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It is well known that the vicinities of an atomic system may substantially affect its radiative properties. In
this work, we consider the influence of a cosmic string background in the spontaneous emission of an
excited atom. We start by computing the one-photon spontaneous emission rate of a quantum emitter,
which is a narrow band process, and then we analyze the more complex case of the two-photon
spontaneous emission, which is a broadband and much richer phenomenon. In the former case, we analyze
not only the behavior of the decay rate with the distance from the atom to the string, but also with the deficit
angle associated with the cosmic string metric. In the latter case, we show that the spectral distribution of
the emitted photons is substantially affected by the cosmic string background.
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I. INTRODUCTION

The spontaneous decay of a quantum emitter is a
fundamental phenomenon of physics and it is responsible
for most of the light we observe [1]. Since a substantial
amount of information we gather from the Universe
components comes from their emission spectrum, sponta-
neous emission (SE) also plays a key role in astronomy and
cosmology. For example, the so called 21 cm line, which is
very important in radio astronomy and cosmology, has its
origin in the transition between two hyperfine levels of the
ground state of hydrogen [2–4], which partially comes from
SE. In general, an excited atom decays by emitting a single
photon; however, higher-order decay pathways such as
two-photon spontaneous emission (TPSE) exist and may
not be negligible depending on the system features. An
isolated hydrogen atom, for instance, in the 2s metastable
state, cannot decay by one-photon spontaneous emission
due to selection rules. In this case, TPSE is the fastest
pathway to the ground state and dominates the 2s → 1s
transition, despite being a billion times slower than conven-
tional one-photon emission (e.g., 2p → 1s transition in
hydrogen) [5]. Furthermore, the 2s → 1s transition in
hydrogen and ionized helium is the fundamental phenome-
non behind the emission spectrum of planetary nebula [6,7]
and microwave cosmological background generated during
the recombination period [8–10]. Besides its importance in
cosmology, TPSE processes have been intensely studied in

other scenarios since its theoretical prediction by Göppert-
Mayer (particularly, see Ref. [11] and references therein).
It is well known that any changes in the electromagnetic

vacuum mode field influence the radiative properties of an
emitter, particularly its SE rate. This phenomenon is known
as the Purcell effect [12] and can be naturally achieved by
the presence of material bodies in the vicinities of the
emitter. The Purcell effect occurs not only in the one-
photon SE process, in which it is widely studied [13,14],
but also in the TPSE. For instance, it has been shown that
the TPSE can be orders of magnitude larger if the emitter is
placed near polar dielectrics [15], graphene monolayers
[16], and atomically thin plasmonic nanostructures [17].
Nevertheless, environment deviations from Minkowski
spacetime due to a gravitational field also affect the vacuum
and the SE of an atom [18]. Recently the Purcell effect for
one-photon SE has been studied in a cosmic string back-
ground [19,21]. However, as far as the authors know, the
influence of a gravitational field in a TPSE process has
never been investigated.
One of the most important breakthroughs in twentieth

century physics was the concept of the spontaneous sym-
metry breaking. From this issue, it is possible to have two or
more different vacua which are not equivalent, i.e., vacua
that cannot be transformed into each other by a continuous
change of an arbitrary parameter. Between regions with
different vacua, the so-called topological defects appear,
which are characterized by nontrivial homotopy groups.
Depending on these groups, the defects can be classified as
magnetic monopoles (zero dimensional), cosmic strings
(one dimensional), domain walls (two dimensional), among
others. An interested reader is referred to [22,23] for a
general discussion of the classification of topological
defects. Although they are very ubiquitous in condensed
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matter physics, from ferromagnetism and crystalline defects
to vortexes in superfluid materials, in high-energy physics
and cosmology the interest rests upon the formation of
defects during the early Universe, where presumably there
was a spontaneous symmetry breaking of a larger symmetry
group, described in a grand unified theory of particle
physics. The idea was that a cosmic string could act like
seeds for the formation of complex cosmological structures
like galaxies, although recent data rules out at least a
prominent role in the formation of these structures
[23,24]. However there has been an increasing interest in
these structures as a source for stochastic gravitational wave
background in the early Universe, as recent data from the
NANOGravCollaborationmay suggest [25–27], aswell as a
gravitational analog model for the geometry and the inter-
action of quantum dots near a crystalline defect called
disclination [28,29].
From the gravitational point of view the first solution of

the linearized Einstein equation for a straight string with
linear mass density μ was obtained in [30]. It was shown
that the spacetime around a cosmic string has a conical
singularity with deficit angle δϕ proportional to μ. That is,
the cosmic string background is a flat spacetime where the
ϕ variable has periodicity 2π − δϕ, instead of 2π of the flat
geometry. However, a more general solution for a cosmic
string can be obtained through the solution of the Einstein
equations [31]. This case can model a more realistic string
with a finite thickness. Nonetheless, the main features of the
linearized solution are not altered; the cosmic string space-
time presents an asymptotic conical geometry with the same
deficit angle as before. Hence, for brevity, from now on we
are going to consider only the linearized solution.
The cosmic string spacetime background causes some

interesting effects. As the spacetime is flat, a particle near
the string is not gravitationally attracted by it. Moreover,
due to the nontrivial topology induced by a cosmic string,
two parallel light rays can be deflected by it, generating a
gravitational lensing [32], and a charge near the string feels
a self-electric force [33]. Other features, such as the
Aharonov-Bohm analog, can be found in Ref. [23,34].
In this work, one- and two-photon spontaneous emission

rates for an excited atom, at rest in the presence of cosmic
string are discussed. The vacuum electromagnetic field
modes will be modified by the new background, and, as a
consequence, the above mentioned spontaneous emission
rates will also be altered. We then compare these two
modified emission rates with those obtained with the
excited atom in the Minkowski spacetime and show that
they can be substantially different. We discuss the depend-
ence of these emission rates not only with the distance
between the atom and the cosmic string but also with the
mass linear density of the string.
This manuscript is organized as follows: In Sec. II we

investigate the one-photon spontaneous emission for the
above set-up. In Sec. III, we discuss the TPSE for the same

setup and present our main results. Sec. IV is left for our
final remarks and conclusions. Two appendixes have also
been included; in the first one we briefly review the
electromagnetic field modes near a cosmic string, while
in the second one, some mathematical details concerning
the one-photon SE rate are presented.

II. ONE-PHOTON SPONTANEOUS EMISSION
IN A COSMIC STRING BACKGROUND

Let us consider a quantum emitter in the vicinities of a
straight and electrically neutral cosmic string of constant
linear density of mass μ. We choose our axes so that the
string is along theOz axis and the emitter is placed a distant
ρ from the string, as shown in Fig. 1. The metric of this
setup reads in cylindrical coordinates

ds2 ¼ −c2dt2 þ dz2 þ dr2 þ
�
1 −

8Gμ
c2

�
r2dϕ2; ð1Þ

where G is the gravitational constant. This metric can be
associated with a locally flat spacetime, but with a global
conical geometry, with a deficit angle δϕ ¼ 8πGμ=c2. The
mass linear density must satisfy the constraint μ < c2

4G≈
3.3 × 1026 kg=m, otherwise it would degenerate into
another topology other than a conical one [31].
This system can be described by a Hamiltonian given by

H ¼ HA þHF þHint, where HA, HF and Hint are respec-
tively, the atomic, field and interaction Hamiltonians. In the
Coulomb gauge and assuming that the dominant transition
wavelengths are much greater than the quantum emitter
dimensions, so that the dipole approximation is valid, the
interaction Hamiltonian reads

HintðrÞ ¼ −d · EðrÞ

¼ −
X
α

ffiffiffiffiffiffiffiffiffi
ℏωα

2ϵ0

s
½aαd ·AαðrÞ − a†αd ·A�

αðrÞ�; ð2Þ

where a†α and aα stand for the creation and annihilation
operators of a photon in mode α, ωα is the photon
frequency, d is the dipole moment operator of the quantum
emitter which is placed at position r, and fAαg is a

FIG. 1. An excited atom (blue point) placed near a cosmic
string. Using cylindrical coordinates, the atom is in the plane
z ¼ 0 and its distance to the cosmic string is ρ. The orthonormal
basis fρ̂; ϕ̂; ẑg is also depicted.
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complete set of solutions of the Helmholtz equation
subjected to the boundary conditions imposed by the
cosmic string as well as the Coulomb gauge restriction.

A. Methodology

The one-photon spontaneous emission (OPSE) rate can
be obtained by using Fermi golden rule and first-order
perturbation theory. In the initial state of our system,
denoted by je; 0i, the atom is in an excited state and the
are no photons in the field; in the final state, denoted by
jg; 1i, the atom is in a state of lower energy (not necessarily
its ground state) and there is one photon in the field in the
mode α. The OPSE rate can be written in terms of the field
modes as [35]

ΓðrÞ ¼ π

ϵ0ℏ

X
α

ωαjdeg ·AαðrÞj2δðωα − ωegÞ; ð3Þ

where deg ¼ hejdjgi is the transition dipole moment and
ωeg is the transition frequency. From this expression and
using the free-space electromagnetic field modes, namely
A ¼ eik·rekp=

ffiffiffiffi
V

p
, it is possible to derive the correspond-

ing free-space OPSE rate [36]

Γ0 ¼
jdegj2ω2

eg

3πϵ0ℏc3
: ð4Þ

The influence of a cosmic string background on the OPSE
rate can be obtained by inserting the corresponding field
modes into Eq. (3). In Appendix A we provide a brief
derivation of these modes, which are given by

Ak0 ¼
βk0c2

iω
ðk2⊥ẑþ ikz∇⊥Þ

× ½Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ�; ð5Þ

Ak1 ¼ −βk1cẑ × ∇⊥½Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ�; ð6Þ

where the indexes 0 and 1 indicate, respectively, the
transverse magnetic and transverse electric modes of the
field, fJνðzÞg are the cylindrical Bessel functions,
q ¼ 2π=ϕ0, m is an arbitrary integer, ϕ0 ¼ 2π − δϕ and
βk0 and βk1 are normalization constants such that
jβk0j2 ¼ jβk1j2 ¼ q=ð2πk⊥cÞ2.
It is convenient to calculate the OPSE rate in three

different situations; namely, when the transition dipole
moment of the quantum emitter is oriented along each of
the cylindrical unit vectors; namely, deg=jdegj ¼ ρ̂; ϕ̂ or ẑ.
Substituting Eqs. (5) and (6) into Eq. (3) we find (see
Appendix B)

Γẑ

Γ0

¼ 3q
2

X∞
m¼−∞

Z
1

0

du
u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J2qjmjðkegρuÞ; ð7Þ

Γρ̂

Γ0

¼ 3q
8

X∞
m¼−∞

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

× ½ð2 − u2ÞðJ2qjmj−1ðkegρuÞ þ J2qjmjþ1
ðkegρuÞÞ

þ 2u2Jqjmj−1ðkegρuÞJqjmjþ1ðkegρuÞ�; ð8Þ

Γϕ̂

Γ0

¼ 3q
8

X∞
m¼−∞

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

× ½ð2 − u2ÞðJ2qjmj−1ðkegρuÞ þ J2qjmjþ1
ðkegρuÞÞ

− 2u2Jqjmj−1ðkegρuÞJqjmjþ1ðkegρuÞ�: ð9Þ

The subscripts on the left hand sides of equations (7), (8),
and (9) indicate the direction of the emitter’s transition
dipole moment. These results are compatible with those
found in Ref. [21]. The SE rate for the isotropic case is
simply given by Γ ¼ 1

3
ðΓẑ þ Γρ̂ þ Γϕ̂Þ.

As a self-consistency test, let us reobtain the OPSE rate
in free-space for a particular orientation of the transition
dipole moment of the quantum emitter, say Γρ̂

Γ0
. This

situation corresponds to take μ ¼ 0 (or equivalently to
take q ¼ 1) in Eq. (8); namely,

Γρ̂

Γ0

����
q¼1

¼ 3

8

X∞
m¼−∞

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p

× ½ð2 − u2ÞðJ2jmj−1ðkegρuÞ þ J2jmjþ1
ðkegρuÞÞ

þ 2u2Jjmj−1ðkegρuÞJjmjþ1ðkegρuÞ�: ð10Þ

Using the following properties of Bessel functions,

X∞
m¼−∞

J2jmjðxÞ ¼ J20ðxÞ þ 2
X∞
ν¼1

J2νðxÞ ¼ 1 ð11Þ

and

X∞
m¼−∞

Jjmjþ1ðxÞJjmj−1ðxÞ ¼ 0; ð12Þ

it is not difficult to see that Eq. (4) is recovered, since

Γρ̂

Γ0

¼ 3

4

X∞
m¼−∞

Z
1

0

du
uð2 − u2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ¼ 1: ð13Þ

Analogous calculations can be done for the other two
orientations.

B. Results and Discussions

In Fig. 2 we plot the normalized SE rates for each of the
above-mentioned orientations of the transition dipole
moment, as well as for the isotropic case, as functions
of distance ρ from the atom to the string for different values
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of q. As a first self-consistency check, notice that for
kegρ ≫ 1 we recover the SE rate in free space, as expected,
since the greater the distance between the atom and the
string the smaller will be the influence of the string. As
already mentioned in the previous subsection, the free-
space result can also be achieved if we take the limit q → 1,
since such a limit means to remove the string.
Note also that, as we increase the distance between the

atom and the string, all panels of Fig. 2 exhibit oscillations
around the free-space values. This can be understood as an
interference phenomenon if we decompose each electro-
magnetic field mode asAkp ¼ Að0Þ

kp þAðscaÞ
kp , whereAð0Þ

kp is

the corresponding free-space mode and all the influence of
the cosmic string for this field mode is encoded in the

second term, AðscaÞ
kp . Since the field modes must be

evaluated at the emitter’s position [see Eq. (3)], we see
that depending on the distance between the emitter and the

cosmic string the free-space contribution (Að0Þ
kp) and the

cosmic string dependent term (AðscaÞ
kp ) may interfere con-

structively or destructively. In addition, this rationale leads
us to conclude that the positions of maxima and minima of
the OPSE rate depends on the orientation of deg, a behavior
that can be checked by comparing panels a, b, and c of 2.

(a) (b)

(c) (d)

FIG. 2. OPSE rates, as functions of the dimensionless distance kegρ (essentially, distance in units of the transition wavelength), for
different values of parameter q, when the transition dipole moment is (a) parallel to the direction of the string; (b) perpendicular to the
direction of the string but belongs to the plane containing the string and the atom; (c) perpendicular to the direction of the string and also
perpendicular to the plane containing the string and the atom; (d) randomly oriented.
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Indeed, the fact that the positions of the maxima and
minima of the OPSE rate depend on the orientation of the
transition dipole moment occurs in well known examples of
Purcell effect explored in the literature, such as the case of a
quantum emitter close to an infinite conducting plate. The
reason for such behavior can be explained as follows: The
scattered field modes depend on the space-time geometry,
which is altered by the cosmic string, and also on the
orientation of the transition dipole moment; thus, the
dependence of positions of the maxima and minima of
the OPSE rate on the orientation of deg follows quite
naturally. In other words, if for a given distance between the
atom and the string there is an enhancement for a given
orientation, for another orientation one may have a different
result, which may be even an attenuation.
However, there is a quite subtle property that is worth

mentioning; the distance between two consecutive maxima
varies not only with the orientation of deg, but also with the
parameter kegρ even for a given orientation of the transition
dipole moment, except in a few particular cases. To
understand this behavior let us first start by discussing
the simple situation of an atom near an infinite conducting
plane. In this setup, the total field of a real oscillating dipole
is given by the sum of the original dipole field with the
image dipole field. Thus, in this case it is clear that if the
real dipole is at a position for which there is a maximum of
the OPSE and it is moved by a distance λeg=2 away from
the surface, it will find itself at another maximum of the
OPSE rate. This argument however is very peculiar to plane
surfaces and cannot be applied to more general situations,
as for instance an atom near a sphere or more exotic bodies
like a cosmic string treated in this work. In order to better
illustrate the variation of the distance between two con-
secutive maxima or minima, we depict in Fig. 3 the OPSE

rate as a function of kegρ for different orientations of deg

and setting q ¼ 6.
Finally, note that when the distance between the atom

and the string goes to zero the only nonzero contribution for
the SE rate comes from the orientation in which the
transition dipole moment points in the ẑ direction (parallel
to the string). This fact may be understood as follows: In
this limit, the field modes have their electric fields parallel
to the string so that the only nonzero coupling between the
electric field and the transition dipole moment occurs with
such orientation. The previous statement can be checked by
taking the appropriate limit in Eqs. (5) and (6) and noting
that the components of the electric field perpendicular to
the string involve only derivatives of the Bessel functions
which goes to zero at the origin since they can be written as
a linear combination of two Bessel functions with
order qjmj � 1 ≠ 0 ∀ m.
In order to see more in more detail what is the behavior

of the normalized SE rates for short distances, we shall
use well-known approximations of the Bessel functions
involved. For small kegρ, one can approximate the Bessel
functions of first kind as

JνðzÞ ≈
1

2ν
zν

Γðνþ 1Þ ; if ν ≠ 0; jzj ≪ 1; ð14Þ

J0ðzÞ ≈ 1 −
z2

4
; ð15Þ

so that, in the case where the dipole is aligned with the
string, we obtain

Γẑ

Γ0

≈
3q
2

Z
1

0

du
u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p ½J20ðkegρuÞ þ 2J21ðkegρuÞ�

≈
3q
2

Z
1

0

du
u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p

×

�
1 −

1

2
ðkegρuÞ2 þ

1

22q−1
ðkegρuÞ2q
Γ2ðqþ 1Þ

�

≈ q
�
1 −

2

5
ðkegρÞ2 þ

3ðqþ 1ÞðkegρÞ2q
ðqþ 3

2
ÞΓð2qþ 2Þ

�
: ð16Þ

Recalling that q > 1 (q ¼ 1 corresponds to free space), the
above result shows that, up to second-order terms, the
OPSE rate behaves as an inverted parabola, as can be seen
by a direct inspection in Fig. 2(a).
The behaviors of Γϕ̂ and Γρ̂ for an atom located very

close to the cosmic string follow in a similar way,

Γρ̂

Γ0

≈ q

�
1

20
ðkegρÞ2 þ

2ðqþ 1Þ
ðqþ 1

2
ÞΓð2qÞ ðkegρÞ

2ðq−1Þ
�
; ð17ÞFIG. 3. OPSE rate as a function of kegρ for different orientations

of deg and setting q ¼ 6.
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Γϕ̂

Γ0

≈ q

�
1

4
ðkegρÞ2 þ

2ðqþ 1Þ
ðqþ 1

2
ÞΓð2qÞ ðkegρÞ

2ðq−1Þ
�
; ð18Þ

where we used that JnðxÞ ¼ ð−1ÞnJ−nðxÞ for n ∈ Z.
The plots in Figs. 4(a)–4(c) depict the same OPSE rates

but now as functions of q for different values of kegρ. It is
noticeable that, for a fixed position of the quantum emitter,
the OPSE rates do not exhibit a monotonic behavior with
respect to parameter q. In fact, this quite subtle behavior
can be explained qualitatively by an argument analogous to
that one used to explain the oscillations of the OPSE rates
with the distance between the emitter and the string, but this
time considering the interference pattern along the angular

coordinate. A comment is in order here. Note that when we
vary parameter q we are varying the environment of the
quantum emitter, since q is related to the mass linear
density of the string. Consequently, we should expect both
the position of maxima and minima and as well as the
distances between them when we plot the OPSE rate as a
function of q to depend on the orientation of deg. To better
illustrate this complicated behavior, we depict in Fig. 5 the
OPSE rate as a function of q for different orientations of deg

and setting kegρ ¼ 18.
It is worth mentioning that, whenever the condition q ≳

kegρ is satisfied, a linear dependence of the OPSE rates with
parameter q (for any orientation of the transition dipole

(a) (b)

(c) (d)

FIG. 4. OPSE rates, as a function of q, of the quantum emitter, when its dipole moment is: (a) aligned with the direction of the string;
(b) aligned with the radial direction and perpendicular to the string; (c) is aligned with the tangential direction and perpendicular to the
string; (d) randomly oriented.
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moment) shows up for any distance between the cosmic
string and the quantum emitter. This can be seen math-
ematically with the aid of the following approximation for
Bessel functions [37],

JνðzÞ ≈
eνffiffiffiffiffiffiffiffi
2πν

p
�
z
2ν

�
ν

; ν ≫ 1 if z ≠ 0: ð19Þ

Notice that, in the base of the power ν, when ν ≫ z, the
Bessel function rapidly decreases as ν increases. As a
consequence, in the summations written in Eqs. (7)–(9), the
terms with jmj ≠ 0may be neglected if q ≳ kegρ, since for a
fixed kegρ there is a power decay when q increases. Thus
we are left with

Γẑ

Γ0

≈
3q
2

Z
1

0

du u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J20ðkegρuÞ ∝ q; ð20Þ

Γρ̂

Γ0

≈
3q
2

Z
1

0

duuffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J21ðkegρuÞ ∝ q; ð21Þ

Γϕ̂

Γ0

≈
3q
2

Z
1

0

du uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J21ðkegρuÞ ∝ q: ð22Þ

All the previous statements are in qualitative agreement
with the plots shown in Figs. 4(a)–4(c).

III. TWO-PHOTON SPONTANEOUS EMISSION

In this section we consider the same physical system as
that shown in Fig. 1, which consists of an atom, initially in
one of its excited states, near a cosmic string in the free
space, but now we analyze the TPSE instead of the OPSE.
In contrast to the latter case, TPSE is characterized by a

broadband spectrum of emission, where the frequencies of
the two emitted photons, say ω1 and ω2, are allowed to have
any continuous value satisfying the energy-conservation
condition; namely, ω1 þ ω2 ¼ ωeg. Due to this feature, we
will be interestednot only in the total decay rate but also in the
probability density function for a photon to be emitted with a
frequency within the interval ½ω;ωþ dω�. As expected from
the Purcell effect for OPSE rate, both quantities are modified
by the presence of the string and provide signatures that may
help in the attempts to observe cosmic strings.
In the following we start by describing the general theory

behind the TPSE, which comes directly from second-order
perturbation theory. Then, after some simplifications, we
show that the OPSE rates previously calculated play an
essential role that allows us to calculate the TPSE rate.
Subsequently, we apply this formalism in the system under
consideration, i.e., an atom in the vicinities of the cosmic
string.

A. Methodology

As in the case of OPSE we consider the electric dipole
approximation, with Hint written as in Eq. (2), but now,
since we are interested in calculating TPSE rates, it is
necessary to employ a second-order perturbation theory.
The reader is referred to Ref. [38] for a more detailed
discussion of this topic.
As before the atom is considered initially in an excited

state and there are no photons in the field. Such an initial state
is denoted by jii ¼ je; 0i. After the atomic transition, the
atom is in a lower energy level, and there are two photons in
the field, in the modes α and α0. We represent this final state
by jg; 1α; 1α0 i. Since we shall employ a second-order per-
turbation theory, besides theprevious stateswemust consider
all intermediate states jIi that are connected to the initial and
final states through the interactionHamiltonianHint; namely,
all stateswhose transitionmatrix elementswith the initial and
final states are different from zero. It is not difficult to see that
the states jIi must contain one photon in the field so that we
denote them by jm; 1αi or jm; 1α0 i, where m is an index that
represents the intermediate state of the atom. Thus, summing
over them states and the final states of the field, one finds that

ΓðrÞ ¼ π

4ϵ20ℏ
2

X
α;α0

ωαωα0 jAαðrÞ · Dðωα;ωα0 Þ ·Aα0 ðrÞj2

× δðωα þ ωα0 − ωegÞ; ð23Þ

where we have defined the tensor

Dðωα;ωα0 Þ≡
X
m

�
demdmg

ωem − ωα
þ dmgdem

ωem − ωα0

�
: ð24Þ

The subsequent discussion may be simplified consid-
erably if we write the Aα modes in terms of the Green
dyadics which is the solution of the equation

FIG. 5. OPSE rate as a function of q for different orientations of
deg and setting kegρ ¼ 18.
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∇ × ∇ × Gðr; r0;ωÞ − ω2

c2
Gðr; r0;ωÞ ¼ Iδðr − r0Þ; ð25Þ

subjected to the appropriate boundary conditions. More
specifically, we will make use of its imaginary part, that
admits the following spectral representation,

ImGðr; r0;ωÞ ¼ πc2

2ω

X
α

AαðrÞA�
αðr0Þδðω − ωαÞ: ð26Þ

Therefore, substituting Eq. (26) in Eq. (23), one finds that it
is possible to write the total spontaneous emission rate as an
integral of another function,

ΓðrÞ ¼
Z

ωeg

0

dω γðr;ωÞ; ð27Þ

where

γðr;ωÞ ¼ μ20
πℏ2

ω2ðωeg − ωÞ2ImGilðr;ωÞ ImGjkðr;ωeg − ωÞ
× Dijðω;ωeg − ωÞD�

lkðω;ωeg − ωÞ; ð28Þ

is referred to as the spectral density. Note that the spectral
density must be symmetric with respect to half of the
transition frequency, γðωÞ ¼ γðωeg − ωÞ. This is a direct
consequence of energy conservation, since every time a
photon is emitted with frequency ω another photon is
simultaneously emitted with frequency ωeg − ω. Another
important feature that must be highlighted is that deg itself
does not contribute to the TPSE rate, but rather all dem and
dmg; namely, the transition dipole moments associated with
the intermediate virtual transitions between the initial and
final states, since they are contained in the expression
of Dðωα;ωα0 Þ.
The previous expression is quite general and can be

applied, in principle, to calculate the TPSE rate of an
excited quantum emitter near an arbitrary material body.
However, in some still quite general situations this equation
acquires a simpler form. This occurs, for instance, when-
ever there is a basis that diagonalizes the Green tensor at
coincident points, which happens to be the case under
consideration in this work, as shown in [39]. For this case,
Eq. (28) takes the form

γðr;ωÞ ¼ μ20
πℏ2

ω2ðωeg − ωÞ2jDijðω;ωeg − ωÞj2

× ImGiiðr; r;ωÞImGjjðr; r;ωeg − ωÞ: ð29Þ

Analogously to the OPSE case, it is convenient to write an
expression for the spectral density γðωÞ normalized by its
expression in free space, first obtained by M. Göppert-
Mayer in 1931 [40] and given by

γ0ðωÞ ¼
μ20

36π3ℏ2c2
ω3ðωeg − ωÞ3jDðω;ωeg − ωÞj2; ð30Þ

where we defined

jDðω;ω0Þj2 ¼ Dijðω;ω0ÞD�
ijðω;ω0Þ: ð31Þ

Therefore, the normalized spectral density can be cast into
the form

γðr;ωÞ
γ0ðωÞ

¼
X3
i;j¼1

jDijðω;ωeg − ωÞj2
jDðω;ωeg − ωÞj2 Piðr;ωÞPjðr;ωeg − ωÞ:

ð32Þ

The previous expression is also referred to as spectral
enhancement [15]. The Pi functions are the Purcell factors,
defined by

Piðr;ωÞ≡ 6πc
ω

ImGiiðr; r;ωÞ: ð33Þ

Recalling Eq. (26) for the explicit expression of the
imaginary part of the Green dyadics and comparing it with
Fermi’s golden rule in Eq. (3), we see that these factors
are precisely the normalized OPSE rates presented in
Eqs. (7), (8), and (9) but now with a dependence in the
frequency, as discussed in Ref. [41].
Finally, we assume that the TPSE is originated from a

s → s atomic transition. If this is the case, it can be shown
that

jDijðω;ωeg − ωÞj2
jDðω;ωeg − ωÞj2 ¼ 1

3
δij; ð34Þ

and consequently the expression for the spectral enhance-
ment is greatly simplified, taking the form

γðr;ωÞ
γ0ðωÞ

¼ 1

3

X
i

Piðr;ωÞPiðr;ωeg − ωÞ: ð35Þ

As we shall see in the next subsection, the previous
equation allows us to compute the TPSE rate of an emitter
close to a cosmic string using the Purcell factors given by
Eqs. (7), (8), and (9).

B. TPSE in the background of a cosmic string:
Results and discussions

We are now able to investigate the TPSE rate of an atom
in the vicinities of a cosmic string by calculating its spectral
enhancement, by means of Eq. (35). In Fig. 6(a) we plot the
spectral enhancement as a function of the normalized
frequency ω=ωeg for a fixed distance between the emitter
and the string (kegρ ¼ 2) for different values of q. Recalling
that q ¼ 1 corresponds free space to the free-space limit,
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we have γ=γ0 ¼ 1 for this case, which was included in
Fig. 6(a) just for comparison. Looking for the other curves,
with q ≠ 1, we see that the presence of the string indeed
alters the spectral density of the emitted photons. Note that,
as expected, all curves in this figure are symmetrical with
respect to ω=ωeg ¼ 1=2. Depending on the value of the
emitted frequency and the value of q, we may have an
enhancement or an attenuation of the spectral density. As
we shall see, the spectral enhancement at a given frequency
has a nonmonotonic behavior as we increase the density
mass of the string (or, equivalently, as we increase q).
Figure 6(b) depicts a completely analogous situation as that
shown in Fig. 6(a) but now with kegρ ¼ 4. Note that, in
average, the curves in Fig. 6(b) are closer to the unity value

(corresponding to the free-space situation) than the curves
in Fig. 6(a). This is due to the fact that in Fig. 6(b) the
distance from the emitter to the string is greater than in
Fig. 6(a). However, as we shall see later, the spectral
density at a given frequency tends to the free-space value as
the distance to the string increases in a nonmonotonic way.
Finally, the fact that γ=γ0 remains finite and nonzero as
ω=ωeg → 0 (or equivalently ω=ωeg → 1) means that both γ
and γ0 have the same dependence with the frequency ω in
these limits. This is a consequence of the fact that, in
Eq. (32), the factor jDijðω;ωeg − ωÞj2=jDðω;ωeg − ωÞj2
always gives a finite value when ω → 0, independently of
the transition states, as can be seen from Eq. (24), and that
in our case the Purcell factors also remain finite in these
limits.
In Fig. 7(a) we plot the spectral enhancement as a

function of the normalized frequency ω=ωeg for q ¼ 1.5
and different values of the normalized distance kegρ
between the emitter and the string. Note also that as
kegρ increases, the presence of the string becomes less
important, so that γ=γ0 → 1 far from the string. This is quite
evident in this figure for the values kegρ ¼ 6 and kegρ ¼ 18.
However, as already mentioned, there will be a nonmono-
tonic behavior in the way the spectral density at a given
frequency tends to its free-space value as we increase kegρ,
as it will become evident in Figs. 8(a) and 8(b).
In Fig. 7(b) we plot the same curves as in Fig. 7(a), but

with a different value of q. While in the latter we chose
q ¼ 1.5, in the former we used q ¼ 2.5. Since increasing q
means to increase the deficit angle and, in principle, to
increase the influence of the string, we see that, as kegρ
increases, the spectral enhancement γ=γ0 tends to 1 slower
in Fig. 7(b) than in Fig. 7(a). Nevertheless, as we shall see
in Fig. 10, γ=γ0 has a nonmonotonic behavior as a function
of q.
It is interesting to observe that, as the quantum emitter is

moved away from the string, the spectral enhancement for
frequencies around ω=ωeg ¼ 1=2 approaches 1 (free-space
value) faster than the spectral enhancement for frequencies
near zero orω=ωeg ¼ 1.We can understand qualitatively this
behavior as follows. Photons with small frequencies (near
zero, for instance) have wavelengths greater than photons
with frequencyω ¼ ωeg=2, so that the spectral enhancement
for these small frequencieswill approach their corresponding
free-space values slower than the spectral enhancement for
frequencies around ω=ωeg ¼ 1=2. Naively, one could think
that for frequencies near themaximumvalueωeg the opposite
would occur. However, this is not the case since for an
emitted photon with frequency ω, another one is simulta-
neously emitted with a frequency ωeg − ω.
The kegρ dependence of the spectral enhancement is

depicted in Figs. 8(a) (for q ¼ 1.5) and 8(b) (for q ¼ 2.5)
for different (fixed) values of ω=ωeg. Note that, in close
analogy to what happens in the OPSE case, the spectral

(a)

(b)

FIG. 6. Spectral enhancement γðω; rÞ=γ0ðωÞ for an atom near a
cosmic string as a function of the normalized frequency, for
different values of q, setting: (a) kegρ ¼ 2, (b) kegρ ¼ 4.
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enhancement at a given frequency oscillates around 1 as
kegρ is increased and tends to 1 in the limit kegρ → ∞, as
expected. However, the oscillations present in Fig. 8(a) are
more irregular than those appearing in Fig. 2 for the OPSE
case. The reason for that is related to the fact that in the
TPSE case another length scale is present since, now, two
photons are emitted and hence we have two different
wavelengths, except when the two photons are emitted
with frequency ωeg=2. The above statements can be seen by
a direct inspection for instance in Fig. 8(a).
In order to discuss the behavior of the spectral enhance-

ment for kegρ ≪ 1 in more detail, we use the approximated
expressions of the OPSE rates previously calculated in

Eqs. (16), (17), and (18). For q ≠ 1 and up to order ðkegρÞ2
we have

γ

γ0
≈
q2

3

�
1 −

2ðkegρÞ2
5

��
ω

ωeg

�
2

þ
�
1 −

ω

ωeg

�
2
�	

þO½ðkegρÞ4ðq−1Þ
�
: ð36Þ

This result implies that a parabolic behavior for small kegρ
shows up, which can be seen in Figs. 8(a) and 8(b).
It is worth emphasizing another interesting feature. First,

for kegρ ≪ 1 the spectral enhancement is independent of

(a)

(b)

FIG. 8. Spectral enhancement γðω; rÞ=γ0ðωÞ for an atom near a
cosmic string as a function of the normalized distance, for
different values of ω=ωeg, setting (a) q ¼ 1.5, (b) q ¼ 2.5.

(a)

(b)

FIG. 7. Spectral enhancement γðω; rÞ=γ0ðωÞ for an atom near a
cosmic string as a function of the normalized frequency, for
different values of kegρ, setting (a) q ¼ 1.5, (b) q ¼ 2.5.
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the frequency ω=ωeg, which means that for short distances
the spectral density is proportional to the free-space spectral
density. This property can be seen in Figs. 8(a) and 8(b) in
the region where the former limit is satisfied.
In Figs. 9(a) and 9(b), contour plots for the spectral

enhancement as a function of both kegρ (vertical axis) and
ω=ωeg (horizontal axis) are depicted for q ¼ 1.5 and
q ¼ 2.5, respectively. These contour plots contain in a
compact way most of the previous results. For instance, if
we trace a horizontal line in Fig. 9(b) at kegρ ¼ 4 we will
reproduce exactly the plot of the spectral enhancement as a
function of ω=ωeg represented in Fig. 6 by the red dotted
line. Analogously, vertical lines in these contour plots will
reproduce the curves for the spectral enhancement as a
function of the normalized distance kegρ for fixed frequen-
cies. Consider, for instance, the vertical line given by

ω=ωeg ¼ 0.2 in the contour plot of Fig. 9(b). This vertical
line will reproduce exactly the plot of the spectral enhance-
ment as a function of kegρ represented by the red dotted line
of Fig. 8(b). It is also worth mentioning that contour plots
have the advantage to allow us to analyze the region in the
parameter space in which a particular range of the spectral
enhancement can be found.
Finally, in Fig. 10 we depict the spectral enhancement as

a function of parameter q for keg ¼ 10 and different (fixed)
values of ω=ωeg. First of all, in analogy to what happens in
the OPSE case, note the nonmonotonic behavior of γ=γ0 for
each frequency as q is increased. Since the TPSE rates is
proportional to a sum of Purcell factor products, this
behavior was already expected. Another feature that must
be emphasized is that the spectral enhancement exhibits for
q ≫ 1 a quadratic dependence on q. This can be under-
stood mathematically if we recall the approximations in
Eqs. (20), (21), and (22), which imply that the Purcell
factors are proportional to q for q ≫ 1; consequently, in
this situation, we can infer that γ=γ0 ∝ q2.

IV. FINAL REMARKS AND CONCLUSIONS

In this manuscript, we investigated the OPSE rate as well
as the TPSE rate of a quantum emitter in the background of
a cosmic string. In the former case we started by analyzing
some characteristics of the problem, as for example the
oscillatory behavior of the OPSE rate as a function of the
distance between the emitter and the string, as discussed in
[21]. However, we have also explored many another
aspects of this setup. For instance, we analyzed separately
the contributions to the OPSE rate of each component of
the transition dipole moment of the atom. In contrast to an
atom close to a perfectly conducting plate, the contribution

(a)

(b)

FIG. 9. Contour plot of the spectral enhancement (color bar) as
a function of ω=ωeg and kegρ for (a) q ¼ 1.5, (b) q ¼ 2.5.

FIG. 10. Spectral enhancement γðω; rÞ=γ0ðωÞ of an atom near a
cosmic string as a function of q for different frequencies, setting
kegρ ¼ 10.
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that does not vanish as kegρ → 0 is that associated to the
component of the transition dipole moment parallel to the
string (recall that, for the perfectly conducting plate, due to
the boundary condition on the parallel component of the
electric field, in this limit the only contribution that survives
is the one associated to the component of the transition
dipole moment perpendicular to the conducting plate).
Furthermore, we have also analyzed the behavior of the
OPSE rates as a function of parameter q, which encodes the
dependence on the linear density mass of the string.
Interestingly, we found a nonmonotonic behavior, but as
discussed previously in the text, for large values of q an
approximate linear dependence of the spectral enhance-
ment with respect to parameter q shows up.
Concerning the TPSE of an atom near a cosmic string,

which in contrast to the OPSE process is a broadband
phenomenon, we started by showing how the spectral
density (through the spectral enhancement) is affected by
the presence of the string. This effect is usually referred to
as Purcell effect for a TPSE process. Since the photons now
may be emitted in the frequency interval from zero to the
transition frequency, and owing to the fact that other length
scales are involved, a TPSE process is much richer than a
OPSE one (it has a larger parameter space). For conven-
ience, we considered only s → s transitions. As a conse-
quence, the TPSE rate can be straightforwardly obtained
from the Purcell factors of OPSE processes. Using these
facts, we explored the richness of TPSE processes and
analyzed the spectral enhancement in a variety of situa-
tions. For instance, we showed that the spectral enhance-
ment at fixed frequencies also exhibits an oscillatory
behavior with the distance of the emitter to the string,
tending to one as this distance tends to infinite. However,
the oscillatory pattern is more irregular than int he case of a
OPSE process. Regarding the dependence on q, we found
that, as in the OPSE case, the spectral enhancement for
fixed frequencies exhibits a nonmonotonic behavior with
respect this parameter, but in the limit q ≫ 1 this depend-
ence becomes quadratic, which in its turn is a direct
consequence of the fact that the spectral enhancement is
calculated from a product of two Purcell factors. Our results
were synthesized in the contour plots, which show the
richness of the parameter space.
Though a TPSE process is of second order in perturba-

tion theory, while a OPSE is a first-order one, this process
can become very important if for some reason (selection
rules) the OPSE process is prohibited. Since TPSE proc-
esses are important in the investigation of the cosmos (as
mentioned in the introduction), we think our results may be
useful somehow in the search for the existence of cosmic
strings. Specifically speaking, the existence this topological
defect would leave a signature in the spectral enhancement
of a quantum emitter in a very specific way, therefore the
analysis of the emitter’s emission spectrum may be relevant
for the identification of cosmic strings.

ACKNOWLEDGMENTS

The authors thank Reinaldo Melo e Souza, Patrícia
Abrantes, and Aram Saharian for enlightening discussions.
This work was partially supported by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES)—Finance Code 001 and by Conselho Nacional
de Desenvolvimento Científico e Tecnológico—CNPq,
No. 310365/2018-0 (C. F.), No. 131842/2020-0 (L.W.)
and No. 310703/2021-2 (C. A. D. Z.). L.W. and C. A. D. Z.
are also partially supported by Fundação Carlos Chagas
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APPENDIX A: ELECTROMAGNETIC MODES
IN A COSMIC STRING BACKGROUND

In this appendix we show how to obtain the electro-
magnetic field modes in a cosmic string background metric.
Since this metric has a conical geometry, outside the cosmic
string, the electromagnetic fields satisfy Maxwell’s equa-
tions in the flat spacetime; namely,

∇ ·Eðr; tÞ ¼ 0; ðA1Þ

∇ ·Bðr; tÞ ¼ 0; ðA2Þ

∇ ×Eðr; tÞ ¼ −
∂B
∂t

ðr; tÞ; ðA3Þ

∇ ×Bðr; tÞ ¼ 1

c2
∂E
∂t

ðr; tÞ: ðA4Þ

To find the electromagnetic fields that solve the above
equations, it is convenient to write the electric and magnetic
fields in the form

Eðr; tÞ ¼ ½E⊥ðr⊥Þ þ ẑEzðr⊥Þ�eiðkzz−ωtÞ; ðA5Þ

Bðr; tÞ ¼ ½B⊥ðr⊥Þ þ ẑBzðr⊥Þ�eiðkzz−ωtÞ; ðA6Þ

where we decomposed the fields as a sum of their
perpendicular and parallel components to the z axis, which
coincides by assumption with the direction of the string.
Following Ref. [42], plugging the above equations in
Maxwell’s Equations, one finds that the transverse electric
(TE) and transverse magnetic (TM) fields are

ETE ¼ −
iω
k2⊥c

½ẑ × ∇⊥Bz�eiðkzz−ωtÞ;

ETM ¼
�
ikz
k2⊥

∇⊥Ez þ Ezẑ

�
eiðkzz−ωtÞ; ðA7Þ

where ∇⊥ is the component of the gradient perpendicular to
the string, ∇⊥ ¼ ∇ − ẑ∂z, and the z-components of fields
satisfy the bidimensional Helmholtz equation
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ð∇2⊥ þ k2⊥ÞFz ¼ 0; ðA8Þ

where Fz ¼ Ez; Bz and ∇2⊥ ¼ ∇⊥ · ∇⊥. The latter equation
can be solved by separation of variables imposing the
cosmic string spacetime boundary condition; namely, a
periodicity of ϕ0 instead of 2π, thus giving

Fz ¼ Jqjmjðk⊥ρÞeiqmϕðm ∈ ZÞ; ðA9Þ

where q ¼ 2π=ϕ0. Now it suffices to substitute Ez and Bz
into Eqs. (A7) to find the solutions for the electric field

ETE ¼ −
iω
k2⊥c

ẑ × ½∇⊥Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ�; ðA10Þ

ETM ¼
�
ẑþ ikz

k2⊥
∇⊥

�
Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ: ðA11Þ

The vector potential in the Coulomb gauge can be obtained
from the electric field from E ¼ ∂tA. Hence,

Ak0 ¼
βk0c2

iω
ðk2⊥ẑþ ikz∇⊥Þ

× ½Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ�;
Ak1 ¼ −βk1cẑ × ∇⊥½Jqjmjðk⊥ρÞeiðqmϕþkzz−ωtÞ�; ðA12Þ

where ω2 ¼ ðk2z þ k2⊥Þc2, q ¼ 2π=ϕ0, m ∈ Z and the
indexes 0 and 1 stand for the polarizations of the modes
and will be represented by p. Notice that we have
introduced the constants βk0 and βk1, which are necessary
so that the vector potential modes obey the orthonormal-
ization condition

Z
dVAkp ·A�

k0p0 ¼ δ3ðk − k0Þδpp0 : ðA13Þ

Performing the above integrals for p ¼ 0, 1, one finds

jβk0j2 ¼ jβk1j2 ¼
q

ð2πk⊥cÞ2
: ðA14Þ

APPENDIX B: ONE-PHOTON SPONTANEOUS
EMISSION RATES COMPUTATIONS

Here, a detailed derivation of Eqs. (7), (8), and (9) is
presented. From the component of the electromagnetic
modes which are parallel to the string, one finds

jdẑ
eg ·Ak0j2 ¼ jdẑ

egj2
qk2⊥c3
ð2πωÞ2 J

2
qjmjðk⊥ρÞ; ðB1Þ

jdẑ
eg ·Ak1j2 ¼ 0: ðB2Þ

Inserting the above result into Eq. (3), we find that OPSE
rate associated to the parallel component of the dipole
parallel to the string reads

Γẑ ¼
π

ϵ0ℏ

X
k

jdẑ
eg ·Ak0j2ωkδðωk −ωegÞ

¼ jdẑ
egj2π
ϵ0ℏ

X∞
m¼−∞

Z
d2k

qk2⊥c2
ð2πωÞ2ωkδðωk −ωegÞJ2qjmjðk⊥ρÞ:

ðB3Þ

Using that ω2 ¼ k2c2 ¼ ðk2⊥ þ k2zÞc2 e d2k ¼ dk⊥k⊥dkz,
one obtains

Γẑ ¼
jdẑ

egj2πc
ð2πÞ4ϵ0ℏ

X∞
m¼−∞

Z
∞

0

dk⊥
Z

∞

−∞
dkz

k3⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
× δ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥c2 þ k2zc2

q
− ωeg

�
J2qjmjðk⊥ρÞ: ðB4Þ

From the following property of the delta function

δðfðxÞÞ ¼
X
i

δðx − xiÞ
jf0ðxiÞj

; ðB5Þ

where xi are the zeros of fðxÞ, and considering first an
integration in kz we can expand the delta function as

δðωðk⊥; kzÞ − ωegÞ

¼ ωeg

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
eg − k2⊥c2

q
�
δ

�
kz −

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
eg − k2⊥c2

q �

þδ

�
kz þ

1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
eg − k2⊥c2

q ��
: ðB6Þ

Substituting the above equation into Eq. (B4), we find

Γẑ ¼
jdẑ

egj2qω3
eg

2πϵ0ℏc3
X∞

m¼−∞

Z
1

0

du
u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J2qjmjðkegρuÞ; ðB7Þ

where there was made the redefinition of variables u ¼
k⊥c=ωeg and keg ¼ ωeg=c. Finally, by comparing it with
the free-space rate Γ0 given in Eq. (4) we are left with

Γẑ

Γ0

¼ jdẑ
egj2

jdegj2
3q
2

X∞
m¼−∞

Z
1

0

du
u3ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p J2qjmjðkegρuÞ: ðB8Þ

Now we compute the OPSE rates associated to the
perpendicular components of the dipole with respect to the
string; namely, the radial and tangential ones. Using
Eqs. (5), (6), and (A14), one obtains

jdρ̂
eg ·Ak0j2 ¼ jdρ̂

egj2 qk2zc2

ð2πωÞ2 ½J
0
qjmjðk⊥ρÞ�2; ðB9Þ
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jdρ̂
eg ·Ak1j2 ¼ jdρ̂

egj2 q3m2

ð2πÞ2k2⊥ρ2
J2qjmjðk⊥ρÞ: ðB10Þ

jdϕ̂
eg ·Ak0j2 ¼ jdϕ̂

egj2 q3k2zc2m2

ð2πÞ2k2⊥ω2ρ2
J2qjmjðk⊥ρÞ; ðB11Þ

jdϕ̂
eg ·Ak1j2 ¼ jdϕ̂

egj2 q
ð2πÞ2 ½J

0
qjmjðk⊥ρÞ�2; ðB12Þ

where the prime indicates the derivative with respect to the
argument of the function. Summing over the polarizations
and using the following Bessel function identities [37],

dJνðxÞ
dx

¼ Jν−1ðxÞ − Jνþ1ðxÞ
2

; ðB13Þ

ν

x
JνðxÞ ¼

Jν−1ðxÞ þ Jνþ1ðxÞ
2

; ðB14Þ

we have, for the radial component

X
p

jdρ̂
eg ·Akpj2 ¼

jdρ̂
egj2q

4ð2πÞ2
��

1þ k2zc2

ω2

�
½J2qjmj−1ðk⊥ρÞþJ2qjmjþ1

ðk⊥ρÞ� þ
2k2⊥c2
ω2

Jqjmj−1ðk⊥ρÞJqjmjþ1ðk⊥ρÞ
	
; ðB15Þ

whereas for the tangential component

X
p

jdϕ̂
eg ·Akpj2 ¼

jdϕ̂
egj2q

4ð2πÞ2
��

1þ k2zc2

ω2

�
½J2qjmj−1ðk⊥ρÞþJ2qjmjþ1

ðk⊥ρÞ� −
2k2⊥c2
ω2

Jqjmj−1ðk⊥ρÞJqjmjþ1ðk⊥ρÞ
	
: ðB16Þ

Lastly, inserting the above expressions into Eq. (3) and normalizing the result with respect to the free-space rate, we find

Γρ̂

Γ0

¼ jdρ̂
egj2

jdegj2
3q
8

X∞
m¼−∞

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ½ð2 − u2ÞðJ2qjmj−1ðkegρuÞ þ J2qjmjþ1

ðkegρuÞÞ þ 2u2Jqjmj−1ðkegρuÞJqjmjþ1ðkegρuÞ�;

ðB17Þ

Γϕ̂

Γ0

¼ jdϕ̂
egj2

jdegj2
3q
8

X∞
m¼−∞

Z
1

0

du
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p ½ð2 − u2ÞðJ2qjmj−1ðkegρuÞ þ J2qjmjþ1

ðkegρuÞÞ−2u2Jqjmj−1ðkegρuÞJqjmjþ1ðkegρuÞ�;

ðB18Þ

where we made the same change of variables in the integration as in the parallel component case; namely, u ¼ k⊥c=ωeg
and keg ¼ ωeg=c.
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