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Motivated by recent experimental progress, we study scalar wave propagation over an imperfect draining
vortex, which can serve as an analog for rotating and nonrotating extreme compact objects (ECOs). We
encapsulate the absorbing properties of the analog ECO by means of an effective boundary located around
the analog horizon. The presence of reflection at the effective boundary, characterized by a single parameter
K, allows for the existence of bound states located between the effective vortex core and the angular
momentum barrier. The existence of these bound states leads to an enhanced absorption when the
frequency of the incoming wave matches bound state frequencies, which result in Breit-Wigner type
spectral lines in the absorption spectra. We also investigate the case of rotating analog ECOs. In this
scenario, some of the bound states undergo superradiant amplification and become unstable. In both the
rotating and nonrotating case, we calculate numerically transmission/reflection spectra exhibiting the
enhanced absorption/amplification. We complement our numerical study with WKB estimates as well as an
extension of the Pöschl-Teller toy model which we solve analytically. Our simple model exhibits distinctive
properties which could be observed in future analog gravity experiments. We further argue that the
observation of the spectral lines could be a way to characterize the effective field theory at play in the
vicinity of the vortex core.
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I. INTRODUCTION

Recent years have seen an increase in efforts to exper-
imentally observe various effects predicted in classical and
quantum field theory in curved spacetimes using condensed
matter platforms. The quest to probe elusive phenomena in
systems ranging from classical hydrodynamics and Bose-
Einstein condensate to nonlinear optics has been made
possible by an analogy between excitations in a moving
fluid and scalar fields propagating in a curved spacetime
[1,2]. This analogy has already stimulated experiments
reporting on the observation of Hawking radiation [3–7],
superradiance [8,9], quasinormal mode oscillations [10]
and cosmological particle production [11]. While the

original analogy offered a novel perspective as well as a
new set of tools to study a multitude of fundamental effects,
it nonetheless relies on strong assumptions on the system
under investigation which rarely apply perfectly in exper-
imental settings.
In this paper, we focus on the scattering of waves with a

draining vortex flow, a system which can be thought of as
an analog of a rotating black hole. Two key features of
rotating black holes, namely the ergoregion and horizon,
are located in a vortex where the total velocity of the fluid
and the radial velocity become equal to the propagation
speed of the waves respectively. Due to the large flow
velocities close to the vortex core, it is expected that extra
hydrodynamical effects, such as vorticity [12], may be
present and spoil the simplistic draining bathtub model of
the vortex whose core is a perfect absorber, e.g., [13–20].
To this end, we introduce an effective model in the form of
a draining vortex with a partially reflective boundary
condition inside the core. Hints of core reflections have
already been found in existing analog gravity experiment,
e.g., in [21] it was shown that the reflection coefficient for
high frequency counter-rotating azimuthal modes tends to a
finite constant, which is suggestive of reflection occurring
in the core.
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In our model, the effective boundary condition at the
center of the vortex is located a small distance outside the
analog horizon and is described by a single quantity,K. Our
model does not aim to describe the underlying phenomena
responsible for the imperfect absorption at the vortex core,
rather, we focus on the signature of the presence of core
reflections, making our findings applicable not only to the
draining bathtub vortex but to a wide class of systems
(namely, ones containing a horizon and ergosphere). We
show that the presence of this effective boundary condition
results in an enhanced absorption of the waves for specific
frequencies, which are visible through the presence of
spectral lines in the transmission spectrum. This effect has
been studied in an astrophysical setting, where extremely
compact objects (ECOs) surrounded by an effective boun-
dary also exhibit sharp lines in the absorption cross section
[22]. The case of rotating compact objects with similar
boundary conditions was studied in [23].
We will see that in the case of a rotating vortex, this

enhanced absorption coupled with rotational superradiance
causes a drastic amplification of the incoming wave at
particular frequencies. Superradiant amplification is the
result of negative wave energy inside the ergosphere [24],
and, when this negative energy is absorbed, the escaping
part of the wave is amplified and the overall reflection
coefficient exceeds unity. Due to the imperfect absorption
in the core, part of the negative energy wave can become
trapped between the reflective core and the angular
momentum barrier, leading to instabilities. For the flow
parameters considered, we find that in the vicinity of
instabilities the reflection coefficient may be four orders
of magnitude greater when an effective boundary is
introduced in the core. We characterize the dependence
of the reflection coefficient on the absorption parameter K
and find that, for each superradiant mode, there exists an
optimal value of K which maximizes the reflection
coefficient.
The paper is organized as follows. In Sec. II we introduce

our model and the various quantities of interest. Section III
presents an analytic approximation to the problem using
matched Pöschl-Teller potentials to gain insight into the
likely phenomena of interest. In Sec. IV, we solve numeri-
cally the equations of motion for our system both for the
nonrotating and rotating draining vortex. We show the
presence of spectral lines in the transmission and reflection
coefficient spectra. The numerical study is accompanied by
theoretical predictions based on a WKB analysis in Sec. V.
Finally, we conclude our study with a discussion of our
results in Sec. VI.

II. MODEL, WAVE EQUATION
AND EFFECTIVE CORE

In this paper we are interested in the propagation of
surface gravity waves over a flowing fluid. The fluid is
considered to be inviscid and irrotational such that its

velocity field can be expressed in terms of a single scalar
potential Φ. Waves are small perturbation, ϕ, around the
background velocity field given by v⃗0 ¼ ∇Φ0. For shallow
water waves, the equation of motion for the propagation of
the perturbation ϕ is given by

D2
tϕ − c2Δϕ ¼ 0; ð2:1Þ

where Dt ¼ ∂t þ v⃗0 ·∇ is the material derivative, Δ is the
Laplacian, and c is the propagation speed of the waves [25].
In the following we will consider that the background flow
velocity v⃗0 is the standard draining bathtub flow, see e.g.,
Ref. [18], given by

v⃗0 ¼ −
D
r
e⃗r þ

C
r
e⃗θ; ð2:2Þ

where ðe⃗r; e⃗θÞ is the orthonormal basis in polar coordi-
nates ðr; θÞ. The parameters C and D, respectively, char-
acterize the rotation and drain of the vortex, and are taken to
be constants. To make the connection between surface
waves and fields around a black hole, one recognizes that
Eq. (2.1) is exactly the Klein-Gordon equation for a
massless scalar field in a curved spacetime with line
element

ds2 ¼ −c2dt2 þ
�
drþD

r
dt

�
2

þ
�
rdθ −

C
r
dt

�
2

: ð2:3Þ

This spacetime has a horizon at rh ¼ D=c and an ergo-

sphere at re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þD2

p
=c. For the rest of this work, we

scale lengths and times with respect to rh and c=rh,
respectively, which amounts to setting c ¼ D ¼ 1. The
horizon is then located at r ¼ 1 and the ergosphere at

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ 1

p
.

Since the flow is considered stationnary and axisym-
metric, we may decompose the perturbation ϕ onto the
following mode basis

ϕ ¼
X
m

Z
RðrÞe−iωtþimθdω; ð2:4Þ

where ω and m are, respectively, the frequency and
azimuthal number of each mode. Note that the radial
profile RðrÞ depends on the frequency and azimuthal
number but we have omitted explicit reference to this
dependence to lighten the notation. It is however under-
stood that each mode has a different radial profile. If we
further assume that RðrÞ ¼ ϕrðrÞ=

ffiffiffi
r

p
and introduce the

tortoise coordinate r� via

dr�
dr

¼ 1

1 − r−2
⇒ r�ðrÞ ¼ rþ 1

2
log

�
r − 1

rþ 1

�
; ð2:5Þ
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then the wave equation (2.1) can be cast into the form

d2ϕr

dr2�
− VðrÞϕr ¼ 0; ð2:6Þ

with the effective potential V defined as

VðrÞ ¼ −
�
ω −

mC
r2

�
2

þ
�
1 −

1

r2

��
m2 − 1=4

r2
þ 5

4r4

�
: ð2:7Þ

This encodes the competing effects of the standard angular
momentum barrier, which increases the potential energy
required to orbit at a particular radius, and the effect of the
vortex flow field, which decreases the potential energy.

A. Effective core

As can be seen from Eq. (2.7), the effective potential
asymptotes a constant at both infinity and at the horizon,
that is when r� → �∞. In these regions, the solutions are
given as superpositions of ingoing and outgoing plane
waves,

ϕr ∼
�
e�iω̃r� ; r� → −∞
e�iωr� ; r� → ∞

; ð2:8Þ

where ω̃ ¼ ω −mC. In the case of a purely absorbing
vortex, the physical boundary condition to impose at the
horizon is that the solution should contain only an ingoing
mode e−iω̃r� . In this study however, we consider that extra
physical processes alter the wave propagation in the vortex
core such that the vortex is now not a perfect absorber.
These modifications are encompassed in an effective core
where part of the wave is reflected. We denote the location
of this effective boundary in the tortoise coordinate as
r�0 ¼ r�ðrwallÞ, where rwall ¼ 1þ ϵ with ϵ ≪ 1 and posi-
tive, so that (2.5) is approximately solved by ϵ ≃ 2e2ðr�0−1Þ.
This allows us to evaluate quantities at the effective inner
boundary to leading order in ϵ. The reflection at this
boundary is characterized by the parameter K and the
physical boundary condition is modified to

ϕrðr� ≃ r�0Þ ∼ Awallðe−iω̃r� þKe−2iω̃r�0eiω̃r� Þ: ð2:9Þ

For simplicity, we will restrict ourselves to K ∈ R with
−1 < K < 1 [23]. We consider this particular range of K
since we are interested in a vortex which is (partially)
absorbing. We note that the effect of taking K ∈ C is to
include for the possibility of an additional phase shift at r�0.
With this convention, Neumann boundary condition is
obtained for K ¼ 1, Dirichlet boundary condition for
K ¼ −1 and black hole boundary condition for K ¼ 0.

B. Absorption by an imperfect vortex

As r� → ∞, the solution can also be written as a
superposition of ingoing and outgoing modes,

ϕrðr� → ∞Þ ∼ Aine−iωr� þ Aouteiωr� : ð2:10Þ

From the modal constants ðAin; AoutÞ, we define the
reflection and transmission coefficients,

jT j2 ¼ jAwallj2
jAinj2 ð1 − jKj2Þ; jRj2 ¼ jAoutj2

jAinj2 : ð2:11Þ

From the conservation of the Wronskian, we get that the
reflection and transmission coefficients are related via

jRj2 ¼ 1 −
ω̃

ω
jT j2: ð2:12Þ

From the condition above, we see that when ω̃ < 0, then we
have jRj2 > 1 (for positive frequencies and the values of K
we consider) and the wave has extracted energy from the
vortex. This is the usual rotational superradiant amplifica-
tion known, for example, in black hole physics [24]. Note
that the reflection at the effective inner boundary does not
prevent amplification, as negative energy is still transmitted
down into the draining vortex core. However, the amount
of energy being transmitted is significantly modified by
core reflections and one might therefore expect the amount
of amplification to be reduced. This is true except for
frequencies close to the frequencies of trapped modes as we
will see in Sec. IV.

C. Spectral lines

The physical solution satisfying the boundary conditions
Eqs. (2.9) and (2.10) can be decomposed onto a basis
ðuh; u∞Þ where uh (u∞) satisfies a purely ingoing (out-
going) boundary condition at the horizon (infinity). These
solutions take the asymptotic form

uh ∼
�
e−iω̃r� ; r� → −∞
A−
∞e−iωr� þ Aþ

∞eþiωr� ; r� → ∞
ð2:13Þ

and

u∞ ∼
�
A−
h e

−iω̃r� þ Aþ
h e

þiω̃r� ; r� → −∞
eþiωr� ; r� → ∞

: ð2:14Þ

Expressing ϕr as a superposition of uh and u∞, we get the
following relations between the modal coefficients

ω̃Aþ
h ¼ ωA−

∞; ð2:15Þ

ω
Ain

Awall ¼ ω̃ðAþ
h − A−

hKe−2iω̃r�0Þ; ð2:16Þ
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ω̃AwallKe−2iω̃r�0 ¼ ωðA−
∞Aout − Aþ

∞AinÞ: ð2:17Þ

The transmission and reflection coefficients are singular
whenever Ain ¼ 0, that is when

Aþ
h

A−
h
¼ Ke−2iω̃r�0 : ð2:18Þ

This condition defines a set of complex frequencies fωmng,
which constitute the spectrum of resonances of the imper-
fect vortex. The indices denote that for each m mode there
will be a different set of frequencies indexed by n.
Physically, these are modes which become trapped inside
the cavity between the effective wall outside the horizon
and the angular momentum barrier. Since these modes
tunnel out of the cavity over time, the frequency has an
imaginary component.
Close to ωmn, Ain approaches zero, hence we have at

first order that Ain ∼ ðω − ωmnÞ∂ωAinjω¼ωmn
. Therefore, the

transmission coefficient takes the standard Breit-Wigner
form for ω ∼ ReðωmnÞ,

jT j2 ∼ Amn

ðω − ReðωmnÞÞ2 þ ImðωmnÞ2
; ð2:19Þ

with Amn given by

Amn ¼
jAwallj2ð1 − jKj2Þ
j∂ωAinj2ω¼ωmn

: ð2:20Þ

Using the relations (2.15), (2.16) and (2.17) as well as the
condition for frequencies to be resonant, we can evaluate
the denominator as

∂ωAinjω¼ωmn
¼ ω̃

ω
Aþ
h ð2ir�0 þ ∂ωγÞjω¼ωmn

; ð2:21Þ

where γ ¼ logðAþ
h =A

−
h Þ.

III. TOY MODEL: THE DOUBLE
PÖSCHL-TELLER POTENTIAL

To gain insight into the distribution of spectral lines and
more generally in the scattering of surface waves by an
imperfect vortex, we introduce here a toy model which we
solve exactly.Ourmodel approximates the effective potential
(2.7) by a potential forwhich thewave equation can be solved
exactly. Our approach mirrors that used in the scattering on a
Schwarzschild black hole, where a parallel is drawn with the
Nariai spacetime, for which the wave equation can be put in
the form (see e.g., Ref. [22])

�
d2

dx2
þ ω2 −

L2 þ 1=4
cosh2x

�
uL;ωðxÞ ¼ 0: ð3:1Þ

In the Nariai spacetime, the potential is of the Pöschl-
Teller form and encapsulates the main features of the
Schwarzschild potential barrier. Namely, it asymptotes a
constant value, −ω2, at x → �∞ and has a maximum at
x ¼ 0. This approach was developed in [22] to study the
spectral lines of nonrotating ECOs, and their results can be
directly carried over for the case of nonrotating vortex.
When the vortex is rotating, one of the features of the

potential barrier changes. The effective potential still
asymptotes to −ω2 as r� → ∞ and has a single maximum
but it now goes to −ω̃2 as r� → −∞. Hence one cannot use
the standard Pöschl-Teller potential to model this problem.
We can however build a new potential, VPT, by splitting the
r� axis in two regions on either side of the maximum of the
potential, r̄�,

VPT ¼ Θðr̄� − r�ÞV1 þ Θðr� − r̄�ÞV2: ð3:2Þ

where V1;2 are Pöschl-Teller type potentials in each region,
with parameters ða1;2; b1;2; α1;2Þ, that is:

V1;2ðr�Þ ¼ −ða1;2 þ b1;2sech2½α1;2ðr� − r̄�Þ�Þ: ð3:3Þ

The parameters entering in the potential are chosen such
that the following condition apply: the maximum of VPT
coincides with the one of V, VPT and V have the same limit
as r� → �∞, VPT is smooth. Figure 1 shows the compari-
son between VPT and the true potential. One can then solve
the wave equation exactly by solving two Pöschl-Teller-like
equation in each region and gluing the solutions at r� ¼ r̄�.
Note that one could also avoid the splitting of radial axis by

-10 -5 0 5 10
-1

-0.8

-0.6

-0.4

-0.2

0

FIG. 1. Comparison between the true potential V (purple) and
the double Pöschl-Teller approximation VPT (dashed red). We can
see that the double Pöschl-Teller approximation is particularly
close to the true potential for r� < r̄�.
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considering the more general Rosen-Morse potential [26].
However, since we are only interested in approximating the
true potential V, this matched Pöschl-Teller approach
proves to be adequate and much simpler. We construct
in the Appendix the general solution to the wave equation
with potential VPT.
From the general solutions, one can then construct the uh

and u∞ solutions which satisfy outgoing boundary con-
ditions at �∞, and express the coefficients ðA�

h ; A
�
∞Þ

analytically. The exact forms of the horizon modal coef-
ficient are given in (A32). One can then find the values of
the resonant frequencies by plugging these expressions into
Eq. (2.18). The resulting condition is highly nontrivial but
can be solved numerically. It is however possible to gain
insight into the distribution of the spectral lines by looking
at the low frequency limit of this expression.
It is possible to numerically see that Aþ

h =A
−
h → eiσ ,

where σ is some real function of C satisfying
σðC → 0Þ ¼ 0. This implies that, in the low frequency
regime, the resonant frequencies are given by

ωmn ∼
πðnþ 1=2Þ

jr�0j
−

σ

2jr�0j
þmCþ i

ln jKj
2jr�0j

: ð3:4Þ

This expression reduces to the one found for the Pöschl-
Teller approximation to the nonrotating vortex [22]. From
Eq. (3.4), we see that the spectral lines should be approxi-
mately equally spaced in frequency, with a spacing con-
trolled by the position of the effective core. For all the cases
considered here, the inner core is located at r�0 ¼ −9,
which gives a spacing of the spectral lines, Δω ¼ π=9 ≈
0.35 which is consistent with the numerical data presented
in the various figures.

IV. SPECTRAL LINES, BOUND STATES
AND SUPERRADIANCE INSTABILITY

A. Spectral lines of the nonrotating vortex

We compute numerically the absorption cross section of
our draining vortex model in the following way. First, we
expand the solution of (2.6) in the vicinity of the horizon
using the Frobenius method and implement the desired
boundary condition by imposing (2.9) a distance ϵ away
from the horizon, i.e., at the effectivewall. We then take this
as our initial condition and evolve (2.6) out into the large r�
region. At a large value of r�, we use the value of ϕr and its
derivative to determine the amplitudes ðAin; AoutÞ from
(2.10), and with these values we compute the scattering
coefficients according to (2.11).
First, we consider the nonrotating case with C ¼ 0 as we

expect this qualitatively to exhibit similar features to those
in the ECOs [22]. In Fig. 2, we display the transmission
coefficient jT j2 as a function of ω for various values of K.
Here, we see that absorption is enhanced in the vicinity of
the fωmng according to the Breit-Wigner formula (2.19) In

particular, peaks of jT j2 are centered on Re½ωmn� and have a
width determined by Im½ωmn�. Figure 2 shows that, as K
increases, the vortex’s ability to absorb a wave reduces
except for frequencies close to ωmn. For those frequencies,
the peaks in jT j2 become sharper, corresponding to smaller
Im½ωmn�, i.e., longer lived resonant modes. Figure 3 shows
the same for various m modes at fixed K. As m increases,
the transmission coefficient decreases for a given frequency
(unless it is near a resonance) since the size angular
momentum barrier grows with m, making it more difficult
for those m modes to penetrate the vortex core.

B. Spectral lines of the rotating vortex

Using the same method as the previous section, we now
compute the spectrum for the rotating case with C ≠ 0. The
form of the transmission coefficient is qualitatively similar
to the case of the nonrotating case, namely, it contains a
series of peaks around centered on the resonant frequencies
of the system. However, when C ≠ 0, a mode which is
superradiant will have ω̃ < 0. Hence, for these modes, we
see from (2.12) that a peak in jT j2 will create a peak, rather
than a trough, in jRj2. This means that a superradiant mode
will be drastically amplified the vicinity of fωmng. We
display jRj2 at fixed K ¼ 0.5 for various m > 0 in Fig. 4
and as a function of ω for various K in Fig. 5. These
illustrate the drastic amplification of modes with frequen-
cies close to ωmn below the superradiant threshold, and
exhibit an overall similar behavior than the transmission
spectra for nonrotating vortices. We also display the effect
of varying C in Fig. 6 which shows that as C increases, the

0 0.5 1 1.5 2

10-5

100

FIG. 2. Transmission coefficient spectrum of a nonrotating
vortex flow for an azimuthal wave with m ¼ 2. The effective
inner wall is located at r�0 ¼ −9 and the amount of absorption,
characterized by K, ranges from 0 to 0.99. Local maxima appear
at frequencies corresponding to the real part of the resonant
frequencies of the system fωmng. These maxima become sharper
as K increases.
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peaks in jRj2 are shifted but the spacing between peaks
does not significantly vary [as is expected from (3.4)].
Furthermore, the range over which we observe drastic
amplification increases (in line with the expectation that

superradiance occurs for ω̃ < 0) and the maximum value of
the reflection spectrum increases with C as well.
Insight can be gained by considering the energy fluxes.

Using the boundary condition (2.9), we find the energy flux
through the effective wall is given by

Ewall ¼ ω̃jAwallj2ð1 − jKj2Þ; ð4:1Þ

0 1 2 3 4
0

0.5

1

1.5

2

FIG. 4. Reflection coefficient spectra of various azimuthal
waves, 0 ≤ m ≤ 3 incident on a rotating and draining vortex
flow, with C ¼ D ¼ 1 and K ¼ 0.5. The effective inner wall is
located at r�0 ¼ −9.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

FIG. 5. Reflection coefficient spectrum of an m ¼ 1 azimuthal
wave incident on a rotating and draining vortex flow, with C ¼
D ¼ 1 for various values of K. The effective inner wall is located
at r�0 ¼ −9.

0 1 2 3 4

10-10

10-5

100

FIG. 3. Transmission coefficient spectrum of a non-rotating
vortex flow for various azimuthal numbersm ranging from 0 to 8.
The effective inner wall is located at r�0 ¼ −9 with K ¼ 0.95. It
is harder for the vortex to absorb higher m modes due to the
increased width of the angular momentum barrier.

0 1 2 3

10-2

100

FIG. 6. Reflection coefficient spectrum of an m ¼ 1 azimuthal
wave incident on a rotating and draining vortex flow for various
values of the circulation parameter, with K ¼ 0.75 (K ¼ 0) in
solid (dashed) lines. The effective inner wall is located at
r�0 ¼ −9.
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whereas, at infinity, the amount of energy radiated is
given by

E∞ ¼ ωjAoutj2: ð4:2Þ

We see that when ω̃ < 0, that is when the wave satisfies the
superradiance condition ω < mC, then the energy flux
going through the wall is negative. Hence, amplification of
the reflected wave is a result of the vortex absorbing a
negative energy.
When K ¼ 0, the amount of energy absorbed by the

vortex is maximal. However, this does not mean that the
amount of superradiant amplification is also maximal.
When 0 < K < 1, bound states are allowed to exist
between the effective wall and the potential barrier, these
can then be be superradiantly amplified, extracting energy
from the vortex at every cycle, leading to a superradiant
instability similar to that of rotating ECOs [23] or of a
massive field around a Kerr black hole [27]. The higher K
is, the quicker those superradiant bound states will grow; on
the other hand, a larger K implies a smaller energy flux
through the wall. Indeed, when K ¼ 1, the entire energy is
reflected at the wall, the flux becomes null, thus preventing
superradiant amplification from occurring and resulting in a
perfect reflection with jRj ¼ 1. Therefore, there exists an
optimal K ¼ Kmax which balances the growth of the
unstable bound state and the energy flux going through
the wall, resulting in a maximal reflection coefficient. This

occurs when the ratio of the flux radiated to the flux
absorbed is maximized,

E∞

Ewall ¼
ωjAoutj2

ω̃jAwallj2ð1 − jKj2Þ ¼
jRj2

1 − jRj2 ; ð4:3Þ

which can be seen by taking the K derivative of this
expression and showing that it is equal to ∂KjRjmultiplied
by a positive number. In Fig. 7, we show how the n peaks
in the reflection coefficient, i.e., those satisfying
∂ωjRj ¼ 0, vary as a function of K, finding that each
peak reaches a maximum at a particular value of
KmaxðωmnÞ. In the next section, we compute this value
using a WKB approximation.

V. WKB APPROXIMATION

To gain further insight into the features of our system, we
invoke a WKB approximation. The first step involves

applying the WKB ansatz ϕrðr�Þ ¼ Aðr�Þei
R

pðr�Þdr� to
the mode equation (2.6). Assuming jp0j ≪ jp2j and
jA0j ≪ jpAj, the leading and next-to-leading equations are

p2 þ Vðr�Þ ¼ 0; Aðr�Þ ∼ αjpj−1
2; ð5:1Þ

where α is adiabatically conserved. Since the first equation
is quadratic in p, there will be two solutions, one of which
will be radially ingoing and the other outgoing. Hence at a
given point r�j in the flow, we may write the solution

ϕðr�jÞ ¼ jpjj−1
2ðαinj ei

R
pin
j dr� þ αoutj ei

R
pout
j dr� Þ; ð5:2Þ

noting that jpin
j j ¼ jpout

j j≡ jpjj.
We can write write an effective Hamiltonian for the

system

H ¼ p2 þ V; ð5:3Þ

from which we obtain the ray equations

_r� ¼ ∂pH; _p ¼ −∂r�H; ð5:4Þ

where the overdot signifies the derivative with respect to a
parameter along the rays. The WKB approximation breaks
down in the vicinity of turning points, which are the points
along the rays where _r� ¼ 0. From Hamilton’s equations,
we see that such points obey Htp ¼ ∂pHtp ¼ 0 where the
latter condition immediately implies p ¼ 0 (which coin-
cides with the zeros of V) and a divergent amplitude A at
these points, leading to the breakdown of the approxima-
tion there. In that case, one can apply the connection
formulas to relate the different α either side of the turning
point, see e.g., Ref. [28]. If the two turning points r�1 and
r�2 are well separated, the WKB approximation holds
between them. Then, the relation between the α just to

0.2 0.4 0.6 0.8 1
100

102

104

0.9 0.95 0.99
100

104

FIG. 7. Reflection coefficient for the three superradiant bound
states as a function of K. The bound states frequencies are
ω ≈ 0.182, 0.505 and 0.836, see Fig. 5. The effective inner wall is
located at r�0 ¼ −9. We see that for each bound state frequency,
the reflection coefficient reaches a maximum for different value
of K. At large K, the first bound state (ω ¼ 0.182) dominates, as
K decreases, the second (ω ¼ 0.505) and then third (ω ¼ 0.836)
bound state dominates. The vertical white dashed lines, represent
the value of K which extremizes the ratio of the energy fluxes
through the wall over the energy flux at infinity.
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the left of r�1 and the right of r�2 can be expressed with the
transfer matrix,

�
αout1

αin1

�
¼ ε

�
1=T −R=T

−R�=T� 1=T�

��
αout2

αin2

�
;

ε ¼ sgn

�
ω̃

ω

�
; ð5:5Þ

where R and T are the local reflection and transmission
coefficients, respectively, for a wave which scatters from
the right (i.e., from large r�) and are given by

RðtpÞ
ε¼1 ¼ −i

1 − e−2S12=4
1þ e−2S12=4

;

TðtpÞ
ε¼1 ¼

e−2S12

1þ e−2S12=4
;

RðtpÞ
ε¼−1 ¼ −i

1þ e−2S12=4
1 − e−2S12=4

;

TðtpÞ
ε¼−1 ¼ −i

e−2S12

1 − e−2S12=4
; ð5:6Þ

see Fig. 8 for reference. The WKB phase integral is
defined as

Sij ¼
Z

rj

ri

jpðr�Þjdr�: ð5:7Þ

When r�1 and r�2 are close to each other, the WKB
approximation cannot be applied between them. In that
case, one can expand the wave equation in vicinity of a
saddle point r�sp which satisfies ∂r�Hsp ¼ ∂pHsp ¼ 0 and
use the exact solution to relate the α on either side of r�sp,
see e.g., Ref. [21]. The result can be then expressed with the
transfer matrix (5.5) but with the following expressions for
the local scattering coefficients,

RðspÞ
ε¼1 ¼ −i

2ibffiffiffiffiffiffi
2π

p Γ
�
1

2
þ ib

�
;

TðspÞ
ε¼1 ¼ e−πb

2ibffiffiffiffiffiffi
2π

p Γ
�
1

2
þ ib

�
;

RðspÞ
ε¼−1 ¼

2−ib
ffiffiffiffiffiffi
2π

p

Γð1
2
− ibÞ ;

TðspÞ
ε¼−1 ¼ −ie−πb; ð5:8Þ

where the parameter b is given by

b ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂2pH∂

2
r�H

q
����
sp
: ð5:9Þ

In all cases, these coefficients obey

jRj2 þ εjTj2 ¼ 1: ð5:10Þ

Note that the conventional transmission coefficient, say T0,
which is the ratio of the A rather than the α, is related by
T0 ¼ jp0=p∞j12T, which gives the usual scattering coeffi-
cient relation in black hole physics, e.g., [24].
To find the total reflection coefficient, we can translate

the WKB solution from r�0 out to infinity, applying the
transfer matrix in (5.5) to capture scattering with the
effective potential barrier V. The computation can be
expressed succinctly in the following matrix equation:

�
αout0

αin0

�
¼ ε

�
e−iεS01 0

0 eiεS01

��
1=T −R=T

−R�=T� 1=T�

�

×

�
e−iS2∞ 0

0 eiS2∞

��
αout∞

αin∞

�
: ð5:11Þ

To find the total reflection coefficient at infinity
R ¼ αout∞ =αin∞, we then apply the boundary condition
K ¼ αout0 =αin0 . Solving the equation above, we find

R ¼ e2iS2∞
TKe2iεS01 þ T�R
T� þ TR�Ke2iεS01

: ð5:12Þ

This expression can be compared with the numerical results
in Figs. 9 and 10. We see that the WKB method gives good
qualitative predictions for the total reflection coefficient.

-5 0 5 10
-0.1

0

0.1

0.2

0.3

0.4

FIG. 8. The effective potential barrier V (red) for C ¼ 1=2,
m ¼ 1, and ω ¼ 1=4. The effective boundary condition is placed
just outside the horizon at r ¼ 1þ ϵ with ϵ ¼ 10−6. The turning
points and saddle point are illustrated as black points and the in-
and outgoing modes on either side of the barrier also indicated.
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In particular, the method captures the correct number of
peaks (i.e., bound states) and gives a good estimate of their
location in ω. Consequently, we can use the expression in
(5.12) to interpret our results.

The WKB method can provide insight into the unstable
frequencies of the system. The resonant frequencies of the
system occur when the denominator of (5.12) vanishes,
which occurs for complex values ofω. An instability occurs
when superradiant amplification overpowers the absorption
at r�0, which can only occur for ε ¼ −1. Since this is a low
frequency phenomenon, the turning points r�1 and r�2 will
be relatively far apart and we can apply the turning point
approximation of the local scattering coefficients. The
denominator of (5.12) then vanishes when the following
condition is satisfied:

e2iðS01þπ=4Þ þ jRKj ¼ 0: ð5:13Þ

To solve for the complex frequency ωmn ¼ ω0 þ iΓ, we
anticipate that any instabilities will be slowly growing, i.e.,
jΓj ≪ jω0j, and expand the phase integrals to split the
condition into two parts:

cos

�
S01ðω0Þ þ

π

4

�
¼ 0; Γ ¼ log jRKj

2j∂ωS01j
jω0

: ð5:14Þ

In order to have an unstable mode, we must have jRKj > 1,
i.e., the amount of amplification due to superradiance must
exceed the amount of absorption near the horizon. Since
maxfjRjg monotonically decreases with increasing jmj,
this immediately implies that there can be no unstable
modes above a critical m. Furthermore, this mode must fit
inside the cavity between r�0 and r�1.
The WKB method can be used to give some perspective

on the results in Fig. 7. Since this figure is concerned with
the maximum reflection coefficient for the superradiant
bound states, we can again make use of the WKB
expression for R in the turning point approximation with
ε ¼ −1. Its square modulus is

jRj2 ¼ K2 − 2jRjK sin 2S01 þ jRj2
K2jRj2 − 2jRjK sin 2S01 þ 1

: ð5:15Þ

This expression has a maximum for

Kmax ¼
1þ jRj2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jRj2Þ2 − 4jRj2 sin2 2S01

p
2jRj sin 2S01

:

ð5:16Þ

Using (5.14), we see that a superradiant bound state has
sin 2S01 ¼ 1, which impliesKmax ¼ jRj−1 for these modes.
Again using (5.14), we find that these modes have Γ ¼ 0,
i.e., they are stable bound states. In other words, the
reflection coefficient is maximized when the amount of
amplification at the angular momentum barrier is balanced
by the absorption that occurs at the effective inner wall.
This makes further sense in light of the Breit-Wigner

0 0.5 1 1.5 2
10-4

10-3

10-2

10-1

100

FIG. 9. Numerical and analytical transmission coefficient for
the m ¼ 1 mode incident on a nonrotating vortex flow (D ¼ 1)
with an inner core located at r�0 ¼ −9 and with K ¼ 0.95. The
purple curve depicts the transmission coefficient obtained nu-
merically while the dashed red and dotted dashed yellow curve
show the WKB and generalized Pöschl-Teller approximation,
respectively. Both analytical predictions agree well with the
numerics and capture the essential features.
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FIG. 10. Numerical and analytical reflection coefficient for the
m ¼ 1 mode incident on a vortex flow with C ¼ 1 with an inner
core located at r�0 ¼ −9 and with K ¼ 0.95. The purple curve
depicts the transmission coefficient obtained numerically while
the dashed red and dotted dashed yellow curve show the WKB
and generalized Pöschl-Teller approximation, respectively. Both
analytical predictions agree well with the numerics and capture
the essential features.
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formula in (2.19), which says that jT j2 increases with the
lifetime of the resonance.

VI. CONCLUSION

In summary, we have seen that the absorption spectrum
of a draining vortex with a partially reflective boundary
condition in the core exhibits spectral lines. The addition
of rotation to the system leads to the occurrence of sharp
peaks in the reflection coefficient at the bound state
frequencies which satisfy the usual superradiance con-
dition ω < mC=r2h. We found that the reflection coeffi-
cient had a maximum amplitude for a particular value of
K. The WKB method then revealed that the reflection
coefficient was extremized when the amount of super-
radiant amplification was perfectly balanced by the
amount of absorption in the vortex core, in agreement
with numerical results. We also showed how a modified
Pöschl-Teller approximation could be used to obtain
analytic expressions for the scattering amplitudes. Our
results show similar features to ECOs in astrophysics [22].
Similar behavior has been argued to occur when a Kerr
black holes is surrounded by a reflective membrane [29]
and the instability shares similarities with the w-mode
instability around neutron stars [30].
If near horizon reflections occur around real (gravita-

tional) black holes, a consequence would be the occurrence
of secondary repetitions of the initial ringdown waveform
known as echoes. Although echoes have been the subject of
intense research in recent years, e.g., [31,32], the mecha-
nism underpinning near horizon reflections is usually
empirically modeled using the same procedure employed
in this paper, that is, by placing a partially reflective
boundary condition a small distance from the horizons.
However, in a fluid system, the underlying microscopic
theory is known and one could therefore use the fluid to
understand the kind of mechanisms that lead to near
horizon reflections. Besides providing insight for gravity,
reflections in the vortex core are of intrinsic fluid mechani-
cal interest due to their implications for the stability
properties of systems containing vortices e.g., [33–39].
One approach could be to use spectral lines to learn about
the effective field theory inside the vortex core. In particu-
lar, we have seen that the separation of the spectral lines is
linked, in a first approximation, to the location of the wall in
the tortoise coordinates, see Eq. (3.4). The experimental
identification of several spectral lines could therefore give a
estimate of r�0, which in turn can give a precise estimate of
the effective inner location in the physical radial coordinate.
This is due to the fact that, close to the horizon, for small
shifts in r will manifest as large shifts in r�.
Our results may also be able to explain features of the

draining vortex experiment in [8]. There, it was observed
that the reflection coefficient for the m ¼ 2 mode was
larger than m ¼ 1 for the flow parameters used. However,
within the simple draining vortex model, the maximum of

the reflection coefficient is a decreasing function of m,
which is true in both dispersive and nondispersive theories
[28]. A potential explanation for this could be that
reflections in the vortex core result in peaks in the reflection
coefficient, whose locations depend on the value of m.
Further evidence for horizon reflections in this experiment
was given in [21], where it was shown that the reflecting
coefficient for m < 0 asymptotes to a finite constant at
large ω.
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APPENDIX: DOUBLE PÖSCHL-TELLER
POTENTIAL

Here we aim at modelling the scattering of shallow water
waves over a rotating and draining vortex by approximating
the potential with a double Pöschl-Teller potential of the
form. The propagation of an azimuthal mode over a
draining bathtub with circulation C and drain D ¼ 1 is
described by the following wave equation

∂
2
r�ϕ − VðrÞϕ ¼ 0; ðA1Þ

with

VðrÞ ¼ −
�
ω −

mC
r2

�
2

þ
�
1 −

1

r2

��
m2 − 1=4

r2
þ 5

4r4

�
: ðA2Þ

The potential V is flat as the tortoise coordinate r� goes to
�∞ and has one maximum at r̄� or in the real radial
coordinate r̄. Hence we can split the r� axis in two regions
and define the following potential as an approximation of
the true potential,

VPT ¼ Θðr̄� − r�ÞV1 þ Θðr� − r̄�ÞV2; ðA3Þ

where

V1;2ðr�Þ ¼ −ða1;2 þ b1;2sech2½α1;2ðr� − r̄�Þ:�Þ: ðA4Þ
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This corresponds to a Pöschl-Teller potential in each region
with different parameters ða1;2; b1;2; α1;2Þ. These para-
meters are given by

a1 ¼ ðω −mCÞ2; ðA5Þ

a2 ¼ ω2; ðA6Þ

b1;2 ¼ −VðrsÞ − a1;2: ðA7Þ

The as are chosen such that the double sech potential has
the right asymptotics, the b coefficients are chosen such
that the model potential is continuous and the α1;2 are
chosen such that the potential is differentiable at r�, and the
curvature matches that of V. Hence the αs are found by
solving

∂
2
r�V1;2ðr̄�Þ ¼ ∂

2
r�Vðr̄�Þ: ðA8Þ

This double Pöschl-Teller approximation to the potential of
a draining and rotating vortex is depicted in Fig. 1.

1. Solution to the Pöschl-Teller potential

We now want to solve the following equation:

∂
2
r�ϕ − V1;2ðr�Þϕ ¼ 0; ðA9Þ

which explicitly is

∂
2
r�ϕþ ða1;2 þ b1;2sech2ðα1;2ðr� − r̄�ÞÞÞϕ ¼ 0: ðA10Þ

Introducing a variable R ¼ α1;2ðr� − r̄�Þ for each half of the
model potential, Eq. (A10) becomes on each side:

∂
2
Rϕþ 1

α21;2
ða1;2 þ b1;2sech2ðRÞÞϕ ¼ 0: ðA11Þ

The solutions to this equation are given in terms of
associated Legendre function, Pμ

ν :

fin1;2 ¼ Γð1 − μ1;2ÞPμ1;2
ν1;2 ð− tanhðRÞÞ; ðA12Þ

fup1;2 ¼ Γð1 − μ1;2ÞPμ1;2
ν1;2 ðtanhðRÞÞ; ðA13Þ

where the parameters μ1;2 and ν1;2 are given by

μ1;2 ¼
i

ffiffiffiffiffiffiffiffi
a1;2

p
α1;2

; ðA14Þ

ν1;2 ¼
−α1;2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b1;2 þ α21;2

q
2α1;2

: ðA15Þ

The “in” solution satisfies the ingoing boundary condition
at the horizon and the “up” solution satisfies outgoing

boundary condition at infinity. Hence, the general solution
is given as a superposition of the “in” and “up” solutions,

ϕ1;2 ¼ A1;2fin1;2 þ B1;2f
up
1;2: ðA16Þ

2. Finding the amplitudes

At the inner wall, the solution is given by

ϕBCðr� ≈ r�0Þ ≈ e−iω̃r� þ ðKe−2iω̃r�0Þeiω̃r� : ðA17Þ

The exact solution in this region is given by

ϕ1ðr�Þ ¼ A1fin1 ðr�Þ þ B1f
up
1 ðr�Þ: ðA18Þ

Hence we can find the coefficients ðA1; B1Þ by solving the
linear system of equations,

ϕ1ðr�0Þ ¼ ϕBCðr�0Þ; ðA19Þ

∂r�ϕ1ðr�0Þ ¼ ∂r�ϕBCðr�0Þ: ðA20Þ

Then to find the amplitude ðA2; B2Þ, we match the solution
in regions I and II at the top of the potential,

ϕ1ðr̄�Þ ¼ ϕ2ðr̄�Þ; ðA21Þ

∂r�ϕ1ðr̄�Þ ¼ ∂r�ϕ2ðr̄�Þ: ðA22Þ

From the amplitudes ðA2; B2Þ, we can construct the
amplitude of the ingoing and outgoing waves by using
the asymptotic expansion of the associated Legendre
function,

Γð1− μÞPμ
νðtanhðαðr� − r̄�ÞÞÞ∼ eαμr� as r� →∞; ðA23Þ

as well as the relation between Pμ
νðρÞ and Pμ

νð−ρÞ (see e.g.,
Ref. [40]). Hence we get that

Aout ¼ A2AC¼K¼0
out;2 þ B2; ðA24Þ

Ain ¼ A2AC¼K¼0
in;2 : ðA25Þ

Where AC¼K¼0
out;i and AC¼K¼0

in;i are, respectively, the outgoing
and ingoing coefficient in the case of the standard Pöschl-
Teller potential with parameters ðai; bi; αiÞ,

AC¼K¼0
out;i ¼ Γð1 − μiÞΓðμiÞ

Γð−νiÞΓð1þ νiÞ
and ðA26Þ
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AC¼K¼0
in;i ¼ Γð1 − μiÞΓð−μiÞ

Γð1 − μi þ νiÞΓð−μi − νiÞ
: ðA27Þ

3. The u∞ solution

Using the connection formulae derived above, we can
now express the modal coefficients A�

h of the u∞ solution
satisfying the boundary condition given in Eq. (2.14) for
the generalized Pöschl-Teller potential. From the asymp-
totic at r� → þ∞, we have that ðAin; AoutÞ ¼ ð0; 1Þ, which
implies that ðA2; B2Þ ¼ ð0; 1Þ. From the connection at the
top of the potential barrier, we get that

A1 ¼
1

2

Γð1 − μ2Þ
Γð1 − μ1Þ

�
P2

P1

−
P0
2

P0
1

�
and ðA28Þ

B1 ¼
1

2

Γð1 − μ2Þ
Γð1 − μ1Þ

�
P2

P1

þ P0
2

P0
1

�
; ðA29Þ

where the coefficients ðP1;2; P0
1;2Þ as the value of the

Legendre functions Pμ
νðxÞ and its derivative at x ¼ 0, i.e.,

P1;2 ¼ Pμ1;2
ν1;2 ð0Þ and ðA30Þ

P1;2
0 ¼ P0μ1;2

ν1;2 ð0Þ: ðA31Þ

Using the asymptotic expansion of the Legendre function
as r� → −∞, we can relate the coefficient ðA1; B1Þ to
ðA−

h ; A
þ
h Þ. Explicitly, we have

A−
h ¼ A1 þ B1AC¼K¼0

out;1 and ðA32Þ

Aþ
h ¼ B1AC¼K¼0

in;1 : ðA33Þ

Note that when C ¼ 0, we directly have the relations
ðA1; B1Þ ¼ ðA2; B2Þ ¼ ð0; 1Þ, and we recover the usual
modal coefficients of the Pöschl-Teller model.
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THÉO TORRES, SAM PATRICK, and RUTH GREGORY PHYS. REV. D 106, 045026 (2022)

045026-12

https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.12942/lrr-2005-12
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1103/PhysRevLett.106.021302
https://doi.org/10.1103/PhysRevLett.117.121301
https://doi.org/10.1103/PhysRevLett.124.141101
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/s41567-020-01076-0
https://doi.org/10.1038/nphys4151
https://doi.org/10.1038/nphys4151
https://doi.org/10.1103/PhysRevLett.128.013901
https://doi.org/10.1103/PhysRevLett.125.011301
https://doi.org/10.1103/PhysRevLett.125.011301
https://doi.org/10.1103/PhysRevX.8.021021
https://doi.org/10.1103/PhysRevLett.121.061101
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1088/0264-9381/20/18/304
https://doi.org/10.1088/0264-9381/20/18/304
https://doi.org/10.1088/0264-9381/20/13/335
https://doi.org/10.1088/0264-9381/20/13/335
https://arXiv.org/abs/gr-qc/0501097
https://doi.org/10.1103/PhysRevD.70.124006
https://doi.org/10.1103/PhysRevD.70.124006
https://doi.org/10.1103/PhysRevD.85.044031
https://doi.org/10.1103/PhysRevD.85.044031
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevD.91.124018
https://doi.org/10.1103/PhysRevFluids.4.034704
https://doi.org/10.1103/PhysRevFluids.4.034704
https://doi.org/10.1098/rsta.2019.0236
https://doi.org/10.1103/PhysRevD.98.104034
https://doi.org/10.1103/PhysRevD.96.104047
https://doi.org/10.1103/PhysRevD.96.104047
https://doi.org/10.1103/PhysRevD.66.044019
https://doi.org/10.1103/PhysRevD.66.044019
https://doi.org/10.1007/JHEP03(2011)073
https://doi.org/10.1007/JHEP03(2011)073
https://doi.org/10.1103/PhysRevD.76.084001
https://doi.org/10.1103/PhysRevD.102.084041
https://doi.org/10.1103/PhysRevD.102.084041
https://doi.org/10.1103/PhysRevD.100.064056
https://doi.org/10.1103/PhysRevD.100.064056
https://doi.org/10.1103/PhysRevD.70.043003
https://doi.org/10.1103/PhysRevD.70.043003
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1088/1475-7516/2019/08/006
https://doi.org/10.1088/1475-7516/2019/08/006
https://doi.org/10.1103/PhysRevA.59.1533
https://doi.org/10.1103/PhysRevA.59.1533
https://doi.org/10.1103/PhysRevLett.93.160406


[35] M. Okano, H. Yasuda, K. Kasa, M. Kumakura, and Y.
Takahashi, J. Low Temp. Phys. 148, 447 (2007).

[36] T. Isoshima, M. Okano, H. Yasuda, K. Kasa, J. Huhtamäki,
M. Kumakura, and Y. Takahashi, Phys. Rev. Lett. 99,
200403 (2007).

[37] L. Giacomelli and I. Carusotto, Phys. Rev. Research 2,
033139 (2020).

[38] S. Patrick, A. Geelmuyden, S. Erne, C. F. Barenghi, and S.
Weinfurtner, arXiv:2112.12266.

[39] S. Patrick, A. Geelmuyden, S. Erne, C. F. Barenghi, and S.
Weinfurtner, arXiv:2111.02567.

[40] M. Casals, S. Dolan, A. C. Ottewill, and B. Wardell, Phys.
Rev. D 79, 124043 (2009).

IMPERFECT DRAINING VORTEX AS ANALOG EXTREME … PHYS. REV. D 106, 045026 (2022)

045026-13

https://doi.org/10.1007/s10909-007-9405-y
https://doi.org/10.1103/PhysRevLett.99.200403
https://doi.org/10.1103/PhysRevLett.99.200403
https://doi.org/10.1103/PhysRevResearch.2.033139
https://doi.org/10.1103/PhysRevResearch.2.033139
https://arXiv.org/abs/2112.12266
https://arXiv.org/abs/2111.02567
https://doi.org/10.1103/PhysRevD.79.124043
https://doi.org/10.1103/PhysRevD.79.124043

