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We study carefully the problem of the bootstrap on the half-line. We show why one needs the full set of
constraints derived from the Stieltjes theorem on the moment problem by reexamining previous results on
the hydrogen atom. We also study the hydrogen atom at continuous angular momentum. We show that the
constraints on the moment problem alone do not fix the boundary conditions in all cases and at least one of
the positive matrices needs to be slightly enlarged to remove unphysical branches. We explain how to solve
the more general problem of the bootstrap for Robin boundary conditions. The recursion relations that are
usually used receive additional anomalous contributions. These corrections are necessary to compute the
moments of the measure. We apply these to the linear potential and we show how the bootstrap matches the
analytical results, based on the Airy function, for this example.
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I. INTRODUCTION

In its simplest form, the quantum mechanical bootstrap
consists of two steps: given some Hamiltonian for a system,
compute moment sequences associated to its eigenvectors,
then check if those moment sequences are consistent with a
general positivity constraint of a truncated matrix of infinite
size [1]. Basically, one computes recursively moments

hOni ¼ hxni ð1Þ
assuming that the state is in an eigenstate of the
Hamiltonian with energy E. This procedure uses commu-
tation relations of the operators xn; xnp with the
Hamiltonian to produce moment sequences for polynomial
potentials from the energy plus any additional parameters
that are required for initializing the sequence. This collec-
tion of parameters is called the search space. One then asks
if these recursively computed sequences are consistent with
the existence of a normalizable eigenstate solution of the
Schrödinger equation. Any linear combination operator
O ∼

P
n anOn must satisfy a positivity constraint

hO†Oi ≥ 0: ð2Þ
This constraint can be thought of as a unitarity constraint: that
the Hilbert space norm of Ojψi is positive. This constraint

can be violated for some finite sequence an if E is not in the
spectrum of the Hamiltonian, but this statement is not
automatically guaranteed. One can think that this failure is
due to missing some additional information which the
sequence (1) is not capturing on its own.
This procedure has been analyzed in a number of

examples [2–7], which include some of our previous work
in the subject. When the procedure works, one seems to get
close to the correct values of E exponentially fast in the size
of the computed sequence of the an. From here one can
guess and check for the allowed values of certain state
parameters, like the energy or the value of specific
positional moments and determine valid solutions of the
bootstrap equations up to some value nmax ≡ K, which we
call the depth of the test.
How can we check if a moment sequence is allowed?

This is answered by a set of questions (and answers) from
the mathematical literature—the so-called classical
moment problems. Given some possibly infinite interval
I ⊆ R, the moment problem is formulated as follows: given
a real sequence an, does there exist a positive measure dμ
supported on I such that an ¼

R
I x

ndμ?
The three classical moment problems are those of

Hamburger, Stieltjes, and Hausdorff, corresponding to
the intervals R;Rþ ≅ ½0;∞Þ and [0, 1], respectively [8].
These are the three topological types of one-dimensional
intervals. In a previous paper of ours, we numerically
bootstrapped the spectrum of the hydrogen model to
show the efficacy of the bootstrap method. However,
we were unable to correctly obtain the s-wave states
(l ¼ 0).
The reason for this was that we checked an incomplete

set of constraints. The radial sector of the hydrogen
model is quantum mechanics on the half-line Rþ.
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Hence, checking for valid measures requires using the
theorem of Stieltjes:
Stieltjes, 1894. Let fang be a sequence of real numbers.

The an correspond to the moments of a normalizable
measure μ on Rþ, i.e., an ¼

R∞
0 rndμ, if and only if the

two matrices with elements Mij ¼ aiþj, M̃ij ¼ aiþjþ1,
0 ≤ i, j ≤ K − 1 are positive semidefinite for all K.
In this notation, we need dμ ≥ 0, so μ is a nondecreasing

function. The measure μ is not necessarily unique; it is
provided the an do not grow too quickly. These growth
conditions are usually satisfied by proper bound states in
quantum mechanics.
The notable difference between this result and the result

for the moment problem on R is the positivity condition on
the second matrix M̃.1 The necessity of this requirement
follows from positivity of the norm: consider an operator
O ¼ ffiffiffi

r
p P

cnrn. Such an operator is well defined when the
position operator is positive r > 0. Then, in any state,
positivity of the expectation value hO†Oi ≥ 0 implies the
condition, for ∀ cn:

hO†Oi ¼
X
n;m

c�nhrnþmþ1icm ≥ 0

This is equivalent to positive (semi)definiteness M̃ ≽ 0.
Proving sufficiency of this condition is more difficult
and is related to extensions of positive, symmetric
operators [9].
The positivity condition on the second matrix introduces

new constraints on the moments, leading to improved
convergence of the numerical algorithm. While this gen-
erally improves the performance of the algorithm for
problems on the half-line, there remain aspects of the
bootstrap for half-line problems which are not obviously
addressed by the bootstrap problem as defined so far.
Essentially, we need to understand the role and determi-
nation of boundary conditions. After we revisit our earlier
work on the hydrogen model, where we show that this
theorem addresses the shortcomings of our previous work,
we introduce the Airy model. The results from the Airy
bootstrap are intriguing as they betray some implicit
assumptions about boundary conditions in the most
naïve way of computing the recursion relations for the
an. This naturally leads to more technical discussion of the
data that we supply the bootstrap and allows us to generate
the terms required to specify boundary conditions. The
main new understanding is that the recursion relations that
are used to iteratively compute the moments from some
initial data of the moments receive additional anomalous
contributions. These anomalous terms arise from a failure
of some boundary terms to vanish in mathematical

manipulations that require integrating by parts. These same
terms vanish naturally in the problem over R, because the
measure decays sufficiently fast at infinity. The proper
theory of why this happens overRþ has to do with domains
of dependence of operators (understanding correctly the
space of functions on which the operators act). In this case
we solve the problem of how to determine the recursion
equations when we impose Robin boundary conditions.

II. BOOTSTRAPPING HYDROGEN, REVISITED

Here we present results from a numerical bootstrap of the
hydrogen model, utilizing both Stieltjes matrices, instead of
just the Hamburger matrix as was done in [2]. We refer the
reader to our previous paper for more background. To
quickly summarize, candidate values of the energy E of
some eigenstate are chosen from an interval. The following
recursion relation between moments hrni holds for energy
eigenstates:

0 ¼ 8mEhrm−1i þ ðm − 1Þ½mðm − 2Þ − 4lðlþ 1Þ�
× hrm−3i þ 4ð2m − 1Þhrm−2i ð3Þ

Thankfully this recursion may be initialized only with the
energy of the state E, which by the virial theorem directly
determines the moment hr−1i. We choose values of the
energy E, generate a moment sequence of some length, and
apply the positivity conditions of the Stieltjes moment
problem for a matrix of finite size K. This allows us to rule
out energy values which do not correspond to eigenstates.
The result, for different sizes K of the pair of Hankel
matrices, is shown in Fig. 1. The essential behavior of the
bootstrap algorithm is the same. The convergence using
both Stieltjes matrices is exponential with a speedup over
using just the Hamburger matrix. We can also easily detect
the l ¼ 0 states, which were previously inaccessible.
Figure 1 shows qualitatively how the allowed intervals
converge. For intervals which form around a given energy
level, we can plot the convergence with K on a logarithmic

FIG. 1. Allowed energies for the hydrogen bootstrap with
l ¼ 0, for sizes of Hankel matrices 5–15. Exact energies are
in gray: in our units, they are En ¼ −1=ð2n2Þ for n ≥ lþ 1.

1Recall that the moment problem on R, the Hamburger
problem, requires only positivity of the matrix with elements
Mij ¼ aiþj, 0 ≤ i, j ≤ K − 1 at all depths K.
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plot and see that it is exponential in the matrix size K, as in
Fig. 2. The flat portions which begin each curve represent
the depths before which a given interval becomes disjoint.
The addition of the second Stieltjes matrix is crucial for
getting the bootstrap to pick up the l ¼ 0 states. Including
this matrix improves our earlier results considerably: the
spectrum is completely detectable and the convergence is
better, especially for low l as shown in Fig. 3.

A. l < 1 and strange states

An outstanding question about the quantum mechanical
bootstrap is what data it truly receives about the problem.
For instance, the bootstrap is completely agnostic about the
quantization of the angular momentum parameter l,
provided one forgets about the three-dimensional origin
of the model. A spectrum exists for the radial Hamiltonian
for any (positive) value of the parameter l. We want to
analyze this possibility more carefully to try to understand
how the bootstrap deals with this problem. There are two
reasons to do this. First, the problem is analytically soluble.

Second, the solutions can become slightly singular at
r ¼ 0; this can be used to better understand what happens
at the boundary of the interval and how the bootstrap
program responds to that information.

1. Analytical predictions

When the azimuthal parameter l is quantized, the
solutions to the radial hydrogen problem are Laguerre
polynomials with exponential decorating factors. Let us
relax the quantization condition and consider the equation

−
1

2
f00ðrÞ þ

�
lðlþ 1Þ

2r2
−
1

r

�
fðrÞ ¼ ð−EÞfðrÞ ð4Þ

for arbitrary 0 < l < 1 and with r > 0, E > 0. Multiplying
this by r2 brings it into a form similar to that of the
hypergeometric differential equation. The general solution
is expressed in terms of Whittaker’s confluent hypergeo-
metric functions:

fðrÞ ¼ αMk;μðzÞ þ βMk;−μðzÞ

where the parameters are

k ¼ 1ffiffiffiffiffiffi
2E

p μ2 ¼
�
lþ 1

2

�
2

z ¼ 2r=k

Another set of solutions is given by the WhittakerM andW
functions, but the basis above will work well for our
purposes.
We require that the solution fðrÞ is in L2ðRþÞ. This

requires that solutions vanish at infinity. For real z → ∞,
the Whittaker M-function has leading order asymptotic
expansions [10]

Mk;�μðzÞ ∼
Γð1� 2μÞ
Γð1

2
� μ − kÞ e

1
2
zz−k ð5Þ

The M-function diverges exponentially at infinity unless
the gamma function in the denominator diverges as well.
This would require

1

2
� μ − k ¼ −n where n ∈ N ð6Þ

Keeping this in mind, we can examine the behavior of these
functions near the origin. Not all functions in the Hilbert
space are finite at 0—they need only be normalizable.
This means that we may have fðrÞ ¼ czs½1þOðzÞ� for
s > −1=2 and still have a function which is locally L2 at the
origin. As z → 0, the M-function behaves as

Mk;�μðzÞ ¼ z
1
2
�μ½1þOðzÞ� ð7Þ

For μ > 0 the (þ) branch is zero at the origin and
is acceptable. If 1=2 < μ < 1, the (−) branch is

6 8 10 12 14 16 18 20
depth K

10- 6
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10- 4
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0.100

1

Interval width
Size of islands vs. K

FIG. 2. Interval width versus matrix size K on a logarithmic
axis, with l ¼ 0. Each line represents an interval which forms
around an exact energy level and shrinks as K increases.

FIG. 3. Comparing the Hamburger (M ≽ 0, solid) and Stieltjes
(M; M̃ ≽ 0, dashed) checks. Interval width versus K for the
lowest two states, with l ¼ 1.
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square-integrable but infinite at r ¼ 0, which is also
acceptable. But if μ ≥ 1, the (−) branch will be non-
normalizable.
The condition (6) is exactly a quantization condition. Let

us consider first the (þ) branch. Rewriting in terms of
physical parameters, it says that

1þ lþ n ¼ k ¼ 1ffiffiffiffiffiffi
2E

p

for some non-negative integer n. The physical energy
is Eph ¼ −E and is thus quantized by principal number
n > 0 as

EðþÞ
ph ¼ −

1

2ðnþ lþ 1Þ2 ð8Þ

which is exactly the same as the quantization rule for
integral l, simply continued to fractional values (note that n
now starts at 0). For the (−) branch of (6), we find the
quantization rule

Eð−Þ
ph ¼ −

1

2ðn − lÞ2 ð9Þ

for n ≥ 0. Recall that this only corresponds to normalizable
eigenfunctions in the regime 0 < l < 1=2. Despite their
normalizability, they are infinite at the origin. As a result
there are no inverse radial moments hr−pi, p > 0 which are
defined for these solutions.

2. Bootstrapping 0 < l < 1

Running a bootstrap for values 0 ≤ l ≤ 1 gives an
interesting regime in which to examine how the two
Stieltjes matrices affect convergence and to see the sig-
natures of the Whittaker functions. Figure 4 displays
bootstrap data for K ¼ 10 at various values of l,
showing the allowed energy intervals vertically and check-
ing only the Hamburger matrixMij ¼ hriþji. When l ¼ 0,

checking the Hamburger matrix alone does not disallow
any energy values. As l increases to fractional values, the
allowed intervals shrink and the positions of the “excited”
intervals shift upwards, in accordance with perturbative
expectations. Once l ¼ 1 the Hamburger matrix works
decently to bootstrap all the excited states. It should be
noted that at l ¼ 1=2 it is well known that the Hamiltonian
becomes essentially self-adjoint: this coincides with the
disappearance of the second branch of solutions (the ones
that become non-normalizable). This evidence makes it
plausible that to understand the issues that arise due to the
boundary, we need to look very carefully at the question of
which operators are self-adjoint.
When we run the same experiment but use the positivity

checks for both Stieltjes matrices (i.e., now including
M̃ij ¼ hr1þiþji) displayed in Fig. 5, some interesting
results emerge. First, the l ¼ 0 states appear. There is
also a new, disjoint series of intervals that the bootstrap
detects which decrease in energy as l increases. These are
precisely the states with energies (9), which are infinite at
the origin. We can eliminate them by adding another matrix
to our positivity constraints.
Consider the matrix with elements M0

ij ¼ hriþj−1i;
0 ≤ i; j ≤ K − 1. For any eigenstate accessible through
the recursion, the hr−1i moment is well-defined and
proportional to the energy of the state by the virial theorem
(this is implied by e.g., (3) with m ¼ 1). Positivity of M0 is
thus another necessary condition for moment sequences
derived from physical (finite energy) eigenstates of the
hydrogen Hamiltonian.2

Finally, we can carry out a bootstrap where we check
positivity of both Stieltjes matrices M; M̃ in addition to the
matrix M0 just introduced. Shown in Fig. 6, adding this
additional positivity constraint eliminates the descending
states visible for l < 1=2. While demanding positivity of

FIG. 4. K ¼ 10 bootstrap for various values of l, using only the
matrix Mij ¼ hriþji. One can see that convergence grows better
as l increases. Exact (hydrogen) energies in gray; Whittaker
predictions in dashed gray, red.

FIG. 5. K ¼ 10 bootstrap with both Stieltjes matrices M; M̃.
There is a set of “states” which decrease in energy as l increases,
only while 0 ≤ l ≤ 1=2.

2The physical requirement here is that e.g., the moment hViψ is
well defined for eigenstates ψ ; this is not mathematically required
for the pure eigenvalue problem.
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this final matrix M0 is reasonable within the context of
quantum mechanics, from the Stieltjes problem point of
view these states did correspond to acceptable probability
measures. By enforcing that the first inverse moment hr−1i
is defined, we were able to impose a “soft” boundary
condition on the state.

III. FIXING THE MICROCANONICAL
BOOTSTRAP

In correctly implementing the bootstrap for the hydrogen
model, we learned that including new positivity checks
carved out new regions of allowed parameter space at a
given depth K. For example, with l ¼ 0, using only the
Hamburger matrix left a large region of parameter space
(energy) unconstrained.
Recently, Nakayama [11] has explored the idea of

bootstrapping the microcanoncial ensemble (MCE) of a
given classical dynamical system. This is exactly the ℏ → 0
limit of a quantum system: normalizabilty and probabilistic
interpretations remain but the dynamics are altered.
Specifically, one term of the recursion (a term that is
proportional to ℏ) vanishes. The recursion for moments of
measures on R was

0 ¼ 2mEhxm−1i þ 1

2
mðm − 1Þðm − 2Þhxn−3i − hxmV 0ðxÞi

− 2mhxm−1VðxÞi: ð10Þ

The MCE moment recursion for a general potential on R is

0 ¼ 2mEhxm−1i − hxmV 0ðxÞi − 2mhxm−1VðxÞi: ð11Þ

Nakayama considers this for the double-well potential
VðxÞ ¼ −x2 þ x4. They perform a numerical bootstrap
checking positivity of the Hamburger matrix. Demanding
that hxi ¼ 0 constrains all odd moments to vanish. The
Hamburger matrix thus takes the form

MðKÞ ¼

2
66666666664

1 0 hx2i � � � hxK−1i

0 hx2i ..
.

hx2i . .
. ..

.

..

. . .
.

0

hxK−1i � � � � � � 0 hx2K−2i

3
77777777775

The result of checking positivity of this matrix in the
fE; hx2ig plane is shown in Fig. 7. The result is that for
energies E > 0, which live above the double well, checking
positivity of the Hamburger matrix works well. At suc-
cessive depths the allowed region of parameter space
shrinks to a small envelope around the classical E; hx2i
curve. This was the result of Nakayama, who noted that the
large peninsula for E < 0 persists at higher depths of the
Hamburger matrix. They conjectured that the peninsula was
a feature of the MCE bootstrap, not a bug.
This would be surprising: the expectation should be that

the exact allowed region (K → ∞) in the MCE bootstrap is
exactly the classical curve relating E; hx2i—since every
member of the ensemble is just the classical system. This is
apparently not the result obtained using just the Hamburger
matrix.
However, there is a large family of constraints that we are

missing. For any energy E < 0, the particle spends no time
at the origin. In other words, given an energy E < 0, the
associated classical motion has zero support as x → 0 in
phase space. As a result, all (classical) inverse moments of
x are finite. That is to say that when E < 0, the following
integral over the classical motion converges for ∀ n ∈ Z:

FIG. 7. Allowed parameter values for various depths K of the
Hamburger matrix and classical relation pictured. For E < 0 a
large “peninsula” appears.

FIG. 6. K ¼ 10 bootstrap checking the three matrices
M; M̃;M0. Spectrum flows upward as l increases, as expected
from perturbation theory. The bootstrap now does not detect the
states (9).
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hxnicl ¼
1

T

I
xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþ x2 − x4
p dx

where the integral here is over an orbit of the classical
motion defined by the turning points xi∶ −x2i þ x4i ¼ E.
The quantity T is the period of the nonlinear oscillations,
given by T ¼ H

dt ¼ H
dxð_xðtÞÞ−1.

Since all the inverse moments are well defined, we may
consider operatorsOI ¼

P
K
n¼−K cnxn acting on states. This

will descend to a positivity constraint on a new Hankel
matrix MI which contains inverse as well as positive
moments. The matrix MI at level K will take the form

MðKÞ
I ¼

2
66666666664

hx−ðK−1Þi hx−ðK−2Þi � � � hx−1i 1

hx−ðK−2Þi hx−ðK−3Þi hxi
..
. . .

. ..
.

hx−1i . .
. hxK−2i

1 hxi � � � hxK−2i hxK−1i

3
77777777775

Norm positivity hO†
IOIi ≥ 0 implies that MðKÞ

I ≽ 0 for all
depths K. This becomes an additional positivity constraint
which is well defined for E < 0.
To integrate this into the bootstrap, we simply use the

recursion (11) to generate negative moments, using the
parameters E; hx2i to initialize as before. Then we can carry
out a bootstrap checking only the Hamburger positivity
constraint for energies E > 0 as before, but checking
positivity of both the Hamburger matrix and the new
matrix MI for energies E < 0. The result, shown in
Fig. 8, conforms to expectations: the bootstrap converges

everywhere to a small envelope surrounding the classical
curve. This simply shows that to get the bootstrap to work
properly, one needs to consider all physically allowable
constraints. By including these inverse moments one can
cut down on the peninsula of allowed parameter space. In
this case, when we test for the inverse moments we are
checking that the particle does not reach into the forbidden
region. The Hamburger problem would tell us that for each
of the unphysical solutions there is still a measure that
satisfies the moment problem. That measure must neces-
sarily be nonvanishing near the origin: otherwise the
inverse moments would be well defined. Such a measure
that does not vanish near the origin would violate con-
servation of energy in the classical system, where there
cannot be any tunneling. The lesson here is clear, as was
also the case for the hydrogen atom: the classical (math-
ematical) moment problem alone is not sufficient to
determine completely the physically acceptable solutions.
Additional constraints might be required that enlarge the

set of inequalities to test. Only when this additional input is
specified do we get a complete solution. This should be
contrasted with the statement found in footnote 20 of [1],
which implicitly argues that the procedure always con-
verges (defines a density matrix), but where the list of all
operators O described in that paper is not sufficiently
detailed to guarantee convergence to the correct answer.

IV. BOOTSTRAPPING THE HALF LINE

The hydrogen problem showed that bootstrapping on the
half-line is not quite the same as bootstrapping onR. Let us
consider another problem from undergraduate quantum
mechanics: the linear potential. This model is nice because
like hydrogen, the recursion for the model may be
initialized by the energy E alone:

hxmi ¼ 1

2mþ 1

�
2mEhxm−1i þ 1

2
mðm − 1Þðm − 2Þhxm−3i

�

ð12Þ

We consider this problem on the half-line, and carry out an
algorithm identical to that of the hydrogen bootstrap, using
the Stieltjes positivity check. The result is a bootstrap
which converges nicely to the exact energies as computed
by standard numerical techniques, as in Fig. 9. Notably, the
bootstrapped spectrum corresponds to the exact energies of
the system with Dirichlet boundary conditions for the wave
functions: ψð0Þ ¼ 0. Why has the bootstrap selected this
boundary condition versus a mixed or Neumann condition?
After all, when dealing with the trigonometric bootstrap on
the circle [4–6], all the possible quasiperiodic boundary
conditions appeared as possible solutions of the bootstrap
equations. Essentially, the recursion relations were agnostic
in that case on the specific choice of boundary conditions.

FIG. 8. “Fixed”MCE bootstrap for various depths K. Including
the new positivity constraint removes the peninsula and the
bootstrap converges everywhere to the classical curve.
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The answer in this case is that because we have failed to
specify boundary conditions at the origin, the recursion
(12) is incomplete (data is missing). The issue of boundary
conditions in the bootstrap is subtle. The half-line provides
a good testing ground for dealing with the boundary
conditions, as it is really not a priori clear what to do
about the origin.
It turns out that the half-line is rife with issues as a

quantummechanical system. Wewill introduce these issues
and see that they are essentially related to questions of the
domains of certain unbounded operators. In order to find a
self-adjoint Hamiltonian, we will need to define some
boundary conditions. We will see how these boundary
conditions enter the bootstrap recursion relations, then
revisit the linear potential.

A. Quantum mechanics on the half-line

For simplicity, we will assume that “doing quantum
mechanics” on the half-line means solving the eigenvalue
problem

−
d2ψ
dx2

þ VðxÞψ ¼ Eψ ð13Þ

for functionsψðxÞ ∈ L2ðRþÞ on the half-line x ≥ 0 and their
eigenvalues E. In the usual quantum mechanical treatment,
one would say that the Hamiltonian is the operator

Ĥ ¼ p2 þ VðxÞ ð14Þ

where the operators x, p obey the canonical relation
½x; p� ¼ i. We wish to determine the spectrum of H. Of
course, to serve as the physical energy operator of a system,
the Hamiltonian should have only real eigenvalues; it must
be self-adjoint. Textbooks would introduce this as the
condition that ðϕ; HψÞ ¼ ðHϕ;ψÞ for all states ψ ;ϕ ∈ H.
In a finite-dimensional Hilbert space, this is the condition of
“Hermiticity,” and is equivalent to self-adjointness. But in

the infinite-dimensional case we are interested in, the
situation is more subtle.
Most operators in familiar one dimensional quantum

mechanics are unbounded—indeed, any Hamiltonian with
arbitrarily large eigenvalues is unbounded. This means that
for ψ ∈ H, an unbounded operator Amay map states out of
the Hilbert space, i.e., Aψ ∉ H. To avoid this possibility,
the definition of an unbounded operator A consists of how
the operator acts on functions as well as a declaration of an
operator domainDðAÞ, a dense subspace ofH. The domain
DðAÞ is the preimage of H under the operator A.
The required restriction of operator domains is just the

familiar task of supplying boundary conditions to eigen-
value problems like (13). By supplying boundary condi-
tions for the solutions, we eliminate some functions in the
Hilbert space from the domain of consideration for the
operator. The role of these operator domains has been
extensively studied; see e.g., Refs. [9,12–14].
Operator domains are also important for self-adjointness.

Two conditions must be satisfied for an unbounded
operator H with domain DðHÞ to be self-adjoint. It must
be symmetric, i.e.,

ðHϕ;ψÞ ¼ ðϕ; HψÞ ∀ ϕ;ψ ∈ DðHÞ ⊂ H:

The second condition is that its adjoint shares the same
domain: DðHÞ ¼ DðH†Þ. In general, DðHÞ ⊆ DðH†Þ.
Only when the domain of the operator coincides with
the domain of its adjoint does the spectral theorem
apply. We will consider two examples of these issues:
the momentum operator on the half-line and the
Hamiltonian (14) on the half-line.

1. No momentum on the half-line?

Let us consider the operator p ¼ −i∂x acting on func-
tions ψ ∈ L2ðRþÞ. The boundary conditions at infinity are
already fixed by the Hilbert space. The operator p is
symmetric when ðpϕ;ψÞ − ðϕ; pψÞ ¼ 0. This places con-
ditions on the domain DðpÞ:

ðpϕ;ψÞ−ðϕ;pψÞ¼0¼
Z

∞

0

dxiϕ̄0ψþ iϕ̄ψ 0 ¼ iϕ̄ð0Þψð0Þ

where we have integrated by parts. This seems to suggest
that we define DðpÞ ¼ fψ ∈ L2ðRþÞjψð0Þ ¼ 0g, so that p
is symmetric on DðpÞ. But what about Dðp†Þ? By
definition the adjoint satisfies ðp†ϕ;ψÞ ¼ ðϕ; pψÞ for ψ ∈
DðpÞ and ϕ ∈ Dðp†Þ. As above we can write

ðp†ϕ;ψÞ−ðϕ;pψÞ¼
Z

∞

0

dxiϕ̄0ψþ iϕ̄ψ 0 ¼ iϕ̄ð0Þψð0Þ¼0:

Because of the conditions on ψ , the above is true for
any ϕ ∈ L2ðRþÞ which is finite at the origin. Thus,

FIG. 9. Numerical bootstrap for depths 5 ≤ K ≤ 12 (increasing
vertically) for the Airy model/linear potential. Intervals are
energy values allowed at a given depth. Dashed vertical lines
are the exact energies for Neumann (ψ 0ð0Þ ¼ 0) states and solid
vertical lines are the Dirichlet (ψð0Þ ¼ 0) energies.
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Dðp†Þ ≠ DðpÞ, and the momentum operator is not self-
adjoint on DðpÞ.
One may wonder if we could suitably enlarge the domain

of p so thatDðp†Þ ¼ DðpÞ. In fact, there is a theory of such
“operator extensions.” Given a symmetric, but not self-
adjoint operator, it may be possible to extend the domain of
definition so that the operator becomes self-adjoint. The
existence of these self-adjoint extensions can be cleanly
characterized in terms of deficiency indices: given a closed
symmetric operator A, define two integers n� by

n� ¼ dim ker½i ∓ A��

Morally, this quantity measures “how much” of the
spectrum of A fails to be real, and hence how A fails to
be self-adjoint. It can be shown that the operator A is self-
adjoint if and only if n� ¼ 0, and that A has self-adjoint
extensions if and only if nþ ¼ n− [9]. By explicitly
computing the deficiency subspaces, one can follow a
maze of theorems to explicitly construct self-adjoint
extensions. A useful theorem of von Neumann implies
that for real potentials, the differential operator in (13) has
equal deficiency indices nþ ¼ n−.
In the case of the momentum operator, one can easily

solve the equations pψ ¼ −iψ 0 ¼ �iψ in L2ðRþÞ and
realize that the deficiency subspaces are mismatched:
nþ ≠ n−. This shows that there is no suitable self-adjoint
momentum operator on the half-line. Trying to define such
an operator can lead to various paradoxes [13]. Recently,
the authors in [15] also considered these issues. They define
a suitable momentum operator by passing to a cover
of the Hilbert space. For our purposes, we are mostly
concerned with the Hamiltonian, rather than the momen-
tum alone.

2. Self-adjoint Hamiltonians

Despite not having a self-adjoint definition of momen-
tum, we can define a domain on which the Hamiltonian
(14) is truly self-adjoint. To construct this space we proceed
essentially as before. The condition that the Hamiltonian
H ¼ −∂2x þ VðxÞ is symmetric is

ðHϕ;ψÞ − ðϕ; HψÞ ¼ 0 ¼
Z

∞

0

dx − ϕ̄00ψ þ ϕ̄ψ 00

¼ ϕ̄ð0Þψ 0ð0Þ − ϕ̄0ð0Þψð0Þ

This is satisfied if we require ψð0Þ þ aψ 0ð0Þ ¼ 0 (and
similar for ϕ) for a constant a ∈ C ∪ f∞g (these linear,
mixed boundary conditions are sometimes called “Robin”
conditions). Dirichlet conditions correspond to a ¼ 0 and
Neumann conditions to a ¼ ∞. Let us consider this subset
of L2ðRþÞ as a candidate domain forH. IsH self-adjoint on
this domain?

As above, we can calculate ðH†ϕ;ψÞ − ðϕ; HψÞ for
ψ ∈ DðHÞ, ϕ ∈ DðH†Þ and demand that the result van-
ishes. Doing so gives the condition

½ϕ̄ð0Þ þ aϕ̄0ð0Þ�ψ 0ð0Þ ¼ 0 ⇒ ϕð0Þ þ āϕ0ð0Þ ¼ 0:

This is exactly equivalent to the condition on the states
ψ ∈ DðHÞ provided the parameter a is real. We can
conclude that H ¼ −∂2x þ V is self-adjoint on the domain

DaðHÞ¼fψ ∈L2ðRþÞjψð0Þþaψ 0ð0Þ¼0 a∈R∪f∞gg:
ð15Þ

We notice that there is a one-parameter family of such
domains, indexed by the (dimensionful) extension param-
eter a. It remains to understand how confining ourselves to
this domain will affect the recursion relations that generate
the bootstrap. Indeed, the extension parameter a does
represent a physical aspect of the system to which the
bootstrap should be sensitive.
To illustrate the physical consequences [13], consider the

free particle on Rþ; −ψ 00 ¼ Eψ with ψð0Þ þ aψ 0ð0Þ ¼ 0.
The solutions with E ¼ k2 are forward and backward
traveling plane waves:

ψ ¼ Aeikx þ Be−ikx:

When we impose the boundary condition, the solution
becomes

ψ ¼ Aðe−ikx þ ReikxÞ; R ¼ aik − 1

aikþ 1
:

We can interpret the (pure phase) R as a reflection
coefficient, jRj ¼ 1. Physically, the interpretation is that
the boundary conditions at the origin reflect waves with a
phase shift argR that depends on the extension parameter a.
Finally, we note that in the case of the moment problem/

bootstrap on R, these issues of operator domain are of less
concern. The boundary conditions associated with L2ðRÞ
ensure that most familiar Hamiltonians are essentially self-
adjoint. This is detailed in appendix B.

B. Anomalies in the recursion

We have seen that for problems on the half-line, finding a
self-adjoint Hamiltonian required us to define a one-
parameter family of domains DaðHÞ. The bootstrap recur-
sion should be sensitive to this entire family of physically
inequivalent quantizations of the system.
To investigate these effects, let us consider the “0þ 1”

dimensional version of Noether’s theorem, which is usually
introduced as Ehrenfest’s theorem [16]. For an operator
A and a Hamiltonian H, Ehrenfest’s theorem governs the
time evolution of expectation values of the operator A in a
state ψ :
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d
dt

hAiψ ¼
�
∂A
∂t

�
ψ

þ ih½H;A�iψ ð16Þ

When we derived the bootstrap recursion (e.g., in
Refs. [1,2]), we used the linear constraints h½H;Oi�iψ ¼
0 for some set of operators Oi, which are usually some
monomial xnpm. This constraint is equivalent to setting
(16) to 0, at least for operators without explicit time
dependence. We are saying that the expectation value of
these operators is time-independent, which constrains us to
eigenstates–or, more generally, time-independent density
matrices. This is just the statement that in eigenstates, time
evolution is just a pure phase rotation.
Given the discussion in the previous sections, the

expression in (16) should ring some alarm bells.
Specifically, the quantity h½H;A�iψ is only well defined
if ψ ∈ DðHÞ ∩ DðAÞ. This is a very strong assumption.
Without this assumption, one must be more careful. Let us
assume ψ is an eigenstate of H, so ψ ∈ DaðHÞ and
Hψ ¼ Eψ . Then, due to the eigenvalue equation, the
following expression vanishes so long as ψ ∈ DðAÞ:

ðHψ ; AψÞ − ðψ ; AHψÞ ¼ Eðψ ; AψÞ − Eðψ ; AψÞ ¼ 0

However, this is not equivalent to the quantity ðψ ; ½H;A�ψÞ.
The commutator ½H;A� algebraically generates a new
operator. There is no guarantee that ψ is in the domain
of this new operator. The correct relation is instead

ðHψ ;AψÞ−ðψ ;AHψÞ¼0¼ðψ ; ½H;A�ψÞþhðH†−HÞAiψ :
ð17Þ

The first term is the algebraic commutator extended to
DðHÞ. But there is now an extra term A≡ hðH† −HÞAiψ .
This modification to the Ehrenfest theorem has been
noticed before in the literature [13,14]. It is dubbed an
“anomaly,” which is an appropriate term for a number of
reasons. First, like the chiral anomaly in gauge theory, it is a
total derivative term. It also appears as an additive modi-
fication to the “normal” Ehrenfest theorem (16); one can
consider this a 0þ 1-dimensional anomalous Ward iden-
tity. Dealing with operator domains is genuinely a quantum
effect that alters conservation equations—an anomaly.
Note that A ¼ 0 when A keeps DðHÞ invariant, as H† ¼

H on DðHÞ by construction. But this is often not the case.
By using the constraint h½H;O�iψ ¼ 0, we were unwit-
tingly extending the algebraic commutator to the whole
space DðHÞ. For the bootstrap program, the correct con-
straint to use is (17). One should evaluate the commutator
½H;A� algebraically and evaluate the anomaly term A for
states ψ ∈ DðHÞ.

C. A correct recursion

Let us apply these new ideas to generate a complete
recursion for bootstrapping the positional moments on the
half-line. Including the anomaly, the bootstrap recursion is
generated by the following constraint on operators O in
energy eigenstates ψ ∈ DaðHÞ, which we take to be real:

0 ¼ ðψ ; ½H;O�ψÞ þ hðH† −HÞOiψ : ð18Þ

Let us take the Hamiltonian to be H ¼ p2 þ VðxÞ and our
first trial operator asO1 ¼ xn. The algebraic commutator is

½H;O1� ¼ ½p2; xn� ¼ −2inxn−1p − nðn − 1Þxn−2

where we will always “normal order” x in front of p. We
can evaluate the anomaly by explicitly integrating by parts:

A1 ¼ hðH† −HÞxniψ ¼
Z

∞

0

dx − ψ 00xnψ þ ψ∂2xðxnψÞ

¼ −
Z

∞

0

dxψ 00xnψ þ ½ψ∂xðxnψÞ − ψ 0xnψ j∞0

þ
Z

∞

0

dxψ 00xnψ

¼ −lim
x→0

nxn−1ψ2

A1 ¼ −δn;1ψð0Þ2

As promised, the anomaly is a surface term, picking up a
dependence on the state boundary conditions. The result is
a modified constraint which will help build the recursion:

0 ¼ 2inhxn−1piψ þ nðn − 1Þhxn−2iψ þ δn;1ψð0Þ2: ð19Þ

We can proceed the same way using the trial operator
O2 ¼ xnp. The algebraic commutator is

½H;O2� ¼ −2inxn−1p2 − nðn − 1Þxn−2pþ ixnV 0ðxÞ

while the anomaly term may be evaluated to yield

A2 ¼ iδn;1ψð0Þψ 0ð0Þ:

There is a special case when n ¼ 0. In that case, we need to
evaluate

hðH†−HÞpi¼ i
Z

∞

0

−ψ 00ψ 0 þψψ 000 ¼−iðψ 0Þ2j∞0 þ iψψ 00j∞0
¼ iðψ 0ð0ÞÞ2þ iψð0Þ2ðE−Vð0ÞÞ ð20Þ

where we used the Schrödinger equation to relate the
second derivative to ψ .
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The result is another modified constraint:

0 ¼ 2inhxn−1p2iψ þ nðn − 1Þhxn−2piψ
− ihxnV 0ðxÞiψ − iδn;1ψð0Þψ 0ð0Þ: ð21Þ

To generate the full recursion relation, we use (19), (21) and
the eigenvalue equation:

hxn−1p2iψ ¼ Eψ hxn−1iψ − hxn−1VðxÞiψ : ð22Þ

The result is the following recursion relation for problems
on the half-line, with boundary conditions ψð0Þ þ
aψ 0ð0Þ ¼ 0 in a given state for n > 0:

0 ¼ 2nEψhxn−1iψ þ 1

2
nðn − 1Þðn − 2Þhxn−3iψ

−2nhxn−1Viψ − hxnV 0iψ þ δn;2ψ
2
0 þ δn;1

ψ2
0

a
ð23Þ

and

0 ¼ −hV 0iψ þ ðψ 0
0Þ2 þ ψ2

0ðE − Vð0ÞÞ ð24Þ

for n ¼ 0. In these equations ψ0 ≡ ψð0Þ. By including the
anomaly terms, the recursion is now sensitive to the choice
of operator domain for the Hamiltonian. We see that the
recursion (12) that we used for bootstrapping the linear
potential omitted these contact terms, which amounted to
setting ψ0 ¼ 0; a specific choice of operator domain. Also
we chose h1i ¼ 1without paying attention to it, but without
the anomaly term, we would have obtained the contra-
diction h1i ¼ 0. That is why the results uncovered only the
Dirichlet energy spectrum. In the next section, we will
revisit the Airy problem and apply these results to the
numerical bootstrap.

1. Bound states and the delta function

As usual, the n ¼ 1 case of the recursion (23) gives us
the virial theorem:

Eψ ¼ hViψ þ 1

2
hxV 0ðxÞiψ þ 1

2
ψ0ψ

0
0:

There is now an anomalous contribution to the energy, one
which vanishes in the case of either pure Dirichlet or
Neumann boundary conditions. Interestingly, this contri-
bution persists when V ¼ 0. Let us consider this free
particle on a half-line. The recursion suggests there should
be a state with energy

Ea ¼ −
1

2a
ψ2
0:

This state is created by the boundary conditions. It is also
exactly the same as the energy of a state bound in an

inverted delta function potential on R (see Appendix A,
also [13]).
This gives us some physical insight to the situation

regarding the anomaly: the boundary conditions at the
origin are like adding a delta function source. This delta
function source must come with a dimensionful parameter,
e.g., a scale, for the Hamiltonian to be dimensionally
consistent. The free particle on the half-line does not have
translation invariance, but it does have dilatation, or scale,
invariance. In the quantum theory, the boundary conditions
introduce a dimensionful parameter, breaking the classical
scale invariance of the system. This is thus the simplest
possible example of a conformal anomaly.

D. The Airy bootstrap (slight return)

Let us consider the linear potential again, this time using
the anomaly-corrected recursion (23). Our recursion is thus,
for n > 0,

hxni ¼ 1

2nþ 1

�
2nEhxn−1i þ 1

2
nðn − 1Þðn − 2Þhxn−3i

þ δn;2ψ
2
0 þ δn;1

ψ2
0

a

�

In the case of Dirichlet boundary conditions ψ0 ¼ a ¼ 0,
both contact terms vanish and we are left with the recursion
(12). This gave us a one-dimensional search space fEg
which correctly yielded the Dirichlet spectrum. In the case
of Neumann conditions a → ∞, one of the contact terms
persists while the other vanishes, and the recursion depends
also on ψ0.
We can consider the case of Neumann BCs as a two-

dimensional bootstrap search space fE;ψ0g. By borrowing
the methods of [6] for the double well potential, we can
perform the numerical bootstrap by searching for points
which pass the positivity checks in the ðE;ψ0Þ plane. This
bootstrap should recover both the Dirichlet and Neumann
spectra (and no others); allowed islands which form along
the axis ψ0 ¼ 0 should do so at the Dirichlet energy levels.
The result is shown in Fig. 10. The bootstrap correctly

finds the Dirichlet levels and the Neumann levels, while not
returning results for states with mixed boundary conditions:
this is expected as we did not include both contact terms.
To find the mixed spectra, we could increase the dimension
of the search space once more, bootstrapping the free para-
meters fE;ψ0;ψ 0

0g (bootstrapping a would require a ∈
ð−∞;∞Þ which is computationally undesirable). In this
way we can fully specify the desired boundary conditions
for any problem on the half-line via the recursion (23). We
note that in the current release of Mathematica, the native
differential eigensystem solver can only handle homo-
geneous Dirichlet/Neumann boundary conditions. While
the algorithmic implementation of the bootstrap here is
much slower, it is already capable of solving a wider class
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of problems, especially if one is only interested in low-
lying energies.
To demonstrate that the bootstrap can correctly find the

full Robin boundary conditions, we can perform a low-
resolution search for positivity in the 3d space of
fE;ψ0;ψ 0

0g then project down into the fE; ag plane by
taking a ¼ −ψ0=ψ 0

0. We can analytically compute the
dependence of the eigenvalue E on the parameter a. The
normalizable solution of −f00 þ xf ¼ Ef is f ∝ Aiðx − EÞ.
So we should have aðEÞ ¼ −Aið−EÞ=Ai0ð−EÞ. The results
are shown in Fig. 11. Due to the larger dimension of the
search space, getting numerically satisfactory results is
computationally intensive, at least done in the most naive,
brute-force way. But the “experimental” data clearly con-
forms with our analytical expectations. This verifies that
the anomalous contributions in the recursion do correctly
account for the Robin boundary conditions.

V. CONCLUSION

The power of the bootstrap approach to quantum
mechanics is due to its reliance on the algebraic structure
of the problem. The benefit of this approach is that the
algebraic structure is usually known a priori, and no
explicit knowledge of the dynamics is required. We rely
on positivity constraints inherited from the unitarity of
representations, and linear constraints are furnished by the
commutation relations between the operators in question.
We showed how sometimes we needed to supplement the

naïve moment problem relations with additional physical
constraints on moments of inverse powers of functions.
These additional constraints were able to impose physically
sensible boundary conditions at the origin: sufficient fast
decay at the origin, or vanishing of the measure on a small
interval around the origin. Correctly including these con-
straints allowed us to cut down areas of the search space
which in previous work remained unconstrained. Some of
these constraints are mathematically required while others
serve to disqualify unphysical solutions.
For problems on the half-line, the standard treatment in

the Schrodinger picture requires one to supply boundary
conditions to solve the differential equation. It is not so
obvious how one might interpret these data from an
algebraic perspective on quantum mechanics. The correct
interpretation is that of defining domains of self-adjointness
for the Hamiltonian and its constituent operators. By
carefully considering these definitions, we were able to
extract anomalous contributions to the bootstrap recursion
which allowed us to fully specify any mixed linear
boundary condition for a state on the half-line.
The fact that these anomalous contributions arose from

demanding Hermiticity of the Hamiltonian is quite fitting
for the bootstrap story, where the fundamental constraint
is unitarity. Unitarity gives us the positivity condition on
the moment matrices. Unitarity of time evolution in turn
requires that the Hamiltonian is self-adjoint. One can really

FIG. 10. Bootstrapping the Dirichlet and Neumann spectra by
passing to a search space of dimension two, with free parameters
E;ψ0. With our mass normalization (H ¼ p2 þ x for the Airy
model) the value of the lowest-energy Neumann wave functions
at the origin are E1 ∼ 1.02;ψð0Þ ∼ 0.9907334 and E2 ∼ 3.25;
ψð0Þ ∼ 0.554854. These values are computed directly with
Mathematica, taking care to have orthonormal wave functions.
The results of the bootstrap are consistent with these. Also
notice that the figure seems to show that the lowest Neumann
eigenvalue seems to disappear at K ¼ 7; 8. This is a numerical
issue due to searching the region without enough resolution in
the grid.

FIG. 11. Projecting a 3d bootstrap into the ðE; aÞ plane. While
numerically sparse, the bootstrap data agrees with the analytical
predictions for the Robin boundary conditions. The vertical
signal at E ≈ 2.33 corresponds to the Dirichlet ground state.
The grid we used has low resolution and misses valid solutions
where the allowed regions are smaller than the grid size we used.
The purpose was to show that the method works to solve the
problem of the various boundary conditions.
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regard these anomalous contributions to the bootstrap
recursion as another constraint inherited from unitarity.
Despite our ability to fully specify bootstrap data for

half-line problems, the situation needs further study for
problems on an interval or the circle. For the problem on the
circle, the techniques used here do not reveal any missing
contributions, as we verify in Appendix C. Other methods
[5] are required in order to properly extract i.e., the
quasimomentum dispersion relation for periodic potentials.
While our numerical methods that have been used work

well enough as a proof-of-concept, they are still mostly
naive and scale very inefficiently with the dimension of the
search space. The problem is algorithmic: how to find good
regions of the search space before doing positivity tests.
One approach to mitigating this effect might be to try to

translate the bootstrap problem into a “semi-definite pro-
gram”. This is a well-studied class of convex optimization
problems. With such an approach, the matrix of correla-
tions, e.g., Mij ¼ hxiþji, becomes the optimization varia-
ble. The objective function is a scalar defined over the
cone of positive semi-definite matrices, linear in the matrix
elements. Solvers for these types of problems employ
various algorithms to make searching the high-dimensional
space tractable. One may then try to add constraints to the
optimization. Generally, such constraints should be linear
in the correlation matrix elements. However, the bootstrap
recursion for eigenstates (23) is nonlinear. If one fixes the
energy, the problem becomes linear and the goal is then to
find a solution (any solution) that satisfies the constraints.
We are currently looking into this possibility, but that
approach is beyond the scope of the present paper.
Another option that has been used in the literature, is

done by relaxing the nonlinear equalities to inequalities on
a new matrix variable [17,18]. SDP solvers have also been
applied to the quantum mechanical bootstrap to numeri-
cally bound the ground state energies from below [19], both
in one-particle systems and multisite spin chains, however,
they are not yet set up to deal with the full spectral problem.
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APPENDIX A: THE DELTA-FUNCTION
POTENTIAL

Consider the Hamiltonian with a delta function potential:

H ¼ −
d2

dx2
−
1

a
δðxÞ ðA1Þ

We can just use the recursion (10) for moments of
distributions on the real line. When we evaluate the
expectation values of the potential, the delta-function will
pick up residues of the state ψ .

mhxm−1VðxÞi ¼ −
m
a

Z
R
dxxm−1ψðxÞ2δðxÞ

¼ −
1

a
lim
x→0

mxm−1ψðxÞ2

⇒ mhxm−1VðxÞi ¼ −
1

a
δm;1ψ

2
0

where ψ0 ≡ ψð0Þ and we are now using the Kronecker
delta. Similarly,

hxmV 0ðxÞi ¼ −
1

a

Z
R
dxxm

d
dx

½δðxÞ�ψ2

¼ 1

a

Z
R
dxδðxÞ d

dx
½xmψ2�

¼ 1

a

Z
R
dxδðxÞ½mxm−1ψ2 þ 2xmψψ 0�

⇒ hxmV 0ðxÞi ¼ 1

a
δm;1ψ

2
0

where we integrate by parts to make sense of the distri-
butional derivative, and are considering only m ≥ 1. This
results in a recursion relation with a contact term:

0 ¼ 2mEhxm−1i þ 1

2
mðm − 1Þðm − 2Þhxm−3i þ 1

a
δm;1ψ

2
0

ðA2Þ

which furnishes constraints for m ≥ 1. The known solution
for an inverted delta-function potential is ψðxÞ ∼ e−κjxj.
Hence the moments should grow approximately like
gamma functions, and the derivative will be undefined at
the origin. When m ¼ 1 the recursion gives

E ¼ −
1

2a
ψ2
0: ðA3Þ

This is the virial theorem. Continuing, the vanishing of the
odd moments is guaranteed by the m ¼ 1 case which sets
hxi ¼ 0. The rest of the even moments may be computed by
a simple recursion for n ≥ 1:

hx2ni ¼ −
n
2E

ð2n − 1Þhx2n−2i: ðA4Þ

Note that positivity of the even moments requires E < 0,
which by (A3) requires a > 0. The bootstrap already tells
us that normalizable states only live in the inverted delta
potential.
We can actually solve this recursion explicitly. First, the

normalization constraint fixes hx2i ¼ −ð2EÞ−1. This then
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uniquely determines all higher moments hx2ni. The
result is

hx2ni ¼ ð−1Þn ð2nÞ!ð4EÞn :

We know the wave function PDF to be even by symmetry.
Consider the Fourier transform of the wave function PDF. It
may be expressed as a power series in the moments:

F ½jψðxÞj2�ðkÞ ¼
Z

∞

−∞
dxe−ikxjψ j2 ¼

X∞
m¼0

ð−ikÞm
m!

hxmi

¼
X∞
n¼0

ð−1Þn k2n

ð2nÞ! hx
2ni

where we have used the vanishing of the odd moments in
the last step. Using our expression for the even moments we
can evaluate the sum as

F ½jψðxÞj2�ðkÞ ¼
X∞
n¼0

k2n

ð4EÞn ¼
4E

4E − k2
:

Finally we invert the Fourier transform to obtain an explicit
form of the wave function (PDF):

jψðxÞj2 ¼
ffiffiffiffiffiffiffi
−E

p
e−2

ffiffiffiffiffi
−E

p jxj:

This is an example where the moment recursion solves the
system explicitly.

APPENDIX B: THE BOOTSTRAP IS
WELL-BEHAVED ON R

In this section we quickly review some theorems which
classify a large set of familiar, real-line Hamiltonians as
self-adjoint, in the formal sense of operator domains
discussed in section IV. Let us consider the following
Hamiltonian on L2ðRÞ:

H ¼ p2 þ VðxÞ ¼ −
d2

dx2
þ VðxÞ ðB1Þ

When the potential is real V∶R → R, a theorem of von
Neumann [9] states that the deficiency indices of the
Hamiltonian are equal: nþ ¼ n−. This means that such
Hamiltonians are either essentially self-adjoint or admit
self-adjoint extensions. Note that for states in L2ðRÞ, the
Hamiltonian (B1) is symmetric by virtue of the boundary
conditions.
Consider the space C∞

c ðRÞ ⊂ L2ðRÞ of smooth functions
with compact support on R. If we let DðHÞ ¼ C∞

c ðRÞ, a
theorem of Kato and Rellich [9,20] classifies the self-
adjointness of H based on properties of the potential VðxÞ.

A special case of the theorem (see 9.39 in Hall Ref. [20]) is
as follows.
Theorem. Let H ¼ −∂2x þ VðxÞ on the domain

DðHÞ ¼ C∞
c ðRÞ. The operator H is self-adjoint on

DðHÞ if the potential may be decomposed as
V ¼ V1 þ V2 þ V3, where V1 ∈ L2ðRÞ, V2 is bounded,
and V3 ≥ 0 is locally L2. ▪
This class of potentials includes any potential which is

smooth and VðxÞ → ∞ as jxj → ∞. This would include the
harmonic potential, the double well potential, etc. Any
“confining” potential in which the classical physics is
bounded should lead to a self-adjoint Hamiltonian. Thus,
no extra work is needed. The questions of boundary
conditions are answered by the requirement of compact
support. Bootstrapping such problems consists of just
checking the Hamburger matrix.

APPENDIX C: SELF-ADJOINT DOMAINS ON
THE INTERVAL

Given that the inclusion of anomaly terms allowed us to
specify boundary conditions for the half-line bootstrap, one
is tempted to ask if the same can be said for bootstrapping
problems on the interval. Our approach [6] did not allow us
to specify the quasimomentum, so we could only detect
energy bands. Others [4,5] came to the same conclusion,
and tried new methods to obtain the full dispersion relation.
For completeness, we will analyze the problem on an

interval using the same approach as in the previous section:
by precisely defining operator domains and analyzing the
presence of possible anomaly terms. We find that unlike
the half-line, the recursion is insensitive to a large family of
inequivalent boundary conditions on the interval. These
families of boundary conditions have been studied in
multiple contexts [9,14], and essentially correspond to
the theory of Floquet exponents, or, to a condensed matter
theorist, the Bloch quasimomentum.

1. Operator domains

In the following, we will work over the Hilbert space
H ¼ L2½0; 1� with the additional assumption that the states
ψ are smooth. However, we will not assume the states are
real. Consider first the momentum operator p ¼ −i∂x. It is
symmetric when

ðψ ; pϕÞ − ðpψ ;ϕÞ ¼ 0 ¼ ψ̄1ϕ1 − ψ̄0ϕ0

where we use e.g., ϕx ¼ ϕðxÞ. One choice of a symmetric
domain is Dirichlet boundary conditions ψ1 ¼ ψ0 ¼ 0.
However, it is not hard to see that in the case of
Dirichlet boundary conditions, Dðp†Þ will not be con-
strained by any boundary conditions, and hence
DðpÞ ⊂ Dðp†Þ; p will fail to be self-adjoint. However,
symmetricity of p is also achieved when ϕ1 ¼ eiθϕ0 for all
states in the domain DðpÞ. These are “twisted” boundary
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conditions, and include the periodic and antiperiodic
sectors. Furthermore, it can be shown that p is self adjoint
on this domain [14]. Hence, there is a family of suitable
self-adjoint domains for p

DθðpÞ ¼ fψ ∈ H smoothjψ1 ¼ eiθψ0;ψ0 ≠ 0g: ðC1Þ

The situation is somewhat similar for the Hamiltonian
H ¼ p2 þ V ¼ −∂2x þ V. The condition for symmetricity
of H is

ðHϕ;ψÞ − ðϕ; HψÞ ¼ 0 ¼ ðϕ̄ψ 0Þ − ϕ̄0ψ j10:

This is satisfied by Dirichlet boundary conditions. It is
also satisfied if for ∀ψ ∈ DðHÞ we have ψ ;ψ 0 ∈ DθðpÞ.
However, in contrast to the momentum operator,
both choices here will furnish a self-adjoint domain
DðHÞ ¼ DðH†Þ, as one can check by simply taking
ψ ∈ DðHÞ and ϕ ∈ DðH†Þ in the above. In conclusion,
there is another one parameter family of self-adjoint
domains for H:

DθðHÞ ¼ fψ ∈ H smoothjψ1 ¼ eiθψ0;ψ 0
1 ¼ eiθψ 0

0g ðC2Þ

where the two ends of the interval are related to each other.
The other families amount to having general Robin
boundary conditions at each end.
The physical difference between the twisted and

Dirichlet boundary conditions is that of periodic potentials
and the infinite square well. Let us focus on the former, and
assume that we are imposing the twisted condition on our
states. Note that with the Bloch ansatz ψkðxÞ ¼ eikxfðxÞ,

where f is periodic, the state ψk and all its derivatives are in
the twisted sector of DθðHÞ.

2. Anomalies?

Now that we have defined our operator domains, it is
natural to investigate whether there are anomaly terms that
will modify the bootstrap recursion. We will proceed as in
[6] to derive a recursion relation for the Fourier modes
tn ≡ he2πinxiψ . Recall that the anomaly-corrected constraint
we use is

0 ¼ ðψ ; ½H;O�ψÞ þ hðH† −HÞOiψ : ðC3Þ

We will consider the twisted sector DθðHÞ. The anomaly
term vanishes whenever ODθðHÞ ⊆ DθðHÞ. Consider the
operator An ¼ e2πinx. We can verify that for ψ ∈ DθðHÞ,
the state ϕ ¼ Anψ ∈ DθðHÞ also:

ϕ1 ¼ e2πinψ1 ¼ eiθψ0 ¼ eiθϕ0

Consider also the momentum operator p ¼ −i∂x. Letting
ϕ ¼ pψ for ψ ∈ DθðHÞ, we have

ϕ1 ¼ −iψ 0
1 ¼ −ieiθψ 0

0 ¼ eiθϕ0

so that ϕ ∈ DθðHÞ as well. As a result, all the operators
An; p; Anp leave the domain invariant, and hence do not
contribute anomalies. These are the operators needed to
create a recursion for the moments tn ¼ he2πinxiψ , which is
what we based our previous analysis on. For these choices
of operators, we did not omit any anomaly contributions.
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