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A static observer with a finite lifetime has causal access to only a limited region of spacetime known as
the causal diamond. The presence of an apparent horizon in the causal diamond, due to the observer’s
finite lifetime, is the origin of an Unruh-like thermal effect. Thus, even though the observer is static and
the background is flat, the finite-lifetime observer experiences a thermal bath in the Minkowski vacuum.
In this article, we provide an open quantum systems approach that yields a complete thermal
characterization via the observer’s steady-state density matrix, which is shown to be thermal with a
temperature inversely proportional to its lifetime. This associated diamond temperature agrees with the
established result derived from other methods. Moreover, our approach is particularly useful for designing
entanglement harvesting protocols in the causal diamond. In addition, we introduce an insightful
procedure that defines diamond coordinates using conformal transformations, and which leads to a more
direct derivation of the thermal properties.
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I. INTRODUCTION

The concept of the vacuum state is observer dependent
in quantum field theory in curved spacetime. This was
illustrated by Hawking in his seminal papers [1–3] on
thermal radiation emitted by black holes. In another
seminal paper [4], Unruh showed that the Hawking effect
is equivalent to a uniformly accelerated observer detecting
thermal particles in the Minkowski vacuum, and the
temperature is proportional to the acceleration of the
observer. The temperature TU ¼ a=2π (in natural units
ℏ ¼ G ¼ c ¼ kB ¼ 1) is known as the Unruh temperature
and the effect is known as the Unruh effect. The Unruh
effect showed explicitly that the notion of the presence or
absence of particles in a quantum state is related to the
motion of a detector. This was corroborated further by
Davies, Fulling, and others in a series of papers [5–9].
The origin of this thermality is attributed to the presence
of an event horizon (in the case of a black hole) or an
apparent horizon (in the case of a uniformly accelerated
observer) [10]. Due to the presence of a horizon, the
observer can only access a certain region of the spacetime.
Thus, any measurement in the frame of the observer should
involve an average over the degrees of freedom associated
with the inaccessible region. This averaging yields a mixed
state for the observer; and in the specific case of an
accelerated observer, it yields a thermal state. The con-
tribution of the horizon to determination of the thermality
was further illustrated by the conformal field theory
approach, where the central charge of the Virasoro algebra

was shown to be related to the Hawking temperature
[11–14]. Another near-horizon approach used the con-
formal symmetry of the fields near the horizon to show that
it is possible to derive the area-entropy formula for generic
black holes by statistical mode counting [15–17]. In a
recent series of papers, using a quantum optics approach, it
was shown that the presence of the horizon is responsible
for creating the thermal atmosphere in static and stationary
black holes [18–21].
In all the approaches mentioned above, the Unruh effect

and the Hawking effect are always associated with an
accelerated system—either the observer or the field.
However, in 2003, Martinetti and Rovelli, in their seminal
paper [22], showed that a finite-lifetime observer can detect
thermal particles in the Minkwoski vacuum despite being
static. In essence, the birth and death of the finite-lifetime
observer restrict the observer’s causal access to a finite
region of the whole Minkowski spacetime. This is the
region causally connected with the observer with a given
lifetime; thus, it is the intersection between the future light
cone of the birth event and the past light cone of the death
event. Because of its diamond-shaped appearance, this
region is called the causal diamond (Fig. 1). Due to the
presence of the apparent horizons in the causal diamond
structure, the finite-lifetime observer will not perceive the
Minkowski vacuum as a vacuum state. Martinetti and
Rovelli showed that the static observer experiences a
variable temperature in the Minkowski vacuum. The
physical meaning of this result was clarified in a series
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of papers [23–26] in the context of black holes, AdS
spacetime, and Unruh-deWitt detectors.
We particularly focus on the detector approach [23,24],

in which the finite-lifetime observer can be treated as a two-
level system with the energy gap between the two-levels
fixed in the system’s reference frame. These two-level
systems, known as the diamond observers, perceive a
different vacuum state than the Minkowski vacuum and
the excitation rate of these observers in the Minkowski
vacuum is thermal in nature. This temperature TD ¼ 2=πT
is known as the diamond temperature and is inversely
proportional to the lifetime T of the observer. One can also
show that the annihilation and creation operators of a
diamond observer and a Minkowski observer are related
by a nontrivial Bogolyubov transformation [23], which
is a trademark of the inequivalence of the diamond
and Minkowski vacuum. Moreover, the expression for
the diamond temperature satisfies the requirement that
the static observer becomes a Minkowski observer as the
lifetime increases to infinity.
Given the physical relevance of this result, it is worth-

while to explore other derivations of the thermality of the
state of the finite-lifetime observer. In this paper, we focus
on a derivation using the open quantum systems approach,
where the diamond observers are treated as the system and
the scalar field configuration is treated as the environment.
This derivation is important for the following three pur-
poses: (i) it illustrates the role of decoherence in determin-
ing the diamond temperature, (ii) it paves the path for
designing entanglement harvesting protocols between two
diamond observers, and (iii) it can be helpful in simulating
the evolution of the system in a quantum computer. The
role of decoherence in determining the thermality of a
system has been previously illustrated in the literature for
accelerated observers and black holes [27–29]. In our case,
we show that the system-environment interaction can lead

to thermality for a static observer in a causal diamond. This
approach also shows the importance of the role played by
tracing out the environment degrees of freedom to generate
a reduced thermal density matrix for the diamond observer.
On the other hand, the interaction of two observers with the
same environment can lead to enhancement or destruction
of entanglement between the two systems. The open
quantum systems approach offers a more direct way to
evaluate the evolution of the entanglement between the two
particles, as has been illustrated in a number of papers
[27,30–34]. Open quantum systems have also been simu-
lated successfully in quantum computers, and some effi-
cient quantum algorithms have been used to solve specific
cases of the Lindblad equation [35–38]. Therefore, it is
worth studying the open quantum system approach for
causal diamonds as it relates to the feasibility of simulating
it in a quantum computer in the near future.
For an accelerated system, the open quantum system

approach has been used for a broad class of Hamiltonians
and interactions [27,29]. For the purposes of our paper, we
consider a similar approach for causal diamonds and
illustrate the mechanism of decoherence for the case where
the Hamiltonian is directed along the z direction and the
interaction between the diamond observer and the field is a
monopole interaction with a single scalar field. In addition,
we define a coordinate system suitable for the diamond
observer. There are a few variants of the diamond coor-
dinates that have appeared in the literature over the years
[23,26,39]. In this article, we provide a general method of
defining the diamond coordinates using conformal trans-
formations, which is more direct than the one used in the
original derivation by Martinetti and Rovelli [22,39], and
can be traced back to similar forms in the literature [26,40].
This paper is organized as follows. In Sec. II, we discuss

the generic procedure for defining the diamond coordi-
nates, as well as particular cases, including the choice used
by Martinetti and Rovelli, and we consider the trajectory of
a static observer in the diamond coordinates. In Sec. III, we
define our model of an Unruh-DeWitt detector. In Sec. IV,
we briefly outline the open quantum systems approach,
apply the Lindblad equation to our system, and find the
evolution of the density matrix of the system. In Sec. V, we
determine the steady-state density matrix of the system and
discuss its thermal nature. We conclude the paper with a
discussion of our findings and directions for future work
in Sec. VI. Appendix shows the details of a generalized
comparative framework for the Bloch-vector form of the
Lindblad equation.

II. DIAMOND COORDINATES

In the Introduction, we defined the causal diamond to be
the region bounded by the intersection of the past light cone
of the death event and the future light cone of the birth
event of a finite-lifetime observer (Fig. 1). In this section,
we are going to introduce a generic procedure to define

FIG. 1. Here, A is the point of birth of the observer and B is the
point of death. So the length of AB is the lifetime of the observer
T ¼ 2α. The intersection of the future light cone of A and the
past light cone of B is the causal diamond (shaded region in
green). The boundary of this diamond region acts as a horizon for
a diamond observer.
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diamond coordinates, namely, coordinate systems suitable
for the associated diamond observer with a finite lifetime.
Let ðξ; ηÞ denote diamond coordinates that cover the whole
range of the causal diamond region. Such coordinates are
required for the quantization of the field and to describe any
causally accessible event from the observer’s perspective.
However, this coordinate chart is not unique, as will be
obvious from the procedure outlined below; in effect, in the
literature, there exist a few alternative versions of diamond
coordinates. Thus, we propose an underlying principle
for defining such a coordinate chart: the existence of a
nonunique conformal mapping between the right Rindler
wedge R ≔ fðx; tÞ∶jtj ≤ x and x ≥ 0g and the diamond
region D ≔ fðx; tÞ∶jtj þ jxj ≤ αg, where 2α is the lifetime
of the observer. In what follows, we will refer to 2α as the
size of the diamond; and will denote the ðx; tÞ points in
Minkowski space restricted to region R as ðxR; tRÞ, and the
ðx; tÞ points restricted to the diamond region as ðxD; tDÞ. A
visual representation of these regions can be seen in Fig. 2.
Once such a mapping between ðxR; tRÞ ↔ ðxD; tDÞ is

established, we can use the relation between the Rindler
wedge R and Rindler coordinates to define a coordinate
chart ðξ; τÞ suitable for the diamond observer,

τ ¼ αtanh−1
�
tR
xR

�
; ξ ¼ α

2
ln½α−2ðx2R − t2RÞ�; ð1Þ

where ξ; τ ∈ ð−∞;∞Þ, i.e., they cover the whole R2 plane.
Equation (1) gives the inverse transformation of the
relation between the Rindler coordinates and Minkowski
coordinates,

tR ¼ αeξ=α sinhðτ=αÞ; xR ¼ αeξ=α coshðτ=αÞ: ð2Þ

Here, ξ ¼ constant denotes a uniformly accelerated
observer with acceleration ðαeξ=αÞ−1. The sequence of
steps above establishes a mapping from the diamond region
to the R2 plane via the path ðxD; tDÞ → ðxR; tRÞ → ðξ; τÞ.

The ðξ; τÞ coordinate system is suitable for the diamond
observer because each possible value of ðξ; τÞ is connected
to a unique spacetime point in the diamond via this
mapping. For future convenience in Sec. III, we rescale
the time coordinate τ in ðξ; τÞ by a factor of 1=2, i.e., we
define η ¼ τ=2. This rescaling is one-to-one and the new
coordinate chart ðξ; ηÞ also covers the R2 plane. In the new
coordinate system we have

η ¼ α

2
tanh−1

�
tR
xR

�
; ξ ¼ α

2
ln½α−2ðx2R − t2RÞ�: ð3Þ

The critical step in the definition of the diamond coor-
dinates is the conformal mapping between the regions R
and D. The nonuniqueness of this mapping is the reason for
the appearance of different diamond coordinate charts for D
in the literature. In the following, we first provide a generic
procedure to generate such diamond coordinate charts, and
we consider the simplest possible choice that we will later
use for the open quantum systems approach. In addition, we
will show that this general procedure also yields the
coordinate chart used by Martinetti and Rovelli [22,39].

A. General procedure for the conformal mapping

The building blocks for defining the mapping betweenD
and R are the three following conformal transformations:
(1) Special conformal transformation KðρÞ defined as

KðρÞxμ ¼ xμ − bμðx · xÞ
1 − 2ðb · xÞ þ ðb · bÞðx · xÞ ð4Þ

where bμ ¼ ð0;−ρ; 0; 0Þ is directed along the x axis
in four-dimensional spacetime. The dot product
represents the inner product in the Minkowski space
with metric signature ð−;þ;þ;þÞ. The special
conformal transformation KðρÞ maps the right Rin-
dler wedge R to a diamond of size 1=ρ centered at
ð1=2ρ; 0Þ in the ðx; tÞ plane. In general, this type of

(a) (b)

FIG. 2. (a) The shaded region of the (1þ 1)-dimensional Minkowski spacetime shows the right Rindler wedge, which we call R.
(b) The diamond-shaped shaded region D centered at the origin is the causal diamond for a static observer at the origin with finite
lifetime from −α to α.
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special conformal transformation leaves the struc-
ture of the light cone invariant and maps a diamond
region into another diamond region.

(2) Scaling transformation ΛðlÞ defined as

ΛðlÞxμ ¼ lxμ: ð5Þ

This transformation is useful to rescale the size of
the diamond. Applying this transformation on a
diamond of size 1=ρ would yield a diamond of
size l=ρ.

(3) Spatial translation TðaÞ defined as

TðaÞx ¼ xþ a: ð6Þ

This transformation can be used to bring the center
of the diamond to the origin.

The general procedure is a composition of these building
blocks. The first step is to map the right wedge R, which
can be thought of as an infinite-sized diamond, to a finite-
sized diamond using the special conformal transformation
KðρÞ. Once the diamond is brought to a finite size, one can
use rescaling and translation as intermediate steps to bring
the diamond to the desired size and center it at the origin.
One can choose any finite value of ρ for the special
conformal transformation and use multiple rescaling and
translation to get the desired diamond size. This gives rise
to different coordinate charts. Here, one should note that
the generators of the three transformations KðρÞ, ΛðlÞ,
and TðaÞ do not commute. In fact, the generators satisfy
the slð2;RÞ algebra. So, changing the order of the trans-
formations will lead to a different mapping.
The simplest way [26] to map the region R to a diamond

D of size 2α is to use the composite map (see Fig. 3)

Tð−αÞ∘K
�
1

2α

�
: ð7Þ

Here, one maps the region R to a diamond of the desired
size 2α and then uses translation to bring the center of the
diamond to the origin. The scaling transformation is not
used in this case as we directly map R to a diamond of the
desired size. One can use the expression for KðρÞ and

TðaÞ to obtain the mapping between ðxR; tRÞ → ðxD; tDÞ
explicitly:

tD ¼ tR
1þ ðxR=αÞ þ ðx2R − t2RÞ=4α2

; ð8Þ

xD ¼ ðx2R − t2RÞ=4α − α

1þ ðxR=αÞ þ ðx2R − t2RÞ=4α2
: ð9Þ

However, one needs the inverse transformation ðxD; tDÞ →
ðxR; tRÞ to define the diamond coordinates in Eq. (3).
The inverse transformation can be obtained easily using
the inverted composite map K−1ð1=2αÞ∘TðαÞ, where
K−1ð1=2αÞ ¼ Kð−1=2αÞ, which yields the following coor-
dinate chart:

tR ¼ 4α2tD
ðxD þ αÞ2 − t2D − 4αxD

ð10Þ

xR ¼ 4α2ðxD þ αÞ − 2α½ðxD þ αÞ2 − t2D�
ðxD þ αÞ2 − t2D − 4αxD

: ð11Þ

In the remainder of the paper, we are going to use this
particular mapping to define the diamond coordinates due to
its geometric simplicity. However, it is obvious that this is
only one particular way to define the diamond coordinates.
For completeness, we will also rederive the original diamond
coordinates by Martinetti and Rovelli below.

B. Diamond coordinates by Martinetti and Rovelli

For comparison purposes, in Refs. [22,39] the authors
obtained the conformal mapping between R and D using a
composition of scaling, relativistic inversion, translation,
and reflection. However, the transformations used in
Refs. [22,39] can be reconstructed by using the building
blocks described in Sec. II A. In effect, the composite map
we need is

ΛðαÞ∘Tð−1Þ∘Λð2Þ∘Kð1Þ: ð12Þ

One can easily verify that the transformation acting on
coordinates ðxR; tRÞ yields

FIG. 3. Composite map, Eq. (7). The right Rindler wedge R can be thought of as a diamond of infinite size, i.e., a diamond whose
edges are taken to infinity.
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tD ¼ 2tRα
1þ 2xR þ ðx2R − t2RÞ

; ð13Þ

xD ¼ ½−1þ ðx2R − t2RÞ�α
1þ 2xR þ ðx2R − t2RÞ

; ð14Þ

which agrees with the transformation obtained by
Martinetti and Rovelli. In this case, we see that the region
R is first mapped into a diamond of size 1, and then scaling
and translation are used to bring the diamond to the desired
size and centered at origin (Fig. 4). The inverse trans-
formation can be obtained by inverting the composite map.
This inverted mapping is the most common form used in
the literature [23,41]. However, we do not need to go into
detail about the inverse map, as we are going to use
Eqs. (10) and (11) for this article.

C. Static observer with a finite lifetime

Using Eqs. (3) and (10)–(11), we can now define the
diamond coordinates as follows:

η ¼ α

2
tanh−1

�
4α2tD

4α2ðxD þ αÞ − 2α½ðxD þ αÞ2 − t2D�
�
; ð15Þ

ξ¼ α

2
ln

�
16α4t2D − f4α2ðxD þ αÞ− 2α½ðxD þ αÞ2 − t2D�g2

α2½ðxD þ αÞ2 − t2D − 4αxD�2
�
:

ð16Þ

While this transformation looks complicated, we only
need the trajectory for the static observer in the diamond
coordinates for our discussion. This is because, in our open
quantum systems model, the system is the finite-lifetime
static detector sitting at the origin ðxD ¼ 0Þ. Using the
mapping in Eq. (15), one can find the relation between the

diamond proper time η for the diamond observer and
the Minkowski time tD,

η ¼ α

2
tanh−1

�
2αtD

α2 þ t2D

�
: ð17Þ

So, the trajectory of a diamond observer in terms of the
diamond coordinates can be written as

tD ¼ α tanh

�
η

α

�
; ð18aÞ

xD ¼ 0: ð18bÞ

In this section, we have clarified the procedure of
defining the diamond coordinates. We have also obtained
the trajectory of the diamond observer in these coordinates,
and established the relation between the diamond proper
time η and the Minkowski time tD. Our objective now is to
treat the diamond observer and the scalar field as a
composite system. This requires specific details about
the physics of the diamond observer, which we model as
a finite-lifetime two-level system interacting with a scalar
field. This is the subject of the next section.

III. UNRUH-DEWITT DETECTOR
WITH SCALED ENERGY

We can now define a finite-lifetime two-level detector as
the diamond observer which interacts with a scalar field.
A similar construction was used previously by Unruh and
DeWitt for an accelerated detector in the region R to find its
thermal excitation probability [42]. These detectors are
therefore called Unruh-DeWitt detectors. We are going to
use a similar two-level detector as the diamond observer,
but with a slight modification. In this case, the Hamiltonian
of the two-level system is scaled by a factor [23,43] such
that the energy gap between the two levels is fixed with
respect to the proper time of the detector, which is the
diamond time η. For this purpose, we define the
Hamiltonian of the two-level system as

H0
0 ¼

H0

1 − t2

α2

; ð19Þ

where

H0 ¼
ω0

2
σz ð20Þ

is the usual Hamiltonian of a two-level system, with energy
gap ω0. A remark about notation is in order. The time t
appearing in the scale factor in Eq. (19) is strictly the
Minkowski time tD, but we will use t instead of tD for
the sake of simplicity. This is mainly because tD is still the
Minkowski time, albeit restricted to ½−α; α�, and we are not

FIG. 4. Composite map of Eq. (12) that yields the trans-
formation obtained in Refs. [22,39].
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going to use tR in the remainder of this paper—thus
eliminating the source of any confusion. Now we introduce
the interaction HamiltonianH0

I , which is usually taken to be
a monopole or dipole interaction with the scalar field. In
this case, to keep things simple, we will only consider the
monopole interaction. The interaction Hamiltonian is linear
in both the field and detector operator,

H0
I ¼ mσx ⊗ Φ: ð21Þ

Here, m stands for the coupling constant; and we take the
monopole moment operator to be the Pauli matrix σx,
which can be written as the addition of the lowering and
raising operators flipping the state of the two-state system.
The scalar field Φ can be decomposed into field modes
satisfying the Klein-Gordon equation. In general,

Φðx; tÞ ¼
X
k

½ukðx; tÞak þ u�kðx; tÞa†k�; ð22Þ

where uk are the field modes obtained by solving the wave
equation in a particular spacetime background. It now can
be seen that the state jΨi of the detector evolves according
to the Schrödinger equation

djΨi
dt

¼
�

H0

1 − t2

α2

þH0
I

�
jΨi; ð23Þ

in the Minkowski time t. However, for the detector,
the proper time is the diamond time η. Thus, in its own
reference frame, the Schrödinger equation takes the form

djΨi
dη

¼ ðH0 þHIÞjΨi; ð24Þ

where

HI ¼
H0

I

cosh2ðη=αÞ ð25Þ

is the new scaled interaction Hamiltonian. We now see the
effect of the scale factor introduced in the original
Hamiltonian H0

0: it reduces to the Hamiltonian of a two-
level system in the reference frame of the diamond
observer. We will now use this modified interaction
Hamiltonian to find the evolution of the finite-lifetime
detector.

IV. LINDBLAD EQUATION: OPEN QUANTUM
SYSTEMS APPROACH

The state of the detector can be described by the density
matrix of the two-level system. However, the system (the
detector) here is not isolated as it interacts with the scalar
field in a flat spacetime. Due to the interaction, we can
model the evolution of the detector’s state under the

paradigm of open quantum systems. We can treat the field
configuration here as the environment. The field is assumed
to be in the Minkowski vacuum which is the natural choice
of vacuum in this case as the background geometry is flat.
We consider the system-environment interaction to be
weak, so that the Markovian approximation holds. Under
the Markovian approximation, the evolution of the reduced
density matrix of the system (ρS) is governed by the
Lindblad equation [44]

dρS
dη

¼ −i½Heff ; ρSðηÞ� þ L½ρSðηÞ�: ð26Þ

Here, we describe the evolution in terms of the diamond
proper time η.
The right-hand side of the Lindblad equation (26)

consists of two distinctly different terms: the unitary
evolution with respect to a effective Hamiltonian Heff
and the dissipative part L½ρSðηÞ�, which is known as the
Lindbladian operator. The effective Hamiltonian is of
the form

Heff ¼
Ω
2
σz; ð27Þ

where Ω is a renormalized shifted frequency that has
the same origin as the Lamb shift [27,44]. In subsequent
discussions, we do not need the explicit expression for Ω.
The Lindbladian operator L½ρSðηÞ� is defined for a general
interaction of the form HI ¼

P
α Sα ⊗ Bα, where Sα are

operators in the Hilbert space of the system and Bα are
operators in the Hilbert space of the environment (bath).
Then, L½ρSðηÞ� can be written the following form:

L½ρSðηÞ�

¼
X
ω;α;β

γαβðωÞ
�
SβðωÞρSS†αðωÞ −

1

2
fS†αðωÞSβðωÞ; ρSg

�
;

ð28Þ

where f; g stands for the anticommutator and the factors
γαβðωÞ encode the contribution of the environment. The
reduced density matrix ρS of the system can be derived
from the system-environment density matrix by averaging
over the degrees of freedom of the field. This averaging
leads to the factors γαβðωÞ.
In our case, the interaction Hamiltonian only has one

term: HI ¼ mσx ⊗ Φ
cosh2ðη=αÞ. Therefore, the double sums

over α and β are superfluous in the expression of the
Lindblad operator, and Eq. (28) simplifies to

L½ρSðηÞ�¼
X
ω

γðωÞ
�
SðωÞρSS†ðωÞ−

1

2
fS†ðωÞSðωÞ;ρSg

�
:

ð29Þ
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Now, the field is in the Minkowski vacuum, so that its
density matrix is ρB ¼ j0Mih0Mj. In addition, γðωÞ is the
Fourier transform

γðωÞ ¼
Z

∞

−∞
dΔηeiωΔηh0MjBðηÞBðη0Þj0Mi ð30Þ

of the two-point correlation function

GþðΔηÞ≡ h0MjBðηÞBðη0Þj0Mi

¼ h0Mj
ΦðηÞΦðη0Þ

cosh2ðη=αÞcosh2ðη0=αÞ j0Mi; ð31Þ

which has an argument Δη ¼ η − η0 that only depends on
the difference of the values of the two proper times involved
in the Wightman function. This effectively amounts to
using η as the argument of Gþ and setting η0 ¼ 0 without
any loss of generality. This symmetry property will be
verified in the next section.
In order to find the solutions to the Lindblad equation,

we still need to define the factors SαðωÞ. For the case being
analyzed, and omitting the subscripts, SðωÞ is defined using
projection operators ΠðϵÞ ¼ jϵihϵj, where fjϵig defines an
eigenbasis of the Hamiltonian H0 of the system; thus,

SðωÞ ¼
X

ϵ0−ϵ¼ω

ΠðϵÞSΠðϵ0Þ: ð32Þ

For the two-level system, the two energy eigenvalues
are ϵ ¼ �ω0=2 and the eigenbasis of H0 consists of the
eigenvectors j�iz of the σz operator; with this notation,
jϵi ¼ jsgnðϵÞiz, but we will use the standard shorthand j�i
instead of j�iz or jϵi. In addition, when writing the
frequency components SðωÞ, one considers all possible
transitions in the two-level system, according to Eq. (32),
i.e., ω ¼ ϵ0 − ϵ ¼ �ω0; 0. Moreover, for the interaction
Hamiltonian (21), the operator S is just σx. (For a
generalization of this choice, see Appendix.) Therefore,
the only three relevant operators SðωÞ are given by

Sðþω0Þ ¼ j−ih−jσxjþihþj ¼ j−ihþj; ð33Þ

Sð−ω0Þ ¼ jþihþjσxj−ih−j ¼ jþih−j; ð34Þ

Sð0Þ ¼ 0: ð35Þ

In short, we now have all the ingredients to solve the
Lindblad equation. One method for its solution, which is
ideally tailored for a two-level system, consists in repre-
senting the reduced density matrix ρSðηÞ as a Bloch vector
jρðηÞi with components ρiðηÞ (i ¼ 1, 2, 3) defined via the
generic expansion for operators in terms of the basis of the
three Pauli matrices and the unit matrix,

ρS ¼
1

2

�
I þ

X3
i¼1

ρiσi

�
: ð36Þ

The prefactor of one-half guarantees the unit-trace con-
dition of the density matrix, and otherwise defines con-
ventionally the components ρiðηÞ. The equation for the
components ρiðηÞ of the Bloch vector can be found by
expanding all the operators from Eqs. (26), (27), and (36)
in this basis. Then, the Lindblad equation reduces a
Schrödinger-like vector equation for the three-component
Bloch vector jρi of the form

djρi
dη

¼ −2Hjρi þ jni; ð37Þ

where the operator H has the 3 × 3 matrix representation

H ¼

0
B@

A=2 Ω=2 0

−Ω=2 A=2 0

0 0 A

1
CA; ð38Þ

and jni is the constant vector ð0; 0;−2BÞ. Thus, in matrix
form,

0
B@

_ρ1

_ρ2

_ρ3

1
CA ¼ −2H

0
B@

ρ1

ρ2

ρ3

1
CAþ

0
B@

0

0

−2B

1
CA: ð39Þ

In these equations,

A¼1

2
½γðω0Þþγð−ω0Þ�; B¼1

2
½γðω0Þ−γð−ω0Þ�: ð40Þ

In the next section, we are going to find the system’s
steady-state density matrix and investigate its properties,
which determine the thermal character of the system.

V. STEADY-STATE REDUCED DENSITY MATRIX
AND DIAMOND TEMPERATURE

In the evolution of the system interacting with the
environment, a steady state is achieved asymptotically as
η → ∞. At the steady state, the left-hand side of Eq. (37)
becomes zero. This leads to the equilibrium values of the
coefficients ρi which we denote ρið∞Þ; the corresponding
Bloch vector jρSi∞ is

jρSi∞ ¼ 1

2
H−1jni ¼ −

B
A

0
B@

0

0

1

1
CA: ð41Þ

Then, there is only one nonzero component of the
density matrix in the Bloch representation (corresponding
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to the z axis), which is due to the form of the initial
Hamiltonian H0 with a similar decomposition.
Moreover, one can further analyze the evolution of the

density matrix by explicitly solving the linear equation (37)
by direct integration,

jρðηÞi ¼ e−2Hηjρð0Þi þ ð1 − e−2HηÞjρ∞i; ð42Þ

which verifies its asymptotic approach to the form (41).
This analysis can be further extended by evaluating the
exponential e−2Hη of the matrix (38) of degree three by
using the Cayley-Hamilton theorem, which displays the
nonunitary dissipation and decoherence behavior governed
by the thermal Boltzmann factor [27,29]. The coefficients
that govern both the steady-state density matrix and its
evolution with dissipation and decoherence can be found
by evaluating γðωÞ, as can be seen from Eq. (40); this is
given by the Fourier transform of the two-point correlation
function, as in Eqs. (30) and (31). The Wightman function
Gþ only depends on the difference of the values of the
two proper times, i.e., it is a function of the simple
argument Δη ¼ η − η0. This is explicitly verified below.
In flat spacetime, the two-point correlation function
h0MjΦðx; tÞΦðx0; t0Þj0Mi has the expression

h0MjΦðx; tÞΦðx0; t0Þj0Mi ¼ −
1

4π2
1

jt − t0 − iϵj2 − jx − x0j2 :

ð43Þ

For a finite-lifetime diamond detector, the trajectory of the
detector is defined by the relation between Minkowski time
t and diamond time η, as the detector is located at the origin
(x ¼ 0) for the entirety of its existence. In Eq. (18), we
found that the two times are related by t ¼ α tanh ðη=αÞ.
Replacing this in Eq. (43), we get

Gþðη − η0Þ ¼ h0Mj
ΦðηÞΦðη0Þ

cosh2ðη=αÞcosh2ðη0=αÞ j0Mi

¼ −
1

4π2α2
1

sinh2½ðη − η0Þ=α − iϵ� ; ð44Þ

where we have absorbed a positive function of η, η0, α
into ϵ. This verifies, as expected, that the scaled two-point
function above is dependent only on the proper time
interval η − η0. The value of γðωÞ can be computed from
the Fourier transform (30)

γðωÞ ¼ −
1

4π2α2

Z
∞

−∞
dη eiωη

1

sinh2ðη=α − iϵÞ
¼ ω

2π

1

1 − e−παω
: ð45Þ

This integral, with the iϵ prescription, is the key that yields
a thermal density matrix (shown below), and is known from
the Unruh effect [42].
Using Eq. (45), the only nonzero coefficient in the

expansion of the density matrix in Eq. (36) reduces to

ρ3ð∞Þ ¼ −
B
A
¼ γð−ω0Þ − γðω0Þ

γðω0Þ þ γð−ω0Þ
¼ 1 − eπαω0

1þ eπαω0
: ð46Þ

The steady-state density matrix then can be written using
the expansion of Eq. (36),

ρSð∞Þ ¼
� 1

1þeπαω0 0

0 eπαω0
1þeπαω0

�
¼ e−παH0

Tr½e−παH0 � : ð47Þ

This expression has the same form as the density matrix
of the two-level system kept in a thermal bath with
temperature T ¼ 1=β,

ρS ¼
e−βH0

Tr½e−βH0 � ; ð48Þ

if one identifies the temperature with the quantity
T ¼ 1=ðπαÞ. Clearly, the steady-state density operator of
the diamond observer has the form of a thermal density
matrix. Thus, the diamond observer experiences a thermal
bath in the Minkowski vacuum with temperature inversely
proportional to its lifetime,

TD ¼ 1

πα
¼ 2

πT
: ð49Þ

In conclusion, Eq. (49) gives the diamond temperature TD
[23] in terms of T ¼ 2α, the lifetime of the particle or the
size of the diamond (according to Minkowski coordinates).

VI. CONCLUSIONS AND OUTLOOK

In this article, we have introduced a systematic, rigorous
method for defining the diamond coordinates, which
extends existing work in the literature. Furthermore, we
have used the Lindblad equation to identify the state of the
diamond observer in an open quantum systems approach.
This approach provides another meaning for the temper-
ature of the diamond: it is the temperature of the thermal
steady-state reduced density matrix of a two-state finite-
lifetime detector with a scaled energy gap. Such method-
ology has obvious advantages, as the reduced density
matrix provides a full characterization of the state of the
system. Moreover, the open quantum systems approach
opens up new directions for future work. First, it leads
to the quantum information theoretic description of the
system where one can cast the Lindblad equation in terms
of Kraus operators [45,46]. Second, it suggests the fea-
sibility of simulating the system-environment interaction in
the diamond in a quantum computer. Third, it provides a
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methodology for modeling the evolution of the correlation
between two-level finite-lifetime detectors, possibly lead-
ing to an entanglement harvesting protocol. Finally, this
framework has great potential for revisiting a broad range
of problems at the intersection of general relativity and
quantum field theory.
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APPENDIX: GENERALIZED COMPARATIVE
FRAMEWORK FOR THE BLOCH VECTOR
FORM OF THE LINDBLAD EQUATION

The calculation shown in the main text, Sec. III, leading
to the Schrödinger-like Bloch-vector form of the Lindblad
equation (37), specializes to an interaction Hamiltonian
(21). This Hamiltonian involves a system’s operator that is
proportional to σx alone, i.e., S ¼ σx; or, more generally,
S ¼ mσx, including a coupling strength m. In this appen-
dix, we present a larger framework that is a modified (and
simplified) alternative to the one in Ref. [27], adapted for a
comparison of different literature results using a uniform
notation. This should help clarify some possible confusion
regarding the selection of numerical factors in the final
equations for H and ½jni� as needed for Eq. (37), including
those found in published references—see Eqs. (A13)
and (A14). Additional generalizations are possible, follow-
ing the techniques of Ref. [27]—but unlike this reference,
we are only considering the case where the effective
Hamiltonian (27) of the two-level system has a quantization
axis along z.
The generic system’s operators can be written in the form

S ¼
X
μ

mμσμ; ðA1Þ

with a set of coupling strengths mμ (μ ¼ 0, 1, 2, 3),
and with the usual conventions for the Pauli matrices:
σj ≡ σx; σy; σz, for j ¼ 1, 2, 3, and σ0 ≡ I for the identity
matrix. In this basis, the general resolution of the density
matrix is given by Eq. (36). As discussed in the explanation
for Eqs. (32)–(35), there are only three possible transitions
in the two-level system, with ω ¼ ϵ0 − ϵ ¼ �ω0; 0, which
give the only three relevant components of SðωÞ:

S� ≡ Sð�ω0Þ ¼ ðm1 � im2ÞP∓�;

S0 ≡ Sð0Þ ¼ m0I þm3σ3; ðA2Þ

with the operators P∓� ¼ j ∓ih�j ¼ ðσx ∓ iσyÞ=2.

For the field operators, we will keep the parameters
defined in Eq. (40), and further expand them to include the
transition of zero frequency, i.e.,

A ¼ 1

2
½γðω0Þ þ γð−ω0Þ�; B ¼ 1

2
½γðω0Þ − γð−ω0Þ�;

C ¼ γð0Þ − A: ðA3Þ

The intermediate steps in the calculation of the compo-
nents of Eq. (37) are as follows. They involve repeated
application of the definitions of the Pauli matrices and their
product relations σjσk ¼ δjkI þ iϵjklσl (as well as use of
the Einstein summation convention for any pair of repeated
indices). First, for the products in the first term of Eq. (29),
at each transition frequency,

S�ρS
†
� ¼ 1

2
ðm2

1 þm2
2Þð1� ρ3ÞΠ∓; ðA4Þ

S0ρS
†
0 ¼

�
1

2
ðm2

0 þm2
3Þ þm0m3ρ3

�
I

þ
�
m0m3 þ

1

2
ðm2

0 þm2
3Þρ3

�
σ3

þ 1

2
ðm2

0 −m2
3Þðρ1σ1 þ ρ2σ2Þ; ðA5Þ

where Π� denotes the projectors Π� ¼ ðI � σ3Þ=2.
Second, for the anticommutators in the second term of
Eq. (29), the products S†�S� ¼ ðm2

1 þm2
1ÞΠ� and S†0S0 ¼

ðm2
0 þm2

3ÞI þ 2m0m3σ3 give

1

2
fS†�S�;ρg¼ðm2

1þm2
1Þ
�
1

2
Π��

1

4
ρ3Iþ

1

4
ρjσj

�
; ðA6Þ

1

2
fS†0S0; ρg ¼ 1

2
S†0S0 þm0m3ρ3I

þ 1

2
ðm2

0 þm2
3Þðρ1σ1 þ ρ2σ2 þ ρ3σ3Þ: ðA7Þ

Then, the building blocks of the Lindbladian include

L� ¼ S�ρS
†
� −

1

2
fS†�S�; ρg

¼ ðm2
1 þm2

2Þ
�
∓ 1

2
σ3 −

1

4
ðρ1σ1 þ ρ2σ2 þ 2ρ3σ3Þ

�
;

L0 ¼ S0ρS
†
0 −

1

2
fS†0S0; ρg ¼ −m2

3ðρ1σ1 þ ρ2σ2Þ; ðA8Þ

so that
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L ¼ γþLþ þ γ−L− þ γ0L0 ðA9Þ

¼ ðm2
1 þm2

2Þ
�
1

2
σ3ð−γþ þ γ−Þ −

1

4
ðρ1σ1 þ ρ2σ2 þ 2ρ3σ3Þðγþ þ γ−Þ

�
− γ0m2

3ðρ1σ1 þ ρ2σ2Þ; ðA10Þ

with the notation γ� ¼ γð�ω0Þ and γ0 ¼ γð0Þ. Rearranging
the terms in Eq. (A10),

L ¼ −B0σ3 −
1

2
A0ðρ1σ1 þ ρ2σ2 þ 2ρ3σ3Þ

− γ0m2
3ðρ1σ1 þ ρ2σ2Þ; ðA11Þ

where A0 ¼ ðm2
1 þm2

2ÞA and B0 ¼ ðm2
1 þm2

2ÞB.
As a result, with the resolution in terms of Pauli

operators, the Lindblad equation (26) takes the form

1

2
_ρkσk ¼ −

Ω
2
ϵ3kjρjσk − B0σ3

−
�
1

2
A0 þm2

3γ0

�
ðρ1σ1 þ ρ2σ2Þ −

1

2
ð2A0Þρ3σ3;

ðA12Þ

where the first term on the right-hand side arises from
the unitary-evolution commutator ½Heff ; ρ� ¼ ½ðΩ=2Þσ3;
ðI þ ρjσjÞ=2� ¼ −iðΩ=2Þϵ3kjρjσk. Also, 1

2
A0 þm2

3γ0 ¼
½1
2
ðm2

1 þm2
2Þ þm2

3�Aþm2
3C. Then, the linear combina-

tions of Eq. (A12) in the Pauli-matrix basis lead to the
components satisfying the Bloch-vector form of the
Lindblad equation

0
B@

_ρ1

_ρ2

_ρ3

1
CA ¼ −2H

0
B@

ρ1

ρ2

ρ3

1
CAþ

0
B@

0

0

−2ðm2
1 þm2

2ÞB

1
CA; ðA13Þ

where the last term, jni, is the constant vector
ð0; 0;−2ðm2

1 þm2
2ÞBÞ, and the operator H has the 3 × 3

matrix representation

H ¼

0
BBBBB@

�
1
2
ðm2

1 þm2
2Þ þm2

3

�
Aþm2

3C Ω=2 0

−Ω=2
�
1
2
ðm2

1 þm2
2Þ þm2

3

�
Aþm2

3C 0

0 0 ðm2
1 þm2

2ÞA

1
CCCCCA
: ðA14Þ

In conclusion, if one considers a nonzero interaction with
contributions from all the Pauli matrices, and with all the
couplings set to the same value mμ ¼ m ¼ 1, then the
components of the Bloch-vector equation reduce to

H ¼

0
B@

2Aþ C Ω=2 0

−Ω=2 2Aþ C 0

0 0 2A

1
CA

¼

0
B@

Aþ γð0Þ Ω=2 0

−Ω=2 Aþ γð0Þ 0

0 0 2A

1
CA; ðA15Þ

and jni ¼ ð0; 0;−4BÞ; this agrees with the results in the
original paper of Ref. [27] [for the particular case of an
effective Hamiltonian (27) with quantization axis along z].
But when using only the Pauli matrix σx, as in the main

text of our paper, then Eqs. (38) and (39) are obtained.
Clearly, the latter case cannot be obtained from the former
one by just enforcing the lack of transitions with zero
frequency, i.e., by setting γð0Þ ¼ 0, because both Pauli
matrices σx and σy generate this outcome but contribute
separately to the final result in Eqs. (A13) and (A14)—this
is a subtlety that can easily lead to inconsistent results [e.g.,
the combination of Eqs. (4), (13), and (15) in Ref. [29]].
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