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We derive the equation of state of a Bose gas with contact interactions using relativistic quantum field
theory. The calculation accounts for both thermal and quantum corrections up to one-loop order. We work
in the Hartree-Fock-Bogoliubov approximation and follow Yukalov’s prescription of introducing two
chemical potentials, one for the condensed phase and another one for the excited phase, to circumvent the
well-known Hohenberg-Martin dilemma. As a check on the formalism, we take the nonrelativistic limit and
reproduce the known results. Finally, we translate our results to the hydrodynamical, two-fluid model for
finite-temperature superfluids. Our results are relevant for the phenomenology of Bose-Einstein condensate
and superfluid dark matter candidates, as well as the color-flavor locking phase of quark matter in neutron
stars.
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For over two decades, Bose-Einstein condensates
(BECs) have been considered as a candidate for dark
matter [1–11]. In particular, there has been considerable
interest in the theory of dark matter superfluidity [12–16],
which allows dark matter to realize various empirical
galactic scaling relations, e.g., [17–21]. In the initial
studies, the dark matter density profile was computed
using a simplified equation of state valid at zero temper-
ature. Subsequently, two of us computed the nonrelativistic,
finite-temperature equation of state for dark matter super-
fluids with 2- and 3-body contact interactions, using a self-
consistent mean-field approximation [22]. This allowed us
to derive the finite-temperature density profile for dark
matter superfluids, under the assumption of spherical
symmetry and uniform temperature.
The goal of this paper is to revisit this calculation using a

relativistic quantum field theory (QFT) framework. As
usual, the upshot of an effective field theory approach is
that it offers a systematic treatment of the relevant degrees
of freedom and the symmetries governing their dynamics.
Although a complete relativistic calculation of a BEC/
superfluid might not be of immediate relevance to dark
matter, it is nevertheless important for various other
phenomena, such as the color-flavor locking superfluid

phase of quark matter [23] conjectured to reside in the core
of neutron stars. The associated observable phenomena,
like pulsar glitches [24], would be sensitive to the relativ-
istic corrections.
To properly account for the depletion of a BEC with

increasing temperature, one must perform a self-consistent
calculation. In QFT, this requires working with the
Cornwall-Tomboulis-Jackiw (CJT) or the two particle-
irreducible (2PI) framework [25]. In this approach, the
effective action is computed in terms of the background
field as well as the dressed propagator. The CJT formalism
has also been extensively applied to thermal field theory
[26–28]. The 2PI effective action is expressed in terms of
an infinite set of diagrams having partially resummed
propagators. Thus, for practical purposes, one must trun-
cate the 2PI effective action at finite order in the loop
diagram expansion. This truncation, however, gives rise to
residual violations of global symmetries, which prevent the
Goldstone boson of the spontaneously broken phase from
being gapless. The Euler-Lagrange equations of motion of
the truncated effective action are not consistent with the
Ward identities. On the other hand, the complete theory
must be invariant under the global Uð1Þ symmetry, and as
such must give rise to a massless Goldstone mode [29]. The
inability of the CJT effective action to simultaneously
satisfy the mean-field equation and display a gapless mode
is similar to the Hohenberg-Martin dilemma [30] and has
been noted in literature [31–33].
Various working solutions have been proposed to this

problem depending on the particular application. It has
been found that in Oð2NÞ theories, a Goldstone mode can
be recovered in the large-N limit [32–34]. Other solutions
add a phenomenological or an ad hoc term to satisfy both
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constraints [35–38]. Another way to obtain a massless
Goldstone boson is to define a constrained version of the
CJT formalism with the so-called external propagators
[39,40] by giving up on a second-order phase transition
[41]. While offering different insights into the nature of the
problem, each of these approaches either carries a pathol-
ogy, introduces ad hoc terms, or enforces constraints
by hand.
For concreteness, in this paper, we follow the framework

proposed by Yukalov [42]. This approach relies on intro-
ducing two different chemical potentials—one for the
condensed phase, and a second one for the normal phase.
The two chemical potentials are distinct below the critical
temperature, and allow us to simultaneously satisfy the self-
consistency condition for the mean field while having a
gapless Goldstone mode. The two chemical potentials
become equal at the critical temperature. Above the critical
temperature, there is of course a single chemical potential,
associated with the conserved particle number. Like the
other aforementioned approaches to the Hohenberg-Martin
dilemma, the framework of [42] introduces an additional
variable to account for the different constraints. One might
argue, however, that the usage of two chemical potentials
can be physically motivated, and can be naturally extended
to a QFT exhibiting spontaneous symmetry breaking.
Of particular relevance to this paper are the formalisms

developed in [43,44]. In [43], the authors introduce new
constraints on the loop-truncated CJT effective action to
enforce the Ward identities. The additional constraints can
be compared to the introduction of a new chemical
potential in our case, which, in effect, serves the purpose
of an additional Lagrange multiplier. In [44], the effective
action is computed in the limit of nonvanishing external
sources. Here, it is shown that the freedom in the external
sources can be used to satisfy the Ward identities for two-
particle irreducible effective action. The nonvanishing
source, corresponding to the quadratic term, introduced
by the authors in that paper is rather similar to a second
chemical potential, given that it also multiples terms
quadratic in the field. The nonvanishing source can be
thought of as the absence of a difference between the two
chemical potentials in our formalism. For a more elaborate
discussion on the preservation of global symmetries in the
truncated effective action, we refer the reader to [43,44].
The paper is organized as follows. We first set the stage

for the calculation by reviewing the imaginary time
formalism and the Hartree-Fock-Bogoliubov (HFB)
approximation [45] in Sec. I. We then introduce
Yukalov’s framework in Sec. II, justifying the use of
two chemical potentials. We will then work out the
Matsubara summation in Sec. III to compute the equation
of state in Sec. IV, before computing the necessary
correlators and renormalizing our theory in Sec. V. As a
check on our results, we work out the nonrelativistic limit
of our theory in Sec. VI and compare it to the results of

[22]. As another application, in Sec. VII, we translate our
results to the hydrodynamical two-fluid model of super-
fluidity [46–48], in which the system is treated as a mixture
of the superfluid component and a normal fluid, made up of
quasiparticles.

I. ONE-LOOP EFFECTIVE ACTION

Similar to the grand partition function, the functional
integral for a complex scalar field Φ, in the imaginary time
formalism, is written as [49]

Z ¼
Z

DΦDΠ exp

�Z
β

0

dτ
Z

d3xðiΠ†
∂τΦ

þ iΠ∂τΦ† −Hþ μNÞ
�
; ð1:1Þ

where Π is the conjugate momentum, and the field Φ is
periodic in imaginary time, Φðx⃗; 0Þ ¼ Φðx⃗; βÞ, with
β ¼ 1=T.1 The free energy density is given by

F ¼ 1

Vβ
lnZ; ð1:2Þ

where V is the volume. For a complex scalar field, the
Hamiltonian density H is

H ¼ Π†Πþ ∇⃗Φ† · ∇⃗ΦþUðΦ†;ΦÞ; ð1:3Þ

where the potential UðΦ†;ΦÞ is assumed to arise from self-
interactions rather than coupling to an external field.
Furthermore, we assume that the predominant interactions
are particle-conserving contact interactions, in which case
UðΦ†;ΦÞ ¼ UðjΦj2Þ. Thus the potential UðΦ†;ΦÞ has a
Uð1Þ symmetry. The outline of the subsequent calculation
will be valid for any such UðjΦj2Þ [50]. For concreteness,
however, we specialize to the simple potential

U ¼ m2jΦj2 þ λjΦj4: ð1:4Þ

It is convenient to split the field into the condensate
(zero-momentum modes) and the excitations:

Φ ¼ 1ffiffiffi
2

p ½ðρ1 þ ϕ1Þ þ iðρ2 þ ϕ2Þ�; ð1:5Þ

where ρ1, ρ2 represent the condensate, and ϕ1;ϕ2 are the
excitations. Owing to theUð1Þ symmetry, we have freedom
in choosing the condensate such that ρ21 þ ρ22 is a constant.
For simplicity, let us fix

ρ1 ¼ ρ2 ¼ ρ: ð1:6Þ

1Wework in natural units where Boltzmann’s constant kB is set
to unity, as well as ℏ ¼ c ¼ 1.
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Expanding the potential in powers of the excitations, we
have, at zeroth order,

Uð0Þ ¼ m2ρ2 þ λρ4: ð1:7Þ

The first-order terms can be ignored as usual since they do
not contribute to the effective action in the one-loop
approximation. The second and the fourth-order terms
are, respectively, given by

Uð2Þ ¼ m2 þ 2λρ2

2
ðϕ2

1 þ ϕ2
2Þ þ λρ2ðϕ1 þ ϕ2Þ2; ð1:8aÞ

Uð4Þ ¼ λ

4
ðϕ2

1 þ ϕ2
2Þ2: ð1:8bÞ

We will not be needing the third-order piece Uð3Þ, since we
will apply the HFB approximation.
The HFB method is a self-consistent mean-field approxi-

mation scheme (see, e.g., [45]). In this approach, the fourth-
order terms are approximated by

ϕ4
1 ≃ 6ϕ2

1hϕ2
1i − 3hϕ2

1i2; ð1:9aÞ

ϕ4
2 ≃ 6ϕ2

2hϕ2
2i − 3hϕ2

2i2; ð1:9bÞ

ϕ2
1ϕ

2
2 ≃ ϕ2

1hϕ2
2i þ ϕ2

2hϕ2
1i þ 4ϕ1ϕ2hϕ1ϕ2i

− hϕ2
1ihϕ2

2i − 2hϕ1ϕ2i2; ð1:9cÞ

where the expectation values account for both thermal and
quantum corrections. These HFB-approximated terms can
be added to the zeroth- and second-order contributions to
the potential, giving us

Uð0Þ
HFB ¼ m2ρ2 þ λ

4
ð4ρ4 − 3hϕ2

1i2 − 3hϕ2
2i2

− 2hϕ2
1ihϕ2

2i − 4hϕ1ϕ2i2Þ; ð1:10aÞ

Uð2Þ
HFB ¼

�
m2

2
þ 2λρ2 þ 3λ

2
hϕ2

1i þ
λ

2
hϕ2

2i
�
ϕ2
1

þ
�
m2

2
þ 2λρ2 þ λ

2
hϕ2

1i þ
3λ

2
hϕ2

2i
�
ϕ2
2

þ ðλρ2 þ hϕ1ϕ2iÞ2ϕ1ϕ2: ð1:10bÞ

Since this HFB potential is not Uð1Þ invariant, the
symmetry of the original theory is lost. This means that
the would-be Goldstone boson has become massive. This
conundrum, which is of course an artifact of the field
decomposition and HFB approximation, has been pointed
out previously [31–33] and is one version of the so-called
Hohenberg-Martin dilemma [30].

II. TWO CHEMICAL POTENTIALS

We have seen that the HFB approximation gives an
effective action that fails to simultaneously satisfy the self-
consistent mean-field equation while having a gapless
Goldstone mode. As discussed in the Introduction, several
solutions have been proposed in the literature to deal
with this issue. In this paper, our strategy is to introduce
a second chemical potential, generalizing the prescription
of Yukalov et al. in a nonrelativistic setting [42]. The
approach is similar to the one used by [43], in which they
modify the equations of motion to ensure both constraints
are satisfied.
This framework entails that we have one chemical

potential μ0 for the condensate and a separate chemical
potential μ1 for the excitations. These encode the fact that
the fraction of particles in the condensate and the excita-
tions are fixed at a given T, V and N. Mathematically, let us
minimize the free energy FðN0; N1Þ [51]:

δF ¼ ∂F
∂N0

δN0 þ
∂F
∂N1

δN1 ¼ 0: ð2:1Þ

The derivative of the free energy with respect to the number
of particles is the chemical potential: μ0 ¼ ∂F

∂N0
and

μ1 ¼ ∂F
∂N1

. Furthermore, since the total number of particles
is conserved, δN0 ¼ −δN1. Thus (2.1) becomes

ðμ0 − μ1ÞδN0 ¼ 0: ð2:2Þ

If, in a phase transition at a particular critical temperature,
the fraction of particles in either of the phases is not fixed,
δN0 ≠ 0, then μ0 ¼ μ1. Instead, in our case the fraction of
particles in the condensate and in excited states are each
fixed, δN0 ¼ 0, therefore the two chemical potentials are
no longer required to be equal. In fact, we will see that they
are indeed different for T < Tc and become equal at
T ¼ Tc, when the condensate vanishes.
This prescription of two chemical potentials will allow

us to circumvent the Hohenberg-Martin dilemma discussed
previously, with each chemical potential satisfying a differ-
ent constraint. The condensate chemical potential, μ0,
enforces the mean-field equation of motion, and the one
associated with the excitations, μ1, ensures that Goldstone’s
theorem is satisfied.
To incorporate two chemical potentials, the generating

functional (1.1) is generalized to2

2Since ρi correspond to the ground state, their Fourier trans-
form gives the energy of the ground state which is zero. Hence,
terms having _ρi are ignored. Terms having ∇⃗ρi are subsequently
dropped for the same reason.
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Z ¼
Z Y2

i¼1

DϕiDπiDρiDχi

× exp

�Z
β

0

dτ
Z

d3xðiπ1 _ϕ1 þ iπ2 _ϕ2

−Hþ μ0Q0 þ μ1Q1Þ
�
; ð2:3Þ

where πi and χi are the momenta conjugate to ϕi and ρi,
respectively. The conserved charge densities for the two
phases are

Q0 ≡ ρ1χ2 − ρ2χ1; ð2:4aÞ

Q1 ≡ ϕ1π2 − ϕ2π1: ð2:4bÞ

The Hamiltonian H is given by

H¼ 1

2
ðπ21 þ π22 þ χ21 þ χ22 þ ð∇⃗ϕ1Þ2 þ ð∇⃗ϕ2Þ2Þ þUðjΦj2Þ:

ð2:5Þ

In the above expressions, we have used that ρi correspond
to zero-momentum modes.
Performing the functional integrals over the conjugate

momenta, fixing ρ1 ¼ ρ2 ¼ ρ as before, and applying the
HFB approximation, we obtain

Z ¼ N
Z Y2

i¼1

DϕiDρ exp ½−S½ϕi; ρ��; ð2:6Þ

where N is an irrelevant multiplicative constant, and the
action S is given by

S½ϕi; ρ� ¼
Z

β

0

dτ
Z

d3x

�
1

2
ð _ϕ2

1 þ _ϕ2
2 þ ð∇⃗ϕ1Þ2

þ ð∇⃗ϕ2Þ2Þ þ iμ1ð _ϕ1ϕ2 − ϕ1
_ϕ2Þ − μ20ρ

2

þUð0Þ
HFB þUð2Þ

HFB −
μ21
2
ðϕ2

1 þ ϕ2
2Þ
�
; ð2:7Þ

where the HFB corrected potential terms, Uð0Þ
HFB and Uð2Þ

HFB,
are once again given by (1.10). The Euler-Lagrange
equation of motion for ρ, given by hδSδρi ¼ 0, fixes the
condensate chemical potential:

μ20 ¼ m2 þ 2λðρ2 þ hϕ2
1i þ hϕ2

2i þ hϕ1ϕ2iÞ: ð2:8Þ

Notice that the effective action S and the condensate
chemical potential μ0 both depend on the expectation
values hϕ2

1i, hϕ2
2i and hϕ1ϕ2i. These expectation values

are set by the excitations, and therefore vanish at T ¼ 0
(ignoring quantum effects). To proceed, therefore, we need

to compute the one-loop corrections to the free energy,
which in turn will allow us to evaluate the relevant
expectation values. Moving forward, we can eliminate ρ
from our calculation by using (2.8). However, this sub-
stitution will make the equations more complicated. Hence,
we will retain ρ in our calculation while keeping in mind
that it has already been fixed using the Euler-Lagrange
equation of motion.

III. ONE-LOOP FREE ENERGY

In this section we calculate the free energy density (1.2),
including finite temperature and quantum corrections at one
loop. The zeroth-order contribution can be read off from
(2.7):

Fð0Þ ¼ −μ20ρ2 þ Uð0Þ
HFB: ð3:1Þ

To compute one-loop corrections, we focus on quadratic
terms, written in the form

Sð2Þ ¼ 1

2

Z
d4xd4yϕiðxÞMijϕjðyÞ: ð3:2Þ

The matrix elements Mij ¼ δ2S
δϕiðxÞϕjðyÞ are given by

M11¼ð−∂2þm2þ4λρ2þ3λhϕ2
1iþλhϕ2

2i−μ21Þδ4ðx−yÞ;
ð3:3aÞ

M12 ¼
�
2iμ1

∂

∂τ
þ 2λρ2 þ 2λhϕ1ϕ2i

�
δ4ðx − yÞ; ð3:3bÞ

M21 ¼
�
−2iμ1

∂

∂τ
þ 2λρ2 þ 2λhϕ1ϕ2i

�
δ4ðx − yÞ; ð3:3cÞ

M22¼ð−∂2þm2þ4λρ2þλhϕ2
1iþ3λhϕ2

2i−μ21Þδ4ðx−yÞ:
ð3:3dÞ

Our choice of setting ρ1 ¼ ρ2 in the field decomposition
also leads us to expect that hϕ2

1i ¼ hϕ2
2i. As a consistency

check, notice that the diagonal elements of M become
equal when hϕ2

1i ¼ hϕ2
2i, as expected. We will henceforth

make this choice.
At this stage, we decompose the fields in Fourier modes.

One option is to perform this decomposition in terms of the
usual ladder operators. However, working with creation and
annihilation operators becomes complicated at finite tem-
perature and requires the formalism of thermofield dynam-
ics [52,53]. In this formalism, one introduces a dual field
space, conjugate to the ϕ1, ϕ2 space. Furthermore, one must
go beyond the imaginary time formalism by charting a path
in the complex time plane, such that dynamical effects can
be captured as evolution along the real-time axis, while
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thermal effects correspond to evolution along the imagi-
nary axis.
Since we are not interested in the dynamical nature of the

relevant expectation values, we can avoid using thermofield
dynamics altogether and instead Fourier decompose the
fields as

ϕiðx⃗; τÞ ¼
ffiffiffi
β

p X∞
n¼−∞

Z
d3k
ð2πÞ3 ϕ̃i;nðk⃗Þeiðk⃗·x⃗þωnτÞ; ð3:4Þ

with ωn ¼ 2πn=β. Substituting into (3.2), the quadratic
action becomes

Sð2Þ ¼ β2

2

Z
d3k
ð2πÞ3

X
n

ϕ̃i;−nð−k⃗ÞfMijϕ̃j;nðk⃗Þ; ð3:5Þ

where fM is the momentum-space representation of M:

fM ¼
�

ω2
n þ pk qþ 2μ1ωn

q − 2μ1ωn ω2
n þ pk

�
: ð3:6Þ

Here we have defined

pk ≡ k2 þm2 þ 4λðρ2 þ hϕ2
1iÞ − μ21;

q≡ 2λðρ2 þ hϕ1ϕ2iÞ: ð3:7Þ

It is convenient to transform to a new basis ψ̃� in which fM
is diagonal:

ϕ̃1;nðk⃗Þ ¼
1ffiffiffi
2

p
�
ψ̃þ;nðk⃗Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ 2μ1ωn

q − 2μ1ωn

s
ψ̃−;nðk⃗Þ

�
;

ϕ̃2;nðk⃗Þ ¼
1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q − 2μ1ωn

qþ 2μ1ωn

s
ψ̃þ;nðk⃗Þ þ ψ̃−;nðk⃗Þ

�
: ð3:8Þ

The transformation is unitary, and its determinant is unity.
In the diagonal basis, Sð2Þ can be written as

Sð2Þ ¼ β2

2

Z
d3k
ð2πÞ3

X
n

½ðω2
n þ pk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

q
Þψ̃þ;nðk⃗Þψ̃þ;−nð−k⃗Þ þ ðω2

n þ pk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

q
Þψ̃−;nðk⃗Þψ̃−;−nð−k⃗Þ�:

ð3:9Þ

The coefficients, ω2
n þ pk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

p
, are of course identified as the two eigenvalues of fM. Our goal in this section is

to compute the free energy, which only depends on the eigenvalues, and not on the exact form of the transformation. Wewill
use the explicit transformation (3.8) in Sec. V to compute the expectation values hϕ2

1i and hϕ1ϕ2i.
Letting Zð1-loopÞ denote the contribution of the one-loop corrections to the generating functional, we obtain

ln Zð1-loopÞ ¼ −V
2

X
n

Z
d3k
ð2πÞ3

�
ln

�
ω2
n þ pk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

p
T2

�
þ ln

�
ω2
n þ pk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

p
T2

��
;

¼ −V
2

X
n

Z
d3k
ð2πÞ3 ln

�ðω2
n þ pkÞ2 − q2 þ 4μ21ω

2
n

T4

�
;

¼ −V
2

X
n

Z
d3k
ð2πÞ3

�
ln

�
ω2
n þ E2þðkÞ

T2

�
þ ln

�
ω2
n þ E2

−ðkÞ
T2

��
; ð3:10Þ

where the dispersion relations are given by

E2
�ðkÞ ¼ pk þ 2μ21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21ðpk þ μ21Þ þ q2

q
: ð3:11Þ

For each term in (3.10) we can perform the Matsubara
summation using the identity

X
n

ln

�
ω2
n þ E2

�ðkÞ
T2

�
¼ E�ðkÞ

T
þ 2 ln ð1 − e−βE�ðkÞÞ

þ divergent constant: ð3:12Þ

Ignoring the divergent constant, we obtain the one-loop
corrected free energy,
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F ¼ Fð0Þ þ T
Z

d3k
ð2πÞ3 ln ½ð1 − e−βEþðkÞÞð1 − e−βE−ðkÞÞ�

þ
Z

d3k
ð2πÞ3

EþðkÞ þ E−ðkÞ
2

: ð3:13Þ

The first term is the zeroth-order contribution Fð0Þ given in
(3.1), the second term is the one-loop finite-temperature
correction, and the last term is the zero-point energy. This
form of the free energy (3.13) is well known in prior
literature, e.g., [54]. The difference with our result is that
the zeroth-order contribution features a chemical potential
that is different from the chemical potential entering the
contribution from thermal excitations.

IV. THERMODYNAMIC RELATIONS

In this section we derive various thermodynamic rela-
tions. As a first step, we can fix the excitation chemical
potential μ1 by demanding the existence of a gapless mode:
limk→0 E−ðkÞ ¼ 0. Using (3.11), we obtain

μ21 ¼ m2 þ 2λðρ2 þ hϕ2
1i þ hϕ2

2i − hϕ1ϕ2iÞ; ð4:1Þ

where we have reintroduced hϕ2
2i by allowing for

hϕ2
1i ≠ hϕ2

2i. Comparing with the condensate chemical
potential μ0 in (2.8), we see that the only difference
between the two chemical potentials is due to hϕ1ϕ2i
being nonzero. However, setting this term to zero arbitrarily
would sacrifice self-consistency. Had we started with just
one chemical potential, the Euler-Lagrange equation for ρ
would not be consistent with the existence of a gapless
mode. This shows that the chemical potentials must in
general be different in our approach.
Using the usual thermodynamic relation n ¼ −∂F=∂μ,

we obtain the number density for the condensate and
excitations,

n0 ¼ −
∂F
∂μ0

¼ 2μ0ρ
2; ð4:2aÞ

n1¼−
∂F
∂μ1

¼−
X
e¼�

Z
d3k
ð2πÞ3

�
∂Ee

∂μ1

�
1

2
þ 1

eβEe −1

��
; ð4:2bÞ

with

∂Ee

∂μ1
¼ eμ1
Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21ðpkþμ21Þþq2

p ðE2
eþpkÞ; ðe¼�Þ: ð4:3Þ

As temperature increases, particles will transition from the
condensed phase to the excited phase, thereby reducing n0
while increasing n1, such that the total number density

n ¼ n0 þ n1 ð4:4Þ

is conserved.

As a quick check on this result, consider the simplest
example of an ideal Bose gas (λ ¼ 0). In this case, the
dispersion relations (3.11) reduce to

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
� μ1: ð4:5Þ

Substituting into (4.2b) gives

n1 ¼
Z

d3k
ð2πÞ3

�
1

eβE− − 1
−

1

eβEþ − 1

�
: ð4:6Þ

We recognize the difference in the number of particles and
antiparticles, which is the usual result for the net charge
density in a relativistic field theory. From this result, we can
also see that the nonthermal part in (4.2b) arises from
contact interactions between particles. Since contact inter-
actions are an approximation to a potential that falls off
with distance, we expect that our results will be UV
divergent. We will confirm later that the nonthermal part
indeed diverges and must be suitably regularized.

V. EXPECTATION VALUES AND
RENORMALIZATION

The expression for the free energy (3.13), as well as those
for the chemical potentials and number densities, all depend
on the expectation values hϕ2

1i and hϕ1ϕ2i. The goal of this
section is to calculate these expectation values. This will
require the use of a renormalization scheme. Throughout the
calculation we set hϕ2

1i ¼ hϕ2
2i, as justified below (3.3).

A. Correlation functions

Our starting point is the transformation (3.8) from the
original basis ϕ̃1;2 to the diagonal basis ψ̃þ;−. It implies

ϕ̃1;nϕ̃1;−n ¼ ϕ̃2;nϕ̃2;−n ¼
1

2
ðψ̃þ;nψ̃þ;−n þ ψ̃−;nψ̃−;−nÞ;

ð5:1aÞ

ϕ̃1;nϕ̃2;−n ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qþ 2μ1ωn

q − 2μ1ωn

s
ðψ̃þ;nψ̃þ;−n − ψ̃−;nψ̃−;−nÞ;

ð5:1bÞ

where qwas defined in (3.7), and we have suppressed the k⃗
dependence in the fields with the understanding that k⃗ has
the same sign as n. Furthermore, note that we have dropped
the cross terms ψ̃þ;nψ̃−;−n, since we are interested in
calculating expectation values, and hψþψ−i ¼ 0 in the
diagonal basis.
To compute hϕ2

1i and hϕ1ϕ2i, we first need to evaluate
hψ2þi and hψ2

−i, the expectation values for the diagonal
basis fields. These can be expressed as a Matsubara sum
over the Fourier correlators hψ̃1;nψ̃1;−ni and hψ̃2;nψ̃2;−ni,
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which in turn are easily determined by performing func-
tional integrals with the generating functional using the
action (3.9). This gives

hψ2þi ¼
V
T

Z
d3k
ð2πÞ3

X
n

hψ̃þ;nðk⃗Þψ̃þ;−nð−k⃗Þi

¼
Z

d3k
ð2πÞ3

X
n

T

ω2
n þ pk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

p ;

hψ2
−i ¼

V
T

Z
d3k
ð2πÞ3

X
n

hψ̃−;nðk⃗Þψ̃−;−nð−k⃗Þi

¼
Z

d3k
ð2πÞ3

X
n

T

ω2
n þ pk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4μ21ω

2
n

p : ð5:2Þ

Let us first study hϕ2
1i. From (5.1a) we see that

hϕ2
1i ¼

1

2
ðhψ2þi þ hψ2

−iÞ

¼
Z

d3k
ð2πÞ3

X
n

Tðω2
n þ pkÞ

ðω2
n þ pkÞ2 − q2 þ 4μ1ω

2
n
: ð5:3Þ

Notice that the square root present in the individual
correlators, hψ2þi and hψ2

−i, disappears in their sum. This
is important because a square root in the contour integral
would give rise to two branch cuts, which would prevent us
from using a contour that encompasses all relevant poles.
Hence, even though computing the expectation values for
ψ2
� is rather difficult, computing their sum is straightfor-

ward since all the singularities are poles.
The Matsubara sum (5.3) can be performed through

standard manipulations [49]. We first write the sums as a
contour integral encompassing the poles of coth βω

2
:

X
n

Tðω2
n þ pkÞ

ðω2
n þ pkÞ − ðq2 − 4μ21ω

2
nÞ

¼ 1

4πi

I
C
dω

ð−ω2 þ pkÞ
ð−ω2 þ pkÞ2 − q2 − 4μ21ω

2
coth

βω

2
: ð5:4Þ

As shown in the left panel of Fig. 1, the contour C is
oriented counterclockwise and runs parallel on both sides
of the imaginary ω axis with infinitesimal segments cross-
ing the imaginary axis and closing the contour at infinity on
both sides. This contour encompasses all the poles of
coth βω

2
, which lie at

ω ¼ iωn ¼ 2πinT: ð5:5Þ

Since the two infinitesimal segments at the very top and
bottom of C vanish, we can transform the contour C into
semicircular arcsC1 andC2 of infinite radius (right panel of
Fig. 1). Contour C1 encompasses the poles at E�, while
contour C2 encompasses −E�. The line integrals corre-
sponding to the infinite semicircular arcs are zero since the
integrand scales as 1=R2 as R → ∞, where R is the radius
of the arc. Thus the Matsubara sum is equal to the integral
over the contours C1 and C2 computed using the residue
theorem. This gives

hϕ2
1i ¼

X
e¼�

Z
d3k
ð2πÞ3

1

4Ee

�
1þ 2eμ21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ21ðpk þ μ21Þ þ q2
p �

× coth
βEe

2
: ð5:6Þ

The expectation value hϕ1ϕ2i is evaluated following
similar steps. In this case we obtain

FIG. 1. The contour C in the Left Panel encompasses all the poles of coth βω
2
and is used to write the Matsubara sum (5.4) in terms of a

contour integral. The blue dots indicate the poles of coth βω
2
at ω ¼ iωn ¼ 2πinT. Since the infinitesimal parts at the very the top and

bottom of C are zero, we get the right panel by closing the contour with two semicircular arcs C1 and C2 of infinite radius. These enclose
the poles that correspond to ω ¼ �E�.
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hϕ1ϕ2i ¼
Z

d3k
ð2πÞ3

X
n

−Tð2μ1ωn þ qÞ
ðω2

n þ pkÞ2 − q2 þ 4μ1ω
2
n
: ð5:7Þ

The part proportional to ωn sums to zero because it is odd.
The remaining sum is evaluated using the same method-
ology as before, with the result

hϕ1ϕ2i ¼
X
e¼�

Z
d3k
ð2πÞ3

e
2Ee

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21ðpk þ μ21Þ þ q2

p coth
βEe

2
:

ð5:8Þ

The two Eqs. (5.6) and (5.8) are implicit and coupled and
must be solved together at a given temperature.

B. Renormalization

As alluded to earlier, the correlators (5.6) and (5.8), as
well as the zero-point energy term in (3.13), are all UV
divergent. We take care of these divergences using the
renormalization scheme of [38].
The divergence in hϕ2

1i and hϕ1ϕ2i arises from
cothðβE=2Þ ¼ 1þ 2fBðEÞ. The Bose factor approaches
zero exponentially as k → ∞ and therefore gives a finite
contribution, but the constant term is problematic. To cure

this divergence, we introduce a hard momentum cutoff Λ.
We first separate out the temperature-dependent term, and,
from the remaining expression, we then separate out the
term with μ1 ¼ 0. In other words, for the divergent part of
the integrals for hϕ2

1i and hϕ1ϕ2i, denoted, respectively,
by Iϕ2

1
ðμ1;ΛÞ and Iϕ1ϕ2

ðμ1;ΛÞ, we separate out the
Λ-dependent term as

Iðμ1;ΛÞ ¼ Ið0;ΛÞ þ Iðμ1Þ: ð5:9Þ

The first part of these integrals is given by

Iϕ2
1
ð0;ΛÞ ¼

X
e¼�

Z
d3k
ð2πÞ3

1

4νe
;

Iϕ1ϕ2
ð0;ΛÞ ¼

X
e¼�

Z
d3k
ð2πÞ3

e
2νe

; ð5:10Þ

where

ν2� ¼ pk þ μ21 � q: ð5:11Þ

Thus the renormalized correlators are

hϕ2
1i ¼

X
e¼�

Z
d3k
ð2πÞ3

�
1

4Ee

�
1þ 2eμ21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4μ21ðpþ μ21Þ þ q2
p �

coth

�
βEe

2

�
−

1

4νe

�
;

hϕ1ϕ2i ¼
X
e¼�

Z
d3k
ð2πÞ3

e
2

�
q

Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21ðpþ μ21Þ þ q2

p coth

�
βEe

2

�
−

1

νe

�
: ð5:12Þ

Looking at the free energy (3.13), we can similarly subtract from the zero-point energy the modified dispersion relation
(ν�) obtained for μ1 ¼ 0. The result is

F ¼ Fð0Þ þ T
Z

d3k
ð2πÞ3 ln ½ð1 − e−βEþðkÞÞð1 − e−βE−ðkÞÞ� þ

X
e¼�

Z
d3k
ð2πÞ3

Ee − νe
2

: ð5:13Þ

The zeroth-order term Fð0Þ and finite-temperature terms are
both finite, thanks to the renormalized correlators. For the
zero-point energy term, the ν� subtraction removes the
leading k divergence, but still leaves behind a divergent
answer. One could add further counterterms to make the
result finite, as done in [38]. Instead, to parallel the analysis
in [22], we will deal with the zero-point integral in the
nonrelativistic regime using dimensional regularization in
Sec. VI.
To summarize, for a given choice of m, λ, T and n, we

can now solve numerically the implicit expressions (5.12)
for the renormalized correlators, (2.8) and (4.1), for the
chemical potentials, as well as the requirement of charge
conservation (4.4). Substituting the solution to these
equations in (5.13) gives the renormalized free energy.

VI. NONRELATIVISTIC LIMIT

As a check, we will work out the nonrelativistic limit of
our relativistic calculation to verify that the result is
consistent with the nonrelativistic analysis of [22].
The nonrelativistic chemical potentials μNR0;1 are related to

their relativistic counterparts via μNR0;1 ¼ μ0;1 −m. Using
(2.8) and (4.1) we obtain

μNR0 ≃
λ

m
ðρ2 þ hϕ2

1i þ hϕ2
2i þ hϕ1ϕ2iÞ;

μNR1 ≃
λ

m
ðρ2 þ hϕ2

1i þ hϕ2
2i − hϕ1ϕ2iÞ; ð6:1Þ

where we have assumed thatm2 ≫ λρ2; λhϕ2
1i and λhϕ1ϕ2i.

Expanding the dispersion relations (3.11) for small k gives
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EþðkÞ≃2mþ k2

2m
; E−ðkÞ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2m

�
k2

2m
þ q
m

�s
: ð6:2Þ

Thus we recognize ψþ as the massive mode and ψ− as the
gapless mode. Furthermore, we can read off that the gapless
mode has a linear dispersion relation for low momentum,
with sound speed

c2s ¼
q

2m2
: ð6:3Þ

This massless mode dominates the contribution to the
excitations in the nonrelativistic limit, so we henceforth
ignore the contribution of the massive mode by set-
ting hψ2þi ≃ 0.
The condensate number density (4.2a) is approximately

n0 ≃ 2mρ2: ð6:4Þ

Meanwhile, the excitation number density (4.2b) is given
by n1 ¼ −∂F=∂μ1 ¼ −hδS=δμ1i. Ignoring the massive
mode, each time derivative in the action (2.7) can be
replaced by iE−. Thus we obtain

n1 ≃mðhϕ2
1i þ hϕ2

2iÞ: ð6:5Þ

Therefore the nonrelativistic chemical potentials (6.1)
reduce to

μNR0 ≃ gð2n − n0 þ σÞ;
μNR1 ≃ gð2n − n0 − σÞ; ð6:6Þ

where g≡ λ
2m2, and

σ ≡ 2mhϕ1ϕ2i ð6:7Þ

is the so-called anomalous average. Equation (6.6) agree
precisely with Eqs. (42) and (44) in [22].
Implicit expressions for n1 and σ can be obtained by

substituting the renormalized correlators (5.12). The latter
also simplify in the nonrelativistic limit, with the result

n1 ¼
Z

d3k
ð2πÞ3

� k2
2m þ gðn0 þ σÞ

2E−
coth

�
βE−

2

�
−
1

2

�
; ð6:8Þ

σ ¼ −
Z

d3k
ð2πÞ3

gðn0 þ σÞ
2E−

coth

�
βE−

2

�
; ð6:9Þ

which is consistent with Eq. (47) of [22].
These implicit equations can be solved numerically, once

we specifym, λ, T and n. To do so, it is convenient to define
dimensionless excitation and anomalous fractions:

η ¼ n1
n
; ξ ¼ σ

n
: ð6:10Þ

The condensate fraction is just n0
n ¼ 1 − η. Furthermore,

instead of working with T and λ, we can define dimension-
less temperature and interaction strength, respectively, as

t1 ¼
mT

3.31n2=3ℏ2
; γ1 ¼

λn1=3

8πm
: ð6:11Þ

Note that t1 ¼ T=TNR
c , where TNR

c is the critical temper-
ature for a nonrelativistic ideal Bose gas. The nonrelativ-
istic condensate fraction n0

n is plotted in the left panel of
Fig. 2 as a function of t1 and γ1, for m ¼ 0.5 eV and
n ¼ 10−9 eV3. Over the range 0 ≤ t1 ≤ 1 shown in the
figure, T=m ranges from 0 to 10−6, which confirms the
validity of the nonrelativistic approximation.
For comparison, the right panel of Fig. 2 shows the

condensate fraction in the mildly relativistic regime as a

FIG. 2. Comparison of the condensate fraction n0
n ¼ 1 − η between the nonrelativistic case with m ¼ 0.5 eV and n ¼ 10−9 eV3 (left

panel), and the mildly relativistic case with m ¼ 0.5 eV and n ¼ 4 × 10−6 eV3 (right panel). The dimensionless temperatures t1 and t2
are normalized with respect to the critical temperature of an ideal Bose gas in the nonrelativistic and mildly relativistic regimes,
respectively [55]. See the main text for details.

FINITE TEMPERATURE DESCRIPTION OF AN INTERACTING … PHYS. REV. D 106, 045025 (2022)

045025-9



function of t2 ¼ T
ffiffiffiffi
m
3n

p
and γ2 ¼ λn2=3

m2 , withm ¼ 0.5 eV and
n ¼ 4 × 10−6 eV3. Note that t1 ¼ T=TR

c , where TR
c is the

critical temperature for a relativistic ideal Bose gas. Over
the range 0 ≤ t2 ≤ 1 shown in the figure, T=m ranges from
0 to 0.1, corresponding to a mildly relativistic regime. Our
one-loop effective description breaks down for T ≳mc2s
[56], such that we cannot reliably describe the ultrarela-
tivistic regime. In the relativistic case, our framework
breaks down for small m close to the critical temperature.
Interestingly, we see from the figure that increasing the
interaction strength increases the condensate fraction sig-
nificantly in the nonrelativistic case, but has no noticeable
effect on the condensate fraction in the mildly relativis-
tic case.
The expression for the renormalized free energy (5.13)

also simplifies in the nonrelativistic limit. In terms of the
normal and the anomalous fractions (6.10), the zeroth-order
contribution Fð0Þ becomes

Fð0Þ ¼ −
λ

2m2
n2ð1þ ξ2 −

1

2
ð1 − η − ξÞ2Þ: ð6:12Þ

Meanwhile, the zero-point energy contribution is given by

Vzero-point ¼
Z

d3k
ð2πÞ3

�
Eþ − νþ

2
þ E− − ν−

2

�
: ð6:13Þ

As mentioned below (5.13), this contribution remains
divergent. To parallel the analysis in [22], we evaluate
the momentum integral using dimensional regularization
[57]. The dominant contribution in dimensional regulari-
zation comes from the gapless mode, which yields

Vzero point ¼
8m3=2

15π2

�
λn
2m2

�
5=2

ð1 − ηþ ξÞ5=2: ð6:14Þ

Equations (6.12) and (6.14) agree with Eqs. (51) and (23) of
[22], respectively.
It is instructive to consider our results at T ¼ 0 and in the

limit of a dilute Bose gas, a3sn ≪ 1, where as ¼ λ
8πm is the s-

wave scattering length. As argued in [22], in the limit T →
0 the normal density n1 goes to zero, but the anomalous
average σ remains finite. In the dilute limit the integral in
(6.8) can be performed explicitly, with the result

ξ ¼ 8ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
a3n

p
þ…: ð6:15Þ

Substituting into (6.12) and (6.14), we obtain the free
energy at T ¼ 0

FðT ¼ 0Þ ¼ −
2πasn2

m

�
1þ 112

15
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
a3sn

q
þ…

�
: ð6:16Þ

This differs from the result of Lee and Yang [58],

FLYðT¼0Þ¼−
2πasn2

m

�
1−

128

15
ffiffiffi
π

p
ffiffiffiffiffiffiffiffi
a3sn

q
þ…

�
; ð6:17Þ

which ignores the contribution from the fourth-order terms. In
our case, we have a nonzero anomalous average due to
quantumcorrections,which result from the fourth-order terms.

VII. HYDRODYNAMICS OF A SUPERFLUID

The existence of a BEC is related to the phenomenon of
superfluidity, though there are some technical differences
between the two [59]. In Landau’s phenomenological
model, a superfluid at finite (subcritical) temperature
behaves as a mixture of two fluids [46]: an inviscid
superfluid component, and a “normal” component, which
is viscous and carries entropy. In this section wewill use the
results above to split the field into superfluid and normal
fluid components, and derive an explicit dictionary to the
hydrodynamical description.
For this purpose it is helpful to generalize the field

decomposition (1.5) to

Φ ¼ 1ffiffiffi
2

p ðρeiψ0ðxÞ þ ðϕ1 þ iϕ2Þeiψ1ðxÞÞ: ð7:1Þ

Allowing the phases ψ0 and ψ1 to have spatial gradients
enables the condensate and the excitations, respectively, to
have finite velocity with respect to the frame of interest.3

The gradient of the phases is proportional to the velocity of
the superfluid in a particular frame, as we will see, and thus
vanish in the rest frame of the superfluid.
Instead of implementing the chemical potentials as

Lagrange multipliers, it is convenient to include them as
part of the phases. Concretely, the results of the previous
sections are recovered by setting ψαðtÞ ¼ −μαt, α ¼ 0, 1.
The Lagrangian can once again be evaluated order by order
in powers of the excitations. Ignoring odd-order terms,
since they do not contribute in the HFB approximation, we
only concern ourselves with even-order terms:

Lð0Þ ¼ −ρ2ð∂μψ0∂
μψ0 þm2Þ − λρ4; ð7:2aÞ

Lð2Þ ¼ −
1

2
ð∂μϕ1∂

μϕ1 þ ∂μϕ2∂
μϕ2Þ

−
ϕ2
1 þ ϕ2

2

2
ð∂μψ1∂

μψ1 þm2 þ 4λρ2Þ

−
1

2
∂μψ1ðϕ1∂

μϕ2 − ϕ2∂
μϕ1Þ þ 2λρ2ϕ1ϕ2; ð7:2bÞ

Lð4Þ ¼ −λðϕ2
1 þ ϕ2

2Þ2: ð7:2cÞ

3The parametrization ðϕ1 þ iϕ2Þeiψ1ðxÞ for the excitations is
clearly redundant but allows for a simple mapping to our earlier
results by setting ψ1 ¼ −μ1t.
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This reproduces the Hamiltonian of Sec. I once we set
ψαðtÞ ¼ −μαt, α ¼ 0, 1.
In the case of a single chemical potential, there is a single

conserved current [56]

jμ ¼ ns
∂
μψ

χ
þ nnuμ; ð7:3Þ

with χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂μψ∂μψ

p
, and where ns and nn are the number

density for the superfluid and normal components, respec-
tively. Meanwhile, uμ is the four-velocity of the normal
component. This current satisfies the usual continuity
equation ∂μjμ ¼ 0.
In our approach with two chemical potentials, there are

two conserved currents, given by [60]

jμα ¼ nsα
∂
μψα

χα
þ nnαu

μ; α ¼ 0; 1; ð7:4Þ

with χα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∂μψα∂

μψα

p
. These reflect our demand that the

charge in the condensate and excited states are individually
conserved at fixed temperature. The total superfluid and
normal component densities are given by

ns ¼ ns0 þ ns1 ; nn ¼ nn0 þ nn1 : ð7:5Þ
Thus, in general, ns and nn receive contributions from both
the condensate and the excitations.
In the normal fluid rest frame, where uμ ¼ ð1; 0; 0; 0Þ,

the currents become |⃗α ¼ nsα
∇⃗ψα
χα
, which implies

nsα ¼ χα
∇⃗ψα · |⃗α

ð∇⃗ψαÞ2
: ð7:6Þ

On the other hand, the conserved currents derive from the
free energy via Noether’s theorem,

jμα ¼ ∂F
∂ð∂μψαÞ

: ð7:7Þ

In the limit of small superflow, which is the regime of
interest, we can expand the free energy as

F ¼ F0 þ
1

2
ð∇⃗ψαÞ2

�
∂
2F

∂j∇⃗ψαj2
�����

∇⃗ψα¼0

; ð7:8Þ

where we have used the fact that F only depends on

ð∇⃗ψαÞ2. Thus (7.7) gives

|⃗α ≃ ∇⃗ψα

�
∂
2F

∂j∇⃗ψαj2
�����

∇⃗ψα¼0

: ð7:9Þ

Substituting this into (7.6), we obtain

nsα ≃ μα

�
∂
2F

∂j∇⃗ψαj2
�����

∇⃗ψα¼0

; ð7:10Þ

where we have used χα ≃ μα at this order. This expression
differs from the result obtained with one chemical potential
[56], but agrees with it once we set μ0 ¼ μ1 and ψ0 ¼ ψ1.
To compute the superfluid densities nsα explicitly, we

must generalize the free energy to include spatial gradients

of the phases. The dependence on ð∇⃗ψ0Þ2 comes solely
from the zeroth-order term Fð0Þ. It is easy to see that (3.1)
generalizes to

Fð0Þ ¼ −ðμ20 − ð∇⃗ψ0Þ2Þρ2 þ Uð0Þ
HFB; ð7:11Þ

which implies

ns0 ≃ 2μ0ρ
2: ð7:12Þ

This is recognized as the condensate density n0 obtained in
(4.2a), which tells us that the condensate only contributes to
the superfluid component (i.e., nn0 ¼ 0).
Meanwhile, the dependence on ð∇⃗ψ1Þ2 comes from the

one-loop corrections. These take the same form as in (3.13),
but with modified E�ðkÞ to account for nonzero superflow.
Specifically, we obtain

ns1 ≃ μ1
X
e¼�

Z
d3k
ð2πÞ3

�
∂
2Ee

∂j∇⃗ψ1j2
�
1

2
þ fBðEeÞ

�
−
�

∂Ee

∂j∇⃗ψ1j

�
2

βfBðEeÞð1þ fBðEeÞÞ
�
∇⃗ψ1¼0

: ð7:13Þ

Thus it remains to calculate ∂E�ðkÞ
∂j∇⃗ψ1j

j∇⃗ψ1¼0
and ∂

2E�ðkÞ
∂j∇⃗ψ1j2

j∇⃗ψ1¼0
. To do so, we go back to the mass matrixM. Allowing for spatial

gradients of the phases, (3.6) generalizes to

fM ¼
�

ω2
n þ pk þ χ21 2ikμ∂μψ1 þ q

−2ikμ∂μψ1 þ q ω2
n þ pk þ χ21

�
; ð7:14Þ
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with kμ ≡ ðiωn; k⃗Þ, and where pk and q are defined in (3.7).
Similar to the calculation of the previous section, the
vanishing of the determinant gives the dispersion relations:

ð−ω2 þ pk þ χ21Þ2 − q2 − 4ðkμ∂μψ1Þ2 ¼ 0; ð7:15Þ

where we have used ω ¼ iωn. The solution gives the
desired dispersion relations:

E2
�ðkÞ ¼ pk þ χ21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðkμ∂μψ1Þ2 þ q2

q
: ð7:16Þ

This is an implicit relation, however, because k0 ¼ E�ðkÞ
in the above. Thus a closed form solution is difficult to
obtain. Fortunately, the relevant quantities, i.e., the deriv-

atives of E� with respect to j∇⃗ψ1j, are easy to extract:

∂E�ðkÞ
∂j∇⃗ψ1j

����∇⃗ψ1¼0

¼ � 2μ1kk
Ak

;

∂
2E�ðkÞ
∂j∇⃗ψ1j2

����∇⃗ψ1¼0

¼ 1

E�Ak

�
�ðE2

� − 2k2k − k2Þ þ 8μ21k
2

Ak
∓ 4μ21k

2ð2E2
� � AkÞ

A2
k

�
; ð7:17Þ

where Ak ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ21ðpk þ μ21Þ þ q2

p
and kk ¼ k⃗·∇⃗ψ1

j∇⃗ψ1j
. All quantities on the right-hand side are evaluated at vanishing spatial

gradients, e.g., with E�ðkÞ given by (3.11). Substituting into (7.13) gives the excitation contribution to the superfluid
density.
The total superfluid density, to leading order in the superflow, is given by the sum of (7.12) and (7.13):

ns ¼ 2μ0ρ
2 þ μ1

X
e¼�

Z
d3k
ð2πÞ3

�
∂
2Ee

∂j∇⃗ψ1j2
�
1

2
þ fBðEeÞ

�
−
�

∂Ee

∂j∇⃗ψ1j

�
2

βfBðEeÞð1þ fBðEeÞÞ
�
∇⃗ψ1¼0

: ð7:18Þ

This expression greatly simplifies in the nonrelativistic regime, where the massive excitations can be neglected and hence

fBðEþÞ ≃ 0. Furthermore, in this regime it is easy to show from (7.17) that ∂
2EþðkÞ
∂j∇⃗ψ1j2

j∇⃗ψ1¼0
gives a suppressed contribution.

Thus (7.18) becomes

ns≃2μ0ρ
2þμ1

2

Z
d3k
ð2πÞ3

∂
2E−

∂j∇⃗ψ1j2
����∇⃗ψ1¼0

þμ1

Z
d3k
ð2πÞ3

∂
2E−

∂j∇⃗ψ1j2
����∇⃗ψ1¼0

fBðE−Þ−μ1β

Z
d3k
ð2πÞ3

�
∂E−

∂j∇⃗ψ1j

�
2

fBðE−Þð1þfBðE−ÞÞ:

ð7:19Þ

The different terms are to be interpreted as follows:
(1) As already mentioned, the first term is recognized as

the condensate density (4.2a), n0 ¼ 2μ0ρ
2.

(2) The second term (on the first line) is independent
of T and represents the contribution due to quan-
tum corrections in the form of contact inter-
actions at T¼0. It is easy to show that it matches
the T ¼ 0 part of the excitation density n1 given
by (6.8).4

(3) Lastly the second line in (7.19) vanishes exponen-
tially as T → 0 thanks to the Bose factors.

It follows that, in the limit T → 0, the superfluid density
is equal to the sum of the condensate density plus the
excitation density:

ns ¼ n0 þ n1 ¼ n at T ¼ 0; ð7:20Þ

where we have used (4.4). Thus the superfluid fraction is
equal to unity at zero temperature, and there are no particles
in the normal phase. This also agrees with the experimental
observation that liquid helium, which can be modeled as
having strong interactions, has a superfluid fraction close
to 1, while the condensate fraction isOð10%Þ [61] since the
excitation density increases with interaction strength. Thus,
while the condensate depletes as the interaction strength
between particles increases, there is no corresponding
depletion of the superfluid.

4This can also be seen by substituting (7.10) directly in (7.2)
instead of first computing the effective action. This tells us that

−μ1
�

∂
2L

∂j∇⃗ψ1j2
�����∇⃗ψ1¼0

¼ 2μ0ρ
2 þ μ1ðhϕ2

1i þ hϕ2
2iÞ þ terms that vanish asT → 0:
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Along these lines, it also follows from (7.19) that the
only way for the superfluid to deplete is through the
temperature-dependent terms in the second line. These
terms grow with increasing temperature, resulting in a
depletion of the superfluid. In particular, for sufficiently
large temperature (or sufficiently weak interaction
strength), the second term in (7.19) arising from quantum
corrections can be neglected compared to the thermal
corrections. In this case, we obtain

ns ¼ 2μ0ρ
2 −

β

12m

Z
d3k
ð2πÞ3

k2

sinh2ðβE−ðkÞ
2

Þ
: ð7:21Þ

This matches the known result in the nonrelativistic limit
and for weak coupling, as shown in Eq. (66) of [22].

VIII. OUTLOOK

The problem of describing a BEC through a scalar field
exhibiting spontaneous symmetry breaking has been well
known for over five decades in the condensed matter
community. After the development of the CJT formalism
for studying self-consistent QFTs, this problem was again
noted in terms of the inability to simultaneously satisfy the
Euler-Lagrange equation of motion and Goldstone’s theo-
rem. A number of different approaches to solve this
problem have been proposed over the years. Each offers
different insights into the problem but also usually suffers
from a pathology or carries some undesirable baggage in
the form of additional ad hoc terms or constraints.
Our own motivation for revisiting this problem is the

recent interest in BEC and superfluid candidates for dark
matter. This paper is a natural follow-up to our earlier work
[22], where we derived the nonrelativistic, finite-temper-
ature equation of state for dark matter superfluids, using a
self-consistent mean-field approximation. In this paper we
extended the calculation using a relativistic QFT frame-
work. As in [22], we followed Yukalov’s proposal of using
two chemical potentials to describe a BEC—one for the
condensed phase, a second one for the normal phase. The
two chemical potentials allow us to simultaneously satisfy
the self-consistency condition for the mean-field while
having a gapless Goldstone mode.
Our main results can be summarized as follows. We

applied this proposal in the context of an imaginary time
formalism QFT to describe thermal effects. We worked out

the free energy of the system, incorporating the renorm-
alization scheme of [38]. Since our calculation was done
self-consistently, the resulting expressions for the conden-
sate (excitation) and anomalous densities are implicit and
can be evaluated numerically. We then worked out the
nonrelativistic limit and showed its consistency with the
earlier results in [22]. Finally, we sought to clarify the
relationship between superfluidity and BEC by translating
our results to the hydrodynamical language and working
out the superfluid fraction.
Though we performed an explicit calculation for a jΦj4

theory, our analysis can be easily generalized to any theory
with a potential having jΦj2n terms. It would be illuminat-
ing to repeat the analysis for the more realistic superfluid
effective theory proposed in [12–14], with hexic potential.
It would be interesting, in particular, to study various
observable consequences of dark matter superfluidity in our
language, such as the effect of core fragmentation [16].
Even though our solution is naturally framed in a way

that makes it easier to map it to the physics of a BEC, it can
be easily checked against other results in the literature.
Comparing with the results of [38], for instance, we find
that our calculation yields the same results as the usual CJT
calculation, with the only differences arising from our
choice of the two chemical potentials. This choice allows us
to avoid the ad hoc method used in that particular
calculation, as well as others, by introducing a physically
well-motivated scheme of two chemical potentials. A
similar method is also used in [43], wherein a Lagrange
multiplier is introduced to define a new, truncated 2PI
effective action, which essentially serves the same purpose
as our second chemical potential. Understanding the origin
of the various approaches to this problem, as well as their
similarities/differences, can help us provide deeper insights
into its resolution.

ACKNOWLEDGMENTS

We thank Lasha Berezhiani for initial collaboration on
this project and for many helpful discussions. We also
thank Shantanu Agarwal for providing us with interesting
insights regarding contour integration in the presence of
branch cuts. This work is supported by the U.S. Department
of Energy (HEP) Award No. DE-SC0013528 and NASA
ATP Grant No. 80NSSC18K0694.

FINITE TEMPERATURE DESCRIPTION OF AN INTERACTING … PHYS. REV. D 106, 045025 (2022)

045025-13



[1] S.-J. Sin, Late time cosmological phase transition and
galactic halo as Bose liquid, Phys. Rev. D 50, 3650 (1994).

[2] S. U. Ji and S. J. Sin, Late time phase transition and the
galactic halo as a Bose liquid: 2. The effect of visible matter,
Phys. Rev. D 50, 3655 (1994).

[3] J. Goodman, Repulsive dark matter, New Astron. 5, 103
(2000).

[4] P. J. E. Peebles, Fluid dark matter, Astrophys. J. Lett. 534,
L127 (2000).

[5] A. Arbey, J. Lesgourgues, and P. Salati, Galactic halos of
fluid dark matter, Phys. Rev. D 68, 023511 (2003).

[6] C. G. Boehmer and T. Harko, Can dark matter be a Bose-
Einstein condensate?, J. Cosmol. Astropart. Phys. 06 (2007)
025.

[7] T. Harko, Bose-Einstein condensation of dark matter solves
the core/cusp problem, J. Cosmol. Astropart. Phys. 05
(2011) 022.

[8] T. Harko, Gravitational collapse of Bose-Einstein conden-
sate dark matter halos, Phys. Rev. D 89, 084040 (2014).

[9] Z. Slepian and J. Goodman, Ruling out bosonic repulsive
dark matter in thermal equilibrium, Mon. Not. R. Astron.
Soc. 427, 839 (2012).

[10] A. H. Guth, M. P. Hertzberg, and C. Prescod-Weinstein, Do
dark matter axions form a condensate with long-range
correlation?, Phys. Rev. D 92, 103513 (2015).

[11] P.-H. Chavanis, Mass-radius relation of Newtonian self-
gravitating Bose-Einstein condensates with short-range
interactions. I. Analytical results, Phys. Rev. D 84,
043531 (2011).

[12] L. Berezhiani and J. Khoury, Theory of dark matter super-
fluidity, Phys. Rev. D 92, 103510 (2015).

[13] L. Berezhiani and J. Khoury, Dark matter superfluidity and
galactic dynamics, Phys. Lett. B 753, 639 (2016).

[14] L. Berezhiani, B. Famaey, and J. Khoury, Phenomenologi-
cal consequences of superfluid dark matter with baryon-
phonon coupling, J. Cosmol. Astropart. Phys. 09 (2018)
021.

[15] L. Berezhiani, On effective theory of superfluid phonons,
Phys. Lett. B 805, 135451 (2020).

[16] L. Berezhiani, G. Cintia, and M. Warkentin, Core fragmen-
tation in simplest superfluid dark matter scenario, Phys.
Lett. B 819, 136422 (2021).

[17] M. Milgrom, A modification of the Newtonian dynamics as
a possible alternative to the hidden mass hypothesis, As-
trophys. J. 270, 365 (1983).

[18] S. McGaugh, The baryonic Tully-Fisher relation of gas rich
galaxies as a test of LCDM and MOND, Astron. J. 143, 40
(2012).

[19] S. McGaugh, F. Lelli, and J. Schombert, Radial Acceler-
ation Relation in Rotationally Supported Galaxies, Phys.
Rev. Lett. 117, 201101 (2016).

[20] F. Lelli, S. S. McGaugh, J. M. Schombert, and M. S.
Pawlowski, One law to rule them all: The radial acceleration
relation of galaxies, Astrophys. J. 836, 152 (2017).

[21] P. Salucci, The distribution of dark matter in galaxies,
Astron. Astrophys. Rev. 27, 2 (2019).

[22] A. Sharma, J. Khoury, and T. Lubensky, The equation of
state of dark matter superfluids, J. Cosmol. Astropart. Phys.
05 (2019) 054.

[23] M. G. Alford, K. Rajagopal, and F. Wilczek, Color flavor
locking and chiral symmetry breaking in high density QCD,
Nucl. Phys. B537, 443 (1999).

[24] P. W. Anderson and N. Itoh, Pulsar glitches and restlessness
as a hard superfluidity phenomenon, Nature (London) 256,
25 (1975).

[25] J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective
action for composite operators, Phys. Rev. D 10, 2428
(1974).

[26] R. Norton and J. Cornwall, On the formalism of relativistic
many body theory, Ann. Phys. (N.Y.) 91, 106 (1975).

[27] G. Amelino-Camelia and S.-Y. Pi, Self-consistent improve-
ment of the finite temperature effective potential, Phys. Rev.
D 47, 2356 (1993).

[28] P. Millington and A. Pilaftsis, Perturbative nonequilibrium
thermal field theory, Phys. Rev. D 88, 085009 (2013).

[29] J. Goldstone, A. Salam, and S. Weinberg, Broken sym-
metries, Phys. Rev. 127, 965 (1962).

[30] P. Hohenberg and P. Martin, Microscopic theory of super-
fluid helium, Ann. Phys. (N.Y.) 34, 291 (1965).

[31] G. Amelino-Camelia, Thermal effective potential
of the O(N) linear sigma model, Phys. Lett. B 407, 268
(1997).

[32] N. Petropoulos, Linear sigma model and chiral symmetry at
finite temperature, J. Phys. G 25, 2225 (1999).

[33] J. T. Lenaghan and D. H. Rischke, The O(N) model at finite
temperature: Renormalization of the gap equations in
Hartree and large N approximation, J. Phys. G 26, 431
(2000).

[34] J. O. Andersen, Pion and kaon condensation at finite
temperature and density, Phys. Rev. D 75, 065011 (2007).

[35] Y. B. Ivanov, F. Riek, and J. Knoll, Gapless Hartree-Fock
resummation scheme for the oðnÞ model, Phys. Rev. D 71,
105016 (2005).

[36] Y. B. Ivanov, F. Riek, H. van Hees, and J. Knoll, Renorm-
alization of a gapless hartree-fock approximation to a theory
with spontaneously broken oðnÞ symmetry, Phys. Rev. D
72, 036008 (2005).

[37] J. Baacke and S. Michalski, The O(N) linear sigma model at
finite temperature beyond the Hartree approximation, Phys.
Rev. D 67, 085006 (2003).

[38] M. G. Alford, S. K. Mallavarapu, A. Schmitt, and S. Stetina,
Role reversal in first and second sound in a relativistic
superfluid, Phys. Rev. D 89, 085005 (2014).

[39] H. van Hees and J. Knoll, Renormalization in self-consistent
approximation schemes at finite temperature. 3. Global
symmetries, Phys. Rev. D 66, 025028 (2002).

[40] Y. Nemoto, K. Naito, and M. Oka, Effective potential of O
(N) linear sigma model at finite temperature, Eur. Phys. J. A
9, 245 (2000).

[41] G. Markó, U. Reinosa, and Z. Szép, O(N) model within the
Φ-derivable expansion to order λ2: On the existence and
UV/IR sensitivity of the solutions to self-consistent equa-
tions, Phys. Rev. D 92, 125035 (2015).

[42] V. Yukalov, Representative statistical ensembles for Bose
systems with broken gauge symmetry, Ann. Phys. (Am-
sterdam) 323, 461 (2008).

[43] A. Pilaftsis and D. Teresi, Symmetry improved CJTeffective
action, Nucl. Phys. B874, 594 (2013).

SHARMA, KARTVELISHVILI, and KHOURY PHYS. REV. D 106, 045025 (2022)

045025-14

https://doi.org/10.1103/PhysRevD.50.3650
https://doi.org/10.1103/PhysRevD.50.3655
https://doi.org/10.1016/S1384-1076(00)00015-4
https://doi.org/10.1016/S1384-1076(00)00015-4
https://doi.org/10.1086/312677
https://doi.org/10.1086/312677
https://doi.org/10.1103/PhysRevD.68.023511
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1088/1475-7516/2011/05/022
https://doi.org/10.1088/1475-7516/2011/05/022
https://doi.org/10.1103/PhysRevD.89.084040
https://doi.org/10.1111/j.1365-2966.2012.21901.x
https://doi.org/10.1111/j.1365-2966.2012.21901.x
https://doi.org/10.1103/PhysRevD.92.103513
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.92.103510
https://doi.org/10.1016/j.physletb.2015.12.054
https://doi.org/10.1088/1475-7516/2018/09/021
https://doi.org/10.1088/1475-7516/2018/09/021
https://doi.org/10.1016/j.physletb.2020.135451
https://doi.org/10.1016/j.physletb.2021.136422
https://doi.org/10.1016/j.physletb.2021.136422
https://doi.org/10.1086/161130
https://doi.org/10.1086/161130
https://doi.org/10.1088/0004-6256/143/2/40
https://doi.org/10.1088/0004-6256/143/2/40
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.1103/PhysRevLett.117.201101
https://doi.org/10.3847/1538-4357/836/2/152
https://doi.org/10.1007/s00159-018-0113-1
https://doi.org/10.1088/1475-7516/2019/05/054
https://doi.org/10.1088/1475-7516/2019/05/054
https://doi.org/10.1016/S0550-3213(98)00668-3
https://doi.org/10.1038/256025a0
https://doi.org/10.1038/256025a0
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1103/PhysRevD.10.2428
https://doi.org/10.1016/0003-4916(75)90281-X
https://doi.org/10.1103/PhysRevD.47.2356
https://doi.org/10.1103/PhysRevD.47.2356
https://doi.org/10.1103/PhysRevD.88.085009
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1016/0003-4916(65)90280-0
https://doi.org/10.1016/S0370-2693(97)00709-0
https://doi.org/10.1016/S0370-2693(97)00709-0
https://doi.org/10.1088/0954-3899/25/11/305
https://doi.org/10.1088/0954-3899/26/4/309
https://doi.org/10.1088/0954-3899/26/4/309
https://doi.org/10.1103/PhysRevD.75.065011
https://doi.org/10.1103/PhysRevD.71.105016
https://doi.org/10.1103/PhysRevD.71.105016
https://doi.org/10.1103/PhysRevD.72.036008
https://doi.org/10.1103/PhysRevD.72.036008
https://doi.org/10.1103/PhysRevD.67.085006
https://doi.org/10.1103/PhysRevD.67.085006
https://doi.org/10.1103/PhysRevD.89.085005
https://doi.org/10.1103/PhysRevD.66.025028
https://doi.org/10.1007/s100500070042
https://doi.org/10.1007/s100500070042
https://doi.org/10.1103/PhysRevD.92.125035
https://doi.org/10.1016/j.aop.2007.05.003
https://doi.org/10.1016/j.aop.2007.05.003
https://doi.org/10.1016/j.nuclphysb.2013.06.004


[44] B. Garbrecht and P. Millington, Constraining the effective
action by a method of external sources, Nucl. Phys. B906,
105 (2016).

[45] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-con-
sistent mean-field models for nuclear structure, Rev. Mod.
Phys. 75, 121 (2003).

[46] L. Landau, Theory of the superfluidity of helium II, Phys.
Rev. 60, 356 (1941).

[47] L. Tisza, Transport phenomena in helium II, Nature
(London) 141, 913 (1938).

[48] F. London, The λ-phenomenon of liquid helium and the Bose-
Einstein degeneracy, Nature (London) 141, 643 (1938).

[49] J. Kapusta and C. Gale, Finite-Temperature Field Theory:
Principles and Applications, Cambridge Monographs on
Mathematical Physics (Cambridge University Press, Cam-
bridge, England, 2011).

[50] K. M. Benson, J. Bernstein, and S. Dodelson, Phase
structure and the effective potential at fixed charge, Phys.
Rev. D 44, 2480 (1991).

[51] V. I. Yukalov, Basics of Bose-Einstein condensation, Phys.
Part. Nucl. 42, 460 (2011).

[52] H. Matsumoto, Y. Nakano, H. Umezawa, F. Mancini, and
M. Marinaro, Thermo field dynamics in interaction repre-
sentation, Prog. Theor. Phys. 70, 599 (1983).

[53] N. Landsman and C. van Weert, Real and imaginary time
field theory at finite temperature and density, Phys. Rep.
145, 141 (1987).

[54] J. Bernstein and S. Dodelson, Relativistic Bose Gas, Phys.
Rev. Lett. 66, 683 (1991).

[55] M. Grether, M. de Llano, and G. A. Baker, Bose-Einstein
Condensation in the Relativistic Ideal Bose Gas, Phys. Rev.
Lett. 99, 200406 (2007).

[56] M. G. Alford, S. Mallavarapu, A. Schmitt, and S. Stetina,
From a complex scalar field to the two-fluid picture of
superfluidity, Phys. Rev. D 87, 065001 (2013).

[57] J. O. Andersen, Theory of the weakly interacting Bose gas,
Rev. Mod. Phys. 76, 599 (2004).

[58] T. Lee and C. Yang, Many-body problem in quantum
mechanics and quantum statistical mechanics, Phys. Rev.
105, 1119 (1957).

[59] I. M. Khalatnikov, An Introduction to the Theory of Super-
fluidity (Benjamin, New York, 1965).

[60] D. Son, Low-energy quantum effective action for relativistic
superfluids, arXiv:hep-ph/0204199.

[61] R. A. Cowley and A. D. B. Woods, Neutron Scattering from
Liquid Helium at High Energies, Phys. Rev. Lett. 21, 787
(1968).

FINITE TEMPERATURE DESCRIPTION OF AN INTERACTING … PHYS. REV. D 106, 045025 (2022)

045025-15

https://doi.org/10.1016/j.nuclphysb.2016.02.022
https://doi.org/10.1016/j.nuclphysb.2016.02.022
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/PhysRev.60.356
https://doi.org/10.1103/PhysRev.60.356
https://doi.org/10.1038/141913a0
https://doi.org/10.1038/141913a0
https://doi.org/10.1038/141643a0
https://doi.org/10.1103/PhysRevD.44.2480
https://doi.org/10.1103/PhysRevD.44.2480
https://doi.org/10.1134/S1063779611030063
https://doi.org/10.1134/S1063779611030063
https://doi.org/10.1143/PTP.70.599
https://doi.org/10.1016/0370-1573(87)90121-9
https://doi.org/10.1016/0370-1573(87)90121-9
https://doi.org/10.1103/PhysRevLett.66.683
https://doi.org/10.1103/PhysRevLett.66.683
https://doi.org/10.1103/PhysRevLett.99.200406
https://doi.org/10.1103/PhysRevLett.99.200406
https://doi.org/10.1103/PhysRevD.87.065001
https://doi.org/10.1103/RevModPhys.76.599
https://doi.org/10.1103/PhysRev.105.1119
https://doi.org/10.1103/PhysRev.105.1119
https://arXiv.org/abs/hep-ph/0204199
https://doi.org/10.1103/PhysRevLett.21.787
https://doi.org/10.1103/PhysRevLett.21.787

