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Realization of slow-roll inflation and the MSSM
in supergravity theories with new Fayet-Iliopoulos terms
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A new supergravity D-term, not associated to gauged R-symmetry, was recently discovered and used to
construct new supergravity models. In this paper we use a generalization of the new D-term that we used in
previous works, to construct a supergravity model of slow-roll inflation with the observable sector of the
minimal supersymmetric standard model. Supersymmetry is broken at a high scale in the hidden sector and
communicated to the observable sector by gravity mediation. The new D-term contains free parameters that
can give large masses to scalar superpartners of quarks and leptons and to the higgsinos while holding the
masses of observed particles fixed. Gauginos receive a mass from a noncanonical kinetic term for the vector
supermultiplets. We also present a simple argument proving in full generality that the cutoff A of effective
theories containing new D-terms can never exceed the supersymmetry breaking scale. In our theory, the
relation between D-term and the Hubble constant during inflation also implies the universal relation

A < VHMy,.
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I. INTRODUCTION

The effective field theory describing the low-energy
dynamics of superstrings is described by a supergravity
theory. If supersymmetry is broken at an energy scale
comparable to the string scale Mg~ (a/)~'/? it can be
realized nonlinearly [1] while if My < (a/)~!/? the con-
straints following from linearly realized supersymmetry
restrict the effective action to the general form found long
ago in [2]. This makes the construction of specific models
of inflation in superstring theory quite challenging. In fact,
no “standard,” canonical model of supergravity inflation
exists today, even without requiring a string theory origin
for it. When the supersymmetry breaking scale is higher
than the Hubble scale during slow-roll inflation, H, non-
linear realizations of supersymmetry give additional flex-
ibility in constructing scalar potentials for the inflaton. In
fact, they may be unnecessarily generic, since they do not
require one to have the same number of bosonic and
fermionic degrees of freedom, which is instead a robust
prediction of any superstring theory.
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A novel method for enlarging the space of supergravity
effective theories while automatically ensuring that each
bosonic degree of freedom has a fermionic partner does exist.
The method uses linear realizations of supersymmetry so all
interactions can be written in a manifestly supersymmetric
form in terms of a superfield. The difference with the general
construction of [2] is that the new interactions become
singular when supersymmetry is unbroken, because they
contain inverse powers of some auxiliary fields. Among
these new terms we will be particularly interested in the “new
Fayet-Iliopoulos” (FI) terms written in a Kéhler invariant,
field-dependent form by Aldabergenov, Ketov, and Knoops
(AKK) [3]. This is a generalization of the new FI terms
introduced by Antoniadis, Chatrabhuti, Isono, and Knoops
(ACIK) [4] as well as of the first new D-term to be discovered,
constructed in [5]. We used ACIK terms in our previous paper
[6] to construct a toy model of slow-roll inflation with a
semirealistic particle spectrum based on the Kachru-Kallosh-
Linde-Trivedi (KKLT) model [7] of superstring inflation. Its
effective field theory description is a supergravity model with
ano-scale Kihler potential for its volume modulus and with a
superpotential that differs from its constant no-scale form
because of nonperturbative corrections. The KKLT super-
potential produces a supersymmetric anti—de-Sitter (AdS)
vacuum, which we lifted using the ACIK FI term. In the
model described in [6] supersymmetry was spontaneously
broken in a hidden sector at a very high but still sub-
Planckian scale M > Mg> 107°M,. We employed
gravity mediation to communicate the supersymmetry
(SUSY) breaking to the observable sector, where
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supersymmetry breaking manifests itself through the exist-
ence of explicit soft SUSY breaking terms, characterized by
an energy scale M jpeervanle << M. Reference [8] instead used
AKK D-terms, a no-scale Kéhler potential, and a linear
superpotential to obtain a slow-roll model of inflation.
The model we proposed in [6] had a major phenom-
enological weakness, originating from the fact that the
scalars of the observable sector possess a universal con-

tribution to the square mass m?,

m2:—§H2+...’ (1)

where ... denote small model-dependent corrections. The
large term —9H?/4 saturates the Breitenlohner-Freedman
bound [9] on the supersymmetric anti—de-Sitter vacuum,
where the scalar potential takes the value Vg =
—3H?/87xG. When the vacuum energy is lifted up by a
positive constant due to a nonzero D-term contribution,
V — V + D?/2, the scalars become tachyons. We cor-
rected for this problem by adding large soft supersymmetry
breaking terms in the superpotential, which made the
masses of all scalar fields in the theory nontachyonic but
also gave unacceptably large masses to the fermions in the
observable sector.

The first aim of this paper is to propose a modification of
the ACIK-FI term that makes all scalars nontachyonic,
without requiring the introduction of large soft supersym-
metry breaking terms.

We will achieve a realistic spectrum of bosons and
fermions in the observable sector by using the AKK FI term
and by introducing a noncanonical kinetic term for some
vector supermultiplets of the observable sector.

The new FI terms come together with a host of multi-
fermion nonrenormalizable terms, that are cumbersome to
write and hard to study. The analysis carried out in [6]
suffered from three weaknesses. The first one was that it
was not systematic, because it examined only some non-
renormalizable terms that had the structures necessary to
give the strongest constraints on the UV cutoff of the
effective theory. The second one is that some of the
potentially dangerous terms could vanish due to Fierz
identities and other properties of multifermion terms.
The third and most significant one is that the gauginos
were not canonically normalized, so that spurious powers
of the gauge coupling constant associated to the FI vector
multiplet appeared in the formulas for the UV cutoff.

The second aim of this paper is to find the UV cutoff of
the theories with new FI terms. We will find that “three
wrongs make a right” and that these theories can have a
cutoff A > H and so they can be reliable effective field
theories of inflation.

The downside of our new analysis is that we will show in
full generality that the cutoff of our theory cannot be
parametrically larger than M.

This paper is organized as follows. In Sec. II we briefly
review the construction of the AKK-FI term [3] using the
superconformal tensor calculus language used in [6] and
we apply it to lift the AdS minimum of the KKLT model. In
Sec. IIT we give a simple, general and model-independent
argument showing that the UV cutoff A in all theories with
a new FI term obeys

AsMs, Ai \/HMPI, MPIEI/\/gﬂ'G. (2)
Section IV reviews the construction of a slow-roll

“Starobinsky”-type inflationary potential given in [6],
which uses the new FI term. The section also briefly
discusses the hidden-sector dynamics due to the potential.
In Sec. V we construct a superpotential that communicates
the supersymmetry breaking due to the D-term to the
observable sector and produces a realistic spectrum of
observable particles. In particular, we show how to keep
standard model fermions light while making their scalar
superpartners heavy, how to give mass to all the gauginos,
how to keep the physical Higgs scalar light while making
the higgsino heavy, and how to ensure that a light Higgs
field mass during inflation does not spoil the properties of
single-field inflation. The AKK generalization of the FI
term, that replaces the FI constant term with a function of
the scalar fields in chiral multiplets, is used to make all
scalars masses nontachyonic in the postinflation vacuum
while a nonminimal kinetic term for the gauge fields of the
observable sector is used to give masses to the gauginos.
An Appendix summarizes fermion masses formulas and
their derivation in superconformal tensor calculus.
Sections 1I, IV, V and Appendix A use results derived in
chapter 12 and Appendix C of the doctoral dissertation
of [10].

II. NEW FAYET-ILIOPOULOS TERMS AND KKLT

In this section we construct a superconformal action of
N =1 supergravity equipped with generalized Kihler-
invariant, field-dependent Fayet-Iliopoulos terms [3] using
superconformal tensor calculus [11,12]. To do this, we add
to the standard A/ = 1 supergravity action a generalization
of the new FI terms studied in Ref. [13]. We write the
superconformal action as

L = =3[SySee K@ 23] ) 4 [S3W(Z24))
1

H WVa(VIW V)] +ece o+ Loewmn: (3)
where S is the conformal compensator with Weyl/chiral
weights (1,1), Z4 and V are chiral matter and vector
multiplets with weights (0,0), K(Z, Z) is a Kihler potential
gauged by a vector multiplet V, W(Z) is a superpotential,
and W, (V) is the field strength of the vector multiplet V.
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Then, we decompose the matter multiplets Z4’s into
hidden and observable sectors, denoting with 7" the volume
modulus multiplet, and Z' the observable sector matter
multiplets. We then consider a superpotential of the form

W(T) = WH(T) + We(Z'), (4)

where
WH(T) = Wy + Ae~T (5)
WO(Z') = Wyssm + -+ - - , (6)

Wassu ==Y, UgH, - O+ Y,DpH,- O
Y, ERf, L+ ufl, - H,
= =Y, fig(H;jdy — Hjity) + Y ydg (HYd, — Hyiip)
+ Y eg(Hy o, — Hyer) +p(HHy — HyHY),
(7)

where W,,A,a,Y,, Y, Y,,u are constants, A-B=
€A B? is the product between SU(2), doublets in which
€ =1 = =€, a, b are SU(2), indices, and i, d, e, are
the scalar component fields of the superfield SU(2),
doublets O, L. They are scalar superpartners of the SM
quarks and leptons.

In our setup, the hidden sector superpotential W” has the
form of a string theory superpotential with nonperturbative
corrections, which are obtained by either Euclidean D3
branes in type IIB compactifications or gaugino condensa-
tion due to D7 branes [7]. The observable sector super-
potential is the one used in minimal supersymmetric
extensions of the standard model (MSSM)' plus ellipses
that stand for beyond the Standard Model corrections
which we will not need in this paper. Its supermultiplets
contain quarks, leptons, the Higgs fields, and their super-
symmetric partners. The Kéhler potential of the volume
modulus 7 is the same as in KKLT string background [7] so
it is given by

K=-3W[T+T-dZ,7)/3| (8)

where ®(Z!, Z!) is a real function of the observable-sector
matter multiplets Z”’s. In terms of the real function ®

(21,2 = 6;52'7, 9)
we have @@ ®; =® where ®;=0d/dz' and ®; PV =4.
The next step is to determine which type of new FI

terms we should be using. In this work, we employ the
Kéhler-invariant “field-dependent” Fayet-Iliopoulos terms

'We follow the notations used in Ref. [14].

proposed by Aldabergenov, Ketov, and Knoops [3], which
is a generalization of the ACIK-FI term [4]. We refer to this
FI term as a AKK-FI term to distinguish it from many other
FI terms. The AKK-FI term that we will use is

- W, (VYWE(V)) (W (VIIWE(V
1= —[(su3pe 19y VTV R V()
T(w*)T(w?)
x (V)p(& + Uy (@, ®,H.H.V))| . (10)
D
_ W, (vw(v o W, (V)We(V
where w? =W and w2 =W are com-

posite multiplets, 7(X),T(X) are chiral projectors, and
(V)p is a real multiplet, whose lowest component is the
auxiliary field D of the vector multiplet V, £ is a non-
vanishing constant, and U is a function of the chiral
multiplets. The solution for the auxiliary field D for the
vector multiplet is

D/ =E+U=U. (11)

In this work all fields are neutral under the U(1) gauge
symmetry gauged by the vector inside the V supermultiplet
so that no additional terms appear in the D-term equa-
tion (11). Then, the D-term scalar potential is given by

1 1 1
Vp =370 =g (E+U) =38 + g¢U +54°U”.

(12)

Next we decompose the generic function U into two
pieces as

U=U'+U° =D/ =U=E+U=E+U"+U°,
(13)

U" depends on both hidden and observable sector fields
and we will use it to give large masses to unobserved
scalars. We will find it convenient to consider it as part of
the hidden sector potential. U° depends on observable
sector fields; we will use it to give masses and expectation
values to the Higgs fields and we will consider it as part of
the observable sector potential.

The potential also depends on additional D-term poten-
tials due to independent vector multiplets corresponding to
the gauge symmetries of the theory. So, for different vector
multiplets V4, we have

2
Vo=Y V=S B +ee ) (14
A A

the gauge group contains of course U(1), x SU(2), x
SU3)c.
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Since the total supergravity scalar potential is given by the sum of F- and D-term potentials [Vp and

Vi = e%(G4G*2Gy — 3)], we find

V=Vp+Vp= <§(§+Uh+U”)2+Vb) + V= Vi + Vot (15)

Here we decomposed the scalar potential into hidden-sector and soft contributions according to the separation of the
superpotential W = W’ + W, and thus the most dominant terms with ~|W”|? are combined into the hidden sector potential V":

hyh vhywh 2
s WEW! + WhWh 1wt 1 -
Vi EE((H Uh? — e L4 e (X 320U e;
11 1 -
+3¢ Wi, d)’fW”—f—WhWh(I)”(I)} +Fw¢q>uwjz, (16)

while the rest of the potential is

2
FE+UNU)+T

11
3x?

Vsoft =

+

(v°)?

1
4 V/ _ F [Wowh + WOWh}

(Whe,@TWs + WiWi@ids] + s Wediwe. (17)

Here X=T + T — ®(z,7)/3 and W; = 0W/0z! for I = T, i. Inserting the superpotentials into the above equation we obtain,

similarly to Ref. [13],

1 1 1
V, = <§ 9252 < g2€Uh + E92(]h2) _ F (_zaAZe—a(X+<I>/3) + DacAle—a(X+@/3)/2 COS(CZIIIIT))

1 1
t 5 <x +3 <I>”<I>-> a*A2e= X +®/3) (18)
2
g
Vit = (& + UM(U°) + Y S K(VA)Gr +ee)?
A
aAe—a(X+t1>/3)/ 1 a2A2e —a(X+®/3) -
X2 [Wo ialmT + Wo —zaImT] + § X2 q)iq)qu)j
LaAe A2 ifYye 1 piaimT w70 dyij U oaiivie
l
In the previous formulas we defined W, = —cA, where cis  in [13]. Equation (20) is an obvious consequence of

a constant.

III. THE UV CUTOFF DUE TO NEW FI TERMS

Once the fields in the vector multiplet V are canonically
normalized, their D-terms appear in the Lagrangian density
as follows:

1 — —n —m n-rm
L=;D*~ED+ > DM O (20)

n>0,m>0

Here = has scaling dimension two and we kept the
dependence on Myp, explicit. The nonrenormalizable oper-
ators 0>+ have scaling dimension A = 2n + m + 4;
they contain at lest two fermions and were given explicitly

dimensional analysis and requires no knowledge of the
explicit form of the operators O?"*"*+4, The key point here
is that the powers of Mp; appearing in the nonrenormaliz-
able terms are always nonpositive. This is because there
exist only two types of nonrenormalizable interactions. The
first type exists also in global supersymmetry. These are
terms with m = 0 in Eq. (20) and are present because the
new FI term can be written in global supersymmetry too.
In superfield notations it reads

W2w?
D*W2D*W?’
(21)

new FI term = E/ d*0(D, W + D*W,)
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The second set of terms decouples in the limit Mp — oo,
D = E = const so it is weighted by strictly negative powers
of Mp,. Equation (20) shows that for E < Mp, the strongest
limit on the UV cutoff of the effective theory comes from
the m = 0 terms and is

A2, <D =E, (22)

where A, is the cutoff scale of the theory. If other mass
parameters m < /2 exist in the theory, they can only
appear in the numerator of (20) and so they only make the
constraint on the cutoff weaker. The scalar potential of the
KKLT model has a minimum at V = —3H?/8zG and it
asymptotes to V =0 for large values of the would- be
inflaton. To get a realistic inflationary potential, the D-term
contribution must lift the minimum to —3H?/8zG +
&2/2 ~0 hence D = = ~ H Mp,. Since the D-term breaks
supersymmetry we also get D ~ M2, hence the bounds
already given in Eq. (2)*

Acut < \/EN MS? Acut ~ 'V HMPI (23)

IV. STAROBINSKY-TYPE INFLATION

In this section, we use the new FI term to derive an
inflationary potential and explore its hidden-sector dynam-
ics. Let us begin with the general potential V =V, + V3,
which is given by

1 1 1
V==& 2 Uh Z;yuh? —2aA2e —a(X+P/3)
<2g§ + U+ 39 ~3p(-2a
+ 2acA?e~X+®/3)/2 cos(almT))

1 1
+ W <X 4o 3 . q)zjq)_> a2A2 —a(X+®/3) + Vsoft-

(24)

Now we assume that the hidden-sector part of the real
function, say U”, is defined by

U = C,7'7, (25)

where the z’s are all matter scalars appearing in the
supergravity model—except the Higgs sector fields—and
the C;’s are coupling constants. It is easy to see that the
minima of the total scalar potential V =V, 4+ V. with
respect to the matter scalars z’s without Higgs ones are
placed at 7/ = 0.

To explore the inflationary trajectory in the direction of

inflaton field ¢ (or X = eV?3%), we focus on the path
along the minima at z' =0 where again i# Higgs,

We thank A. Gullen and F. Rondeau for a useful discussion on
this point.

Im7 =0, and Hj =H;=0, H)=uv,/v2, H=
vy/\/2 where v,, v, are nonzero constants. Then, along
the path, the total scalar potential can be written as

1
X2
4 zaCAZe—a(XJrvz/é)/Z)

1
V|minima:§‘92§2 ( —DaAe —a(X+v?/6)

1 2 :
+§4?*afﬁf“”@+mmmm
(26)

where we defined 22 = v2 + vfi. We can further simplify
the form of this potential using the fact that v =
246 GeV ~ 107'°M ;) < X ~ O(M,) all the time during
and after inflation. That is, we can take the limits X > v%/6
and V" > V_; during and after inflation, which produce

V| minima & 252 - —( 2aA2e=9X + 2acA?e —uX/2)
1
+ ﬁ a2A2€_aX_ (27)

The vacuum with respect to the direction X is at X = x such
that ¢ = (1 + ax/3)e~*/? (see Ref. [13] for the derivation
of ¢). In fact, the scale of ¢>&2 must be of order of the
inflation energy since we want to describe inflation using
that potential. That is, we must require

252 M4 — H2M2

pl’ (28)

where M; and H denote the inflation and Hubble scale
respectively. Using X = eV?/3? we rewrite the potential as

V|minima ~ M4 - 6_2\/2/_3¢<_20A2 —aem¢
T 2acA?e VT4 1 L g2 /AT T
3
(29)

It is worth noticing that this result exactly coincides with
that of Ref. [13] so that an exponentially flat direction
similar to that of the Starobinsky potential is present in our
model too.

Our model has enough parameters to fix the postinflation
cosmological constant to the observed value A ~ 10‘120Mp1.
Now considering the value of the soft potential at the
vacuum when X = x, i # Higgs, ImnT =0, H,; =H; =0,
HY=v,/Vv?2,and H} = v,//2, we can determine what the
constant g?£%/2 must be. At the vacuum, if we define the
vacuum with respect to X (or ¢)) to be at x = 1 (or ¢p = 0),
the potential is given by

045024-5
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a2A2e
3

1
V|vacua = 59252 - + Asoft =A, (30)

where we define Ay = (Vop) and impose that the VEV of
the potential is equal to the cosmological constant A.
Hence, we determine ¢?£2/2 as

2A2 —-a

_9252 +A_Asoft- (31)

Now let us investigate supersymmetry breaking in our
model. The SUSY breaking scale, say Mg, can be found
by computing the positive contributions to both D- and
F-terms

a?A%e

(V+3ec)|vacua =A+ 3

V+|vacuum = = Mé? (32)

which gives

a2A2e
3

1
=Mi{-A :>592§2 = M} — Ao = M} = M}
= MAIL + Asoft- (33)
This means that we have to require a high-scale super-

symmetry breaking [15] because the SUSY breaking mass
Mg is at high scale as given by

Mg = (HzMgl + Asoft)1/4

~ O(\/HMpl) - IO_Z‘SMPI,

(34)

where we note that H>M?, > Ao

V. MASSES AND MASS SPLITTINGS

In this section, we embed the minimal supersymmetric
standard model (MSSM) into the observable sector of our
supergravity theory, whose hidden sector we showed to
describes both inflation and the postinflationary vacuum.

A. Supersymmetric Higgs potential modified
by new FI terms

Here we focus on finding a supersymmetric Higgs
potential compatible with MSSM phenomenology in our
supergravity model of inflation. To generate the observed
Higgs and matter masses, we assume that the generic
function U = U" + U° is defined by

U" = C;|7'|* for non-Higgs matters, labeled by i, (35)
U° = b[(|H |+ |H.l?) = (|Hg* + |H )]
for the Higgs sector, (36)

where C;, b are free parameters. Notice that these are gauge
invariant under the SM gauge groups. We can then identify
the supersymmetric Higgs potential with the soft potential,
which is given by

2
4 g o
Voot = EG7U° + 5 U2+ Vyay, + Vsuw), + Vsue),
2 aAe~aX+9/3) /2 B 1 2A2e—a(X+®/3) W;’(sffW;z X
—— (W + W) 4 (o} . 7
3 X? (We+W?) + 9 X2 + X2 (37)
Since the Higgs multiplets transform under U(1), and SU(2),, the first line of the potential in Eq. (37) is
FEU = gEb(|H P + [HP = [HGP = [H[?), (38)
2 2,2
I g2 _ 9P .
Ty = T2 (P o+ |HOP ~ |HYP ~ |H5 PP, (39)
7
Vo, 8X2 (P + [HP = [HGP - [Hg]?), (40)
e
Vsu(), 2 |H2H+ + HgHg + o35 ([HG P+ [HP = [HGP = [Hg ). (41)

In addition, we can find the other part of the Higgs potential from the F-term contributions to the soft potential V|, which

provides
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2 aAe—aX+®/3) ) 1 G2 A2e-a(X+®/3) Wosi V_V;_,’
Veottlr 2 37— (W7 + W)+ X2 +—0
2 aAe~@X+®/3) /p
=3 x (u(HHy — HyHY) + Hec.)
1 a2A2e—a(X+CI>/3) |ﬂ|2
(57— + ) UHEP + 8P + 9P + ). )

Therefore, the final form of the Higgs potential at the non-Higgs matter minima z' = 0 (where i # Higgs) is given by

V= HOH} + H7HY)? + Gte, gb HE12 4 [HOP2 — |HOI2 — |H=12)2
"= l + AGHSE + (D2 + 0 ) (HG P+ |HOP — S - |HP)
4 qAe @ XH(HIPHHIPHHGPHHZ)/3) 12
+3 e Re(u(H, H; — H)HY)
1 a2 A2 e~ aXH(HG PHHLP+HHGP+HH ) /3) 2
_ 2 b H+ 2 HO 2
(5 e U+ 20 ) (H3 P+ 1HOP)
1 a2 A2 e~ aX+(H P+ HPHHGP+H, )/3) |ﬂ|2
<§ X2 t3z 92€b><|H >+ [Hg]?). (43)

Since X > H> .a the potential can be approximated into

2 2 21.2
gi+g9; gb _
1 2+——)Uﬁv+um2|HP H5 )

Vi

_2x2|

0 2
AOH, + H7HS? + (8X2 5

4aAeX/? 1a?A%e=X ||
T?T*Wmﬂkﬂ%%+@—p—+p+ﬁQWWHmw

1 a2A2e—aX |ﬂ|2
<§—X2 +?—925b)(IH [*+ [Hg ). (44)

We then find the minima at H} = H; = 0, which gives

) —aX/2
@ +9 &b 4ale
vH:(l i )Wﬂv HORR — 294 T Re(utyHY)

8X? X
102A2e—ax |M|2 1a2A26—aX |ﬂ|2
+ (§T + F + g2§b> |I‘12|2 + <§—X2 + —X2 - 26[)) |H |2 (45)

In terms of the approximated potential, the vacuum solutions are those of the MSSM. That is,

v v
(Hy) = :

7‘%(2 vy), <H2> = 75(: V1),

where ¢, are fluctuations of the Higgs fields H? around the vacuum (i = u, d). We take here the same definitions used in the
MSSM,

(H)) = (Hy) = 0 = H)} ~ (H}) + ¢, (46)

v? = vl + v} = (246 GeV)?, tanf = v, /v, = v,/ v, (47)

where f is a free parameter such that 0 < # < 7/2. Hence, we can merely recall the MSSM results when we compute scalar
masses.

Recalling some results of Sec. 28.5 in Ref. [16], we can identify the following correspondences:

2., .12 2 242 242 ,—aX
g +yg g]+92 92b ) 1aA , la“Ace
8 8X2 | 2 Ty - Ty

+ ¢?&b, (48)
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|Iu|2 3 4aAe—aX/2

2
WP =S Bem Tk 49)
1 gr+g 49°b?
m2 = —(* + @) (1? + v2) > m?2 = (1 2+22b2>v+v <X + 297 2, 50
22(9 9°)(vi 3) z X ( 3) = P+ z (50)
2 a2A2e—X 2|H|2

2 _ 2 2 2 2 _= , 51
mA ’,Ll| +m1+m2_)mA 9 X2 + X2 ( )

and the vacuum solutions produce the following relations:
Bu = m'} sin 2, m} —m3 = —(mg + m7%) cos 2 = —2¢°&b, tan f = v,/v;. (52)

B. Supermassive scalars

The scalar masses are determined as follows. The Standard Model matter masses are found to be
m%'vac = VZZ|Z:0 = (gngzZ + gz<UzUZ + UUZZ) + (VF + V/D)zZ)|z:0
= (U + (Vi + V) .2)|.mo > H?
= EU | g > H* (53)
along the vacua when z = 0, alm7 = 0. Now we may suppose that the form of the general function U is
UD C,’Zizi, (54)

where z'’s are the matter fields without the Higgs fields. This leads to

H2
FEU: = FPEC; > H? = C; > —— 7z > 0. (55)

Notice that U is positive definite, so that D = & + U > 0 is nowhere vanishing. Here the point is that the matter scalars can
be as heavy as we want during and after inflation, enabling us to integrate them out easily.
Next, let us identify the Higgs masses. The eigenvalues of the square mass matrix of the Higgs fields are

1
m3 = 5 ( m +m'2 + \/(m/f1 +m'2)? — 4m'sm'% cos? 2ﬂ>, (56)
1 m'im'% cos? 23
m,zl = 5 (m'% + WL/% - \/(WL,E\ + m' ) 4m Am COS2 2ﬂ) W
2 02)\2 2 2\2
T T N 0 il - i (57)
mumsyz ny,nvz
I
where y, B, m3, m3 are the MSSM soft parameters. We  so that we can determine the parameter y as
note that now the MSSM soft parameters are functions
of the inflaton field ¢ via X = eV?3¢ whose vacuum 2 ~ (m3 —m3)? —l(M“ _A) (59)
is at ¢ =0 (or X =1). First, let us check the Higgs HIm= 2mim'% 3V
masses after inflation at X = 1. Equations (56), (57)
imply that since 3(M} — A) = a’A%¢™ = 3mj,. Since we have
2a*A%e™ m? —m3)? 2M?
A= — T2k~ % (58)  m}-m}=-2g8b~-2gb—" vaMi 2V2bgM3,  (60)
9 mymz g
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we obtain
4b* 1
ul? ~ (22—94(]2},2—§>M§ >0, (61)
mymz(1 + g%+g§)
where m2 = @1}2 is the Z boson mass.

We remark that it is necessary to consider the new FI
term in this model since it helps us to obtain different values
for m} and m% This property ensures that the light Higgs
scalar mass m,, is nonvanishing. Furthermore, we observe
that we can integrate out the degrees of freedom of the
heavy Higgs scalar, with mass m?,, because this mass is of
order of the Hubble scale, while the light Higgs mass can be
fixed to be that of the observed Higgs using the cancellation
between the first and second terms in the mass formula.
Next, let us inspect the Higgs masses during inflation for
X > 1. In this phase, we have

4ga2 4g2b2

m? -0, mi- mE = m? > —=—m>, m*—0.
A Liga P g O
(62)
We thus need to impose
4g2b? 212 vH
29 Zm%:g—2>>H2:g>>—. (63)
91t 9% v b

Since we have g~ Mj3? and M3~ H ~ 107, Eq. (63)
reduces to

b> vHM% ~ 1072, (64)

We observe that the parameter b corresponds to the scale of
the low energy observable sector if the parameter b is
within the range é~M§{=M;=H>~10"1">b>
vHM% ~ 1072, In the limit, the  term becomes

,  (4r 1\,
|| ~ 773 M;>0= pu~O(H) (65)
h

p> (66)

which can be satisfied since we already have v > m,, with
the observed values, v = 246 GeV and m;, = 125 GeV.
The impact of quantum loop corrections on the Higgs mass
is an important topic that we leave for future investigations.

We now summarize the spectra of the scalar masses. We
find that only the light Higgs scalar mass m,, varies from
almost zero during inflation to the observed Higgs mass
my, ~ 125 GeV at the true vacuum after inflation. On the
other hand, the other scalar masses in this model can be much
heavier than the Hubble scale during and after inflation, so
they do not contribute to the dynamics of slow-roll inflation.

As for the light Higgs mass during inflation this seems to
be a problem for single-field slow-roll inflation at first
glance. However, according to Ref. [17], it is possible to
have a robust slow-roll inflation even when extra light
scalars are present if some reheating scenario conditions are
satisfied. We find that our model may be allowed to satisfy
either “Case-5” or “Case-8” reheating scenarios of [17],
which are strongly favored according to [17]. The corre-
sponding conditions are as follows:

OV (h
CaSC-S:Fh<F¢<mh <H, ( h> <<<_>NL<<1’

F_¢ Mpl Mpl
(67)
r,\ /4 h
Case-8: [, <mj, <T, <H, (—h> <<Q~L<<1,
my o My
(68)

where 'y, I';, are the decay rates of the inflaton ¢ and the
light Higgs A during the reheating phase, and v is the VEV
of the Higgs after inflation. Note that the decay rate of
Higgs has to be the smallest.

We also note that unlike our previous model in Ref. [13],
we can specify the reheating scenario conditions using the
observed values for m; and »* and make use of them to
constrain the decay rates. We leave to future work a detailed
study of the decay rates and and reheating scenarios.

C. Ultralight SM fermions and heavy sfermions

In this section, we compute fermionic masses in our
supergravity model. First, we recall the superpotential in
our model

W(T) = WH(T) + We(Z), (69)
where
WHT) = Wy + Ae™T, (70)
Wo(Z') = Wyssy = Y, UgH, - O+ Y,DrH, - O
+Y,ERH, - L +uf, - H,
= Y, ig(Hjd, — Hi) + Y gdp(Hyd, — Hyiiy)
+ Y er(H Ty, — HYer) + u(H Hy — HYHY).
(71)

The most general fermion masses m'%) are given by all the
contributions from the standard supergravity, new FI terms,
and the super-Higgs effects to the fermion mass, which
are written in (A89). Here, we point out that if the gauge
kinetic function is purely a constant, then the gaugino masses
almost vanish at the vacuum. In particular, when a gauged

3For example, v =246 GeV ~ 10‘16Mp1 and m;, = 125 GeV~
1071°M,; while H ~ 107 M,,.
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R-symmetry is imposed, gauginos can get massive enough
thanks to the Uy (1) anomaly cancellation between one-loop
quantum correction to the Lagrangian and the shift of a
Green-Schwarz term by the presence of a linear term in some
charged moduli in the gauge kinetic function. However, in
our model, we consider a model with no gauging of the
R-symmetry. Thus, we can just add a linear term in the gauge
kinetic function as follows:

Fan(0) =015 (4 VBT ). (1)

1
V' I9Aa9B

where 7 is the modulus field and 645 is the Kronecker delta.
We also assume that the coefficient 3, can be sufficiently
small so that

gi2 > PuT = g, > B, at the vacuum where T ~ 1,

so that the gauge kinetic Lagrangian s is still approximately
canonically normalized. We note that in any case we can
make the scale of fg> very small,

g=10"", B=10" = pg* = 10" <1 = m < 2n.

(74)

This will be used for estimating the gaugino masses. For

example, when the gauge coupling is sufficiently small,

ie. g=10""<«1, we may consider f~O(10™) where

O<m<2n.

This will contribute to the fermion masses as a large number

in our model. The smaller g gets, the larger f can become.
Then, the correspondimg fermion mass expressions

(73) reduce to the following:
|
mz;, = WEK/z, (75)
m%) = €K/2(W[] —I— K”W + KJW] + K[WJ + K]K]W)
_ 2
—eX2GKLY,G,p (W + KxW) — 3 (W, + K,W)(W, + K, W),
, 1 1 - .2
mgi) = l\/i 0173A - 151(4?\/ ﬂAﬁCélT <\/M + [}AﬁcReT> Pc] - 1—3\/§W (W] + KIW)’PA’ (76)
1 = - 1
m% = _zeK/zéAB\/ﬂAﬂBGTJ(W] + K3W) + 3eK/2W7DAPB’ (77)
iU V2
mfy) = AU 3w W+ K WU = mS), (78)
(U Kp\, - u?
m\) = —eK/2 (W +4GY <u + 3> (W + K;W)) e (79)

where 14 is the gaugino corresponding to the gauge
multiplet V4, (A = SU(3),.,SU(2),,U(1)y), and A is the
superpartner of the new FI term vector multiplet V.
Remember that I/ is nowhere vanishing by definition; that
is, U=E4+ U >0 with U>0 and & > 0. The detailed
derivation of the masses is present in the Appendix. We
note that the gravitino in this model has a mass O(H), i.e. in
the super-EeV range. References [18-20] show that a

|

v
q)a|vac:7a’ (I)i’lvaczo’ L{|Vacz§~M§~H2,

(WPae ~H.  u~O(H),

— ,G/2 _
msz, =€ / |vac*

gravitino in the EeV mass range can be a heavy dark
matter candidate.

We have checked that only the neutral components H,
HY of the Higgs fields have nonvanishing vacuum expectation
values (VEV), while all other matter scalars have vanishing
VEVs. In addition, we have assumed that U], =
(E+ U)ly,e > 0. Then, we have the following vacuum expect-

ation values at the minimum ((H9) = v,/+/2 and (z"') = 0):

X|vac = 1’ W?|vac = 0’ W?’ = O?

b|vac

(80)

where HY, Hg are labeled by the index a, and the z'’s, including H,, H, are labeled by the index i’ (in which i # a).
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The moment maps with respect to the gauge groups of the SM are given by

7 Tavsr love 2.0 lep~ s 1. 1.
PU(l)y:XL§H<6Q3Qi—2L,TLi—3u£iuRi+3dRidRi+l£’_lRi +§HLT,H”—§H;Hd , (81)
92 i 0 > 710 7 i 0 c
Psu), = X {Z (sz i+ L; ELi> +Hu§Hu +H25Hd], (82)
i=gen
_9% ~Tz~ Al e i Z-
PSU<3>C—}[Z<Q15 i~ g, 5 iR, —dp 5 dg, ||, (83)

i=gen

where tilded fields are superpartner scalars to the SM fermions, & and 7 are Pauli and Gell-Mann matrices, g, ¢», g3 are
gauge couplings, and the index i runs over the three generations of particles in the SM. Their vacuum expectation values are

g g
(Pua),) = Zl (vi—v2).  (Psup),) = —Zz (vi—v3).  (Psup),) =0, (84)
and

910y . NVy , 5 2 NVqg  91Vag , 5 >
O P = v, — v5), 0o P = -4 v, —v5), 85
< HY U(l)y> 2\/5 12\/5( d) < HS, U(1>y> \/’ 12\/5( d) ( )

DV, Gl 2 DV Vg , » 2
dpo P = —-v5), 0P == vy — v5), 86
< HY SU(2)L> 2\/— 12\/—( d) < HS SU(2)L> 2\/5 12\/5( d) ( )

where (9;P,) = 0 for other scalars.

Now we are ready to estimate the scales of the fermionic masses. First, we estimate the masses of matter fermions. Given
the supergravity G-function G = =3 In[T + T — ®/3] + In W + In W with the superpotential W = W’ (T) + W°(z'), the
components of the fermion mass matrix are as follows:

9 — W, —Wch OW) + o, W
mij X3 +3x( - T 32 @i

20,9, wh W 2 oW oW
-0, 0" P, L) =2 (wo4—L=)(we I, 87
+9x g 1)<3 xﬂ 3<l+x)<f+x> (87)
) [ wWo 20, (Wh W whow Lo 20 2 @; .3
) — = |-=L —r_)- —— (D - D, DD, ~Zwoe+—w)(wh—=—w]), (88
"t X{ X Tx \3 X 3 ~x )@ -3 (Wit X (88)
W 6 (W Wi 1 ;
= (==L 1+ —(D -, "D, |. 8

If®= 5i;zi27 , then ® = (I)md)mzdﬁ. Thus, the components reduce to

(9) 1 0 2 0 2 2 0 CDJW
Y = W+ = (Wi D, + D W9 SO0 W | -~ W 90
) =\ W+ W0+ 009) 4 | -3 2 20, (90)
@ L[ W¢ 20, (WE W 2 @, W 3
m. X3[ vt x (3 x| 3 (Wit W) (Wr=5 W (91)

(g - W%) . (92)

)
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The nontrivial components at the vacuum are then given by

v
mf) =W, ~ Y (93)
2 1 2 vy,  vIW\?2
mif) = ~3HVuVa Tt gvﬁW ~3 (‘Mj% T ) ~uv® ~ O(Hv?) ~ ml(;fi), (94)
0 1 2 0 1 2 0 UﬁW 0 U2W
mEZl) = {W;d +§(W;vd +v,W9) —|—6vuvdW] ~3 <W§, + > ) <Wd ‘12 )
R—pu~-—H~ —m(f)_, (95)
W 2 v2 vy
mug%: |:—WZ+U5<TT— >i| —§<WM+EW>(W¥—3W)N/JENHU, (96)
h 2
(9) Y w 2 v Uy
my = [_Wd+ vi(%—W)} -3 <Wd+?dW>(W’}—3W) Nyﬁfvm, (97)
I
where i’ denotes non-Higgs matters, and the ipdices + m(Tgll) ~E~H, (104)
denote H,f and H respectively. Next, let us estimate the
other mass parameters. We find
(9) £ H?
- H S —~H+—~H, 105
ml(fg ~ m;‘z; ~ (p <l1) - 17( ,Uv; v ) U2) ~ ing, (99) M m3/2 + M3/2 + H ( )
2 here A,B =1, 2 for U(1), and SU(2), respectively. In
(9 v R where A, » « 10 Y L Tesp y
Map = 9a98 7 — Héap\/ Pabp ~ ~O(BH), (100)  terms of m,,, my, and since 1072 < b < 1071, we have
9 2\ _ 2 /A
mar ® gaO(v7) = faga(P?). (101) 10732 < my,, my < 1071 < H.  (106)
)~ g, O (v 102
) Mg % 92 0(7). b (102) In summary, the fermion mass matrix in the postinfla-
@ _ .bvy —pvg+v,H N . ti i
m9) ~ —i 7 lT€~_lﬁNmEii)’ (103) ionary vacuum is
|
) w8 ) ) w2 w3 m8) m)
LY, 0 0 00 0 0 0
n) ) w8 w8 @ w8 m8 ) | (T
: 2 H b
O @ @ @ @ 0@ 0 OWHv) -H 00 Hv  ivgy —if
R B I TR R
V= mfj/ my mly m{ m mi miy m N 0 0 0 0 H 0 0 0
/ mD ) m m e m m m) 0 0 0 HO 0 0 o |
0 Hv Hv 00 H O(v? H
) ) w2l ) mif) it m) v oo
0 ivgy ivga, 0 0 O(w*)gy —O(BH) 0
m9 9 e e @) e @) (9)
A "Au TPAd At A= TtAT TPAB T AL 0 —i% —i% 00 H 0 H
i) il ) ) w2 i
(107)

(9) (9)

where m,; = m;; = 0 since there are no couplings between the relevant vector multiplets. Keeping the Yukawa masses of
the matter fermions and dropping all other terms much smaller than the Hubble scale, the fermion mass matrix can be

approximated by
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0 -H
0 -H 0
0 0 0
Mf ~
0 0 0
0 0 0
0 0 0
0 0 0

The masses of the SM matter fermions can be matched with
the observed values by adjusting the Yukawa couplings
which are free parameters. Diagonalizing the fermion mass
matrices may produce negative (positive) mass eigenvalues,
but the masses can be made to be positive (negative) by
absorbing the sign into the mixing matrices that get
imaginary (i.e. by a chiral rotation) [21]. We note that
the chargino, neutralino, and gaugino masses at the true
vacua after inflation are of the order of the Hubble scale
O(107°)M,; ~ O(10"%) GeV, implying that they may be
candidates for the so-called supermassive dark matter
“WIMPZILLA” [22-25] (or superheavy dark matter in
Ref. [26]).

Finally, we can summarize all the parameters in our
supergravity model of inflation compatible with MSSM as
follows:

(i) Hubble scale H (~u, g™, M2, A) for inflation,

(i) Yukawa couplings Y, for fermion masses,

(iii) neutral Higgs VEVs v,, v, such that v = y/vj + 0]
for the Higgs mechanism, which also determines the

angle between v, and vy, i.e. tanf = v,/ vy,
Gauge couplings g, ¢,, g3 for strong, weak, and
hypercharge interactions in the SM,

new-FI-term hidden-sector parameters C;’s for pro-
ducing scalar bosons heavier than Hubble,

i'j

(iv)
)

V ={0,0,0,0,A

no

Z' = (,=iV2Py', —2F',0,+iD,z',0,0) = {z', P,y F},

So = (S0, —iV2P°, —=2F,,0, +iD,s0,0,0) = {s0, P11, Fo},
So = (50, +iV2Pgy°,0,-2F,, =iD,50,0,0) = {50, Prx°, Fo},
AP A = (AP, A, —iV2P A, 2D?,0, +iD, (AP, 2),0,0) = {AP 1, P, A, —~D?},

APgA = (APgA, +iV2PgA,0,2D%, —iD,(2Pg4),0,0) = {1PgA, PgA, D%},

A, D} in the Wess-Zumino gauge,i.e. v = ="H =0,

Z' = (Z,+iV2Pgy',0,-2F, —iD,7,0,0) = {Z', Pry', '},

000 0 O
000 0 0
000 0 O
0O HO 0 0 (108)
H 0O 0 0 0
0 0 H 0 H
0 0 0 —H 0
0 0 H 0 H

(vi) new-Fl-term observable-sector parameter b for gen-
erating a supersymmetric Higgs potential,
(vii) hidden-sector superpotential parameter a for KKLT
superpotential, and
(viii) gauge kinetic term parameters /34, to make gauginos
massive.
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APPENDIX: DERIVATION OF FERMION
MASSES IN SUPERCONFORMAL TENSOR
CALCULUS

We consider matter chiral multiplets Z, the chiral
compensator S,;, a real multiplet V, and another real
multiplet (V),, whose lowest component is the auxiliary
D-term of the real multiplet V. Their superconformal
multiplets are given as follows:
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(V)p = (D, P2,0,0,DVF,,, ~PP), —[I€D), (A8)
where

1. 1.
PLAE\/EPL<—§J/-F+1'D>/1, PRAE\/EPR<—§}/-F—I'D>/1, (A9)
D:=D?—[F~.F~ —2]P, P2, D2 =D*— F* . Ft —2]PyPi, (A10)

3 1, 3. N 1.
D= <0ﬂ - Ebﬂ + Zwﬂbyab - 51}/*,4”)/1 - (Zy bF,, +§W*D> Wy (A11)
Fah =Fu+ ea”eb”y_/wyy]/l, Fo = eaﬂehy(za[,uAb])’ (A12)

PO RPN x = 1, T

Myzi(Fﬂ”:tFﬂU)’ F/u/= _Elel“/ﬂo'F . (A13)

Next, we exhibit the components of the superconformal composite complex multiplets w'> and w> with Weyl/chiral
weights (—1,3) and (-1, —3) respectively. These composite multiplets are

AP A

= —1C,. 2, H,. K, BY A, D, Al4
" (SoSoeK/3)? t ! J (A14)
APRA ]
V=R (Ch. Z Hy Ky BY, A D Al5
w (SOSOe_K/3)2 { wo w» w» w» H w» wlo ( )
where
B AP,
Z,, = iV2(—h,Q + h,Q), (A17)
H, = —2h,F* + h,QeQb, (A18)
K, = —2h F% + h, ;Q2QP, (A19)
By = ih,D,X" — ih; DX + ih,;Q%, Q" (A20)
PLA, = —V2ihg |(PXP)QT — FIQP) — —_ . ; QeQIQP, (A21)
V2
PrA, = V2ih;[(PXP)Q — FeQP] + %hubagfs}ugb, (A22)
_1. I . _
D,, = 2h,; (—Dﬂxapﬂxb — QPP — - QP PRPQ + F“F”)
+ haps (—QUQPFE + Q4 (PXP)QE) + hy j  (~QPQPFC 4 Q4(DXP)QC)
1 _ _ _

+ - habE(Q(QaPLQb)(QCPRQd). (A23)

2

Notice that when finding the multiplet w2, we can just replace 4 by its complex conjugate h*.
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The second types of superconformal multiplets that we need are the composite chiral projection multiplets 7'(w'?) and

T(w?) with Weyl/chiral weights (0,0). From their component supermultiplets defined by

1 1 1
T(W/Z) - <_§ICW” _E \/EiPL (22@, + Aw),i (DW + DCCW + iDanaT/)> 3

1 1 1
(%) = (35 VEPABES + A§).5 (D5 + OC; ~ D, (B2)) ),
we find the corresponding superconformal multiplets and their complex conjugates as follows:

T= T(VT/Z) == {CTs ZTs HT? ICT? BZ;, AT’ DT}’
T=Tw?) = {Cz, 27, Hy. K7. BL. A7, Dr},

whose superconformal components are given by

1 1 __ .z
Cr= _EICW = hiF* ——h;EQ“Qb =Cy,

2
: *()a *a * a a 1 * cOapb
Zr = —2iP, [ﬂ(—hag + hi Q%) — %, [(PXP)QF — FAQP] —Ehmg QiQP
_ - - 1 o
+ 1 [(PXP)Q — FUQP] + 2h;bégcgagb} = —V2iP,Qr,

1= ;15 ;
HT — —2 |:h:;l_) (_DﬂXﬂDﬂXb - EQaPLsz - EQbPRZQa + Fan>

1 o 1 - o
5 g (FQUQPFT + Q4 (DXP)Q) + 2l (~QQPFC 4 QT (DX)Q)

1 A ~NC d 1 1. 7% a .7 % va 1% O)a b
1 (PR QT PRQY) + S LK + S DA D, XY — ihD, X + i’ 07, 00)

4 abecd
= -2F,
Kr =0,
Bl = —iD,Cr,
Ar =0,
Dy =0,

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)
(A30)
(A31)
(A32)

(A33)

where we used a, b, ¢, d = 0, i(=z"), W(=AP,1). This gives the superfield components of the chiral projection multiplet 7"

T(le) = (CTvPLQTvFT)

where
¥ pa 1 x OaOb
CT:haF _EhaBQ"Q‘ N
_ _ _ 1 __ -
P;Qp = ﬂ(—hZQ“ + hZQ“) - h;b[(ﬂX”)Q“ — F“Qb] — Eh(’;ECQCQ“Qb

- | .
+ 1 [(PXD)Q - FUQP] + 5 a2 Qb,
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P A -
Fr=hi; <—Dﬂxa1)ﬂx” - EQ“PLﬂQ” - 5Q”Pija + F”Fh>

1 SO &y o L QP Fe 4 Qi (DR
5 Hape (~QUQF + QUPXY)Q) + 5 by (~QUQVFC + QU (PX7)Q)

2 abc
+ %h;ha QP QP) (G PRQY) + % 0" — %D”(hj;DﬂX“ — WD, X% + h*;Q0y, Q). (A37)
Moreover,
T(w?) = {C7, PrQr, F7} (A38)
where
C; = h,F* — %habﬂagb, (A39)

] o 1 o
PrQr = D(=h,Q" + haQ) = gy (PX")Q = F°Q"] = - hy5 Q°Q7Q)

_ - 1 o
+ h[(PX")Q = FUQP] + Ehabaﬂ‘ﬂ”ﬂb, (A40)
- 1.2 I _
Fy = hg | -D,X“DXP — EQ“PLZQh - EQ}’PRZQ“ + F”Fh)

o 1
+ 5 hape (~QQFT + Q1 (PXD)QF) + 5 h

1 o _
5 5o (—QIQPF 4 O7(PXD)QC)

1 _ N | 1 . .
3 hape (@ PLQP) (@ PRQY) + 5 Oh = S D (h DX = ha DX + by QP7,Q). (A41)

I
We then present a superconformal composite real multi-

— A _0OA
plet R with Weyl/chiral weights (0,0). By introducing the Zr = l\/i(_f A+ f2Q4), (A45)
chiral multiplets X4 = {X4, P, Q4 F4} where A = {S,,Z', . .
AP; 2, T(W?)} and their conjugates; we represent R as Hr = =2f4F" + fap2"Q°, (A46)
R = (SoSoe™*?)7 UPL) PR (A42) Kr = =2f3F4 + f3Q1Q°5, (A47)

T(W’2)T(W,2)
R .o TA . A B
whose lowest component is Bif = ifaD, X" —ifiD,X" +if pQ'1, Q% (A48)

Cr = (soioe_K/3)_3 MU = f(XA, )‘(A) (A43) PLAR:_\/EifAB[(ZXB)QA _FAQB] _LfABCQCQAQB’

C;Cr V2
A4
where C; = —D? A2, C; = —D2 A2, and A = s5(50e~%/3, (A49)
and K, U are functions of the matter multiplets Z'’s, PpAgp — \/Eing[(ZXB)QA —FAQB] +\/L§fABCQCQAQBv
o k/3)-3 (APLA)(APA)
Cr = f = (soSoe ) =—""U, (A44) (A50)
CrCr
|
S = 1 -5 5
Dr =2f4p <—DﬂXAD”XB - 5szAPLJmB - EQBPREQA + FAFB>
+ fanc(~QAQEFC + QNDXP)QE) + fi50(—QPFC + QN (DXP)QF)
1 _ . _
+§fABCD(QAPLQB)(QCPRQD)‘ (A1)
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Then, the superconformal multiplet of the new Fayet-Iliopoulos term can be written by using
R-(V)p ={C, 2. 7.K.B,, A, D}, (A52)

whose superconformal multiplet components are as follows:

C = Df, (A53)

Z = fPA+ DiV2(—f,Q + f:Q4), (A54)

T = D(=2fAF* + [ 15" QF) — iV2(=f2Q" + Q1) P, D, (A55)
K = D(=2f3FA + f530008) — ivV2(— .07 + 108 PP, (A56)
B=(D"F,,)f + D(ifaD,X* — ifsD, X" + if 150"y, QP), (A57)

~ 1 - _ _
A = —fDPDi+ D(P Ag + PrAg) + 5 (7. (=faDXA + f2DXA = f,5Q4/QF)
+ PL(—zfAFA +fABQAQB) + Pr(=2faF* + fapQ QF) — Df) P2

1 . ]
+3 (iy./"D*F,, = PD)iV2(—f,Q* + f1Q4), (A58)

D=—f0O°D + D{ZfAB (—DﬂXAD”)_(B - %QAPLEQB - %QBPREQA + FAFB>

+ fape(—QAQBFC 4 QA(PXB)QC) + f15c(~QAQBFC 4 QA (PIXB)QC)

+ 3 ancol@ P, P) |

— (D F*)(if aDuX" = if D, XA + if 1527, Q°)

- (ﬁifAB[(JaXB)QA — FAQB] + % fi BCQCQAQB)M

- <\ﬁi Fapl(BXBYQA — FAQB] + —fABcQCQAQB)m
L
2

— (DL )(DD) = 3PVE(-£,0 + [39)(Ph) + V-1, @+ 390 @PY), (A9

where the indices A, B, C, D run over 0, i, W, T. The component action of the new FI term is then given by the D-term
density formula

| A R B
ENEW = —[R (V)D]D = —Z/d4xe |:D—§l/7]/l]/*A—§CR((U)
1 c o 1 gabedy 15
g(Cl// 77— iZyPy R (Q) + ~ 2 €W B, - SVaZ || +He. (A60)

Using f =AU, W=(IPLA), W=(IPgd), Q¥ ~V2iDP 4, QF ~2D?A7 (gf - KS) Cr~—D*A2,

FV ~—D?, FT ~2D2A2 (F;’ - ;K;FJ) where A = sy5pe~%/3,
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L2 e = —Dfoy FOFY — DfjyF! F¥ — Dfpy FT FV

new FI

1 _ - 1 _ . 1 - — D2 .
+ EfowWQOQWFW + Ef[WWQIQWFW + EfTWWQTQW FV — —Z/_ wr* fow FYQY +c.c.,

:—3A(

APLA) (APLA) ; (/1PL/1) 1
— K Fl 42022 Y — — - K, F!
D Z/{so D (KU +Up)F' + D u % 3
\/il A

+7D—Ou< Pu) = (K + ) (2 PLd) + V2 U@ PL2) = LUK (@ P

+ —AZ/{(y"/My”PL/l) +c.c.,

3i

_A _FO_UW F) UK ) (GPA) + 2 (@p,2)
=D I I L \/_IDO L

A/ 5 _
j KZ/H——Z/{ QP2 +—Au v.y'PrA) + H.c.
I ﬂ 1)( LA) 5 (1//7 L)

22
D <3ﬂ
In the superconformal gauge (i.e. P, Q0 = 1eK/°K,P Q! 55 =50 = €X/6, A = 1), the Lagrangian is

lU,

new FI

1 1 '
L) el = 5 <—F°Z/le_K/6 +UF! + 3zu(,F') (APL2) — ==L (QI P, 2) + %L{(zpﬂy" P.A) +Hec.

D2

The D-term Lagrangian is found to be

1 1 1 iu
Lpe™! 55D ~UD + (—FOZ/{e‘K/G FUF! + gL{K,F') (APL1) — BTI (Q'P,2)
i Uy

1 ; ;o1 ; :
+5 (—FOL{e‘K/ b+ UF + gL{K]FJ > (APgA) + NG (Q Pga).

The solution for D is

1 1 . U, -
D=U+— 7 K—FOL{e-K/6 +UF' + 3L{K,F’> (AP A) — i7’2 (Q'PA) + H.c.] + higher order terms.

Then, we find

1 1 - -
L e = U [(-FOUe—K/ﬁ + U FT + guK,FI) (APL2) — i% (QP2) + H.c.] :

The total Lagrangian containing the auxiliary fields F* and F' is given by

- | ;o1 1 o
Le™' = -3¢ KBFOF0 4 3eKBWFO 1 3eKBPWFO + 5 G,;F'F + geK/ZV,WFI +3 K12V ;WF/

1 1
n - [(—FOL{e_K/6 +U,F' + gL{K,F’) (APLA) — z% (Q’PL/I)}

1 5 - 1 AVE Uy =5
+7 [(—FOUe-K/ﬁ +UF + gngf) (APgA) + i7’§ (Q’PM)} :
where V,W = W, + K;W. By solving the equations of motion for the auxiliary fields, we find
-1 -
FO = 2K3W — 3 eX/5(APgA),

_ : N -
= 372GV, W - GV (9# - 31<,> (AP )

and also read off the mass my,
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iu
mt! = _EEI’ (A69)
- (U Kp\ = -
mil = —eK/? (W +4GY (ﬁl + #) (W5 + K,W)).
(A70)

The gravitino mixing term is given by

1 _ i _
Loixe ! V Wek 2, P 0l + EPAI//,,)/”PL/IA

V2
i _
+ EUI//”]/” PpA+H.c. =—y,y* Prv+Hec,
(A71)
which gives the goldstino
1 i i
PL’U = —EVIWeK/ZPLQ’ _EPAPL/IA _EUPL/L

(A72)

where 14 is the gaugino corresponding to the gauge
multiplet V4, and A is the superpartner of the new FI term
vector multiplet V.

The fermionic masses from standard A" = 1 supergrav-
ity are found to be

my, = eK12W, (A73)
m\) = eK12(0, + K,)(W, + K, W)
— eK2GKLY,G 1 (Wi + KxW),  (A74)
mif) = iV3|3Py = Fam(Ref) Pc|. (AT5)
5 = =5 K f 4G (W3 + K3W).  (AT6)
m'Y =0, (A77)
mig = 0. (A78)

The fermionic masses generated by the super-Higgs effect
are given by

) 2
m) = —We’(/z(w, +K,W) (W, + K,W), (A79)
) .2
mlt) = —i W, + K,W)P,, AS0
1A 3\/§W( 1 1 ) A ( )
1
fq; 3 K/ZWPAPBv (Agl)
m) = (W, + K, W)U, (A82)

3\/—

m) = % (A83)
The fermionic masses from the new FI term are
mfl =0, (A84)
mil =0, (A85)
mhL =0, (A86)
mfT — —\%% (A87)

] U KpY ]
ml] = —ek/2 (W +461 (—u’ + —3’> (W; + KjW)) .
(A88)

Thus, the final fermionic masses are obtained by combining
the three contributions above as follows:

my, = Wek/2,

iy =+ i+ )
= KXWy + KiyW + K, W, + KW, + KK, W)

— eK2GKLY, G, (Wx + K W)
2
3 (Wi + K,W)(W; + K;W),
@ _ O p ©

Mg = My, + Mypy +mpy

1
=iV2|0,P, - ZfABI(Ref)_l BCp.

2
i W; + K,W)Py,
3\/§W(l I)A
0 v
ol = i)+ ]

1 _— -
= _EeK/zfABIG”(W] + K;W) + 3o K/ZWPAP&
0 v
mi) = mp;) + mf] & mi)
i Z/{[ l\/7
=% 3w SZW, + KWWY =m?,
¢ 0) v)
m/(lj) = mfu +mij + mﬁa
- (U K
= —k/2 <W +4GY (ﬁl + 3’> (W5 + KJW)>
uZ
+ 3ok (A89)
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