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We study the thermalization of a scalar field Φ coupled to two other scalar fields χ1;2 that constitute a
bath in thermal equilibrium. For a range of masses the Φ propagator features threshold and infrared
divergences, a vanishing residue at the (quasi)particle pole, and vanishing on-shell decay rates thereby
preventing the equilibration of Φ with the bath via on-shell processes. Inspired by the theory of quantum
open systems we obtain a quantum master equation for the reduced density matrix of Φ that includes the
time dependence of bath correlations, yielding time dependent rates in the dynamics of relaxation and
allowing virtual processes with an energy q0 whose difference from the on-shell energy is ofOð1=tÞ at long
time t. These off-shell processes lead to thermalization despite vanishing S-matrix rates. In the case of

threshold divergences we find that a thermal fixed point is approached as e−
ffiffiffiffiffiffi
t=t�

p
with the relaxation time t�

becoming shorter at high temperature as a consequence of stimulated emission and absorption. In the
infrared case, the thermal fixed point is approached as e−γðtÞ, where γðtÞ features a crossover between lnðtÞ
and t behavior for t ≫ 1=T. The vanishing of the residue and the crossover in relaxational dynamics in this
case is strikingly reminiscent of the orthogonality catastrophe in heavy impurity systems. The results yield
more general lessons on thermalization via virtual processes.
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I. INTRODUCTION

The dynamics of relaxation, approach to equilibrium and
thermalization, is a subject of timely cross disciplinary
interest with implications in condensedmatter physics [1–4],
cosmology [5–8], and high energy and nuclear physics
[9–11]. In quantum kinetic approaches to relaxation or
thermal equilibration in nonequilibrium situations, usually
the rate equations input collision kernels with transition
probabilities per unit time derived from the S-matrix
approach, or Fermi’s golden rule, which typically take the
infinite time limit. This limit entails strict energy conserva-
tion, and therefore the transition probabilities per unit time
are obtained from on-shell processes that conserve energy
(and momentum in translational invariant systems).
More recently, relaxational dynamics associated with off-

shell effects were studied within the context of quantum
field theories that feature infrared [12] and threshold
divergences [13] at zero temperature. Infrared divergences
typically originate in the emission and absorption of soft
quanta, are of particular importance in gauge theories
[14–25], and play a fundamental role in quantum aspects

of gravity as a consequence of emission and absorption of
gravitons [26,27]. Motivated by Higgs physics, studies in
Refs. [28–31] recognized a singularity in the propagator of
a bosonic particle as its mass approaches the multiparticle
threshold from below. An important consequence and
common aspect of infrared and threshold divergences is
that the residue of the single particle pole vanishes as the
mass of the particle approaches the multiparticle threshold,
and as a consequence, the particle is not an asymptotic state
of the S-matrix [13]. Within the context of condensed
matter physics, this phenomenon signals the breakdown of
the quasiparticle picture [32–34]. In Ref. [12] a dynamical
resummation method that extends the dynamical renorm-
alization group [35,36] was implemented to study the time
evolution of an initial single particle state in the case of a
bosonic quantum field theory that features an infrared
divergence similar to that of the electron propagator in
quantum electrodynamics [14–22]. This study found that
the survival probability of the single particle state decays in
time as a consequence of off-shell, in other words virtual
processes not as an exponential but as a power law with
anomalous dimension, namely t−Δ;Δ > 0, despite the fact
that the S-matrix decay rate vanishes. Implications of this
off-shell process for the production of ultralight dark matter
or dark radiation in a radiation dominated cosmology were
studied in Ref. [37].
In Ref. [13] a similar study showed that in the case of

threshold divergences the survival probability of an initial
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single particle state decays as e−
ffiffiffiffiffiffi
t=t�

p
when the mass of the

particle coincides with a two particle threshold for inter-
mediate states with two massive particles; however, the
decay rate obtained from the S-matrix approach vanishes in
this case also. The vanishing of the residue at the single
particle pole in the propagator in both the threshold and the
infrared divergent cases is merely a reflection of this decay
process when the mass of the “decaying” particle places the
pole at the tip of the multiparticle continuum (the beginning
of the branch cut) instead of being fully embedded in the
continuum as in the case of a resonance. This feature also
signals a breakdown of the Breit-Wigner approximation of
the propagator and spectral density of this particle [13].
Motivationandobjectives.—The analysis inRefs. [12,13]

shows that the decay of the single particle survival
probability is a consequence of off-shell processes which
at long time t feature “virtuality” ∝ 1=t. While the S-matrix
decay rate vanishes by strict energy (and momentum)
conservation, a long but finite time interval introduces
an energy uncertainty that allows processes with small
virtuality that lead to the decay but with different decay law
as compared to the usual exponential e−Γt. These results
motivate us to address the following questions: (i) How can
one implement a quantum kinetic formulation that would
allow time dependent rates without implementing Fermi’s
golden rule or without the input of S-matrix transition
probabilities per unit time? (ii) Do these processes lead to
thermalization if the particle is coupled to a thermal bath of
particles with mass spectra that yield threshold and infrared
divergences?
Addressing these two questions defines our objectives in

this study, namely: (i) to derive and implement a quantum
kinetic formulation that naturally includes time dependent
rates and generalizes the dynamical resummation frame-
work of Refs. [12,13] to the realm of finite temperature;
such a formulation could prove very useful in cosmology;
(ii) to implement this formulation to study the approach to
equilibration and thermalization via off-shell processes in
the cases in which the mass spectrum of particles in the
thermal bath to which the particle couples yield threshold
and infrared divergences.
Summary of results.—We study a model of a scalar field

Φ described by an initial density matrix out of equilibrium,
coupled to two other scalar fields χ1;2, taken to describe a
bath in thermal equilibrium. By adjusting the masses, we
investigate the cases corresponding to threshold and infra-
red divergences, thereby allowing us to draw more general
conclusions from this model.
Inspired by the theory of open quantum systems [38,39],

we derive a quantum master equation for the reduced
density matrix for theΦ field which, however, does not take
the infinite time limit in the Hamiltonian nor in the
dissipation terms, thereby allowing time dependent rates
in the dynamics of relaxation and off-shell processes with
small virtuality ∝1=t. We argue that this master equation is

the generalization of the dynamical resummation method of
Refs. [12,13] adapted to describe the coupling to a thermal
bath and provides a real time resummation of self-energy
contributions including off-shell processes at finite temper-
ature. In the case of threshold divergences, we find that at
long time the reduced density matrix for the Φ field

approaches a thermal fixed point as e−
ffiffiffiffiffiffi
t=t�

p
where the

relaxation time t� shortens at high temperature as a
consequence of stimulated absorption and emission. In
the case of infrared divergences we find that, again, the
reduced density matrix of the Φ field approaches a thermal
fixed point as e−γðtÞ where γðtÞ features a crossover between
a lnðtÞ and a ∝ t behavior at a timescale ∝ 1=T. The
behavior ∝ t is a subtle consequence of infrared enhance-
ment at finite temperature and small virtuality. The cross-
over timescale and the timescale toward thermalization
increase when the Φ particle becomes relativistic.
Remarkably, the crossover between the lnðtÞ and ∝ t

behavior is strikingly similar to the orthogonality catastro-
phe in heavy impurity systems [32,33]. Off-shell effects
associated with infrared singularities have recently been
studied within the context of photoexcitation of soft
electron-hole pairs in graphene [34]; hence the results of
this study may prove useful to study thermalization in this
system.
Therefore, above and beyond the particular model

studied here, the results obtained in this study may prove
useful to study thermalization in a wide range of settings
where virtual processes may play a fundamental role in
relaxation and thermalization.
In Sec. [13]we introduce themodel and briefly summarize

the emergence of threshold and infrared divergences at zero
temperature for consistency of presentation. In Sec. III we
derive the quantum master equation in Lindblad form
[38–42], discussing in detail the main assumptions but
without taking the infinite time limit in the bath correlation
functions.Keeping a finite time interval allows the rates in the
quantum master equation to depend explicitly on time,
thereby including off-shell processes of small virtuality at
long time. Furthermore, analyzing the bath correlations we
establish a correspondence with the dynamical resummation
framework of Refs. [12,13] and argue that the quantum
master equation provides a real time resummation of self-
energy corrections including bath correlations. In Sec. IVwe
study in detail the cases of threshold and infrared divergences
and obtain themain results in this article. SectionVdiscusses
potential implications of the results along with possible
caveats. Section VI summarizes our conclusions and sug-
gests further avenues of study. Various appendixes contain
technical details.

II. THRESHOLD AND INFRARED
SINGULARITIES AT ZERO TEMPERATURE

In this section we briefly summarize the main aspects of
threshold and infrared divergences at zero temperature
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discussed in Refs. [12,13] for consistency of presentation,
as well as to set the stage for the study of the quantum
master equation and the dynamics of thermalization. We
consider a model of bosonic fields Φ; χ1;2 with a trilinear
coupling described by the Lagrangian density

L ¼ 1

2
∂
μΦ∂μΦ −

1

2
M2Φ2 þ 1

2
∂
μχ1∂μχ1 −

1

2
m2

1χ
2
1

þ 1

2
∂
μχ2∂μχ2 −

1

2
m2

2χ
2
2 − λΦχ1χ2; ð2:1Þ

yielding the total Hamiltonian

H ¼ H0 þHI ð2:2Þ

with H0 ¼ H0½ϕ� þH0½χ� the free field part and HI the
interaction. The interaction vertex and conventions for the
fields are depicted in Fig. 1, and in the following we will
refer collectively to χ ≡ χ1; χ2.
By adjusting the various masses, we can study the cases

that yield threshold and infrared divergences within the same
model allowing us to extract more general conclusions.
The spectral properties of the Φ particle are summarized

in the Dyson-resummed propagator including self-energy
corrections, and the one loop self-energy is shown in Fig. 2.
A study of the Kallen-Lehmann representation of the Φ
propagator has been presented in Ref. [13] revealing
threshold singularities when M coincides with the two
particle threshold M ¼ m1 þm2 and infrared singularities
when m1 ¼ M;m2 ¼ 0. We summarize the main aspects of
these divergences in order to establish a clear relation to the
situation wherein the particles χ1;2 are in a thermal bath and

the relaxation of Φ is studied via a quantum master
equation.
Threshold singularity.—The case when M coincides

with the two particle threshold M ¼ m1 þm2 has been
studied in Ref. [29], and more recently in Ref. [13], we
consider the case m1 ¼ m2 ¼ m, which provides simpler
expressions. The ultraviolet divergence of the self-energy is
absorbed into mass renormalization, and we redefine the
renormalized mass asM. ForM < 2m the Dyson resummed
propagator (with the one loop self-energy) features an
isolated single particle pole below the two particle threshold,
with residue (wave function renormalization)

Z ¼
�
1 −

∂ΣðP2Þ
∂P2

�
−1

P2¼M2

; ð2:3Þ

whereΣðP2Þ is theΦ self-energy. As discussed previously in
Ref. [29] and more recently in Ref. [13] ∂ΣðP2Þ=∂P2jP2¼M2

features a singularity asM → 2m from below, and this is the
origin of the threshold singularity, with the consequence that
Z vanishes as M2 → 4m2 as

Z ⟶
M→2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

M2 − 1

q
πg2

; ð2:4Þ

where

g ¼ λ

4πM
ð2:5Þ

is the effective dimensionless coupling. As the mass shell
merges with the two particle threshold, the single particle
state is no longer an asymptotic state; however, theΦ particle
does not decay as in the usual exponential decay case e−Γt

because the S-matrix decay rate

Γq ¼ πg2
M2

Ωq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r
; ð2:6Þ

vanishes atM2 ¼ 4m2. A dynamical resummationmethod in
real time implemented in Ref. [13] revealed that the survival
probability of an initial single particle state j1Φq⃗ i of momen-

tum q⃗, and energy Ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
, is asymptotically

given by

jh1Φq⃗ jUðt; 0Þj1Φq⃗ ij2 ¼ e−
ffiffiffiffiffiffi
t=t�q

p
; t�q ¼

Ωq

4πg4M2
; ð2:7Þ

where Uðt; 0Þ ¼ eiH0te−iHt is the unitary time evolution
operator in the interaction picture, withH0 the free field and
H the full interacting Hamiltonians, respectively. The square
root behavior of the survival probability is a consequence of
the fact that the spectral density vanishes as a square root near
threshold [13], and this, in turn, is a consequence of the

FIG. 1. The interaction vertex.

FIG. 2. The one loop self-energy ΣðP2Þ of the Φ field.
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threshold singularity manifest in the vanishing of the single
particle residue as M approaches the threshold 2m, the Φ
particle is no longer an asymptotic state. The vanishing of the
residue Z as M → 2m is, therefore, a harbinger of the
“decay” of the Φ particle, even when the S-matrix decay
rate vanishes atM ¼ 2m. As discussed in detail in Ref. [13]
the decay is a consequence of off-shell processes of small
virtuality ∝ 1=t at long time.
Infrared singularity.—An infrared singularity in

∂ΣðP2Þ=∂P2jP2¼M2 arises when m1 ¼ M and m2 ¼ 0.
This situation corresponds to the emission and absorption
of massless quanta by a massive particle and is similar to
the infrared divergence in the electron propagator in
quantum electrodynamics [14–22]. In order to understand
the emergence of the infrared singularity more clearly, let
us consider that m1 ¼ m;m2 ¼ 0 and explore the limit
M → m from below in which the infrared divergence
becomes manifest. For M < m the Dyson-resummed
propagator including the one loop selfenergy features a
single particle pole below the two particle continuum
beginning at P2 ¼ m2. However, as shown in Ref. [13]
as M → m from below ∂ΣðP2Þ=∂P2jP2¼M2 features an
infrared singularity and as a consequence of this infrared
divergence the residue at the single particle pole vanishes,
namely

Z ⟶
M→m

1

g2 ln½ m
m−M�

: ð2:8Þ

The vanishing of the residue entails that theΦ particle is not
an asymptotic state; however, it does not decay in the usual
exponential manner because the S-matrix decay rate

Γ ¼ πg2
M2

Ωq

�
1 −

m2

M2

�
ð2:9Þ

vanishes for M ¼ m. The dynamical resummation method
introduced in Refs. [12,13] reveals that the survival
probability decays asymptotically as a power law with
anomalous dimension

jh1Φq⃗ jUðt; 0Þj1Φq⃗ ij2 ¼ ½Ωqt�−2g2 ; ð2:10Þ

again as a consequence of off-shell processes of small
virtuality ∝ 1=t at long time.
Therefore, when ∂ΣðP2Þ=∂P2jP2¼M2 features either a

threshold or infrared divergence, the amplitude of an initial
single particle state decays in time, not as an exponential
but with a decay law described above in each case, even
when the on-shell decay rates vanish. In both cases the
decay is not described by an on-shell process with energy
momentum conservation because the phase space for decay
calculated within the S-matrix framework vanishes in both
cases, but by off-shell processes of small virtuality ∝ 1=t in
the long time limit.

The question that we now address is, if and how do Φ
particles thermalize when they couple to a heat bath of
particles χ1;2 in thermal equilibrium, when the respective
masses yield threshold and infrared divergences?

III. THE QUANTUM MASTER EQUATION

In most approaches to quantum kinetics either collisional
kernels that input S-matrix, on-shell transition rates or
alternative formulations that input on-shell spectral densities
are invoked. Instead, we seek a formulation that just as the
dynamical resummation method of Refs. [12,13] describes
the time evolution and relaxation in terms of time dependent
rates, thereby allowing virtual processes when the field Φ is
coupled to a thermal bath in equilibrium of the fields χ1, χ2 in
the cases of threshold and infrared divergences.
Motivated by the theory of open quantum systems

ubiquitous in quantum optics and quantum information
[38,39], we adapt the Lindblad formulation of the quantum
master equation for the reduced density matrix of the field
Φ to include off-shell processes.
The quantum master equation in a Lindblad form

[40–45] has recently received attention in applications to
high energy physics [46–52]. This formulation begins with
the time evolution of an initial density matrix that describes
the total system of fields Φ; χ1;2, which is given by

ρ̂ðtÞ ¼ e−iHtρ̂ð0ÞeiHt; ð3:1Þ

with H the total Hamiltonian. In the master equation
approach [38,39] the time evolution of the density matrix
is considered in the interaction picture. With the full density
matrix ρ̂ðtÞ given by Eq. (3.1) the density matrix in the
interaction picture is given by

ρ̂IðtÞ ¼ eiH0tρ̂ðtÞe−iH0t; ð3:2Þ

whose time evolution obeys

_̂ρIðtÞ ¼ −i½HIðtÞ; ρ̂IðtÞ�; ð3:3Þ

where HIðtÞ is the interaction Hamiltonian in the inter-
action picture. The solution of Eq. (3.3) is given by

ρ̂IðtÞ ¼ ρ̂ð0Þ − i
Z

t

0

dt0½HIðt0Þ; ρ̂Iðt0Þ�: ð3:4Þ

This solution is inserted back into (3.3) leading to the
iterative equation

_̂ρIðtÞ ¼ −i½HIðtÞ; ρ̂ð0Þ� −
Z

t

0

½HIðtÞ; ½HIðt0Þ; ρ̂Iðt0Þ��dt0:

ð3:5Þ

The next steps rely on a series of assumptions [38]:
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(i) Factorization: The total density matrix factorizes
into a direct product of the density matrix for the Φ
field, ρ̂IΦðtÞ, and that of the bath of χ fields, ρ̂χ ,
namely,

ρ̂IðtÞ ¼ ρ̂IΦðtÞ ⊗ ρ̂χð0Þ; ð3:6Þ

under the assumption that the bath degrees of
freedom remain in thermal equilibrium; hence the
density matrix of the bath does not depend on time.
The reduced density matrix for the field Φ is
obtained by taking the trace of the full density
matrix over the bath degrees of freedom, which
by assumption remains in thermal equilibrium, and
therefore

ρ̂IΦðtÞ ¼ Trχρ̂IðtÞ: ð3:7Þ

Upon taking the trace over the χ1;2 degrees of
freedom the first term on the right-hand side of
Eq. (3.5) vanishes, and we find the evolution
equation for the reduced density matrix for Φ in
the interaction picture

_̂ρIΦðtÞ ¼ −λ2
Z

t

0

dt0
Z

d3x
Z

d3x0fΦðxÞΦðx0Þρ̂IΦðt0ÞG>ðx − x0Þ þ ρ̂IΦðt0ÞΦðx0ÞΦðxÞG<ðx − x0Þ

−ΦðxÞρ̂IΦðt0ÞΦðx0ÞG<ðx − x0Þ −Φðx0Þρ̂IΦðt0ÞΦðxÞG>ðx − x0Þg; ð3:8Þ

where we use the shorthand convention x≡ ðx⃗; tÞ; x0 ≡ ðx⃗0; t0Þ, and introduced the bath correlation functions

G>ðx − x0Þ ¼ Trχρ̂χð0Þχ1ðxÞχ2ðxÞχ1ðx0Þχ2ðx0Þ; ð3:9Þ

G<ðx − x0Þ ¼ Trχρ̂χð0Þχ1ðx0Þχ2ðx0Þχ1ðxÞχ2ðxÞ: ð3:10Þ

These correlation functions are displayed in Fig. 3 and are directly related to the self-energy of the Φ field shown in
Fig. 2.
At this stage a second approximation is invoked.

(ii) Markov approximation: This entails replacing ρIΦðt0Þ → ρIΦðtÞ in the time integral. This approximation is justified
in weak coupling, as can be seen by considering the first term in (3.8) as an example, and it can be written as

−λ2Φðx⃗; tÞ
Z

t

0

dJ ðt0Þ
dt0

ρ̂IΦðt0Þdt0; J ðt0Þ≡
Z

t0

0

Φ̂ðx⃗0; t00ÞG>ðx⃗ − x⃗0; t − t00Þdt00; ð3:11Þ

which upon integration by parts yields

−λ2Φðx⃗; tÞJ ðtÞρ̂IΦðtÞ þ λ2Φðx⃗; tÞ
Z

t

0

J ðt0Þ dρ̂IΦðt
0Þ

dt0
dt0 ð3:12Þ

in the second term dρ̂IΦðt0Þ=dt0 ∝ λ2 so this term yields a contribution that is formally of order λ4 and can be
neglected to second order. The same analysis can be applied to all the other terms in (3.8) with the conclusion that in
weak coupling and to leading order ðλ2Þ the Markovian approximation ρ̂IΦðt0Þ → ρ̂IΦðtÞ is justified.
Therefore in the Markov approximation the quantum master equation becomes

_̂ρIϕðtÞ ¼ −λ2
Z

t

0

dt0
Z

d3x
Z

d3x0fΦðxÞΦðx0Þρ̂IΦðtÞG>ðx − x0Þ þ ρ̂IΦðtÞΦðx0ÞΦðxÞG<ðx − x0Þ

−ΦðxÞρ̂IΦðtÞΦðx0ÞG<ðx − x0Þ −Φðx0Þρ̂IΦðtÞΦðxÞG>ðx − x0Þg: ð3:13Þ

FIG. 3. Correlation functions G>ðx − x0Þ; G<ðx − x0Þ.
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However, in contrast with the usual approach [38,39]
to the Lindblad form of the quantum master equa-
tion, we will not take the infinite time limit in the
upper limit of the integral in t0 in Eq. (3.13), keeping
the upper limit t finite. This is a noteworthy differ-
ence with most previous approaches to the quantum
master equation, which leads to time dependent rates
and ultimately to allowing the off-shell processes
with small virtuality to play a fundamental role in the
dynamics of relaxation in the cases with threshold
and infrared divergences.
The correlation functions G>ðx − x0Þ; G<ðx − x0Þ

are obtained in Appendix A in terms of spectral
representations. They are given by

G>ðx−x0Þ¼ 1

V

X
q⃗

Z
dq0ϱ>ðq0;q⃗Þe−iq0ðt−t0Þeiq⃗·ðx⃗−x⃗0Þ;

ð3:14Þ

G<ðx−x0Þ¼ 1

V

X
q⃗

Z
dq0ϱ<ðq0;q⃗Þe−iq0ðt−t0Þeiq⃗·ðx⃗−x⃗0Þ;

ð3:15Þ

where the spectral densities obey the relation

ϱ>ð−q0; q⃗Þ ¼ ϱ<ðq0; q⃗Þ; ð3:16Þ

and fulfill theKubo-Martin-Schwinger condition [53]

ϱ<ðq0; q⃗Þ ¼ e−βq0ϱ>ðq0; q⃗Þ; ð3:17Þ

which is a consequence of the fact that the fields χ1, χ2
are in thermal equilibrium. Introducing the spectral
density

ϱðq0; q⃗Þ ¼ ϱ>ðq0; q⃗Þ − ϱ<ðq0; q⃗Þ; ð3:18Þ

the Kubo-Martin-Schwinger condition (3.17) leads to
the following relations:

ϱ>ðq0; q⃗Þ ¼ ½1þ nðq0Þ�ϱðq0; q⃗Þ; ð3:19Þ

ϱ<ðq0; q⃗Þ ¼ nðq0Þϱðq0; q⃗Þ; ð3:20Þ

where nðq0Þ ¼ ½eβq0 − 1�−1 is the Bose-Einstein dis-
tribution function at temperature T ¼ 1=β. The above
relations are proven in Appendix A.
The spectral density ϱðq0; q⃗Þ is obtained in

Appendixes B and C for the cases of threshold and
infrared divergences, respectively.

In the interaction picture the fields feature the free
field time evolution. Therefore, upon quantization in a
finite volume V (eventually taken to infinity), we
expand the field in the interaction picture as

Φðx⃗; tÞ ¼
X
q⃗

1ffiffiffiffiffiffiffiffiffiffiffiffi
2VΩq

p ½aq⃗e−iΩqt þ a†−q⃗e
iΩqt�eiq⃗·x⃗;

ð3:21Þ

where the annihilation and creation operators aq⃗; a
†
−q⃗

do not depend on time. At this point we invoke yet
another approximation [38,39].

(iii) “Rotating wave approximation”: In writing the
products Φðx⃗; tÞΦðx⃗0; t0Þ of interaction picture field
operators (3.21) in (3.8) there are two types of terms
with very different time evolution. Terms of the form

a†q⃗aq⃗e
iΩqðt−t0Þ ð3:22Þ

and its Hermitian conjugate are “slow,” and terms of
the form

a†q⃗a
†
−q⃗e

2iΩqteiΩqðt−t0Þ; aq⃗a−q⃗e−2iΩqte−iΩqðt−t0Þ;

ð3:23Þ

are fast; the extra rapidly varying phases e�2iΩqt lead
to rapid dephasing and do not yield resonant (nearly
energy conserving) contributions. These terms only
give perturbatively small transient contributions and
are discussed in Sec. V. Keeping only the slow terms
which dominate the long time dynamics for t ≫
1=Ωq and neglecting the fast oscillatory terms
defines the “rotating wave approximation” ubiqui-
tous in quantum optics [38,39].

We will adopt these approximations and comment in
Sec. V on the corrections associated with keeping the fast
terms as well as caveats in the factorization approximation.
It is worth emphasizing that our approach, while follow-

ing most of the same steps as those leading to the usual
Lindblad quantum master equation [38], implies one less
approximation: whereas in the usual approach the infinite
time limit is taken in the integrals defining the rates, we
keep the finite time limits. In this sense, the approach
advocated in this study adopts fewer approximations than
the usual one.
Implementing the Markov approximation ρ̂IΦðt0Þ →

ρ̂IΦðtÞ, and the rotating wave approximation (keeping only
terms of the form a†a; aa†) using the spectral representation
of the correlators (3.14) and (3.15) with the property
ρ<ð−q0; q⃗Þ ¼ ρ>ðq0; q⃗Þ and carrying out the spatial and
temporal integrals we obtain the Lindblad form [38–45] of
the quantummaster equation, but with time dependent rates,
namely
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_̂ρIϕðtÞ¼
X
k⃗

�
−iΔkðtÞ½a†k⃗ak⃗; ρ̂IϕðtÞ�

−
Γ>
k ðtÞ
2

½a†
k⃗
ak⃗ρ̂IϕðtÞþ ρ̂IϕðtÞa†k⃗ak⃗−2ak⃗ρ̂IϕðtÞa†k⃗�

−
Γ<
k ðtÞ
2

½ak⃗a†k⃗ρ̂IϕðtÞþ ρ̂IϕðtÞak⃗a†k⃗−2a†
k⃗
ρ̂IϕðtÞak⃗�

�
;

ð3:24Þ

where

ΔkðtÞ ¼
λ2

2Ωk

Z
dk0ϱðk0; kÞ

½1 − cos½ðΩk − k0Þt��
ðΩk − k0Þ

; ð3:25Þ

Γ>
k ðtÞ ¼

λ2

Ωk

Z
dk0ϱðk0; kÞ½1þ nðk0Þ�

sin½ðΩk − k0Þt�
ðΩk − k0Þ

;

ð3:26Þ

Γ<
k ðtÞ ¼

λ2

Ωk

Z
dk0ϱðk0; kÞnðk0Þ

sin½ðΩk − k0Þt�
ðΩk − k0Þ

; ð3:27Þ

and we introduce

ΓkðtÞ ¼ Γ>
k ðtÞ− Γ<

k ðtÞ ¼
λ2

Ωk

Z
dk0ϱðk0; kÞ

sin½ðΩk − k0Þt�
ðΩk − k0Þ

:

ð3:28Þ

The second and third lines in (3.24) are called the
dissipators, and these are non-Hamiltonian, purely dissi-
pative terms. In Refs. [40–42,44] it is argued that Eq. (3.24)
is the most general linear evolution equation that preserves
unit trace and Hermiticity of the density matrix.
If at this stage we take the formal long time limit and

replace sin½ðΩk − k0Þt�=ðΩk − k0Þ → πδðΩk − k0Þ as is
usual in the derivation of Fermi’s golden rule, we would
obtain

Γ>
k ðtÞ⟶t→∞

πλ2

Ωk
ϱðΩk;kÞ½1þnðΩkÞ�≡Γ>

k ¼ ½1þnðΩkÞ�Γk;

ð3:29Þ

Γ<
k ðtÞ⟶t→∞

πλ2

Ωk
ϱðΩk; kÞnðΩkÞ≡ Γ<

k ¼ nðΩkÞΓk; ð3:30Þ

where

Γ>
k ðtÞ − Γ<

k ðtÞ⟶t→∞
≡ Γk ¼

πλ2

Ωk
ρðΩk; kÞ ð3:31Þ

is precisely the “on-shell” rate obtained from Fermi’s
golden rule. However, in the cases under consideration
describing threshold and infrared instabilities, the zero

temperature on-shell rate vanishes [see Eqs. (4.6) and
(4.31) below].
As explicitly shown below, keeping the time finite allows

off-shell processes with small virtuality ∝ 1=t at long but
finite time, which will be ultimately responsible for
thermalization in the cases of threshold and infrared
divergences in which the on-shell rates vanish.
For any interaction picture operator O associated with

the field Φ

d
dt

hOi ¼ TrΦf _Oρ̂IΦðtÞ þO _̂ρIΦðtÞg; ð3:32Þ

where the average hð� � �Þi ¼ TrΦð� � �Þρ̂IΦðtÞ. Because
ak⃗; a

†
k⃗
are time independent in the interaction picture, the

expectation value of the number operator

NqðtÞ ¼ TrΦρ̂IΦðtÞa†q⃗aq⃗ ð3:33Þ

obeys the quantum kinetic equation

dNqðtÞ
dt

¼ TrΦfa†q⃗aq⃗ _̂ρIΦðtÞg ¼ −ΓqðtÞNqðtÞ þ Γ<
q ðtÞ:

ð3:34Þ

Similarly, we also find the evolution equation for the
averages

d
dt

hak⃗iðtÞ ¼
�
−iΔkðtÞ −

ΓkðtÞ
2

�
hak⃗iðtÞ;

d
dt

ha†
k⃗
iðtÞ ¼

�
iΔkðtÞ −

ΓkðtÞ
2

�
ha†

k⃗
iðtÞ; ð3:35Þ

and for the off-diagonal coherences,

d
dt

hak⃗a−k⃗iðtÞ ¼ ½−2iΔkðtÞ − ΓkðtÞ�hak⃗a−k⃗iðtÞ;
d
dt

ha†
k⃗
a†
−k⃗
iðtÞ ¼ ½2iΔkðtÞ − ΓkðtÞ�ha†k⃗a

†
−k⃗
iðtÞ: ð3:36Þ

From the evolution equations (3.35) and (3.36) it is clear that
ΔkðtÞ is a time dependent renormalization of the frequency
Ωk. Assuming that the initial averages hak⃗ið0Þ ¼ 0;

hak⃗a−k⃗ið0Þ ¼ 0 such values remain as fixed points of the
evolution equations.
If the rates Γ≶ðtÞ remain finite in the infinite time limit,

replacing them in (3.34) by the formal long time limits
(3.29)–(3.31) as in Fermi’s golden rule, the rate equa-
tion (3.34) would yield the solution

NqðtÞ ¼ nðΩqÞ þ ½Nqð0Þ − nðΩqÞ�e−Γqt;

nðΩqÞ ¼
1

eβΩq − 1
; ð3:37Þ
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which describes thermalization, and an exponential
approach to the thermal fixed point of the quantum kinetic
equation. However, as discussed in detail below for the
threshold and infrared singular cases under consideration,
the rate Γq ¼ 0, which would imply that the distribution
function does not evolve in time. However, as we show in
detail below, in these cases keeping the time dependence in
Γ<ðtÞ;Γ>ðtÞ the distribution function does evolve in time
and ultimately reaches thermal equilibrium with the
bath in a manner that cannot be described within
Fermi’s golden rule, or by extracting the rates from the
S-matrix theory. Taking the long time limit in the rates
prior to solving the full quantum kinetic equation imposes
strict energy conservation thereby neglecting off-shell
processes with small virtuality ∝ 1=t but with important
consequences.
The full solution of the rate equation (3.34) is given by

NqðtÞ ¼ e−γðtÞ
�
Nqð0Þ þ

Z
t

0

Γ<
q ðt0Þeγðt0Þdt0

�
; ð3:38Þ

with

γðtÞ≡
Z

t

0

Γqðt0Þdt0

¼ 2

Z
∞

−∞
ϱ̃ðq0; qÞ

½1 − cos½ðΩq − q0Þt��
ðΩq − q0Þ2

dq0; ð3:39Þ

Γ<
q ðtÞ ¼ 2

Z
∞

−∞
ϱ̃ðq0; qÞnðq0Þ

sin½ðΩq − q0Þt�
ðΩq − q0Þ

dq0; ð3:40Þ

where we defined

ϱ̃ðq0; qÞ ¼
λ2

2Ωq
ϱðq0; qÞ: ð3:41Þ

And the solutions of Eqs. (3.35) and (3.36) are,
respectively,

hak⃗iðtÞ ¼ e−iδΩkðtÞte−
γðtÞ
2 hak⃗ið0Þ; ð3:42Þ

hak⃗a−k⃗iðtÞ ¼ e−2iδΩkðtÞte−γðtÞhak⃗a−k⃗ið0Þ; ð3:43Þ

and their Hermitian conjugates. In the long time limit

δΩkðtÞ ¼
Z

∞

−∞

ϱ̃ðq0; qÞ
Ωk − q0

�
1 −

sin½ðΩk − q0Þt�
ðΩk − q0Þt

�
dq0⟶

t→∞
δΩkð∞Þ ¼

Z
∞

−∞
P
�
ϱ̃ðq0; qÞ
ðΩk − q0Þ

�
dq0 ð3:44Þ

is a renormalization of the frequency Ωk and P stands for the principal part.

IV. THRESHOLD AND INFRARED SINGULAR CASES

Armed with the general results (3.38), (3.39), (3.42), and (3.43) we can now address the cases that feature threshold and
infrared divergences, for which we need the corresponding spectral densities.
Since the spectral density is an odd function of q0, and in order to more clearly highlight the regions of support of the time

dependent functions, it is convenient to implement the results of Appendix A and write

Z
t

0

Γqðt0Þdt0 ¼ 2

Z
∞

−∞
½ϱ̃Iðq0; qÞ þ ϱ̃IIðq0; qÞ�½C−ðq0; tÞ − Cþðq0; tÞ�dq0; ð4:1Þ

Γ<
q ðtÞ ¼ 2

Z
∞

−∞
½ϱ̃Iðq0; qÞ þ ϱ̃IIðq0; qÞ�½S−ðq0; tÞnðq0Þ − Sþðq0; tÞnð−q0Þ�dq0; ð4:2Þ

where

C∓ðq0; tÞ ¼
½1 − cos½ðΩq ∓ q0Þt��

ðΩq ∓ q0Þ2
; S∓ðq0; tÞ ¼

sin½ðΩq ∓ q0Þt�
ðΩq ∓ q0Þ

; ð4:3Þ

and ϱ̃Iðq0; qÞ and ϱ̃IIðq0; qÞ are given by Eqs. (A11) and
(A12) and are obtained for the cases of threshold
and infrared singularities in Appendixes B and C,
respectively.

At long time the functions C∓ðq0; tÞ and S∓ðq0; tÞ are
strongly peaked at q0 ¼ �Ωq, within a region of width
≃2π=t. Therefore, the long time behavior of the rates (4.1)
and (4.2) are determined by the regions of the spectral
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density with support near q0 ¼ �Ωq, and we refer to these
as the resonance regions.

A. Threshold singularity

To exhibit the threshold singularity in its simplest mani-
festation,we consider that both χ1 and χ2 fields have the same
mass, namely m1 ¼ m2 ¼ m, and the two particle threshold
coincides with the “mass shell” of the Φ particle, namely
M2 ¼ 4m2. From the expressions (4.1) and (4.2) the long
time dynamics is dominated by the regions of the spectral
density q0 ≃�Ωq, in other words, for q20 ≃ Ω2

q ¼ q2 þM2,
near the mass shell of the Φ particle which in this case
coincides with the two particle cut at 4m2 ¼ M2.

As found in Appendix B ϱ̃Iðq0; qÞ has support only in
the resonance region q0 ≃ Ωq for q0 > 0, and ϱ̃IIðq0; qÞ
only features support below the light cone q20 < q2 far
away from the resonance region [see Eqs. (B8) and
(B10)]. The oscillatory contributions from the nonreso-
nant terms average out or yield a perturbatively small
constant in the long time limit which can safely be
neglected. Therefore in this case we can neglect in
(4.1) and (4.2) the contributions from ϱ̃II because it
features support far away from q0 ≃�Ωq, and
Cþðq0; tÞ; Sþðqo; tÞ because these are nonresonant in
the region of support of the spectral density. Hence, in
this case

γðtÞ≡
Z

t

0

Γqðt0Þdt0 ¼ 2

Z
∞

−∞
ϱ̃Iðq0; qÞ

½1 − cos½ðΩq − q0Þt�
ðΩq − q0Þ2

dq0; ð4:4Þ

Γ<
q ðtÞ ¼ 2

Z
∞

−∞
ϱ̃Iðq0; qÞ

sin½ðΩq − q0Þt�
ðΩq − q0Þ

nðq0Þdq0; ð4:5Þ

where [see Eq. (B8) with M2 ¼ 4m2]

ϱ̃Iðq0; qÞ ¼
λ2

32π2Ωq

��
q20 −Ω2

q

q20 − q2

�
1=2

þ 2T
q

ln

�
1 − e−βE

þ

1 − e−βE
−

��
Θðq0 −ΩqÞ; ð4:6Þ

with

E� ¼ Ωq

2
þ ε�; ε� ¼ 1

2

�
ðq0 −ΩqÞ � q

�
q20 −Ω2

q

q20 − q2

�
1=2

�
; ð4:7Þ

where we have separated the terms ε� in the expressions
for E� since these terms vanish as q0 → Ωq which is the
dominant region of the spectral density in the long
time limit.
Notice that because ε� vanish at threshold q0 ¼ Ωq, it

follows that ϱ̃IðΩq; qÞ ¼ 0; hence taking the infinite time
limit in the rates, leading to Fermi’s golden rule (3.31),
would result in Γ> ¼ Γ< ¼ 0 and no equilibration.
However, this is a consequence of taking the infinite time
limit too soon, thereby neglecting processes with small
virtuality ∝ 1=t, as the analysis below shows in detail.
Let us first focus on the integral defining γðtÞ in

Eq. (4.4). Introduce the following dimensionless quantities

η ¼ q0 −Ωq

Ωq
; τ ¼ Ωqt; ð4:8Þ

in terms of which

γðτÞ ¼
Z

∞

0

σðη; qÞ 1 − cosðητÞ
η2

dη;

σðη; qÞ ¼ 2ϱ̃Iðq0; qÞ
Ωq

����
q0¼Ωqð1þηÞ

: ð4:9Þ

In the long time limit τ → ∞ the function ð1 − cosðητÞÞ=η2
is strongly peaked at η ≃ 0 with a height ∝ τ2 and
very narrow width ∝ 1=τ. Therefore, it is the region
near threshold, namely q0 ≃Ωq or η ≃ 0, that dominates
γðtÞ in the long time limit. We separate this region by
writing

γðτÞ ¼ γ1ðτÞ þ γ2ðτÞ; ð4:10Þ

where
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γ1ðτÞ ¼
Z

1

0

σðη; qÞ 1 − cosðητÞ
η2

dη;

γ2ðτÞ ¼
Z

∞

1

σðη; qÞ 1 − cosðητÞ
η2

dη; ð4:11Þ

whereas in γ1ðτÞ we must keep the 1=η2 together with the
− cosðητÞ=η2 because of the singularity at η ¼ 0, in γ2 there
is no such singularity in the domain of integration and we
can separate these terms. The − cosðητÞ=η2 oscillates rap-
idly and averages out in the τ → ∞ limit (Riemann-
Lebesgue lemma), and we conclude that

γ2ðτÞ⟶
τ→∞

Z
∞

1

σðη; qÞ
η2

dη; ð4:12Þ

namely a time independent constant. In γ1 it is now
convenient to change variables to

η ¼ x
τ
; ð4:13Þ

yielding

γ1ðτÞ ¼ τ

Z
τ

0

σ

�
x
τ
; q

	
1 − cosðxÞ

x2
dx: ð4:14Þ

This representation makes explicit that for τ ≫ 1 it is the
region x=τ ≪ 1 that dominates, because the region x ≃ τ
yields a contribution Oð1=τÞ ≪ 1 to γ1. Therefore, re-
tracing the definition of variables, this analysis confirms
that the long time limit of γðtÞ is dominated by the threshold
region in the q0 integrals, namely q0 −Ωq ∝ 1=t.
We note that ε� in Eq. (4.7) vanish as q0 → Ωq.

Therefore, in the long time limit, we can expand the
exponentials e−βΩq=2e−βε

�
in the logarithms in Eq. (4.6)

in powers of ε� and keep the leading term, yielding

ln

�
1− e−βE

þ

1− e−βE
−

�
¼ βqn

�
Ωq

2

	�
q20 −Ω2

q

q20 −q2

�
1=2

þOððq0−ΩqÞ2Þ:

ð4:15Þ

As shown below, in terms of the variable τ (4.8) the
expansion in ε� is valid for

ffiffiffi
τ

p
≫ βΩq. We confirm the

validity of this expansion by numerically studying the finite
temperature contribution to γ1ðτÞ given by Eq. (4.14) and
comparing it to the asymptotic form (4.15). To this end we
write the logarithm on the left-hand side of (4.15) in terms
of the variables x, τ defined by Eqs. (4.8) and (4.13), with

βE�ðx=τÞ ¼ βΩq

2

�
1þ x

τ

	
� 1

2
Δðx=τÞ;

Δðx=τÞ ¼ βΩqv

ffiffiffi
x
τ

r �
2þ x

τ

ð1þ x
τÞ2 − v2

�1
2

; ð4:16Þ

where v ¼ q=Ωq, obtaining

Lðx=τÞ≡ ln
�
1−e−βE

þðx=τÞ

1−e−βE
−ðx=τÞ

�
¼ ln½1þnðE−Þð1−e−Δðx=τÞÞ�:

ð4:17Þ

Up to an overall factor 2T=q this is the finite temperature
contribution to σðx=τÞ that enters in the integral in
Eq. (4.14). As anticipated, the factor βΩq=

ffiffiffi
τ

p
in Δðx=τÞ

clearly shows that for
ffiffiffi
τ

p
≫ βΩq and x≲ 1 it follows that

Δðx=τÞ ≪ 1 and the logarithm can be approximated as in
Eq. (4.15). In terms of the variables x and τ, the approxi-
mate asymptotic form on the right-hand side of (4.15)
becomes

Lasðx=τÞ≡ βqn

�
Ωq

2

	�
q20 − Ω2

q

q20 − q2

�
1=2

¼ n

�
Ωq

2

	
Δðx=τÞ:

ð4:18Þ

In order to assess the reliability of the approximation (4.15)
in the integral in (4.14) we introduce the ratio

RðτÞ ¼
R
τ
0 ½Lðx=τÞ − Lasðx=τÞ�



1−cosðxÞ

x2

�
dxR

τ
0 Lasðx=τÞ



1−cosðxÞ

x2

�
dx

; ð4:19Þ

which is displayed in Fig. 4 for v ¼ 0.5 and βΩq ¼ 1, 5, 10,
respectively. Similar results are obtained for different
values of v.
Figure 4 confirms the analysis above and shows that the

approach to the asymptotic form is delayed for larger βΩq.
Returning to the original variables, and replacing the

finite temperature contribution by its asymptotic limit to the
leading order in q0 − Ωq, we find

FIG. 4. The ratio R½τ� (4.19) for v ¼ 0.5, and βΩq ¼ 1, 5, 10,
respectively.
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ϱ̃Iðq0; qÞ ¼
λ2

32π2Ωq

�
q20 −Ω2

q

q20 − q2

�
1=2

½1þ 2nðΩq=2Þ�; ð4:20Þ

and the term nðΩq=2Þ is a consequence of stimulated
emission and absorption. This result leads to

σðη; qÞ ¼
ffiffiffi
2

p
g2

M
Ωq

�
ηð1þ η

2
Þ

1þ 2
Ω2

q

M2 ηþ Ω2
q

M2 η2

�
1=2

½1þ 2nðΩq=2Þ�;

ð4:21Þ
where we introduced the dimensionless coupling

g ¼ λ

4πM
: ð4:22Þ

Hence, from Eqs. (4.10)–(4.14) we find1 in the long time
limit t ≫ 1=T; 1=Ωq

γðtÞ ¼
ffiffiffiffi
t
t�q

s
ð1þOð1=ΩqtÞ þ � � �Þ; ð4:23Þ

where we introduced the relaxation timescale

t�q ¼
1

4πg4
Ωq

M2
tanh2

�
βΩq

4

�
: ð4:24Þ

This result reveals that at high temperature, βΩq ≪ 1, the
relaxation time t�q is dramatically shortened as compared to
the zero temperature (βΩq → ∞) result as a consequence of
stimulated emission and absorption. At low temperature the
asymptotic form (4.15) for the finite temperature contri-
bution takes longer to emerge; however, its contribution to
the relaxation time is negligible, since it is mostly deter-
mined by the zero temperature contribution.
This analysis confirms that the long time dynamics is

determined by the threshold behavior of the spectral density
with virtuality q0 −Ωq ≃ 1=t. Therefore, in the expression
for Γ<ðtÞ, Eq. (4.5), we can expand the distribution function

nðq0Þ ¼ nðΩqÞ þ ðq0 −ΩqÞ
dnðq0Þ
dq0

����
q0¼Ωq

þ � � � ; ð4:25Þ

and the first term nðΩqÞ yields the dominant contribution in
the long time limit, yielding in this limit

Γ<
q ðtÞ ¼ nðΩqÞ2

Z
∞

−∞
ϱ̃Iðq0; qÞ

sin½ðΩq − q0Þt�
ðΩq − q0Þ

dq0

þOð1=tÞ þ � � � ¼ nðΩqÞ
dγðtÞ
dt

þOð1=tÞ þ � � � :
ð4:26Þ

This result has important consequences. Since γðtÞ ∝ ffiffi
t

p
the long time limit of the integral in the solution of the rate
equation (3.38) is dominated by the region of integration
near the upper limit, namely t0 ≃ t, therefore we can
implement the expansion (4.26) for Γ<

q ðt0Þ inside the
integral in (3.38), yielding in this limit

NqðtÞ ¼ nðΩqÞ þ e−
ffiffiffiffiffiffi
t=t�q

p
Nqð0Þ; ð4:27Þ

namely the distribution function approaches the thermal
equilibrium form. Furthermore, the expectation values
(3.42) and (3.43) and their Hermitian conjugates vanish
asymptotically as

hak⃗iðtÞ ¼ e−iδΩkte−
1
2

ffiffiffiffiffiffi
t=t�q

p
hak⃗ið0Þ; ð4:28Þ

hak⃗a−k⃗iðtÞ ¼ e−2iδΩkte−
ffiffiffiffiffiffi
t=t�q

p
hak⃗a−k⃗ið0Þ: ð4:29Þ

Hence, the reduced density matrix describes an equilibrium
state at temperature 1=β and is diagonal in the occupation
number and momentum basis. This thermal fixed point is

approached asymptotically exponentially as e−
ffiffiffiffiffiffi
t=t�q

p
rather

than the usual e−Γt as is typically the case in situations
when Fermi’s golden rule applies or the S-matrix rate on-
shell is nonvanishing. This is a distinct example of
thermalization via off-shell processes: a long but finite
time allows an energy uncertainty and off-shell processes
with “virtuality” q0 −Ωq ≃ 1=t which determine the relax-
ation toward equilibration.

B. Infrared singularity

In this case m1 ¼ M;m2 ¼ 0, and the results of
Appendix C show that the contributions to the spectral
density that feature support near the resonance regions can
be summarized as

ϱ̃ðq0; qÞ ¼ ϱ̃Iðq0; qÞ þ ϱ̃IIB ðq0; qÞ; ð4:30Þ

with

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2Ωq

��
q20 −Ω2

q

q20 − q2

�
þ T

q
ln
��

1 − e−βE
þ

1 − e−βE
−

	�
1 − e−βE

−

1 − e−βE
þ

	��
Θðq0 − ΩqÞ; ð4:31Þ

1We used the result
R∞
0 ð1 − cosðxÞÞ=x3=2dx ¼ ffiffiffiffiffi

2π
p

.
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ϱ̃IIB ðq0; qÞ ¼
λ2T

32π2Ωqq

�
ln

�
1 − eβE

−

1 − eβE
þ

�
− ln

�
1 − e−βE−

1 − e−βEþ

��
ΘðΩq − q0ÞΘðq0 − qÞ; ð4:32Þ

where

E� ¼ q0 −
q20 −Ω2

q

2ðq0 � qÞ ; E� ¼ q20 −Ω2
q

2ðq0 � qÞ : ð4:33Þ

Because the relevant part of the spectral density features support for q0 > 0, it follows that

γðtÞ≡
Z

t

0

Γqðt0Þdt0 ¼ 2

Z
∞

−∞
½ϱ̃Iðq0; qÞ þ ϱ̃IIðq0; qÞ�

½1 − cos½ðΩq − q0Þt��
ðΩq − q0Þ2

dq0 ≡ γIðtÞ þ γIIðtÞ; ð4:34Þ

where we have separated the respective contributions from ϱ̃I; ϱ̃II. We study each in turn by separating the zero and finite
temperature contributions to γIðtÞ. First, for q0 > Ωq we introduce the dimensionless variables (4.8) in terms of which γIðtÞ
features the same form as in Eqs. (4.9), and the same arguments lead to a similar separation of the integral in the variable η
[see Eq. (4.8)], namely γIðτÞ ¼ γI1ðτÞ þ γI2ðτÞ as in Eqs. (4.10) and (4.11) where γI2ðτÞ yields a perturbatively small constant
contribution in the long time limit τ → ∞ which can be neglected.
Let us first consider the zero temperature contribution to γI1ðτÞ, denoted by γI10ðτÞ. Writing in terms of the dimensionless

coupling g introduced in Eq. (4.22),

σI0ðη; qÞ ¼
λ2

16π2Ω2
q

�
ηð2þ ηÞ

M2

Ω2
q
þ 2ηþ η2

�
¼ 2g2ηþ g2η2

" M2

Ω2
q
− 4 − 2η

M2

Ω2
q
þ 2ηþ η2

#
; ð4:35Þ

we find

γI10ðτÞ ¼ 2g2½lnðτeγEÞ − Ci½τ�� þ g2
Z

1

0

" M2

Ω2
q
− 4 − 2η

M2

Ω2
q
þ 2ηþ η2

#
ð1 − cosðητÞÞdη; ð4:36Þ

where γE is Euler’s constant and Ci½τ� is the cosine integral
function which vanishes as τ → ∞. In this limit the cosðητÞ
in the second term in (4.36) averages out, and this
contribution approaches a perturbatively small constant.
Hence, we conclude that in the long time limit, the zero
temperature contribution from ϱ̃I yields

γI10ðtÞ ⟶
Ωqt→∞

2g2½ln½Ωqt� þ const�; ð4:37Þ

which is the result obtained in Refs. [12,13] and given
above by Eq. (2.10).
Let us now consider the finite temperature contribution,

beginning with ϱ̃I . Although a detailed understanding of
the time evolution would require a numerical integration in
a large range of parameters, as argued above, and shown
below explicitly, the long time limit is captured by the
behavior of the spectral density near the resonance q0 ≃ Ωq.
We observe that with E� given by Eq. (4.33) it follows that
Eþ ¼ E− for q0 ¼ Ωq; therefore, the ratio of logarithms

featuring 1 − e−βE
�
in the finite temperature contribution

in ϱ̃I (4.31) vanishes in the Fermi’s golden rule limit

(3.29)–(3.31). However, as we show below, by considering
the time evolution of the rates we find that these do indeed
contribute in the long-time limit.
As discussed above, the long time limit is determined by

the region q0 −Ωq ≃ 1=t, so let us consider first the
logarithmic contribution featuring E� in (4.31). For
q0 ≃ Ωq, it follows from (4.33) that Eþ ≃ E−. Therefore,
writing

e−βE
þ ¼ e−βE

−
e−βðEþ−E−Þ ≃ e−βE

−ð1 − βðEþ − E−Þ þ � � �Þ
ð4:38Þ

to leading order in q0 −Ωq, we find

T
q
ln

�
1 − e−βE

þ

1 − e−βE
−

	
¼

�
q20 − Ω2

q

Ω2
q − q2

�
nðΩqÞ þOððq0 −ΩqÞ2Þ:

ð4:39Þ

The first term on the right-hand side combines with the zero
temperature contribution and is interpreted as stimulated
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emission and absorption, yielding a contribution ∝ ð1þ
nðΩqÞÞ lnðΩqtÞ to γ1ðtÞ in the long time limit similar to the
zero temperature one (4.37), whereas the second term
[Oððq0 −ΩqÞ2Þ] yields a contribution that falls off as 1=t
in the long time limit.

The term with the logarithms involving E� in (4.31)
originate in the distribution function of the massless χ2
particles in the bath and yield an unexpected result because
E� → 0 as q0 → Ωq. Therefore, expanding e−βE

� ≃ 1 −
βE� þ 1

2
β2ðE�Þ2 þ � � � we find that this term yields

T
q
ln

�
1 − e−βE

−

1 − e−βE
þ

	
¼ T

q
ln

�
1þ v
1 − v

	
−
2T
Ωq

Ω2
q

M2

�
q0 −Ωq

Ωq

	
−
1

2

�
q20 −Ω2

q

Ω2
q − q2

�
þOððq0 − ΩqÞ2Þ; v ¼ q

Ωq
: ð4:40Þ

Combining this result with (4.39), we find that near the resonance region the finite temperature contribution to ϱ̃I (4.31) is to
leading order

T
q
ln

��
1 − e−βE

þ

1 − e−βE
−

	�
1 − e−βE

−

1 − e−βE
þ

	�
¼ T

q
ln

�
1þ v
1 − v

	
−
2T
Ωq

Ω2
q

M2

�
q0 −Ωq

Ωq

	
−
1

2

�
q20 −Ω2

q

Ω2
q − q2

ð1 − 2nðΩqÞÞ
�
: ð4:41Þ

This expansion is valid for q0 ≃Ωq; therefore, since the resonance region dominates at long time when q0 − Ωq ≃ 1=t and
because of the β in the exponentials, the expansion becomes valid for t ≫ 1=T.
We confirm this analysis numerically as follows: we write the right-hand side of (4.41) in terms of x=τ≡ ðq0 −ΩqÞ=Ωq,

yielding

βE�ðx=τÞ ¼ βΩq

τ

xð1þ x
2τÞ

1 − x
τ � v

; βE�ðx=τÞ ¼ βΩq

�
1þ x

τ

	
− βE�ðx=τÞ; ð4:42Þ

we define

I½x=τ� ¼ ln

�
1 − e−βE

−ðx=τÞ

1 − e−βE
þðx=τÞ

	
þ ln

�
1 − e−βE

þðx=τÞ

1 − e−βE
−ðx=τÞ

	
; ð4:43Þ

Ias½x=τ� ¼ ln
�
1þ v
1 − v

	
−

2v
1 − v2

x
τ
− βΩqv

x
τ

�
1þ x

2τ

1 − v2

�
ð1 − 2nðΩqÞÞ; ð4:44Þ

where Ias½x=τ� follows from the expansion (4.41), and we numerically evaluate the integrals

J½τ� ¼
Z

τ

0

I½x=τ� 1 − cosðxÞ
x2

dx; D½τ� ¼
Z

τ

0

ðI½x=τ� − Ias½x=τ�Þ
1 − cosðxÞ

x2
dx: ð4:45Þ

Up to an overall constant and a factor τ, the integral J½τ�
corresponds to the finite temperature contribution to ϱ̃I and to
Eq. (4.34) after the change of variables q0 ¼ Ωqð1þ x=τÞ,
whereas D½τ� quantifies the difference with the asymptotic
form (4.41).
Figure 5 shows these functions for v ¼ 0.5 highlighting

the dependence of the timescales on βΩq, with similar
results for different values of v.
In particular, the function D½τ�, namely the difference

between the exact and asymptotic forms given by Eq. (4.40),
shows the approach to the asymptotic behavior confirming
the analysis above: the timescale of the approach to the
asymptotic limit increases with βΩq; however, at long time
τ ≫ βΩq the approximation near threshold (4.40) reliably
describes the long time asymptotics.

Having confirmed quantitatively the validity of the
analysis for the long time limit, we now combine the
results (4.39) and (4.40) with the zero temperature con-
tribution to ϱ̃I and summarize its approximate form that
describes the asymptotic long time limit, namely

ϱ̃Iasðq0; q⃗Þ

¼ λ2

32π2Ωq

�
1

2

�
q20 −Ω2

q

Ω2
q − q2

�
ð1þ 2nðΩqÞÞ

−
2T
Ωq

Ω2
q

M2

�
q0 −Ωq

Ωq

	
þ T
Ωqv

ln

�
1þ v
1 − v

	�
Θðq0 −ΩqÞ:

ð4:46Þ
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With this result we now provide an analytic expression that
describes the asymptotic long time dynamics from ϱ̃I

implementing the following steps: (i) we pass to the
variables η, τ defined in Eq. (4.8) and introduce σðη; qÞ

as per the definition in Eq. (4.9); (ii) we split the integral in
the η variable as in Eqs. (4.10) and (4.11), and we neglect
the contribution from γ2ðτÞ which yields a perturbatively
small constant in the long time limit; and (iii) we split the
contribution of the first term in (4.46) as in Eqs. (4.35) and
(4.36), and we find in the long time limit t ≫ 1=Ωq; 1=T

γIðτÞ ¼ g2
�
τ

π

2βΩq

1 − v2

v
ln
�
1þ v
1 − v

	

þ lnðτÞ
�
1þ 2nðΩqÞ −

2T
Ωq

��
: ð4:47Þ

In the heavy Φ particle limit with v ≪ 1 this expression
clearly shows a crossover from a lnðτÞ behavior at low
temperature and τ ≪ βΩq lnðτÞ to linear in time for
τ ≫ βΩq lnðτÞ, a stage that emerges at very long time at
low temperature βΩq ≫ 1, or early on at very high temper-
ature βΩq ≪ 1. However, as the Φ particle becomes
ultrarelativistic v ≃ 1, this crossover occurs at a much later
time even at large temperature, and the logarithmic growth
in time dominates for a much longer period.
The contribution from γIIðtÞ must in principle be studied

numerically; however, the lessons from the analysis carried
out for γIðtÞ can now be implemented to obtain the
asymptotic long time limit of γIIðtÞ.
The spectral density ϱ̃IIB (4.32) is similar to the finite

temperature contribution to ϱ̃I (4.31) but with a different
domain, q ≤ q0 ≤ Ωq. The analysis above shows that the
asymptotic long time limit is obtained by expanding ϱ̃IIB
near the resonance region q0 ≃ Ωq, which in the case of ϱ̃IIB
coincides with the upper threshold. Performing the same
approximations leading to the asymptotic form for ϱ̃I, we
find

T
q

�
ln

�
1 − eβE

−

1 − eβE
þ

�
− ln

�
1 − e−βE

−

1 − e−βE
þ

��
¼ −

1

2

�
Ω2

q − q20
Ω2

q − q2

�
ð1þ 2nðΩqÞÞ þ

T
q
ln

�
1þ v
1 − v

�

þ 2TΩq

M2

�
Ωq − q0

Ωq

	
þOððΩq − q0Þ2Þ; ð4:48Þ

where this expansion is valid near the upper threshold at q0 ≃ Ωq, corresponding to the resonance region which dominates
the long time dynamics. Because of the different domain, we now introduce the dimensionless variable y as
q0 ¼ Ωqð1 − y=τÞ, in terms of which

βE�ðy=τÞ ¼ −
βΩq

τ

yð1 − y
2τÞ

1þ y
τ � v

; βE�ðy=τÞ ¼ βΩq

�
1 −

y
τ

	
− βE�ðy=τÞ; ð4:49Þ

and define

FIG. 5. The integrals J½τ� and D½τ�, Eq. (4.45) for v ¼ 0.5, and
βΩq ¼ 1, 10, 20, respectively.
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K½y=τ� ¼ ln

�
1 − eβE

−ðy=τÞ

1 − eβE
þðy=τÞ

�
− ln

�
1 − e−βE

−ðy=τÞ

1 − e−βE
þðy=τÞ

�
;

Kas½y=τ� ¼ −βΩqv
y
τ

1 − y=2τ
1 − v2

ð1þ 2nðΩqÞÞ þ ln
�
1þ v
1 − v

�
þ 2v
1 − v2

y
τ
; ð4:50Þ

we confirm the validity of the expansion (4.48) in the long
time limit by studying numerically the integral

H½τ� ¼
Z ð1−vÞτ

0

ðK½y=τ� − Kas½y=τ�Þ
1 − cosðyÞ

y2
dy; ð4:51Þ

where the upper limit reflects the lower threshold at q0 ¼ q
after the change of variables.
Again, up to an overall constant and a factor τ, the integral

of K½y=τ� corresponds to the contribution from ϱ̃II to
Eq. (4.34) after the change of variables q0 ¼ Ωqð1 − y=τÞ,
in terms of which the upper threshold at q0 ¼ Ωq is at y ¼ 0

and the lower threshold at q0 ¼ q corresponds to

y ¼ ð1 − vÞτ. Note that in the ultrarelativistic limit v → 1

the phase space for the contribution ϱ̃II vanishes.
The function HðτÞ describes the difference between the

contribution with the full spectral density ∝ ϱ̃II and the
asymptotic form (4.48). It is displayed in Fig. 6, showing
the delayed approach to asymptotics: for large βΩq the
asymptotic form is approached for ð1 − vÞτ ≫ βΩq. For
values of v ≃ 1 the approach to the asymptotic behavior
takes a much longer time, as a consequence of the closing
off of the phase space for ϱ̃II.
Therefore, the long time limit emerging for t ≫ T is

described by

ϱ̃IIasðq0; qÞ ¼
λ2

32π2Ωq

�
−
1

2

�
Ω2

q − q20
Ω2

q − q2

�
ð1þ 2nðΩqÞÞ þ

T
Ωqv

ln

�
1þ v
1 − v

�
þ 2T
Ωq

Ω2
q

M2

�
Ωq − q0

Ωq

	�
: ð4:52Þ

Changing variables to q0 ¼ Ωqð1 − y=τÞ we find

γIIðτÞ ¼ g2
�
½Ci½ð1 − vÞτ� − γE − ln½ð1 − vÞτ��

�
1þ 2nðΩqÞ −

2T
Ωq

	

þ τT
Ωq

1 − v2

v
ln

�
1þ v
1 − v

��
Si½ð1 − vÞτ� − ð1 − cos½ð1 − vÞτ�Þ

ð1 − vÞτ
��

: ð4:53Þ

Combining this result with γIðτÞ, Eq. (4.47), we finally find

γðτÞ ¼ g2
�
½Ci½ð1 − vÞτ� − γE − ln½ð1 − vÞτ� þ lnðτÞ�

�
1þ 2nðΩqÞ −

2

βΩq

	

þ τ

βΩq

1 − v2

v
ln
�
1þ v
1 − v

��
π

2
þ Si½ð1 − vÞτ� − ð1 − cos½ð1 − vÞτ�Þ

ð1 − vÞτ
��

: ð4:54Þ

This result exhibits several important features: (i) In the
ultrarelativistic limit v ≃ 1, for τ ≪ 1=ð1 − v2Þ the contri-
bution γIIðτÞ given by Eq. (4.53) is negligibly small, and
γðτÞ is determined by γIðτÞ which features a crossover from
lnðτÞ to linear in τ for τ ≫ βΩq lnðβΩqÞ. (ii) For v ≪ 1 and
τ ≫ 1, Ci½ð1 − vÞτ� → 0; Si½ð1 − vÞτ� → π=2 and the log-
arithmic terms cancel each other, yielding a linear growth in
time γðtÞ ≃ 2πg2tT. This behavior can be summarized as

Case 1∶ v ≃ 1 and Ωqt ≪ 1=ð1 − v2Þ;

γðtÞ ≃ g2
�
lnðΩqtÞ for t ≪ β lnðβΩqÞ
Ωqt for t ≫ β lnðβΩqÞ

; ð4:55Þ

Case 2∶ v ≪ 1 and Ωqt ≫ 1;

γðtÞ ≃ 2πg2Tt: ð4:56Þ
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We now invoke the same argument as in the threshold
case to show the emergence of thermalization. The integral
in Eq. (3.38) is dominated by the long time limit of γðt0Þ
which grows with time; with Γ<

q ðtÞ given by Eq. (4.2) only
the term with S−ðq0; tÞ is resonant since the spectral density
features support near the resonances only for q0 > 0; and,
as shown above, the long time limit is dominated by the
region near the resonance, q0 ≃Ωq. Therefore, in the long
time limit we can expand nðq0Þ ¼ nðΩqÞ þOðq0 −ΩqÞ
where the last term yields a contribution suppressed by 1=t
in the long time limit. Therefore, just as in the threshold
case, but now with the contribution from ϱ̃II, we find

Γ<
q ðtÞ ¼ nðΩqÞ2

Z
∞

−∞
½ϱ̃Iðq0; qÞ þ ϱ̃IIðq0; qÞ�

×
sin½ðΩq − q0Þt�

ðΩq − q0Þ
dq0 þOð1=tÞ þ � � �

¼ nðΩqÞ
dγðtÞ
dt

þOð1=tÞ þ � � � : ð4:57Þ

Therefore, from Eq. (3.38) we find that the asymptotic long
time evolution of the occupation number is given by

NqðtÞ ¼ nðΩqÞ þ e−γðtÞNqð0Þ; ð4:58Þ

namely the distribution function approaches the thermal
equilibrium fixed point. Furthermore, just as in the thresh-
old case the expectation values (3.42), (3.43) and their
Hermitian conjugates vanish asymptotically as

hak⃗iðtÞ ¼ e−iδΩkte−γðtÞ=2hak⃗ið0Þ; ð4:59Þ

hak⃗a−k⃗iðtÞ ¼ e−2iδΩkte−γðtÞhak⃗a−k⃗ið0Þ: ð4:60Þ

Hence, the reduced density matrix in this case also
describes an equilibrium state at temperature 1=β diagonal

in the occupation number and momentum basis. This
thermal fixed point is approached with the function γðtÞ
which now features various regimes with crossover
between a logarithmic and a linear time dependence.
Having understood the long time limit, and the crossover

between logarithmic and linear time dependence in both the
nonrelativistic and the ultrarelativistic limits, we now focus
on the following puzzling aspects of ϱ̃I; ϱ̃II , and the final
results for γIðτÞ and γIIðτÞ:
(a) What is the origin of the terms that survive in the zero

temperature limit in Eqs. (4.40) and (4.48)?
(b) What is the origin of the terms that do not vanish as

q0 → Ωq in Eqs. (4.40) and (4.48)?
(c) What is the origin of the cancellation of the logarithms

between ϱ̃I and ϱ̃II , in particular for v ≪ 1?
The infrared at T ≠ 0: The answers to (a) and (b) origi-

nate in the integralsZ
Eþ

E−
nðq0 − EÞdE≡

Z
E−

Eþ
nðEÞdE; ð4:61Þ

in Eqs. (C7) and (C12), with E� given by Eq. (4.33), and
nðq0 − EÞ corresponds to the distribution function of χ2. As
discussed above, in the long time limit it is the region
q0 − Ωq ∝ 1=t that dominates the q0 integrals in the rates,
and for q0 ≃Ωq it follows from the expressions for E�

(4.33) that E� → 0 as q0 → Ωq. Hence, the available phase
space vanishes as the virtuality q0 −Ωq ∝ 1=t. The vanish-
ing of E as q0 → Ωq is a consequence of the masslessness
of the χ2 particle, and as shown in Appendix C, E is
the momentum transferred to χ2, the massless field.
Therefore, for E=T≪1, or alternatively for small virtuality
q0−Ωq∝1=t, for Tt≫1 we can expand

nðEÞ ¼ T
E
−
1

2
þOðE=TÞ; ð4:62Þ

which upon integration in (4.61) yields

Z
E−

Eþ
nðEÞdE ¼ T ln

�
q0 þ q
q0 − q

�
−
q
2

�
q20 − Ω2

q

q20 − q2

�
þ � � � :

ð4:63Þ

Writing q0 ¼ Ωq þ ðq0 −ΩqÞ and expanding the logarithm
in q0 −Ωq yields the terms ln½ð1þ vÞ=ð1 − vÞ� in (4.46)
and (4.52), and the second term in (4.63) yields the
temperature independent term which subtracts from the
zero temperature contribution, thus clarifying its origin in
the limit Tt ≫ 1. Because the virtuality q0 −Ωq ∝ 1=t, this
limit corresponds to T ≫ virtuality. Therefore, although
the phase space closes as E� → 0, the singular behavior of
the distribution function for the massless χ2 for small
virtuality yields the finite temperature logarithmic correc-
tion and the temperature independent result. In turn, the

FIG. 6. The integral H½τ�, Eq. (4.51) for v ¼ 0.5, and βΩq ¼ 1,
10, 20, respectively. The asymptotic behavior emerges at a much
later time for v ≃ 1.
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finite temperature term T ln½ð1þ vÞ=ð1 − vÞ� yields the
term that grows linearly with time in γðtÞ. Hence, this linear
time dependence is not a direct result of Fermi’s golden
rule, but a more subtle finite temperature infrared effect
associated with the masslessness of χ2 in the limit of small
virtuality.
Quantum kinetic interpretation of ϱ̃I; ϱ̃II: The answer to

(c) is found in a simple, yet illuminating interpretation of
the processes that yield the spectral densities ϱ̃I and ϱ̃II ,
Eqs. (A11) and (A12), in terms of a linearized gain-loss
master equation.

Let us consider that the Φ particle features off-shell
energy q0 and momentum q⃗, as well as an occupation
Nqðq0; tÞ. The usual quantum kinetic equation that imple-
ments Fermi’s golden rule in the transition probabilities is
of the generic form gain-loss. Consider the loss term from
the “decay” Φ → χ1χ2 and the inverse, gain term, from
recombination χ1χ2 → Φ where χ1;2 are in the bath in
equilibrium; these processes are shown in Fig. 7. With the
transition probabilities per unit time obtained as usual from
S-matrix theory but considering the energy of theΦ particle
as q0 (allowing off-shellness), we find for these processes

dNqðq0; tÞ
dt

����
gain

¼ ð1þ Nqðq0; tÞÞ
πλ2

Ωq

Z
d3p

ð2πÞ32E1
p2E2

p0
nðE1

pÞnðE2
p0 Þδðq0 − E1

p − E2
p0 Þ;

dNqðq0; tÞ
dt

����
loss

¼ Nqðq0; tÞ
πλ2

Ωq

Z
d3p

ð2πÞ32E1
p2E2

p0
ð1þ nðE1

pÞÞð1þ nðE2
p0 ÞÞδðq0 − E1

p − E2
p0 Þ;

p⃗0 ¼ q⃗ − p⃗: ð4:64Þ

It is straightforward to confirm that the equilibrium
distribution Nqðq0Þ ¼ nðq0Þ is a fixed point of the gain-
loss equation as a consequence of the energy delta
functions and momentum conservation. Therefore, writing
Nðq0; tÞ ¼ nðq0Þ þ δNðq0; tÞ, we find for the gain-loss
equation

dδNqðq0; tÞ
dt

¼ −δNðq0; tÞ2πϱ̃Iðq0; qÞ; ð4:65Þ

where ϱ̃I is given by Eq. (A11). This analysis clarifies that
the origin of the ϱ̃I contribution are the gain and loss
processes Φ ↔ χ1χ2 shown in Fig. 7.
However, there are other gain and loss processes that also

contribute: consider the gain process χ1 → Φχ2 and the
inverse loss process Φχ2 → χ1, with χ1;2 being particles in
the bath. These processes are shown in Fig. 8 and
contribute to the gain and loss terms as

dNqðq0; tÞ
dt

����
gain

¼ ð1þ Nqðq0; tÞÞ
πλ2

Ωq

Z
d3p

ð2πÞ32E1
p2E2

p0
nðE1

pÞð1þ nðE2
p0 ÞÞδðE1

p − q0 − E2
p0 Þ;

dNqðq0; tÞ
dt

����
loss

¼ Nqðq0; tÞ
πλ2

Ωq

Z
d3p

ð2πÞ32E1
p2E2

p0
ð1þ nðE1

pÞÞnðE2
p0 ÞδðE1

p − q0 − E2
p0 Þ;

p⃗0 ¼ q⃗ − p⃗: ð4:66Þ

FIG. 7. The loss processΦ → χ1χ2 and the inverse gain process
χ1χ2 → Φ.

FIG. 8. The gain process χ1 → Φχ2 and the inverse loss process
χ2Φ → χ1, where χ1;2 are in the thermal bath.
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Again, writing Nqðq0; tÞ ¼ nðq0Þ þ δNqðq0; tÞ, the
equilibrium term vanishes, and we find for the gain-loss
linearized equation

dδNqðq0; tÞ
dt

¼ −δNðq0; tÞ2πϱ̃IIðq0; qÞ; ð4:67Þ

where ϱ̃II is given by Eq. (A12). Exchanging χ1 → χ2 is
tantamount to replacing ϱ̃IIðq0; qÞ → ϱ̃IIð−q0; qÞ.
This analysis clarifies that the origins of the ϱ̃I con-

tributions are the gain and loss processes Φ ↔ χ1χ2 shown
in Fig. 7 and those for ϱ̃II are the gain and loss processes
χ1 ↔ Φχ2 displayed in Fig. 8.
This interpretation also clarifies the major difference

between the threshold and infrared cases for ϱ̃II. For the
threshold case, with equal masses m1 ¼ m2 ¼ m and M ¼
2m the kinematics for the processes Φ ↔ χ1χ2 is very
different from that of the processes χ1 ↔ Φχ2 because for
M ¼ 2m the former occurs very near the resonance at
q0 ≃Ωq, whereas the latter is very far from it. Whereas in
the infrared case with m1 ¼ M;m2 ¼ 0 the process χ1 ↔
Φχ2 features the same kinematics as the processes Φ →
χ1χ2 since the mass of Φ coincides with that of χ1. This
explains the similarity in the finite temperature contribu-
tions from ϱ̃II and ϱ̃I in the infrared case, as well as the
cancellation of terms with lnðtÞ which arise from contri-
butions of opposite signs between ϱ̃I and ϱ̃II .
It is important to highlight that we have considered an

off-shell energy q0 in this analysis, and setting q0 ¼ Ωq

leads to vanishing contributions for ϱ̃I and ϱ̃II because of
the kinematics of energy momentum conservation in both
cases, threshold and infrared. Allowing the time evolution
of the “rates” as in Eqs. (3.39) and (3.40) allows the
uncertainty associated with a finite time interval to yield a
nonvanishing time dependent rate which describes off-shell
processes of small virtuality ∝ 1=t. Taking the infinite time
limit from the outset as in the usual quantum kinetic
approach implementing Fermi’s golden rule with S-matrix
transition rates imposes strict energy conservation thereby
leading to the vanishing of the spectral functions on-shell.

V. DISCUSSION AND CAVEATS

Counterrotating terms: In the derivation of the quantum
master equation (3.24) we neglected terms of the form

ak⃗a−k⃗e
−2iΩkteiΩkðt−t0Þ; a†

k⃗
a†
−k⃗
e2iΩkte−iΩkðt−t0Þ: ð5:1Þ

The time integral over t0 can be carried out following the
steps leading to Eq. (3.24) yielding contributions of the
form ak⃗a−k⃗e

−2iΩktρ≶ðk0; kÞρ̂IΦðtÞ, etc. The contributions of
these terms to the equations of motion for linear or bilinear
forms of a; a† are straightforward to obtain; they do not
yield terms that grow secularly in time because the rapid
dephasing of the oscillatory terms average out in the time

integrals. These are nonresonant terms and yield perturba-
tively small subleading contributions of the form δΩk=
Ωk ≪ 1;Γk=Ωk ≪ 1 in weak coupling, as compared to
those obtained from Eq. (3.24) which captures the secular
growth in time because of the resonances and describes the
leading behavior in the long time dynamics.
Quantum master equation and dynamical resummation:

The quantum master equation in Lindblad form obtained in
this study, with time dependent rates, provides a resum-
mation of second order processes. The bath correlation
functions (3.9) and (3.10) displayed in Fig. 3 are related to
the self-energy of the Φ field in the thermal bath shown in
Fig. 2. Therefore, we conclude that the quantum master
equation provides a resummation of one-particle irreduc-
ible diagrams in the bath and in real time, akin to the
resummation in real time provided by the method intro-
duced in Refs. [12,13]. Just as the latter framework yields a
decaying survival probability as a consequence of proc-
esses with small virtuality in the long time limit, the master
equation provides a similar time evolution but includes
medium effects that yield unexpected time dependence in
the case of infrared singularity as a consequence of the
infrared enhancement of the Bose Einstein distribution
function of massless particles.
Factorization vs entanglement: An important result of

the study in Refs. [12,13] is that the asymptotic state is a
kinematically entangled state of the “daughter” particles
produced by the decay of the Φ field. This aspect is not
shared by the master equation because of the assumption on
factorization. This, one of the main assumptions, prevents
the emergence of correlations between the χ1, χ2 density
matrices, which is assumed to remain factorized and to
describe thermal equilibrium for each species. This is an
important caveat and major difference with the dynamical
resummation method which clearly shows entanglement in
the final state. At this stage it is not clear how to
systematically include the correlations between the different
components of the bath leading to entanglement andwhether
such a correlation will influence the time evolution toward
equilibration or possible new observable consequences. It is
not a matter of keeping the higher orders in the coupling
because the dynamical resummationmethod in Refs. [12,13]
was implemented also up to second order in the coupling.
This aspect merits to be studied thoroughly in future work.
Radiative corrections: Radiative corrections may change

the masses of the various fields. In the case of threshold
divergences, these may move the mass of the Φ field away
from threshold; however, if the corrections are perturba-
tively small (after renormalization), the results may apply
nevertheless. If the corrections lead to a smallerΦmass, but
are still perturbatively close to threshold, small virtuality
may still yield a relaxation toward equilibration, which is
the case at zero temperature as discussed in Ref. [13]. If, on
the other hand, finite temperature effects dramatically
change the Φ mass, then a new study with particular focus
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on the interplay between virtuality and distance to threshold
will be required to assess whether virtual processes lead to
equilibration. In the case of infrared divergences, unless the
massless field is protected by a symmetry, such as a
Goldstone field, radiative corrections will very likely
induce a mass. If the mass term is perturbatively small,
infrared enhancements will survive. If, on the other hand,
finite temperature effects yield a large radiatively induced
mass, infrared effects may still arise for temperatures much
larger than the mass. However, off-shell processes with
small virtuality may be important. All these possibilities
would require a reassessment and merit deeper under-
standing. Such a program is clearly beyond the scope of this
initial study.
Higher order on-shell vs off-shell small virtuality proc-

esses: A competition between higher order on-shell proc-
esses and the lower order off-shell processes with small
virtuality may emerge. As an example, consider the case of
threshold divergences, which at lowest order yield expo-
nential relaxation with exponent ∝ g2

ffiffi
t

p
, and for example a

scattering processes with on-shell in and out states yielding
a time dependence ∝ g4t. In the theory defined by the
Lagrangian density (2.1), for example the process ΦΦ →
χ1χ1 with an intermediate χ2 propagator, which at tree level
yields a probability per unit time ∝ g4, hence contributes to
the exponential in the survival probability with a term
∝ g4t. Such a contribution becomes of the same order as the
leading term ∝ g2

ffiffi
t

p
at a timescale t ∝ 1=g4, namely t ≃ t�,

at which time the population and the expectation values
have nearly reached their asymptotic values. Therefore, for
weak coupling the leading order result captures the early,
intermediate, and long time asymptotics, and higher order
corrections will quantitatively affect the very long time
asymptotics. Obviously, these arguments will require a
firmer quantitative assessment for particular theories with
various different mass scales. In turn this entails obtaining a
generalization of the Lindblad quantum master equation up
to fourth order in the interaction Hamiltonian, involving
fourth order nested commutators with the density matrix.
This generalization has not yet been explored in the
literature and is obviously well beyond the scope of this
article.
More general lessons: Although this study has focused

on the particular bosonic model described by the
Lagrangian density (2.1), the results allow one to extract
more general lessons. Above and beyond the particular
model, the main inputs in the Lindblad quantum master
equation are the bath correlations in terms of the spectral
densities of the bath degrees of freedom. As discussed
previously the major difference in our study is that we do
not take the infinite time limit in the time integrals of the
bath correlations, even when the Markov approximation
remains one of the main assumptions. This feature is
important because it allows the rates to depend explicitly
on time, thereby allowing virtual processes associated with

the energy uncertainty in a finite time interval to play a
fundamental role in the dynamics of relaxation. This is one
of the main results of this study. These aspects transcend a
particular model and suggest a more general range of
applicability of the methods and results. For example, in the
case of a Φ particle coupled to a bath with massless
(gapless) degrees of freedom leading to infrared divergen-
ces, the vanishing residue of the quasiparticle and the
crossover between lnðtÞ and ∝ t behavior in the thermal-
ization dynamics for t ≫ 1=T is reminiscent of the dynam-
ics of heavy impurities in a Fermi sea and the orthogonality
catastrophe [32,33]. Furthermore, recently [34] it has been
recognized that photoexcitations of soft off-shell electron-
hole pairs in graphene yield Sudakov (double logarithms)
type of spectral densities with strong infrared behavior;
therefore, the results obtained in this study may prove
relevant to study the possible thermalization of these
excitations. We also expect that these methods may prove
useful in cosmology, where the time dependence of the
cosmological expansion may provide yet another route to
virtual processes hitherto unexplored.

VI. CONCLUSION AND FURTHER QUESTIONS

Motivated by ubiquitous cross disciplinary interest, in
this article we have studied the approach to thermalization
via processes that cannot be described with the usual
quantum kinetic equations that input S-matrix, on-shell
transition probabilities. These entail taking the infinite time
limit, thereby enforcing strict energy conservation and on-
shell processes. Recent work [12,13] which focused on the
relaxation of single particle states in the case of threshold
and infrared divergences at zero temperature highlighted
the role of processes with small virtuality, which nonethe-
less lead to the “decay” of single particle states with
unusual decay laws despite the vanishing of on-shell decay
rates.
In this article we considered a model of scalar fieldsΦ—

the system—coupled to a bath of scalar particles χ1;2 in
thermal equilibrium, which allows one to study the cases of
threshold and infrared divergences by tuning the mass
spectra. Inspired by the theory of quantum open systems,
we adapted a method to study the relaxation of fields
coupled to a thermal bath in equilibrium in the cases when
the S-matrix transition rates vanish. We obtained a
Lindblad type quantum master equation for the reduced
density matrix of the Φ (system) field which departs from
the usual form [38,39] by not taking an infinite time limit,
thereby allowing time dependent rates and processes with
small virtuality. The resulting quantum master equation
provides a real time resummation of self-energy corrections
determined by bath correlations at finite temperature. We
find that in the case of threshold singularities, the reduced
density matrix for Φ approaches a thermal fixed point as

e−
ffiffiffiffiffiffi
t=t�

p
with the relaxation time t� shortening at high
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temperatures because of stimulated emission and absorp-
tion. In the case of infrared singularities, we find that a
thermal fixed point is approached as e−γðtÞ with γðtÞ
featuring a crossover from a ∝ lnðtÞ to a ∝ t behavior
for t ≫ 1=T. This latter behavior is a result of a subtle
interplay between infrared enhancement at finite temper-
ature and small virtuality. In both cases the dynamics of
relaxation and thermalization is dominated by off-shell
processes with small virtuality ∝ 1=t in the long time limit.
Although our study has focused on a particular model,

the results are more overarching. The derivation of the
quantum master equation maintaining finite time bath
correlations input the spectral density of the bath correla-
tions, and therefore the modified Lindblad form can be
adapted to other systems. Furthermore, the analysis high-
lights the virtues of small virtuality: processes that are
forbidden by strict energy conservation, i.e., off-shell, can
nevertheless lead to thermalization with unusual dynamics
of relaxation and a wealth of timescales toward equilibra-
tion that simply cannot be reliably captured with on-shell
S-matrix transition probabilities. Furthermore, by allowing
the rates in the quantum master equation to depend on time,
it is possible that in some cases transient phenomena
associated with small virtuality may actually compete with
on-shell processes and contribute substantially to the

dynamics of relaxation, and this possibility merits further
study.
We also find noteworthy that a crossover from lnðtÞ to a

linear t behavior in the approach to thermalization in the
case of infrared singularity has also been found in the case
of a heavy impurity in Fermi systems that feature an
orthogonality catastrophe [32,33]. Furthermore, off-shell
infrared phenomena from photoexcitation of soft electron-
hole pairs in graphene have been studied in Ref. [34] and
might possibly be yet another arena wherein the methods
implemented here may prove useful. An important area
where we envisage possible applications is in cosmology
where the universal expansion offers yet another route to
hitherto unexplored virtual processes.
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APPENDIX A: CORRELATION FUNCTIONS

The main ingredients to obtain the correlation functions
(3.9) and (3.10) are

Trρχað0ÞχaðxÞχaðx0Þ ¼
X
p⃗

1

2VEa
p
½ð1þ nðEa

pÞÞe−iEa
pðt−t0Þ þ nðEa

pÞeiEa
pðt−t0Þ�eip⃗·ðx⃗−x⃗0Þ

¼
X
p⃗

1

2VEa
p

Z
∞

−∞
ð1þ nðp0ÞÞ½δðp0 − Ea

pÞ − δðp0 þ Ea
pÞ�eip⃗·ðx⃗−x⃗0Þe−ip0ðt−t0Þdp0; ðA1Þ

for a ¼ 1, 2, and where

nðp0Þ ¼
1

eβp0 − 1
; nð−p0Þ ¼ −ð1þ nðp0ÞÞ: ðA2Þ

From these expressions we obtain the dispersive representations (3.14) and (3.15) with the spectral densities

ϱ>ðq0; q⃗Þ ¼
1

V

X
p⃗0;p⃗

δq⃗;p⃗þp⃗0

2E1
p2E2

p0

Z
dp0dp0

0δðq0 − p0 − p0
0Þð1þ nðp0ÞÞð1þ nðp0

0ÞÞ

× ½δðp0 − E1
pÞ − δðp0 þ E1

pÞ�½δðp0
0 − E2

p0 Þ − δðp0
0 þ E2

p0 Þ�; ðA3Þ

ϱ<ðq0; q⃗Þ ¼
1

V

X
p⃗0;p⃗

δq⃗;p⃗þp⃗0

2E1
p2E2

p0

Z
dp0dp0

0δðq0 − p0 − p0
0Þnðp0Þnðp0

0Þ

× ½δðp0 − E1
pÞ − δðp0 þ E1

pÞ�½δðp0
0 − E2

p0 Þ − δðp0
0 þ E2

p0 Þ�: ðA4Þ

Using the identity

nðp0Þ ¼ e−βp0ð1þ nðp0ÞÞ ðA5Þ

and the δðq0 − p0 − p0
0Þ, we find the Kubo-Martin-Schwinger [53] relation
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ϱ<ðq0; q⃗Þ ¼ e−βq0ϱ>ðq0; q⃗Þ; ðA6Þ

which is a direct consequence of the bath degrees of freedom being in thermal equilibrium.
Defining

ϱðq0; q⃗Þ≡ ϱ>ðq0; q⃗Þ − ϱ<ðq0; q⃗Þ; ðA7Þ

it follows from the relation (A6) that

ϱ>ðq0; q⃗Þ ¼ ð1þ nðq0ÞÞϱðq0; q⃗Þ; ϱ<ðq0; q⃗Þ ¼ nðq0Þϱðq0; q⃗Þ: ðA8Þ

Combining the results (A3) and (A4) and taking the infinite volume limit, we find

ϱðq0; q⃗Þ ¼
Z

d3p
ð2πÞ3

1

2E1
p2E2

p0

Z
dp0dp0

0δðq0 − p0 − p0
0Þð1þ nðp0Þ þ nðp0

0ÞÞ

× ½δðp0 − E1
pÞ − δðp0 þ E1

pÞ�½δðp0
0 − E2

p0 Þ − δðp0
0 þ E2

p0 Þ�; p⃗0 ¼ q⃗ − p⃗: ðA9Þ

Using the delta functions and with the definition (3.41) we obtain the final form of the spectral density

ϱ̃ðq0; qÞ ¼ ½ϱ̃Iðq0; q⃗Þ − ϱ̃Ið−q0; q⃗Þ� þ ½ϱ̃IIðq0; q⃗Þ − ϱ̃IIð−q0; q⃗Þ�; ðA10Þ

where

ϱ̃Iðq0; q⃗Þ ¼
λ2

2Ωq

Z
d3p
ð2πÞ3

1

2E1
p2E2

p0
½1þ nðE1

pÞ þ nðE2
p0 Þ�δðq0 − E1

p − E2
p0 Þ; p⃗0 ¼ q⃗ − p⃗; ðA11Þ

ϱ̃IIðq0; q⃗Þ ¼
λ2

2Ωq

Z
d3p
ð2πÞ3

1

2E1
p2E2

p0
½nðE2

p0 Þ − nðE1
pÞ�δðE1

p − q0 − E2
p0 Þ; p⃗0 ¼ q⃗ − p⃗: ðA12Þ

APPENDIX B: SPECTRAL DENSITY FOR THE THRESHOLD CASE

For this case we consider equal masses m1 ¼ m2 ≡m, namely E1
p ¼ E2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and the threshold singularity

corresponds to M2 ¼ 4m2. Writing

Ep0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ p2 − 2qp cosðθÞ þm2

q
≡ z ⇒ dðcosðθÞÞ ¼ −

zdz
qp

ðB1Þ

and recognizing that the delta function in (A11) receives support only from the region q0 > 0, we find

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
∞

m
½1þ nðEpÞ þ nðq0 − EpÞ�

Z
zþ

z−
δðq0 − Ep − zÞdzdEp; ðB2Þ

where

z� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ E2

p � 2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p −m2

qr
; ðB3Þ

the region of support is in the domain

E− ≤ E ≤ Eþ; ðB4Þ

where
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E� ¼ 1

2

�
q0 � q

�
q20 − q2 − 4m2

q20 − q2

�
1=2

�
; ðB5Þ

and therefore

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
Eþ

E−
½1þ nðEÞ þ nðq0 − EÞ�dE:

ðB6Þ

Using the identity

nðEÞ ¼ 1

β

d
dE

ln½1 − e−βE�; ðB7Þ

we find the result

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2Ωq

��
q20 − q2 − 4m2

q20 − q2

�
1=2

þ 2

qβ
ln

�
1 − e−βE

þ

1 − e−βE
−

��
Θ


q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

q �
:

ðB8Þ

This contribution to the spectral density arises from the two
particle branch cut.
Similarly

ϱ̃IIðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
∞

m
½nðEp − q0Þ − nðEpÞ�

×
Z

zþ

z−
δðEp − q0 − zÞdzdEp; ðB9Þ

for which we find

ϱ̃IIðq0; q⃗Þ ¼
λ2

16π2qΩqβ
ln

�
1 − e−βw

þ

1 − e−βw
−

�
Θðq2 − q20Þ; ðB10Þ

with

w� ¼ 1

2

�
q

�
q2 − q20 þ 4m2

q2 − q20

�
1=2

� q0

�
: ðB11Þ

This contribution to the spectral density only has support
below the light cone and vanishes at zero temperature; it
does not contribute to the resonance region of the functions
C∓ðq0; tÞ; S∓ðq0; tÞ.

APPENDIX C: SPECTRAL DENSITY FOR THE
INFRARED CASE

For this case we consider Ωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

p
;

m1 ¼ M;m2 ¼ 0, for which ϱIðq0; qÞ; ϱIIðq0; qÞ feature
the same form as Eqs. (B2) and (B9) but now
(Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
) and

zþ ¼ pþ q; z− ¼ jp − qj: ðC1Þ

For ϱIðq0; qÞ the domain of support of the delta function
in (B2) is z− ≤ q0 − Ep ≤ zþ which is fulfilled for q0 > Ωq

and E− ≤ Ep ≤ Eþ with

E� ¼ q0 −
q20 −Ω2

q

2ðq0 � qÞ ; ðC2Þ

and therefore

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
Eþ

E−
½1þ nðEÞ þ nðq0 − EÞ�dE;

ðC3Þ

yielding

ϱ̃Iðq0; q⃗Þ ¼
λ2

32π2Ωq

��
q20 −Ω2

q

q20 − q2

�

þ 1

qβ
ln

��
1 − e−βE

þ

1 − e−βE
−

	�
1 − e−βðq0−E−Þ

1 − e−βðq0−EþÞ

	��
× Θðq0 −ΩqÞ: ðC4Þ

For ϱIIðq0; qÞ the domain of support of the delta function in
(B9), namely z− ≤ Ep − q0 ≤ zþ with Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
,

features two different cases:
Case A: Ep − q0 intersects pþ k or q − p; 0 ≤ p ≤ q

but not p − q;p ≥ q corresponding to the domain

Eþ ≤ Ep ≤ ∞ ðC5Þ

and

−q ≤ q0 ≤ q; ðC6Þ

therefore

ϱ̃IIðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
∞

E−

½nðE − q0Þ − nðEÞ�dE; ðC7Þ

yielding

ϱ̃IIA ðq0; qÞ ¼
λ2

32π2Ωqβq
ln

�
1 − e−βEþ

1 − e−βðEþ−q0Þ

�
Θðq2 − q20Þ:

ðC8Þ

This contribution is far off the resonance regions q0 ≃�Ωq.
Case B: Ep − q0 intersects pþ k or q − p; 0 ≤ p ≤ q

and p − q;p ≥ q corresponding to the domain

Eþ ≤ Ep ≤ E− ðC9Þ
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and

q ≤ q0 ≤ Ωq; ðC10Þ

leading to

−q ≤ q0 ≤ q; ðC11Þ

therefore

ϱ̃IIB ðq0; q⃗Þ ¼
λ2

32π2qΩq

Z
Eþ

E−

½nðE − q0Þ − nðEÞ�dE; ðC12Þ

yielding

ϱ̃IIB ðq0; qÞ ¼
λ2

32π2Ωqβq

�
ln

�
1 − e−βðE−−q0Þ

1 − e−βðEþ−q0Þ

�

− ln

�
1 − e−βE−

1 − e−βEþ

��
ΘðΩq − q0ÞΘðq0 − qÞ:

ðC13Þ

This contribution features support near the resonance
region q0 ≃ Ωq, and therefore it contributes to the long
time dynamics.
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