluon plasma as massless,
one expects that the collective dynamics yield the chiral
vortical and separation effects due to vorticity. We would
like to study how the quark mass affects this picture. To
study the mass corrections, we need the kinetic equations
satisfied by the right- and left-handed distribution functions
fR, fL, defined by

fχ ¼
1

2
ðf0 þ χf1Þ; ð58Þ

where χ ¼ fþ;−g, and fþ ≡ fR and f− ≡ fL. However,
the 3D kinetic equations (53), (54) and (56), and (57) are
given in terms of f0 and g0. Thus, we have to specify the
spin current g0, by respecting the relations (27) and (47).
First, let the direction of the spin current be parallel to p.
Then, (27) implies that

gð0Þ�
0 ¼ �Ep

p2
pfð0Þ�1 : ð59Þ

By plugging (59) into the classical kinetic equation of the
spin current given by (54), we find

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð0Þ�1 ¼ 0: ð60Þ

Recall that it has the same form with the classical kinetic

equation satisfied by fð0Þ�0 , (53). Additionally, (59) allows

us to write the right-hand side of (56) in terms of fð0Þ�1 :

�
Dt�

p
Ep

·∂ð0Þ�

�
fð1Þ�0 ¼� 1

2Epp2
ðð1þκÞðp×ðp×ωÞÞ

−κðω ·pÞpÞ ·∇fð0Þ�1

þ κ2

2p2
ðp ·ωÞðp×ωÞ ·∇pf

ð0Þ�
1 : ð61Þ

Now, we desire to find the kinetic equation satisfied by

fð1Þ�1 . For this purpose, first observe that Eq. (47) can be
solved as

gð1Þ�
0 ¼ �Epp

p2
fð1Þ�1 ∓ κω

2Ep
fð0Þ�0 � Epp × F�; ð62Þ

where F� is a free vector field which will be fixed shortly.
Then, by plugging (62) into (57) and then multiplying it
with �p=Ep, we find

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð1Þ�1

¼ −ðp × ðp × ωÞÞ · F� ∓ κp · ω
2E3

p
p · ∇fð0Þ�0

þ κω

2E2
p
· p

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð0Þ�0 : ð63Þ

To have an equation compatible with (61), we choose
F� to be

F� ¼∓ ðκ þ 1Þ
2Epp2

∇fð0Þ�0 −
κ2

2p2
ω × ∇pf

ð0Þ�
0 : ð64Þ
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By inserting it into (63) one gets the kinetic equation

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð1Þ�1 ¼ �ðκ þ 1Þ

2Epp2
ðp × ðp × ωÞÞ · ∇fð0Þ�0 þ ðp · ωÞκ2

2p2
ðp × ωÞ · ∇pf

ð0Þ�
0

∓ κω · p
2E3

p
p · ∇fð0Þ�0 þ κω · p

2E2
p

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð0Þ�0 : ð65Þ

The last term can be set equal to zero due to (53). However, instead of doing that, we add a similar vanishing term to the
right-hand side of (61):

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð1Þ�0 ¼ �ðκ þ 1Þ

2Epp2
ðp × ðp × ωÞÞ · ∇fð0Þ�1 þ ðp · ωÞκ2

2p2
ðp × ωÞ · ∇pf

ð0Þ�
1

∓ κ

2Ep

ω · p
p2

ðp · ∇Þfð0Þ�1 þ κω · p
2E2

p

�
Dt �

p
Ep

· ∂ð0Þ�

�
fð0Þ�1 : ð66Þ

Notice that adding the last term is equivalent to a shift of fð1Þ�0 with the term κω·p
2E2

p
fð0Þ�1 . By combining (65) and (66), we find

the kinetic equations

��
1 − ℏ

χκðp · ωÞ
2E2

p

�
∂t þ

��
1 − ℏ

χκðp · ωÞ
2E2

p

�
ðκ þ 1Þ − ℏ

χðp · ωÞκ2
2p2

�
ðp × ωÞ · ∇p

þ
�
� p
Ep

∓ ℏ
χðκ þ 1Þ
2Epp2

p × ðp × ωÞ � ℏ
χκm2ðp · ωÞ

4E3
pp2

p

�
· ∇

�
f�χ

¼ �ℏ
χκm2p · ω
4E3

pp2
p · ∇f�−χ : ð67Þ

Therefore, we establish the kinetic theory

½ ffiffiffi
η

p �
χ ∂t þ ð ffiffiffi

η
p

_xÞ�χ · ∇þ ð ffiffiffi
η

p
_pÞ�χ · ∇p�f�χ

¼ �ℏ
χm2p · ω
4E3

pp2
p · ∇f�−χ ; ð68Þ

with

ffiffiffi
η

p �
χ ¼ 1 − ℏ

χðp · ωÞ
2E2

p
; ð69Þ

ð ffiffiffi
η

p
_xÞ�χ ¼ � p

Ep
� ℏ

χω
Ep

∓ ℏ
χðp · ωÞp

4Ep

�
3

p2
þ 1

E2
p

�
; ð70Þ

ð ffiffiffi
η

p
_pÞ�χ ¼

�
2

�
1−ℏ

χðp ·ωÞ
2E2

p

�
−ℏ

χðp ·ωÞ
2p2

�
ðp×ωÞ: ð71Þ

We set κ ¼ 1 for acquiring the Coriolis force correctly. The
term appearing on the right-hand side of (68) shows that for
the massive fermions right- and left-handed distributions
cannot be decoupled.
Getting inspiration from the left- and right-handed

decompositions of the distribution functions, f0 ¼
fR þ fL, f1 ¼ fR − fL, we write the shell shifts in (39)
and (40) as

ΔE�
f0
¼ ΔE�

f0R
þΔE�

f0L
¼∓ Epp ·ω

2p2
ðfð0Þ�R − fð0Þ�L Þ; ð72Þ

ΔE�
f1

¼ ΔE�
f1R

− ΔE�
f1L

¼∓ p · ω
2Ep

ðfð0Þ�R þ fð0Þ�L Þ: ð73Þ

Hence, for the left- and right-handed fermions we define

ΔE�
χ ¼∓ χ

4Ep

�
1þ E2

p

p2

�
p · ω: ð74Þ

Therefore, the dispersion relations are

ϵ�p;χ ¼ �Ep ∓ ℏ
χ

4Ep

�
1þ E2

p

p2

�
p · ω: ð75Þ

The particle number current density can be written in
terms of the equilibrium distribution function as

j�χ ¼
Z

d3p
ð2πÞ3 ð

ffiffiffi
η

p
_xÞ�χ feq�χ ðϵ�p;χÞ: ð76Þ

Let the equilibrium distribution function be taken as the
Fermi-Dirac distribution:
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feq�χ ðϵ�p;χÞ ¼
1

e�ðϵ�p;χ−μχÞ=T þ 1
; ð77Þ

where μχ is the chiral chemical potential, T is the temper-
ature, and we employed the dispersion relations (75). We
can expand (77) in Taylor series as

feq�χ ðϵ�p;χÞ≈feq�χ ðEpÞ∓ℏ
χ

4Ep

�
1þE2

p

p2

�
p ·ω

dfeq�χ ðEpÞ
dEp

;

ð78Þ

where

feq�χ ðEpÞ ¼
1

eðEp∓μχÞ=T þ 1
: ð79Þ

Notice that the equilibrium distribution function depends
only on the magnitude of the momentum. Therefore, we
can evaluate the angular part of the integral in (76), yielding

j�χ ¼ ℏχω
Z

djpj
24π2

p2
��

� 8

Ep
�m2

E3
p

�
feq�χ ðEpÞ

−
�

1

E2
p
þ 1

p2

�
p2

dfeq�χ ðEpÞ
dEp

�
: ð80Þ

Since the classical terms vanish, the current densities are at
the order of ℏ. Then, the vector and axial vector current
densities, jV ¼ jR þ jL, jA ¼ jR − jL, are accomplished as

jV;A ¼
X
�
ℏω

Z
djpj
24π2

p2
��

� 8

Ep
�m2

E3
p

�
feq�V;A ðEpÞ

−
�

1

E2
p
þ 1

p2

�
p2

dfeq�V;A ðEpÞ
dEp

�

≡ σV;Aω: ð81Þ

We introduced

f�V;A ¼ 1

eðEp∓μRÞ=T þ 1
∓ 1

eðEp∓μLÞ=T þ 1
: ð82Þ

Observe that at zero temperature, the distribution func-
tions transform into the Heaviside step function for positive
energy particles and vanish for negative energy particles.
For simplicity, let us set μR ¼ μL ≡ μ. Then, the vector
current vanishes and the axial vector current gives

lim
T→0

σA ¼ ℏ
2π2

�
3μ2 −m2

3μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q

−
1

2
m2 ln

�
μþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
m

��
θðμ −mÞ: ð83Þ

In the small mass limit we get

lim
T→0

σþA ¼ ℏ
2π2

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

q
−
m2

3

�
θðμ −mÞ: ð84Þ

This result is in harmony with the field theoretic calcu-
lations performed by means of the Kubo formula in [34,35]
when one ignores the last term. However, if one excludes
the chemical potential terms only the m2 term survives. In
fact, the latter is similar to the small mass correction
obtained in curved space in [36].
Although we do not consider the electromagnetic fields,

by inspecting the kinetic equations obtained in [31] one can
observe that the time evolution of spatial coordinates linear
in the magnetic field can be acquired from (70) by
substituting ω with B=Ep. Hence, the related axial current
will produce the finite mass corrections to the kinetic
coefficient of the chiral separation effect.
Let us inspect the chiral (massless) limit: First of all,

(68)–(71) generate the chiral kinetic theory

½ ffiffiffi
η

p C�
χ ∂t þ ð ffiffiffi

η
p

_xÞC�χ · ∇þ ð ffiffiffi
η

p
_pÞC�χ · ∇p�f�χ ¼ 0; ð85Þ

with

ffiffiffi
η

p C�
χ ¼ 1 − ℏ

χω · p
2p2

; ð86Þ

ð ffiffiffi
η

p
_xÞC�χ ¼ � p

jpj ∓ ℏ
χ

jpj3 pðp · ωÞ � ℏ
χ

jpjω; ð87Þ

ð ffiffiffi
η

p
_pÞC�χ ¼ 2p × ω − ℏχ

3ðp · ωÞ
2p2

ðp × ωÞ: ð88Þ

Then, (75) gives the dispersion relation for chiral particles as

ϵC�p;χ ¼ �jpj ∓ ℏ
χ

2
p̂ · ω: ð89Þ

It is consistent with the dispersion relation obtained in
[9,37,38]. Moreover, the dynamical evolution of the spatial
coordinate vector, (87), coincides with the one established in
[26]. Let the equilibrium distribution be given by the Fermi-
Dirac distribution:

feq�χ ðϵC�p;χ Þ ¼
1

e�ðϵC�p;χ−μχÞ=T þ 1
; ð90Þ

Thus, the chiral particle number current densities are
acquired as

jC�χ ¼ℏχω
Z

djpj
3π2

�
�jpjfeq�χ ðjpjÞ−1

4
p2
dfeq�χ ðjpjÞ

djpj
�
: ð91Þ
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We can perform the integrals and obtain the vector and axial
vector currents as

jV ¼ ℏ
μμA
2π2

ω; jA ¼ ℏ

�
T2

12
þ μ2 þ μ2A

4π2

�
ω;

where μ ¼ μR þ μL, μA ¼ μR − μL. These coincide with the
results reported in [20]. Therefore, we conclude that in the
massless limit the chiral vector and separation effects are
generated correctly.

VI. DISCUSSIONS

The VQKE of the Wigner function leads to the transport
equations of the components of the covariant Wigner
function. By integrating them over p0, we write the
equations which the components of 3D Wigner function
obey. They can be separated into the transport and
constraint equations. The vector component of the covar-
iant Dμ ¼ ðDt;DÞ operator depends explicitly on p0 as in
(22). Hence, also the transport equations depend explicitly
on p0, in contrast to the transport equations which have
been defined in [8,31]. p0 integrals are performed by
employing the on-shell conditions of the covariant fields.
Then, D effectively becomes as in (35), which is very
different from the DðEMÞ appearing in [8,31]. Therefore, it
is not possible to generalize the method of [31] directly to
our case. Nevertheless, to study the 3D transport and
constraint equations, we follow the method proposed in
[31] and let each component of the Wigner function satisfy
a different on-shell condition at ℏ order. We presented
these shell shifts and by plugging them into the constraint
equations we expressed the components of the 3D Wigner
function at first order in terms of f0, g0. We consider f0
and g0 as independent components. The main objective is
to establish the semiclassical kinetic equations of the fields
which are chosen as the independent set of components.
After some cumbersome calculations we acquired them as
in (53), (54) and (56), (57).
To accomplish the mass corrections to the chiral (mass-

less) kinetic equations, we have fixed the spin current g0 in
terms of f0 and f1. Then, we derived the kinetic equations of
right- and left-handed distribution functions in (67), which
provide us the kinetic theories of the right- and left-handed
fermions. We acquired their dispersion relations and calcu-
lated particle number current densities by choosing the
equilibrium distribution functions appropriately. We have
shown that the massless case generates the chiral vortical and
separation effects correctly. Therefore, we succeeded in
accomplishing the mass corrections to the chiral effects.
In principle we can consider a system with the non-

vanishing linear acceleration aμ ¼ uν∂νuμ, by adding the
term ðaμuν − aνuμÞ to wμν given in (4). The procedure
which we employed here in obtaining mass shell shifts,
relies on the solutions of the covariant equations reported in

[30]. Hence, to deal with nonvanishing aμ, one should first
study solutions of the kinetic equations obeyed by the
covariant Wigner function components with this alteredwμν,
which would be complicated.
A challenging future research direction is the study of

3D transport theory of VQKE in the presence of electro-
magnetic fields. As far as the contributions linear in
electromagnetic fields and vorticity are concerned, this
can simply be achieved by gathering the results obtained
here and the ones reported in [31], as we discussed after
(84). However, establishing kinetic equations of f0 and g0

up to the first order in ℏ in the presence of only vorticity or
electromagnetic fields is already very difficult. Thus, when
they are considered together, deriving the semiclassical
kinetic equations of f0 and g0 will be a demanding task.
Covariant kinetic equations established in [30] may give
some hints to solve this problem.
Kinetic equations are useful mainly when collisions are

taken into account. Thus, incorporating scatterings in the 3D
formulation is desired. Unfortunately, we do not know how
to do it for the VQKE. In principle, this can be achieved by
considering the collisions in the covariant approach first and
then deal with the 3D VQKE by integrating them over p0.
This will generate collision terms on the right-hand side of
(23a)–(24h). In this respect, the methods employed in
[39,40] can be useful. The other method would be to
introduce collisions to the kinetic equations of the inde-
pendent set of fields (53), (54), (56), and (57). This is
another challenging open problem.

APPENDIX: CALCULATION OF SHELL SHIFTS
FROM THE COVARIANT FORMULATION

Semiclassical solutions of the kinetic equations obeyed
by the components of 4D Wigner function, (8)–(17), have
been presented in [30]. By inspecting ℏ-order components
of those solutions, one observes that some of them are
expressed in the form

Cð1Þi ¼ βð1Þi δðp2 −m2Þ − ΔEiðpÞδ0ðp2 −m2Þ; ðA1Þ

where βð1Þi are first-order fields. One can notice that the 3D
mass shell shifts for these fields can be obtained as

ΔEiðpÞ ¼
Z

ΔEiðpÞδðp2 −m2Þdp0: ðA2Þ

In this fashion, we calculated the on-shell energy shifts for
the following components of 4D Wigner function.

(i) The scalar field F :

F ð1Þ ¼ mδðp2 −m2Þf1V −
m
2
δ0ðp2 −m2Þf0AΣð0Þ

μν wμν:

ðA3Þ
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f0A; f
1
V are scalars and Σð0Þ

μν ¼ −ð1=mÞεμναβpαsβ,
where sμ is the spin quantization direction four-
vector.

ΔE�
f3
ðpÞ¼�m

2

Z
dp0Σ

ð0Þ
μν wμνf0Aδðp2−m2Þ

¼∓ 1

2Ep
ðp×ωÞ ·gð0Þ�

2 − κgð0Þ�
3 ·ω: ðA4Þ

(ii) The axial-vector field Aμ:

Að1Þ
μ ¼ 1

2
ϵμνρσpνΣð1Þρσδðp2 −m2Þ

−
1

2
ϵμνρσwρσpνf0Vδ

0ðp2 −m2Þ: ðA5Þ

Σð1Þ
μν is an antisymmetric tensor field and f0V is a

scalar.
For A0,

ΔE�
f1
ðpÞ ¼ � 1

2

Z
dp0ϵijkwjkpif0Vδðp2 −m2Þ

¼ ∓ κ

2Ep
p · ωfð0Þ�0 : ðA6Þ

For A,

ΔEi�
g0 ðpÞ ¼∓ 1

2

Z
dp0ϵ

iναβwαβpνf0Vδðp2 −m2Þ

¼ −
�
κ

2
ωþ ωp2 − pðω · pÞ

2E2
p

�
i
fð0Þ�0 : ðA7Þ

(iii) The antisymmetric tensor field Sμν:

Sð1Þμν ¼mΣð1Þ
μν δðp2−m2Þ−mwμνf0Vδ

0ðp2−m2Þ: ðA8Þ

For S0i,

ΔEi�
g2 ðpÞ ¼ �m

Z
dp0wi0f0Vδðp2 −m2Þ

¼ mðp × ωÞi
2E2

p
fð0Þ�0 : ðA9Þ

For Sij,

ΔEi�
g3 ðpÞ ¼ �m

2

Z
dp0ϵ

ijkwjkf0Vδðp2 −m2Þ

¼ ∓ mκ

2Ep
ωifð0Þ�0 : ðA10Þ

These are the mass shell shifts which we determine from
the covariant approach.
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