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The Schur limit of the superconformal index of a four-dimensional N ¼ 2 superconformal field theory
encodes rich physical information about the protected spectrum of the theory. For a Lagrangian model, this
limit of the index can be computed by a contour integral of a multivariate elliptic function. However,
surprisingly, so far it has eluded exact evaluation in a closed, analytical form. In this paper we propose an
elementary approach to bring to heel a large class of these integrals by exploiting the ellipticity of their
integrand. Our results take the form of a finite sum of (products of) the well-studied flavored Eisenstein
series. In particular, we derive a compact formula for the fully flavored Schur index of all theories of class S
of type a1, we put forward a conjecture for the unflavored Schur indices of all N ¼ 4 super Yang-Mills
theories with gauge group SUðNÞ, and we present closed-form expressions for the index of various other
gauge theories of low ranks. We also discuss applications to non-Lagrangian theories, modular properties,
and defect indices.
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I. INTRODUCTION

The superconformal index [1]1 is of fundamental impor-
tance to analyze and characterize four-dimensional N ¼ 2
superconformal field theories (SCFTs) as it encodes succinctly
representation theoretical information about the protected
spectrum of the theory. It can be defined in terms of a
weighted trace over the Hilbert space of states of the radially
quantized theory.2 The standard insertion in the trace of minus
one raised to the fermion number causes pairwise cancella-
tions and as a result only states of the theory that lie in the
kernel of fQ†;Qg, where Q is a chosen supercharge of the
N ¼ 2 superconformal algebra suð2; 2j2Þ, contribute non-
trivially to the trace [1]. Their contribution is weighted by
additional fugacities dual to Cartan generators of the commu-
tant of the superchargeQ in suð2; 2j2Þ. Three such fugacities
can be turned on. If the theory has any flavor symmetries, the
trace can be further refined by flavor symmetry fugacities.
For generic values of the three conformal fugacities,

the superconformal index is a 1=8-BPS (Bogomol’nyi—

Prasad—Sommerfield) object: states preserving the common
supercharge Q contribute. However, as shown in [6], upon
tuning these fugacities appropriately, one can achievevarious
supersymmetry enhancements.One of these enhanced limits,
often referred to as the Schur limit, will be the quantity of
interest in this paper. It is a quarter-BPS object defined
concretely as [6]

Iðq; b⃗Þ ¼ Trð−1ÞFqE−R
YrankGF

j¼1
b
fj
j : ð1:1Þ

Here F, E, and R are, respectively, the fermion number, the
conformal dimension, and the SUð2ÞR Cartan generator,
while fj are the Cartan generators of the flavor symmetry
group GF of the theory. The thus-defined Schur limit of the
superconformal index is often simply referred to as the
Schur index.
The Schur index is a remarkable quantity, most notably

because of the central role it plays in the SCFT/VOA (vertex
operator algebra)correspondence of [7]. (See, for example,
[2,8–20].) Indeed, the correspondence associates with every
superconformal field theory a vertex operator algebra, and the
Schur index of the former equals the vacuum character of the
latter.What is more, exploiting this map, it was argued in [21]
that the unflavored Schur index solves a modular differential
equation and thus transforms as an element of a vector-valued
(quasi)modular form of weight zero.3 However, in all but a
handful of instances we currently lack the closed-form,Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1See also [2] for a review in the context of theories of class S.
2Equivalently, it also admits a definition as a partition function

on S3 × S1. See [3–5] for a detailed discussion on such a
definition for the limit of the index of interest in this paper,
namely the Schur limit.

3For early work on the modular properties of the Schur index
see [22].
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analytical expressions for the Schur index needed to establish
these transformation properties directly. In this paper we will
develop technology to dramatically improve on this situation.
What is more, we will retain all flavor symmetry fugacities
and study modular transformations of fully flavored Schur
indices. We find these to behave as quasi-Jacobi forms as
defined in [23].
By and large, three approaches have been pursued in the

literature to compute Schur indices:
(1) For Lagrangian theories, exploiting the independence

of the superconformal index of exactly marginal
couplings, one can straightforwardly evaluate the index
in the zero-coupling limit. The result takes the form of
an integral over thegaugegroup,which implements the
projection onto gauge-invariant states, of an integrand
reflecting the matter content of the theory. While
evaluating these integrals in a series expansion in q
to an arbitrary (finite) order is easy, performing them
analytically has not yet been achieved in the literature.
The goal of this paper is to do just that.

(2) For theories of class S, the superconformal index has
been shown to be computed by a topological field
theory correlator on the UV curve describing
the theory. The topological field theory has been
identified as the zero-area limit of two-dimensional,
q-deformed Yang-Mills theory, and the wave func-
tions of the states being correlated have been
constructed [6,10,11,13,14,24–26]. The resulting
expressions for the index involve an infinite sum
over the irreducible representations of a simple,
simply laced Lie algebra. Exact evaluation of this
sum is currently not feasible.

(3) For theories of which the associated vertex operator
algebra has been identified (or conjectured) through
alternative means, it is sometimes possible to com-
pute its vacuum character and thus, indirectly, the
Schur index.

Some further sporadic results and conjectures for Schur
indices can be found in, e.g., [27–29]. Of course, these three
strategies intersect and inform one another.What is more, our
Lagrangian results allow analytical control over an interesting
class of non-Lagrangian theories as well by leveraging
S-duality and inversion formulas for integral transforms. In
particular, we find a closed-form expression for theMinahan-
Nemeschansky theory with E6 flavor symmetry, which is the
basic building block in the family of a2 class S theories.
Furthermore our computations allow access to a wealth of
fully flavored vacuum characters of highly nontrivial vertex
operator algebras. Examples include, amongmany others, the
vacuum characters of the small N ¼ 4 chiral algebra at
c ¼ −9, ŝoð8Þ−2, ðê6Þ−3, and ðê7Þ−4.
The technology we develop in this paper was motivated

by the observation that the residue of a class of poles of the
integrand of the contour integrals defining the Schur index
of N ¼ 4 super Yang-Mills theories with a simply laced

gauge group carries physical meaning [30]. Namely, it is
exactly equal to the character of the collection of free
fields proposed in [31,32] that can be used to economically
realize the vertex operator algebra associated with the
N ¼ 4 theory. What is more, the vertex operator algebra
corresponding to the N ¼ 4 theory is a subalgebra of the
free field algebra: it is obtained as the kernel of some
screening charge. This strongly suggests that one ought to
be able to compactly evaluate the index of the original
theory in terms of its residues by effectively implementing
the projection onto the kernel of the screening charge. As
we will see, our techniques realize this expectation in a
computationally concrete sense and can be generalized far
beyond N ¼ 4 super Yang-Mills theories.
In detail, the methods we introduce exploit the double

periodicity of the integrand of the contour integrals defin-
ing the Schur index. Concretely, for a Lagrangian N ¼ 2
superconformal gauge theory with hypermultiplets trans-
forming in rankgF irreducible representations Rl of the
gauge group G (with corresponding gauge algebra g), the
Schur index is computed by

Iðq;b⃗Þ¼ð−iÞ
rankg−dimgηðτÞ3rankg−dimg

jWj
I Yrankg

j¼1

daj
2πiaj

×
Y
α≠0

ϑ1ðαðaÞjτÞ
YrankgF
l¼1

Y
ρ∈Rl

ηðτÞ
ϑ4ðρðaÞþbljτÞ

: ð1:2Þ

Here, jWj denotes the order of theWeyl group of g, α ≠ 0
are the nonzero roots of the gauge algebra, ρ ∈ Rl denote the
weights of the representation Rl, and we expressed the
integrand in terms of the standardDedekind eta function and
Jacobi theta functions. Finally, q ¼ e2πiτ, a ¼ e2πia, and
similarly for b. It is easy to verify that the integrand of (1.2) is
elliptic in each gauge fugacity separately, i.e., aj ∼ aj þ 1 ∼
aj þ τ for all j. As a result, the residues of the integrand as a
function of one integration variable, say, a1, is in fact an
elliptic function with respect to the remaining a’s.
The integral (1.2) can be evaluated by performing the

contour integrals one after another. We will see that the first
integral is the simplest, thanks to the integral formula we
derive in Sec. II,I

jaj¼1

da
2πia

fðaÞ ¼ fða0Þ þ
X
real aj

RjE1

� −1
aj
a0
q

1
2

�

þ
X

imag:aj

RjE1

� −1
aj
a0
q−

1
2

�
; ð1:3Þ

where aj¼1;2;… ¼ e2πiaj denotes the (finitely many, simple)
poles of the integrand within the fundamental parallelo-
gram bounded by the vertices 0; τ; 1; 1þ τ, and the Rj are
the corresponding residues Rj ≡ Resaj

1
a fðaÞ. Throughout

this paper we distinguish two types of poles, real if
aj ∈ R, and imaginary if aj¼ realþλτ with a positive λ.
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Finally, a0 is an arbitrary (regular) reference point in the
parallelogram.
After the first integral, the presence of the Eisenstein

series renders the integrand of the subsequent integrals
nonelliptic, since aj=a0 may contain the remaining inte-
gration variables. Fortunately, the residues Rj still enjoy
ellipticity, and we therefore develop computational tech-
niques to deal with integrals of the formI

da
2πia

fðaÞEk

��1
ab

�
; ð1:4Þ

where fða ¼ e2πiaÞ is elliptic with respect to a. For
example, we haveI

jzj¼1

dz
2πiz

fðzÞEk

�−1
za

�

¼ −S2k

�
fðz0Þ þ

X
real=imagzi

RiE1

� −1
zi
z0
q�1

2

��

−
X

real=imagzi

Ri

Xk−1
l¼0

S2lEk−2lþ1

�
1

ziaq�
1
2

�
; ð1:5Þ

where S2k is the constant term of the Eisenstein series
E2k½−1z �. With the help of these formulas, we are able to
compute the Schur index of a vast set of theories exactly in
closed form as a finite sum of Eisenstein series.
This paper is organized as follows. In Sec. II, we

summarize the integral formula that we will apply to
evaluate Schur indices. We apply these formulas to write
down in closed form the indices of Lagrangian rank-one
theories in Sec. III. Next, in Sec. IV we evaluate the Schur
index of all theories of class S of type a1: we derive a
universal, compact formula for these indices [see (4.1)]. In
Secs. Vand VI, we further consider Schur indices ofN ¼ 4
theories and SUðNÞ superconformal QCD. In particular, in
Sec. V D we conjecture closed-form expressions for the
unflavored indices of N ¼ 4 super Yang-Mills theories
with gauge group SUðNÞ. In Sec. VII, we discuss some
applications of our closed-form expressions, including
closed-form expressions for several non-Lagrangian theo-
ries including the E6 and E7 Minahan-Nemeschansky
theory, modular properties, and defect indices. A couple
of appendixes contain helpful properties and results on
elliptic functions and their Fourier series.

II. INTEGRATING ALMOST ELLIPTIC
FUNCTIONS

Our main goal is to analytically evaluate the Schur index
of Lagrangian four-dimensional N ¼ 2 superconformal
field theories. In other words, we aim to calculate in
closed-form contour integrals of multivariate elliptic func-
tions [see (1.2)]. As the fully flavored integrand of the
Schur index has only simple poles, in this section we

develop general techniques and derive widely applicable
results to compute multi-integrals of doubly periodic
multivariate functions with simple poles. Our strategy will
be to perform these multiple integrals one by one, but, as
we will see, ellipticity is typically lost after a single
integration. Nevertheless, we overcome this difficulty
and present integration formulas to deal with the resulting
almost elliptic integrals in a large class of cases.

A. Integrating elliptic functions

An elliptic function is a meromorphic function fðzÞ that
is doubly periodic, i.e.,

fðzÞ ¼ fðzþ 1Þ ¼ fðzþ τÞ; ð2:1Þ

where we choose τ ∈ C to have a positive imaginary
part. Equivalently, one can view an elliptic function as a
meromorphic function on a torus T2 with a complex
structure specified by τ. Let us call the parallelogram with
vertices 0; 1; τ; τ þ 1 the fundamental parallelogram. An
elliptic function is obviously completely determined by its
values in this parallelogram. In fact, up to an additive
constant, it is completely determined by its poles and their
residues within the parallelogram. Before continuing, let us
note that in Appendix A we collect various useful
special functions relevant for our purposes, and let us also
introduce a handy notational convention: we will relate
Latin alphabet letters in the normal math font, such
as a; b;…; z, to symbols in the fraktur font, such as
a; b;…; z, by

a ¼ e2πia; b ¼ e2πib; … z ¼ e2πiz: ð2:2Þ

Furthermore, as is standard, we also have q ¼ e2πiτ.
For our purposes, it is sufficient to focus on elliptic

functions possessing only simple poles. Note that such
functions necessarily must have vanishing total residue.4

As a consequence, elliptic functions with just a single
simple pole (inside the fundamental parallelogram) do not
exist. The Weierstrass zeta function, ζðzÞ, has relatively
simple behavior under shifts of its argument by 1 and
τ—the failure to be doubly periodic depends only on the
parameter τ but not on z, though it comes very close. We
refer the reader to Appendix A, and in particular around
(A2), for the precise definition of the ζ-function and some
helpful properties. Nevertheless, although nonelliptic, the
ζ-function plays a crucial role in our analysis, as it is the
source of one unit of residue and can therefore be used to
construct any elliptic function possessing only simple
poles. In detail, let fðzÞ be an elliptic function with simple

4The more rigorously correct statement is that any meromorphic
1-form fðzÞdz has vanishing total residue on any compact Riemann
surface; on T2 we can construct a single periodic coordinate z, and
the statement reduces to one about meromorphic functions.
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poles located at zj in the fundamental parallelogram and
whose residues are given by5

Rj ≔ Reszj
1

z
fðzÞ ¼

I
zj

dz
2πiz

fðzÞ: ð2:3Þ

Here, per our convention, z ¼ e2πiz. Then we can write the
elliptic function f as

fðzÞ ¼ CfðτÞ þ
1

2πi

X
j

Rjζðz − zjÞ; ð2:4Þ

where Cf is independent of z or the pole positions but can
depend on the nome τ. It is straightforward to check that the
right-hand side is indeed elliptic, using the behavior of the
ζ-function under shifts by a period and the fact that the sum
of the residues vanishes, i.e.,

P
j Rj ¼ 0. Moreover, the

pole positions and their residues on both sides of the
equation manifestly match.
We are interested in the contour integralI

jzj¼1

dz
2πiz

fðzÞ ¼
Z

1

0

dzfðzÞ: ð2:5Þ

Rewriting the elliptic function f in terms of the ζ function
as in (2.4), we haveI
jzj¼1

dz
2πiz

fðzÞ¼CfðτÞþ
1

2πi

X
j

Rj

Z
1

0

dzζðz−zjÞ: ð2:6Þ

Our task is thus to evaluate the integral of the Weierstrass
zeta functions ζðz − zjÞ. This can easily be achieved by
observing that the ζ-function can be Fourier expanded
(where 0 ignores n ¼ 0) [33],6

ζðzÞ ¼ −4π2zE2ðτÞ − πiþ π
X0
n

1

sin nπτ
q−

n
2e2πnz;

if Imz ¼ 0; ð2:9Þ

ζðzÞ ¼ −4π2zE2ðτÞ þ πiþ π
X0
n

1

sin nπτ
qþn

2e2πnz;

if − 1 <
Imz
Imτ

< 0: ð2:10Þ

For z with Imz outside of the above ranges, one simply
applies the shift formula (A4). In the integral of interest
(2.6), the variables z − zj belong precisely to either one of
these ranges. To distinguish these two cases, we will call zj
real if Imzj ¼ 0 or imaginary if Imzj > 0.
Now we simply compute the integral of the Fourier series

and obtain

I
jzj¼1

dz
2πiz

fðzÞ ¼ CfðτÞ þ
X
real zj

Rjð4π2zjE2ðτÞ − πiÞ

þ
X

imag: zj

Rjð4π2zjE2ðτÞ þ πiÞ: ð2:11Þ

This result can be simplified more by observing that
the Weierstrass zeta function is related to the Eisenstein
series as

ζðzÞ ¼ 2πiE1

� −1
zq

1
2

�
þ πi − 4π2zE2

¼ 2πiE1

� −1
zq−

1
2

�
− πi − 4π2zE2 ð2:12Þ

and by writing Cf as

CfðτÞ ¼ fðz0Þ −
1

2πi

X
j

Rjζðz0 − zjÞ; ð2:13Þ

where z0 is an arbitrary reference value. One then finds the
explicit, analytic evaluation of the contour integral of the
elliptic function f to be

I
jzj¼1

dz
2πiz

fðzÞ ¼ fðz0Þ þ
X
real ζj

RjE1

� −1
zj
z0
q

1
2

�
þ

X
imag: ζj

RjE1

� −1
zj
z0
q−

1
2

�
: ð2:14Þ

5Note that Rj ¼ 2πiResz→zjfðzÞ.
6An alternative approach to evaluate these integrals is as follows. Note that ζ is the derivative of the Weierstrass σ-function,

ζðzÞ ¼ d
dz

σ̂ðzÞ; σ̂ðzÞ ¼ ln ϑ1ðzÞ −
ð2πÞ2
2

z2E2ðτÞ: ð2:7Þ

Therefore, we have the integral [choosing lnð−1Þ ¼ −πi]Z
1

0

dzζðz − bÞ ¼ ln
ϑ1ð1 − bÞ
ϑ1ð−bÞ

− 4π2
�
1

2
− b

�
E2ðτÞ ¼ −πi − 4π2

�
1

2
− b

�
E2: ð2:8Þ
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We can choose z0 at will, and we will sometimes exploit
this freedom to simplify expressions on a case-dependent
basis. Most often though, we simply choose z0 ¼ 0.
A couple of remarks are in order. First, the evaluation

formula (2.14) allows one to compute the Schur index of
Lagrangian rank-one theories, i.e., N ¼ 4 super Yang-
Mills with gauge group SUð2Þ and an SUð2Þ gauge theory
with four hypermultiplets transforming in the fundamental
representation of the gauge group. We will do so in the next
section. Second, we notice that after a single integral, the
result stops being elliptic in a very manifest manner, as the
Eisenstein series E1 is not doubly periodic [see (A27) for its
behavior under a full period shift]. To evaluate the indices
of higher-rank theories, we will thus need evaluation
formulas involving the product of an elliptic function

and an Eisenstein series. We will refer to such integrands
as almost elliptic.

B. Integrating almost elliptic functions

We now turn to the task of evaluating contour integrals
whose integrand is the product of an elliptic function
(possessing only simple poles) and an Eisenstein series,

I
jzj¼1

dz
2πiz

fðzÞEk

��1
za

�
; ð2:15Þ

where a is an arbitrary complex number different from a
and q (or powers thereof). Without further ado, we
immediately present our results for the integration formu-
las. First of all, we have

I
jzj¼1

dz
2πiz

fðzÞEk

�−1
za

�
¼ −Sk

�
fðz0Þ þ

X
real=imag zj

RjE1

� −1
zj
z0
q�1

2

��
−

X
real=imag zj

Rj

Xbk−12 c
l¼0

S2lEk−2lþ1

�
1

zjaq�
1
2

�
: ð2:16Þ

As in the previous subsection, zj for j > 0 are the
positions of the simple poles of f, and they are called real or
imaginary depending on whether their imaginary part is
zero or strictly positive, and Rj are their residues, i.e.,
Resz→zj

1
z fðzÞ. Depending on the reality of the zj, the

argument of the Eisenstein series involves a positive or
negative power of

ffiffiffi
q
p

. Furthermore, z0 is an arbitrary

reference value. Finally, Sl are rational numbers defined as

1

2

y
sinh y

2

≡X
l≥0

Slyl for y < 1: ð2:17Þ

Similarly, we have established the following integration
formula:

I
jzj¼1

dz
2πiz

fðzÞEk

�þ1
za

�
¼−Ak

�
fðz0Þþ

X
real=imagzj

RjE1

� −1
zj
z0
q�1

2

��
−

X
real=imagzj

Rj

�
−BkE1

� −1
zjaq�

1
2

�
þ
Xbk−12 c
l¼0

S2lEkþ1−2l

� −1
zjaq�

1
2

��
;

ð2:18Þ

where Ak and Bk are rational numbers given by

A2n ¼
B2n

ð2nÞ! ; A2nþ1 ¼
δn;0
2

;

B2n ¼
B2n

ð2nÞ! − S2n; B2nþ1 ¼
δn;0
2

: ð2:19Þ

Here B2n are the Bernoulli numbers.
Let us make some brief comments about the derivation of

(2.16) and (2.18), referring the reader to the appendixes for
more details. Integrals of the type (2.15) can be analyzed by
first expanding the elliptic function fðzÞ and the Eisenstein
series in Fourier series. The former Fourier series has
been obtained in the previous subsection, while we propose
Fourier expansions of the Eisenstein series in Appendix B.
The contour integral of products of the Fourier series is

easily evaluated and results in a novel Fourier series. The
nontrivial task is to recognize the resulting series as
combinations of Jacobi theta functions or Eisenstein series.
We have done so explicitly for relatively small k by hand,
while for k up to 11, we considered a suitable Ansatz based
on the predicted structure of the result and checked the
integral formula in series expansions in q to very high order.

III. RANK-ONE THEORIES

A first class of theories whose Schur index we can
evaluate in closed form is Lagrangian superconformal field
theories with a one-dimensional Coulomb branch. In other
words, gauge theories with a gauge group of rank one.
Two such theories exist: first, N ¼ 4 super Yang-Mills
theory with gauge group SUð2Þ, and second, SUð2Þ
superconformal QCD, i.e., an N ¼ 2 supersymmetric
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gauge theory with four hypermultiplets transforming in the
fundamental representation of the gauge group SUð2Þ.

A. N = 4 super Yang-Mills theory
with gauge group SUð2Þ

Using (1.2), it is easy to write down the contour integral
computing the Schur index of theN ¼ 4 super Yang-Mills
theory with gauge group SUð2Þ:

IN¼4 SUð2Þ ¼ −
1

2

I
da
2πia

ηðτÞ3
ϑ4ðbÞ

Y
�

ϑ1ð�2aÞ
ϑ4ð�2aþ bÞ : ð3:1Þ

Here b ¼ e2πib is a fugacity for the SUð2ÞF flavor sym-
metry of the theory when viewed as an N ¼ 2 theory; in
other words, it rotates the adjoint hypermultiplet. For
simplicity, we start by rescaling the integration variable
as a → a=2 and using the periodicity properties of the
integrand find

IN¼4 SUð2Þ ¼
1

2

I
da
2πia

ηðτÞ3
ϑ4ðbÞ

Y
�

ϑ1ð�aÞ
ϑ4ð�aþ bÞ : ð3:2Þ

The integrand of (3.2) is elliptic with respect to a and has
two simple poles in the fundamental parallelogram at

a ¼ �bþ τ

2
: ð3:3Þ

As classified in the previous section [see below (2.10)],
these are poles of “imaginary type.” Their respective
residues are of course opposite and are given explicitly by

Res
a→�bþτ

2

1

2

ηðτÞ3
ϑ4ðbÞ

Y
�

ϑ1ð�aÞ
ϑ4ð�aþ bÞ ¼ �

1

2i
ϑ4ðbÞ
ϑ1ð2bÞ

: ð3:4Þ

Using formula (2.14), it is straightforward to compute
the contour integral,

IN¼4 SUð2Þ ¼ −
1

2i
ϑ4ðbÞ
ϑ1ð2bÞ

E1

� −1
bq

1
2q−

1
2

�

þ 1

2i
ϑ4ðbÞ
ϑ1ð2bÞ

E1

� −1
b−1q

1
2q−

1
2

�
ð3:5Þ

¼ −
1

2i
ϑ4ðbÞ
ϑ1ð2bÞ

�
E1

�−1
b

�
− E1

� −1
b−1

��
: ð3:6Þ

Here we used the reference value z0 ¼ 0.
One can choose to further simplify the above result for

the Schur index of SUð2Þ N ¼ 4 super Yang-Mills by
using the symmetry property of Eisenstein series and
rewriting the Eisenstein series in terms of Jacobi theta
functions. One then finds

IN¼4 SUð2Þ ¼
iϑ4ðbÞ
ϑ1ð2bÞ

E1

�−1
b

�
¼ 1

2π

ϑ04ðbÞ
ϑ1ð2bÞ

: ð3:7Þ

When including an additional free hypermultiplet and
identifying its SUð2Þ flavor symmetry with SUð2ÞF iden-
tified above, the theory has a class S description of type a1
in terms of a one-punctured torus. Denoting the Schur
index of the theory associated with an s-punctured genus g
surface as Ig;s, we thus find

I1;1ðbÞ ¼
1

2π

ϑ04ðbÞ
ϑ1ð2bÞ

ηðτÞ
ϑ4ðbÞ

¼ iηðτÞ
2ϑ1ð2bÞ

X
α¼�

αE1

�−1
bα

�
: ð3:8Þ

The rewriting we performed in the second equality fore-
shadows our general results for the indices Ig;s of Sec. IV.
More generally, the flavor symmetry of the additional free
hypermultiplet need not be identified with SUð2ÞF. In that
case, we have

I1;1ðb; b0Þ ¼
1

2π

ϑ04ðbÞ
ϑ1ð2bÞ

ηðτÞ
ϑ4ðb0Þ

; ð3:9Þ

where b0 is the fugacity of the flavor symmetry of the free
hypermultiplet.

B. SUð2Þ superconformal QCD

We now consider an SUð2Þ gauge theory with four
hypermultiplets transforming in the fundamental represen-
tation of the gauge group. We denote its Schur index as
I0;4, as it has a class S description of type a1 in terms of a
four-punctured sphere. It is computed by the following
contour integral:

I0;4 ¼ −
1

2

I
da
2πia

ϑ1ð2aÞϑ1ð−2aÞ
Y4
j¼1

Y
�

ηðτÞ
ϑ4ð�aþmjÞ

:

ð3:10Þ

The poles a ¼ �mj þ τ
2
; j ¼ 1;…; 4 in the fundamental

parallelogram are all of imaginary type with residues

Rj;� ≡ Res
a→m�1j q

1
2

ðintegrandÞ ¼ � i
2

ϑ1ð2mjÞ
ηðτÞ

×
Y
l≠j

ηðτÞ
ϑ1ðmj þmlÞ

ηðτÞ
ϑ1ðmj −mlÞ

: ð3:11Þ

We pick a ¼ 0 as the arbitrary reference value, which
happens to be a zero of the integrand. Consequently, using
(2.14), the index reads
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I0;4¼
X4
j¼1

E1

�−1
mj

�
iϑ1ð2mjÞ

ηðτÞ
Y
l≠j

ηðτÞ
ϑ1ðmjþmlÞ

ηðτÞ
ϑ1ðmj−mlÞ

;

ð3:12Þ

where we have used the symmetry

E1

� −1
m−1

j

�
¼ −E1

�−1
mj

�
: ð3:13Þ

Note that the four fugacities mj are combinations of
those associated with the four punctures in the class S
description. Denoting the latter as bs; s ¼ 1, 2, 3, 4, they are
related to mj by

m1¼b1b2; m2¼
b1
b2

; m3¼b3b4; m4¼
b3
b4

: ð3:14Þ

Notice, however, that after this change of variables
S-duality is not yet manifest, as the expression is not
explicitly permutation invariant in the flavor fugacities. In
Sec. IV, we will revisit this theory, and all other theories of
class S of type a1, and uncover an alternative expression
which is explicitly invariant under (generalized) S-dualities.

IV. THEORIES OF CLASS S OF TYPE a1

The next class of theories whose Schur indices we set out
to evaluate in closed form are those of class S of type a1.
Such a theory can be engineered by compactifying the six-
dimensional N ¼ ð2; 0Þ theory of type a1 on a Riemann
surface Σg;n of genus g and with n punctures. The punctures
mark the location of (regular) codimension-two defects
spanning the four noncompact spatial dimensions. For type
a1, a unique such defect is available. The complex structure
moduli of the Riemann surface encode the exactly marginal
couplings of the resulting four-dimensional theory.
We denote this theory T g;n. Different degeneration limits
of the Riemann surface correspond to different (generalized)
S-dual descriptions of the theory [34]. Because the Schur
index is independent of exactly marginal couplings, it is
independent of the choice of duality frame. Consequently, it
is computed by a topological quantum field theory (TQFT)
correlator on Σg;n [9,24,35]. In particular, the index should
be invariant under all permutations of the flavor symmetry
fugacities associated with the punctures.
In this section, we show that the Schur index of the

theory T g;n is given by the closed-form expression

Ig;nðq; b⃗Þ ¼
in

2

ηðτÞnþ2g−2Q
n
j¼1 ϑ1ð2bjÞ

X
α⃗¼�

�Yn
j¼1

αj

�

×
Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1ÞnQ
n
j¼1 b

αj
j

�
; ð4:1Þ

Ig;n¼0ðqÞ¼
1

2
ηðτÞ2g−2

Xg−1
k¼1

λð2g−2Þ2k

�
E2kþ

B2k

ð2kÞ!
�
; for g>0;

ð4:2Þ
where in the first line we sum over all signs αj ¼ �1
independently. The numerical coefficients λ are determined
recursively by the equations

λðevenÞ0 ¼ λðoddÞeven ¼ λðevenÞodd ¼ 0; λð2Þ2 ¼ 1; ð4:3Þ

λð2kþ1Þ2mþ1 ¼
Xk
l¼m

λð2kÞ2l S2ðl−mÞ; λð2kþ2Þ2mþ2 ¼
Xk
l¼m

λð2kþ1Þ2lþ1 S2ðl−mÞ;

ð4:4Þ

λð2kþ1Þ1 ¼
Xk
l¼1

λ2k2l

�
S2l −

B2l

ð2lÞ!
�
; ð4:5Þ

where S was defined in (2.17) and B are again the Bernoulli
numbers. Note that I1;1 has already been proved to take the
form (4.1) in (3.8). It is quite pleasing to note that in (4.1)
all fugacities appear on equal footing, directly reflecting the
generalized S-duality invariance of the index.
To prove this statement, we first show that the Schur

index of the trinion theory T 0;3 takes the form (4.1).
Subsequent gaugings to add punctures and handles can
then easily be performed using the formulas presented
in Sec. II.

A. Trinion theory

The a1 trinion theory T 0;3 is a theory of eight half-
hypermultiplets. Breaking their uspð8Þ flavor symmetry as
uspð8Þ → suð2Þ ⊕ soð4Þ ¼ suð2Þ ⊕ suð2Þ ⊕ suð2Þ, its
Schur index is easily written down:

I0;3ðq; b⃗Þ ¼
ηðτÞ4Q

�;�ϑ4ðb1 � b2 � b3Þ
: ð4:6Þ

For our current purposes, a more useful expression for
I0;3ðq; b⃗Þ is as follows:

I0;3ðq; b⃗Þ ¼
1

2i
ηðτÞQ

3
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Y3
i¼1

αi

�
E1

� −1Q
3
i¼1 b

αi
i

�
:

ð4:7Þ
Note that this expression indeed conforms to (4.1). The
proof of the equality of (4.6) and (4.7) is essentially
contained in Appendix E of [6]. There it was proved that
the trinion index of type a1 given in (4.6) can be written in
terms of a TQFT three-point function [6,24]7:

7We have reorganized this expression slightly compared to [6,24]
and have expressed the prefactor in terms of elliptic functions.
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I0;3ðq; b⃗Þ ¼ iηðτÞ
�Y3

i¼1

bi − b−1i
ϑ1ð2biÞ

�X
j∈1

2
N

Q
3
i¼1 χ

ðjÞðbiÞ
q−

1
2
ð2jþ1Þ − q

1
2
ð2jþ1Þ ;

ð4:8Þ

where χðjÞ denotes the spin-j character of SUð2Þ:
χðjÞðaÞ ¼ ða2jþ1 − a−2j−1Þ=ða − a−1Þ. To establish the
equality of this expression and (4.7), one can apply the
identity

Xþ∞
n¼1

xn

q−
n
2 − q

n
2

¼
Xþ∞
n¼0

xqnþ1
2

1 − xqnþ1
2

; ð4:9Þ

to the first Eisenstein series

E1

�−1
z

�
¼ −B1ð1=2Þ þ

Xþ∞
r¼0

z−1qrþ1
2

1 − z−1qrþ1
2

−
Xþ∞
r¼0

zqrþ1
2

1 − zqrþ1
2

;

ð4:10Þ

to deduce that

Xþ∞
n¼1

Q
3
i¼1ðbni − b−ni Þ
q−

n
2 − q

n
2

¼ −
1

2

X
α⃗¼�
ðα1α2α3ÞE1

� −1
bα11 bα22 bα33

�
:

ð4:11Þ

B. Induction on number of punctures

In the previous subsectionweproved thatI0;3 is of the form
(4.1). To increase the number of punctures n, we perform
induction on n. We thus assume that Ig;n is of the form (4.1)
and aim to prove that then also Ig;nþ1 is. Adding a puncture
requires the evaluation of the following contour integral:

Ig;nþ1 ¼ −
1

2

I
da
2πia

ϑ1ð2aÞϑ1ð−2aÞ

× Ig;nðq;b1;…; bn−1; aÞ
ηðτÞ4Q

�;�ϑ4ða� bn� bnþ1Þ
:

ð4:12Þ

Substituting (4.1) for Ig;n, this integral is exactly of the type
(2.15) for which we have presented integration formulas in
(2.16) and (2.18). To use these formulas, we need to evaluate
the residues of the poles of the elliptic part of the integrand.
These poles only arise from the additional hypermultiplet and
are located (inside the fundamental parallelogram) at
a ¼ bαnn bαnþ1nþ1q

1
2, where αn and αnþ1 are independent signs.

These poles are of imaginary type. Now we observe the
interesting fact that

Res
a¼bαnn b

αnþ1
nþ1 q

1
2

1

a
ηðτÞnþ2g−2

ϑ1ð2aÞ
Q

n−1
i¼1 ϑ1ð2biÞ

�
−
1

2
ϑ1ð2aÞϑ1ð−2aÞ

��
ηðτÞ4Q

�;�ϑ4ða� bn � bnþ1Þ
�
¼ −iαnαnþ1ηðτÞnþ2g−1

2
Qnþ1

i¼1 ϑ1ð2biÞ
: ð4:13Þ

These residues can now be plugged into the formulas (2.16) and (2.18), and we can use the reference value a0 ¼ 0, which is
a zero of the integrand. Explicitly, we treat n ¼ even and n ¼ odd separately. For n ¼ even, we first notice that

Ek

� þ1
a�b

�
¼ ð�1ÞkEk

� þ1
ab�

�
: ð4:14Þ

Performing the integral over a using (2.18) we obtain

Ig;nþ1 ¼
X
α⃗¼�

in

2

αnαnþ1ð−iÞηðτÞnþ2g−1
2
Qnþ1

j¼1 ϑ1ð2bjÞ
�Yn−1

j¼1
αj

� Xnþ2g−2
k¼1

λðnþ2g−2Þk

�
BkE1

� −1Qnþ1
j¼1 b

αj
j

�
−
Xbk−12 c
l¼0

S2lEkþ1−2l

� −1Qnþ1
j¼1 b

αj
j

��

−
X
α⃗¼�

in

2

αnαnþ1ð−iÞηðτÞnþ2g−1
2
Qnþ1

j¼1 ϑ1ð2bjÞ
�Yn−1

j¼1
αj

� Xnþ2g−2
k¼1

λðnþ2g−2Þk

�
BkE1

� −1
bαnn bαnþ1nþ1

Q
n−1
j¼1 b

−αj
j

�

−
Xbk−12 c
l¼0

S2lEkþ1−2l

� −1
bαnn bαnþ1nþ1

Q
n−1
j¼1 b

−αj
j

��
: ð4:15Þ

The terms with coefficients Ak arising from the application of (2.18) vanish thanks to the sum over αn; αnþ1 and the
simple identity

P
α;β¼� αβEodd½ −1aαbβ� ¼ 0. Moreover, the two sums in (4.15) are actually identical thanks to the symmetry

properties of Ek. Hence, it simplifies to
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Ig;nþ1 ¼
X
α⃗¼�

inþ1

2

ηðτÞnþ2g−1Qnþ1
j¼1 ϑ1ð2bjÞ

�Ynþ1
j¼1

αj

� Xnþ2g−2
k¼1

λðnþ2g−2Þk

�
þ
Xbk−12 c
l¼0

S2lEkþ1−2l

� −1Qnþ1
j¼1 b

αj
j

�
− BkE1

� −1Qnþ1
j¼1 b

αj
j

��

¼
X
α⃗¼�

inþ1

2

ηðτÞnþ2g−1Qnþ1
j¼1 ϑ1ð2bjÞ

�Ynþ1
j¼1

αj

� Xnþ2g−1
k¼1

λðnþ2g−1Þk Ek

� −1Qnþ1
j¼1 b

αj
j

�
: ð4:16Þ

Comparing the coefficients of Ek on both sides, one
deduces the recursion relations8

λnþ2g−11 ¼
Xnþ2g−2
k¼1
k even

λðnþ2g−2Þk ð−BkÞ

¼
Xnþ2g−2
k¼1
k even

λðnþ2g−2Þk

�
Sk −

Bk

k!

�
; ð4:17Þ

and, noting that λðn−2g−2Þodd ¼ λðn−2g−1Þeven ¼ 0,

λðnþ2g−1Þk>1 ¼
Xnþ2g−2

k0¼k−1
λðnþ2g−2Þk0 Sk0−ðk−1Þ: ð4:18Þ

An almost identical computation can be carried out for
odd n. Combining both cases, we recover the relations in
(4.3). Starting from the trinion index I0;3, we can claim
rigorously the validity of the formula (4.1) for all I0;n≥3.
The remaining task is to apply induction on the genus g
as well.

C. Induction on genus

Having shown that (4.1) is correct for all genus zero
theories, we now increase the genus. Once again, we
proceed inductively by first assuming the validity of
(4.1) at some g and n ≥ 2. One can easily add an additional
handle by gluing two punctures, say, the two associated
with bn−1 and bn. Then the index of the genus-(gþ 1)
theory with n − 2 punctures is given by the contour integral

Igþ1;n−2 ¼
I

da
2πia

Ig;nðb1;…; bn−2; aÞ
�
−
1

2
ϑ1ð2aÞϑ1ð−2aÞ

�

¼ −
1

2

I
da
2πia

in

2

ηðτÞnþ2g−2Q
n−2
j¼1 ϑ1ð2bjÞ

X
αj

�Yn
j¼1

αi

� Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1Þn
aαn−1−αn

Q
n−2
j¼1 b

αj
j

�
; ð4:19Þ

where we made the identification bn−1 → a, bn → −a upon gauging. Note the cancellations between the ϑ1ð�2aÞ. For
αn−1 ¼ −αn, the corresponding terms are completely independent of the a variable. For αn−1 ¼ αn, the terms depend on a
through the Eisenstein series, and the integral over a extracts their constant terms. The integral can be evaluated using the
integral formula (2.16), (2.18), and it gives

Igþ1;n−2ðbÞ ¼ −
in

2

ηðτÞnþ2g−2Q
n−2
j¼1 ϑ1ð2biÞ

X0
α⃗¼�

�Yn−2
j¼1

αj

� Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1ÞnQ
n−2
j¼1 b

αj
j

�

−
in

4

ηðτÞnþ2g−2Q
n−2
j¼1 ϑ1ð2biÞ

X0
α⃗¼�

�Yn−2
j¼1

αj

��
þλðnþ2g−2Þ1 þ 2

Xnþ2g−2
k¼1

k¼even

λðnþ2g−2Þk
Bk

k!

�
; ð4:20Þ

where
P0

implies a smaller sum over signs α1;…; αn−2 and we applied the results about constant terms collected in (A34).
To obtain the second line, we note that only when k ¼ even can Ek have a nonvanishing constant term (with the exception of

k ¼ 1), while λðnþ2g−2Þk even is nonzero only when n is also even. Moreover, when n ≥ 3, the sum over αi ¼ � kills the second

line. Therefore, given Ig;n≥3 and in particular the rational numbers λðnþ2g−2Þk , the index Igþ1;n−2 is completely determined,

8Note that nþ 2g − 1 is odd, and kþ 1 − 2l ≥ 2 for l ≤
j
k−1
2

k
≤ k−1

2
.
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Igþ1;n−2ðbÞ ¼ −
in

2

ηðτÞnþ2g−2Qnþ2g−2
j¼1 ϑ1ð2biÞ

X0
αj¼�

�Yn−2
j¼1

αj

� Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1ÞnQ
n−2
j¼1 b

αj
j

�
: ð4:21Þ

Renaming gþ 1 → g; n − 2 → n, we then recover the proposed formula for g ≥ 1, n ≥ 1,

Ig;nðbÞ ¼ þ
in

2

ηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2biÞ

X
αi¼�

�Yn
i¼1

αi

� Xnþ2g−2
k¼1

λðnþ2g−2Þk Ek

� ð−1ÞnQ
n
i¼1 b

αi
i

�
: ð4:22Þ

On the other hand, when n ¼ 2 in (4.20), λð2gÞ1 ¼ 0 and
we have

Igþ1;0 ¼ þ
1

2
ηðτÞ2g

X2g
k¼1
k even

λð2gÞk

�
Ek

�þ1
1

�
þ Bk

k!

�
: ð4:23Þ

In other words,

Ig;n¼0 ¼ þ
1

2
ηðτÞ2g−2

Xg−1
l¼1

λð2g−2Þ2l

�
E2l þ

B2l

ð2lÞ!
�
: ð4:24Þ

Finally, combining the induction on n and on g, one can
start with g ¼ 0, n ¼ 3 and obtain the index for all other
values of g, n.

D. Flavoring index of genus two class
S theory without punctures

As T 2;0 is of class S, its Schur index has already been
computed above; it reads

I2;0ðqÞ ¼
1

2
ηðτÞ2

�
E2 þ

1

12

�
: ð4:25Þ

However, T 2;0 possesses a Uð1Þ flavor symmetry which is
not manifest in the class S description.9 In this subsection,
we aim to include it. What is more, we perform the

computation in two different degeneration limits of Σ2;0,
thus allowing us to perform a refined test of generalized
S-duality. Finally, also note that T 2;0 has recently received
attention in the context of the VOA/SCFT correspon-
dence [36,37].

1. Duality frame I

One duality frame of the genus-two theory is given in
terms of two one-punctured tori ΣðiÞ1;1; i ¼ 1, 2 glued
together by a long tube. The theory associated with each

ΣðiÞ1;1 has been discussed already in Sec. III A: it is anN ¼ 4

super Yang-Mills theory together with an additional dou-
blet of free half-hypermultiplets QðiÞ.10 The SUð2Þ flavor
symmetries of the Yang-Mills theory and the free hyper-
multiplet are identified. To form the genus-two theory T 0;2,
it is this symmetry that will be gauged among the two
copies—we will denote its associated fugacity as a.
Furthermore, the hypermultiplets Qð1Þ and Qð2Þ can be
combined in a pair of complex conjugate combinations that
transform under the Uð1Þ flavor symmetry with opposite
charges, ϕ ¼ 1ffiffi

2
p ðQð1Þ þ iQð2ÞÞ and ϕ̄ ¼ 1ffiffi

2
p ðQð1Þ − iQð2ÞÞ.

The flavor fugacity associated with this Uð1Þ symmetry is
denoted b.
The corresponding flavored Schur index can thus be

written as

I2;0ðbÞ ¼ −
1

2

I
da
2πia

ϑ1ð2aÞϑ1ð−2aÞI1;1ða; aþ bÞI1;1ða; a − bÞ

¼ ηðτÞ2
8π2

I
da
2πia

ϑ04ðaÞ2
ϑ4ðaþ bÞϑ4ða − bÞ ¼

ηðτÞ2
8π2

I
da
2πia

ϑ4ðaÞϑ4ðaÞ
ϑ4ðaþ bÞϑ4ða − bÞ

ϑ04ðaÞ2
ϑ4ðaÞ2

; ð4:26Þ

where I1;1 is given by (3.9). The integral can be computed
by first observing that�

ϑ04ðaÞ
ϑ4ðaÞ

�
2

¼ −∂aζ
�
aþ τ

2

�
þ 8π2E2

�−1
a

�
; ð4:27Þ

where ζ is theWeierstrass zeta function, as before. Next one
can note that ϑ4ðaÞ2=ðϑ4ðaþ bÞϑ4ða − bÞÞ is elliptic with
respect to a. The relevant poles and residues are

9It is relatively common that a class S description of a theory
does not make manifest the full flavor symmetry group, but only a
subgroup, often a maximal one. A simple example is T 0;4 whose
full flavor symmetry is SOð8Þ but of which only an SUð2Þ4
subgroup is manifest. The theory T 2;0 is somewhat more unusual
in that no flavor symmetry is visible at all.

10Our notation suppresses the SUð2Þ flavor index of the free
half-hypermultiplets.
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a ¼ �bþ τ

2
; Res

�bþτ
2

¼ ∓ iϑ1ðbÞ2
8π2ηðτÞϑ1ð2bÞ

: ð4:28Þ

Using the Fourier expansion (2.10) of ζðaþ τ
2
Þ and the

integration formula (2.16), we have

I2;0ðbÞ ¼
iϑ1ðbÞ2

ηðτÞϑ1ð2bÞ
�
E3

�þ1
b

�
þ E1

�þ1
b

�
E2

�þ1
b

�

− E2ðτÞE1

�þ1
b

�
þ E2ðτÞE1

�−1
b

�

þ 1

12
E1

�−1
b

��
þ ηðτÞ2

2

�
E2 þ

1

12

�
ϑ4ð0Þ2
ϑ4ðbÞ2

:

ð4:29Þ

Here we have chosen the reference value a ¼ 0 when
applying the integration formula.

2. Duality frame II

Another gauge theory description of the genus-two
theory can be obtained by gluing two three-puncture
spheres together via three long tubes. In this frame, the
flavored Schur index is given by the contour integral

I2;0 ¼ −
1

8

I Y3
i¼1

�
dai
2πiai

ϑ1ð2aiÞϑ1ð−2aiÞ
�

×
Y
�;�;�

ηðτÞ
ϑ4ð�a1 � a2 � a3 þ bÞ ; ð4:30Þ

where b is the fugacity associated with the Uð1Þ-flavor
symmetry.
The a1 integral involves eight poles of imaginary type,

aαβγ1 ¼ αa2 þ βa3 þ γbþ τ

2
; α; β; γ ¼ �1; ð4:31Þ

with residues

Rð1Þαβγ ¼ −iηðτÞ5 ϑ1ð2αa2 þ 2βa3 þ 2γbÞ
ϑ1ð2αa2 þ 2βa3Þϑ1ð2αa2 þ 2γbÞϑ1ð2βa3 þ 2γbÞ

ϑ1ð2αa2Þϑ1ð2βa2Þ
ϑ1ð2γbÞ

: ð4:32Þ

Choosing the reference value to be a1 ¼ 0, which happens
to be a zero of the integrand, we find the result of the first
integral

I2;0 ¼
1

8

I Y3
i¼2

dai
2πiai

X
α;β;γ¼�

Rð1Þαβγða2; a3; bÞE1

� −1
aα2a

β
3b

γ

�
:

ð4:33Þ

Note that all the E1 factors in the sum over α, β, γ depend
on a2.
To proceed, we note that the function Rð1Þαβγ has poles

in a2 at

a2 ¼ aαβγj1;k;l2 ≡ −αβa3 þ
k
2
τ þ l

2
and

a2 ¼ aαβγj2;k;l2 ≡ −αγbþ k
2
τ þ l

2
; ð4:34Þ

with k;l ¼ 0, 1. Here, poles with k ¼ 0 are of real type and
those with k ¼ 1 are of imaginary type. Their residues are

Rð2Þαβγj1;k;l ≡
I
aαβγj1;k;l
2

da2
2πia2

Rð1Þαβγ

¼ α

2
ηðτÞ2 ϑ1ð2βa3Þϑ1ð−2βa3Þ

ϑ1ð2βa3 þ 2γbÞϑ1ð−2βa3 þ 2γbÞ ;

ð4:35Þ

Rð2Þαβγj2;k;l ≡
I
aαβγj2;k;l
2

da2
2πia2

Rð1Þαβγ ¼ −Rð2Þαβγj1;k;l: ð4:36Þ

After the a2 integral, and simplifying the resulting inte-
grand by explicitly performing various half-period shifts,
the index reads

I2;0 ¼
I

da3
2πia3

ηðτÞ2ϑ1ð2a3Þ2
2
Q
�ϑ1ð2a3 � 2bÞ

×
X
��

�
E2

��1
�b

�
− E2

� �1
�a3

��
: ð4:37Þ

The factor in front of the sum is again an elliptic function in
a3 with periodicities 1 and τ. The relevant poles and
residues are

a3 ¼ �bþ
k
2
τ þ l

2
; Res

�bþk
2
τþl

2

¼ � 2iϑ1ð2bÞ2
ηðτÞϑ1ð4bÞ

;

k;l ¼ 0; 1: ð4:38Þ

The final result of the Schur index then reads
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I 02;0ðbÞ ¼
iϑ1ð2bÞ2

24ηðτÞϑ1ð4bÞ
�X
�;�

E1

��1
�b

�
þ 12

X
�;�;�;�

E1

��1
�b

�
E2

��1
�b

�
þ 48

X
�;�

E3

��1
�b

��

¼ iϑ1ð2bÞ2
ηðτÞϑ1ð4bÞ

�
E3

�þ1
b2

�
þ E1

�þ1
b2

�
E2

�þ1
b2

�
þ 1

12
E1

�
1

b2

��
: ð4:39Þ

To obtain this result, we also used (A53).
If generalized S-duality holds, the two descriptions of the

genus-two theory should have identical Schur indices. In
other words,

I2;0ð2bÞ ¼ I 02;0ðbÞ; ð4:40Þ
where we rescaled the Uð1Þ charges appropriately. The
difference of the two indices is given by

I 02;0ðbÞ − I2;0ð2bÞ ¼
�
E2 þ

1

12

��
iϑ1ð2bÞ2
ηðτÞϑ1ð4bÞ

×

�
E1

�þ1
b2

�
− E1

�−1
b2

��

−
ηðτÞ2
2

ϑ4ð0Þ2
ϑ4ð2bÞ2

�
¼ 0; ð4:41Þ

where the right-hand side vanishes thanks to (A54).

E. Unflavoring

Suppose we have an index Ig;nðq; b⃗Þ with n > 0 and we
would like to unflavor one of its flavor fugacities. We

consider sending bn → 1 in the compact formula for
Ig;nðbÞ. To do so, we invoke the simple limit

lim
b→0

X
β¼�

β

ϑ1ð2bÞ
ϑðkÞi ðaþ βbÞ
ϑiðaþ βbÞ

¼ 1

ϑ01ð0Þ
�
−
ϑ0iðaÞ
ϑiðaÞ

ϑðkÞi ðaÞ
ϑiðaÞ

þ ϑðkþ1Þi ðaÞ
ϑiðaÞ

�
; ð4:42Þ

or equivalently,

lim
b→0

X
β¼�

β

ϑ1ð2bÞ
Ek

� �1
abβ

�

¼ 2πi
ϑ01ð0Þ

�
−E1

��1
a

�
Ek

��1
a

�
− ðkþ 1ÞEkþ1

��1
a

�

þ
Xbkþ12 c
l¼1

E2lðτÞEkþ1−2l

��1
a

��
: ð4:43Þ

As a result, the Ig;n indices with one fugacity unflavored
is given by

Ig;nðbn ¼ 1Þ ¼ in

2

2πiηðτÞ2þ2g−2
ϑ01ð0Þ

Q
n−1
i¼1 ϑ1ð2biÞ

X0
αi

�Yn−1
i¼1

αi

� Xnþ2g−2
k¼1

λðnþ2g−2Þk

�
−E1

� ð−1Þn
bα
n−1

�
Ek

� ð−1Þn
bα
n−1

�

− ðkþ 1ÞEkþ1

� ð−1Þn
bα
n−1

�
þ

Xbkþ12 c
l¼1

E2lðτÞEkþ1−2l

� ð−1Þn
bα
n−1

��
; ð4:44Þ

where bα
n−1 is shorthand for

Q
n−1
i¼1 b

αi
i . One can repeat this

computation to further unrefine the indices.
We have not pursued this logic in all generality to arrive

at a compact formula for the fully unrefined limit.11

However, as an example of an unflavored index, we
consider the unflavored limit of I0;4. This result can be
compared against the unflavored vacuum character of
ðd̂4Þ−2 found in [39]. The index reads

I0;4ðq; b⃗Þ ¼
1

2

ηðτÞ2Q
4
j¼1 ϑ1ð2bjÞ

X
αj

�Y4
j¼1

αj

�
E2

� þ1Q
4
j¼1 b

αj
j

�
:

ð4:45Þ

Recall that

E2

�þ1
z

�
¼ 1

8π2
ϑ001ðzÞ
ϑ1ðzÞ

−
1

2
E2; E2¼

1

12π2
ϑ0001 ð0Þ
ϑ01ð0Þ

: ð4:46Þ

Taking the b1;…; b4 → 1 limit carefully one after another,
we obtain

lim
b⃗→1

I0;4ðq; b⃗Þ

¼ 10ϑð3Þ1 ð0Þ3 − 13ϑ01ð0Þϑð3Þ1 ð0Þϑð5Þ1 ð0Þ þ 3ϑ0ð0Þ2ϑð7Þð0Þ
240× 22=3π8=3ϑ01ð0Þ19=3

:

ð4:47Þ

On the other hand, E4 is related to E2 and the Jacobi theta
function by

11We have been informed that [38] has a proposal for such a
formula.
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E4ðτÞ ¼ q∂qE2ðτÞ þE2ðτÞ2; E2 ¼
1

12π2
ϑ0001 ð0Þ
ϑ01ð0Þ

; ð4:48Þ

and also ϑ01ð0Þ ¼ 2πηðτÞ3. Putting everything together, it is
then straightforward to show that

lim
b⃗→1

I0;4ðq; b⃗Þ ¼ 3
q∂qE4ðτÞ
ηðτÞ10 : ð4:49Þ

Note that the normalization conventions in [39] are differ-
ent from ours.

F. Resumming TQFT formula

From the identification of the trinion index (4.7) with the
TQFT formula (4.8), it is natural to expect that the compact,
closed-form expressions in (4.1) are a resummation of the
TQFT formulas for all theories of class S of type a1. The
TQFT formula reads

Ig;n ¼ q
1
12
ð13ðg−1Þþ5nÞX

j∈1
2
N

CRj
ðqÞnþ2g−2

Yn
i¼1

ψRj
ðbi; qÞ;

ð4:50Þ
where

CRj
ðqÞ¼−

q
1
2ðq;qÞ

qjþ1
2−q−j−

1
2

; ψRj
ðb;qÞ¼ −iq1

8

ϑ1ð2bÞ
X
α¼�

αbαð2jþ1Þ:

ð4:51Þ
We have also included the central charge factor q−c=24,
where

−
c
24
¼ 1

12
ð13ðg − 1Þ þ 5nÞ: ð4:52Þ

More explicitly, the TQFT formula can be written as

Ig;n ¼
inηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2b1Þ

X
α⃗¼�

�Yn
i¼1

αi

�Xþ∞
k¼1

ðQn
i¼1 b

αiÞk
ðqk

2 − q−
k
2Þnþ2g−2 :

ð4:53Þ
Comparing with (4.1), one immediately notices the strong
similarities, and one derives the following resummation
formula:

1

2

X
αi¼�

�Yn
i¼1

αi

� Xnþ2g−2
l¼1

λðnþ2g−2Þl El

� ð−1ÞnQ
n
i¼1 b

αi
i

�

¼
X
αi

�Yn
i¼1

αi

�Xþ∞
k¼1

ðQn
i¼1 b

αiÞk
ðqk

2 − q−
k
2Þnþ2g−2 : ð4:54Þ

V. N = 4 THEORIES

Another series of Lagrangian theories whose Schur
index can be evaluated exactly is the N ¼ 4 super
Yang-Mills models. In Sec. III A, we have already com-
puted the index of the N ¼ 4 theory with gauge group
SUð2Þ. In this section we look at rank-two cases of classical
gauge groups in flavored detail and present results for
unflavored indices of all SUðNÞ theories.

A. SUð3ÞN = 4 super Yang-Mills theory

The Schur index of SUð3ÞN ¼ 4 super Yang-Mills
theory is given by the double contour integral

IN¼4SUð3Þ ¼
1

3!

I Y2
j¼1

daj
2πiaj

ηðτÞ6
ϑ4ðbÞ2

Y3
i;j¼1
i≠j

ϑ1ðai − ajÞ
ϑ4ðai − aj þ bÞ ;

ð5:1Þ
where a3 ¼ −a1 − a2 and a3 ¼ ða1a2Þ−1. It is easy to
verify that the integrand is elliptic in both a1 and a2. Its
poles are determined by the following six equations, which
define the zeros of the ϑ4’s in the denominator,

ai − aj ¼ �bþ
τ

2
; i; j ¼ 1; 2; 3; i ≠ j: ð5:2Þ

To evaluate the integral (5.1), we first perform the
integration over a1. We thus have to take into account
six poles, located at

a1 ¼ a2 � bþ τ

2
; ð5:3Þ

a1 ¼ −2a2 � bþ τ

2
; ð5:4Þ

a1 ¼ −
a2
2
� b
2
þ τ

4
þ kτ

2
þ l

2
; k;l ¼ 0; 1: ð5:5Þ

Note that the set of poles in the last line arises from the pole
equation ina1 − a3 ¼ 2a1 þ a2.Due to the factor of2 in front
of a1, a larger number of poles lies within the fundamental
parallelogram as compared to the cases in the first two lines.
The respective residues of these poles are given by

Rð1Þ1;� ¼
i
6
ηðτÞ3 ϑ4ð3a2 � bÞϑ1ð3a2 � 2bÞ

ϑ1ð�2bÞϑ1ð3a2Þϑ4ð3a2 � 3bÞ ; ð5:6Þ

Rð1Þ2;� ¼
i
6
ηðτÞ3 ϑ4ð3a2 ∓ bÞϑ1ð3a2 ∓ 2bÞ

ϑ1ð�2bÞϑ1ð3a2Þϑ4ð3a2 ∓ 3bÞ ; ð5:7Þ
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Rð1Þ3;�;kl ¼
i
12

ηðτÞ3
ϑ1ð�2bÞ

Y
γ¼�

ϑ1ð32 γa2 � 1
2
bþ 1

4
τ þ k

2
τ þ l

2
Þ2

ϑ4ð32 γa2 � 3
2
bþ 1

4
τ þ k

2
τ þ l

2
Þϑ4ð32 γa2 ∓ 1

2
bþ 1

4
τ þ k

2
τ þ l

2
Þ : ð5:8Þ

The poles in a1 are all of imaginary type; hence the result of the a1 integral is given by

X
�
Rð1Þ1;�E1

� −1
b�1

�
þ
X
�
Rð1Þ2;�E1

� −1
a−32 b�

�
þ

X
�;k;l

Rð1Þ3;�;klE1

� −1

a
−3
2

2 b�1
2q

1
4q

k−1
2 eπil

�
; ð5:9Þ

where we have chosen the reference value a1 ¼ a2, which
is a zero of the integrand. To integrate these terms with
respect to a2, one can first rescale (where applicable)
3a2 → a2 and 3

2
a2 → a2 without affecting the integral.

Next, to be able to apply the integration formulas of
Sec. II B, we list the relevant poles and residues in the
following table:

Factor Poles Residues

Rð1Þ1;� a2 ¼ 0 − i
6ηðτÞ

ϑ4ðbÞ
ϑ4ð3bÞ

a2 ¼ ∓3bþ τ
2 þ i

6ηðτÞ
ϑ4ðbÞ
ϑ4ð3bÞ

Rð1Þ2;� a2 ¼ 0 þ i
6ηðτÞ

ϑ4ðbÞ
ϑ4ð3bÞ

a2 ¼ �3bþ τ
2 − i

6ηðτÞ
ϑ4ðbÞ
ϑ4ð3bÞ

Rð1Þ3;�;kl a2 ¼ ∓ 3
2
γbþ τ

2

þ 1
4
ð2k − 1Þγτ þ l

2
, γ ¼ �1

γ ϑ4ðbÞ
12ϑ4ð3bÞ

Finally, putting everything together and simplifying, we
obtain the Schur index of N ¼ 4 super Yang-Mills with
gauge group SUð3Þ

IN¼4SUð3Þ ¼ −
1

8

ϑ4ðbÞ
ϑ4ð3bÞ

�
−
1

3
þ 4E1

�−1
b

�
2

− 4E2

�þ1
b2

��
:

ð5:10Þ

It is noteworthy that the prefactor is precisely equal to the
simultaneous residue of the original integrand.

B. SOð4ÞN = 4 super Yang-Mills theory

The gauge group SOð4Þ is not a simple Lie group: its Lie
algebra is isomorphic to suð2Þ ⊕ suð2Þ. The physical
theory is a product theory, and its Schur index equals the
square of IN¼4SUð2Þ. This can easily be shown by a change
of variables and exploiting the periodicity with respect to the
integration variables.
The integral that computes the index reads

IN¼4SOð4Þ ¼
1

4

I
jaij¼1

Y2
i¼1

dai
2πiai

Y
α;β¼�

Y
i<j

ϑ1ðαaiþ βajÞ
ϑ4ðαaiþ βajþ bÞ

≡
I
jaij¼1

Y2
i¼1

dai
2πiai

Zða1;a2Þ: ð5:11Þ

Changing the variables to

b1 ≡ a1 þ a2; b2 ¼ a1 − a2; ð5:12Þ

the integral now reads

IN¼4SOð4Þ ¼
Z

2

0

db1

Z
2−b2

b2−2
db2

�
1

2

�

×Z

�
1

2
ðb1þb2Þ;

1

2
ðb1−b2Þ

�
; ð5:13Þ

where the factor of 1=2 is the Jacobian. Using the
periodicity with respect to both a1 and a2, the integrals
decouple as

IN¼4 SOð4Þ ¼
1

22

�Z
2

0

db1
ηðτÞ3ϑ1ð�b1Þ
2ϑ4ð�b1 þ bÞ

�

×

�Z
1

−1
db2

ηðτÞ3ϑ1ð�b2Þ
2ϑ4ð�b2 þ bÞ

�
; ð5:14Þ

from which we recognize that indeed

IN¼4 SOð4Þ ¼ IN¼4SUð2ÞðbÞ2 ¼
1

4π2
ϑ04ðbÞ2
ϑ1ð2bÞ2

: ð5:15Þ

C. SOð5ÞN = 4 super Yang-Mills theory

Next, we consider N ¼ 4 super Yang-Mills theory with
gauge group SOð5Þ. Since soð5Þ ≅ uspð4Þ, the theory is
trivially S-dual to the USpð4Þ theory. Manipulations
similar to the ones in the previous subsection make sure
that this expectation is borne out at the level of the index as
well. Let us thus focus on the SOð5Þ theory.
Its Schur index is computed by
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IN¼4 SOð5Þ ¼
1

8

I Y2
A¼1

daA
2πiaA

ηðτÞ6
ϑ4ðbÞ2

−ϑ1ða1Þ2ϑ1ða2Þ2ϑ1ða1 þ a2Þ2ϑ1ða1 − a2Þ2
ϑ4ða1 � bÞϑ4ða2 � bÞϑ4ða1 þ a2 � bÞϑ4ða1 − a2 � bÞ : ð5:16Þ

Here we simply list the poles and residues relevant for the computation. The poles and residues in the a1-integrals are

Poles Residues

a1 ¼ αbþ τ
2
, α ¼ �1 i

8
ηðτÞ3 ϑ4ða2þαbÞϑ4ða2−αbÞ

ϑ1ð2αbÞϑ1ða2þ2αbÞϑ1ða2−2αbÞ
a1 ¼ βa2 þ γbþ τ

2
, β; γ ¼ �1 i

8
ηðτÞ3 ϑ4ða2þβγbÞϑ1ða2Þϑ4ð2a2þβγbÞ2

ϑ1ða2þ2βγbÞϑ4ða−βγbÞϑ1ð2aÞϑ1ð2γbÞϑ1ð2a2þ2βγbÞ

while the poles and residues in the subsequent a2-integral are

Factor Poles Residues

i
8

ηðτÞ3ϑ4ða2þαbÞϑ4ða2−αbÞ
ϑ1ð2αbÞϑ1ða2þ2αbÞϑ1ða2−2αbÞ

a2 ¼ 2αδb, δ ¼ � − δ
8

ϑ4ð3bÞϑ4ðbÞ
ϑ1ð2bÞϑ1ð4bÞ

i
8

ηðτÞ3ϑ4ða2þβγbÞϑ1ða2Þϑ4ð2a2þβγbÞ2
ϑ1ða2þ2βγbÞϑ4ða−βγbÞϑ1ð2aÞϑ1ð2γbÞϑ1ð2a2þ2βγbÞ

a2 ¼ −2βγb þ β
8

ϑ4ðbÞϑ4ð3bÞ
ϑ1ð2bÞϑ1ð4bÞ

a2 ¼ βγbþ τ
2 − β

8

ϑ4ðbÞϑ4ð3bÞ
ϑ1ð2bÞϑ1ð4bÞ

a2 ¼ τ
2

βϑ4ðbÞ2ϑ4ð0Þ
16ϑ1ð2bÞ2ϑ4ð2bÞ

a2 ¼ 1
2 − βϑ4ðbÞ2ϑ2ð0Þ

16ϑ1ð2bÞ2ϑ2ð2bÞ
a2 ¼ 1

2
þ τ

2 − βϑ4ðbÞ2ϑ3ð0Þ
16ϑ1ð2bÞ2ϑ3ð2bÞ

a2 ¼ −βγb − βϑ4ðbÞ2ϑ4ð0Þ
16ϑ1ð2bÞ2ϑ4ð2bÞ

a2 ¼ −βγbþ 1
2 þ βϑ4ðbÞ2ϑ3ð0Þ

16ϑ1ð2bÞ2ϑ3ð2bÞ
a2 ¼ −βγbþ 1

2
þ τ

2 þ βϑ4ðbÞ2ϑ2ð0Þ
16ϑ1ð2bÞ2ϑ2ð2bÞ

After performing both integrals, we find

IN¼4 SOð5Þ ¼
ϑ4ðbÞϑ4ð3bÞ

16ϑ1ð2bÞϑ1ð4bÞ
�
1þ ϑ04ðbÞ2

π2ϑ4ðbÞ2
þ ϑ04ðbÞϑ04ð3bÞ
π2ϑ4ðbÞϑ4ð3bÞ

þ ϑ001ð2bÞ
π2ϑ1ð2bÞ

−
ϑ004ðbÞ
π2ϑ4ðbÞ

�

þ 1

16

ϑ4ðbÞ2
ϑ1ð2bÞ2

�
i
π

ϑ03ð0Þ
ϑ3ð2bÞ

−
i
π

ϑ04ð0Þ
ϑ4ð2bÞ

þ 1

2π2

�
−

ϑ002ð0Þ
ϑ2ð2bÞ

−
ϑ003ð0Þ
ϑ3ð2bÞ

þ ϑ004ð0Þ
ϑ4ð2bÞ

��

þ 1

32
ϑ4ð0Þ

ϑ4ðbÞ2
ϑ1ð2bÞ2ϑ4ð2bÞ

�
−1 −

ϑ001ðbÞ
π2ϑ1ðbÞ

�
þ 1

32
ϑ3ð0Þ

ϑ4ðbÞ2
ϑ1ð2bÞ2ϑ3ð2bÞ

�
þ1þ ϑ002ðbÞ

π2ϑ2ðbÞ
�

þ 1

32
ϑ2ð0Þ

ϑ4ðbÞ2
ϑ1ð2bÞ2ϑ2ð2bÞ

�
−1þ ϑ003ðbÞ

π2ϑ3ðbÞ
�
: ð5:17Þ

Here we chose to express the final result in terms of Jacobi
theta functions. Note that unlike the simply laced cases,
different prefactors appear, corresponding to different
independent simultaneous residues of the original integral.
These are given by (up to signs)

8ϑ4ð3bÞϑ4ðbÞ
ϑ1ð2bÞϑ1ð4bÞ

;
ϑ4ðbÞ2ϑi¼2;3;4ð0Þ

16ϑ1ð2bÞ2ϑi¼2;3;4ð2bÞ
: ð5:18Þ

D. Unflavored indices for SUðNÞN = 4 theories

Unflavored indices of N ¼ 4 super Yang-Mills theories
with gauge group SUðNÞ were obtained in terms of elliptic

integrals in [27]. In [40], it was further pointed out that
when the gauge groups are SUð2N þ 1Þ, the unflavored
indices are given by the generating function MN of
MacMahon’s generalized “sum-of-divisor” function,

IN¼4SUð2Nþ1Þ ¼q−
NðNþ1Þ

2 MN;

MN≡
X

0<n1<���<nN

qn1þ���þnN

ð1−qn1Þ2 � � �ð1−qnN Þ2 : ð5:19Þ

On the other hand, the unflavored limit of the Schur
indices computed via our integral formulas are written
in terms of Eisenstein series or Jacobi theta functions.
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By making suitable Ansätze, we can increase the rank
beyond the rank-two cases for which we have performed
analytic computations in the previous subsections. We
collect our results for SU gauge groups of low ranks in
Table I. From these results, we observe some clear patterns.
For SUðoddÞ gauge groups, the indices can be organized
into the form

IN¼4 SUð2Nþ1Þ ¼ ð−1ÞN
XN
k¼0

λ̃ð2Nþ3Þ2kþ2 ð2Þ
maxð2k; 1Þ Ẽ2k; ð5:20Þ

where Ẽ’s are defined in terms of the Weierstrass elliptic
P-function (A30)12

Ẽ0 ¼ 1; Ẽ2k ≔ 2k
I

dy
2πiy

y−2keP2ðyÞ

¼
X

n⃗P
j≥1

jnj¼k

Y
p≥1

1

np!

�
−

1

2p
E2p

�
np
: ð5:21Þ

Here the summation is over integer partitions ½1n1 ; 2n2 ;…�
of k, where nj is the multiplicity of the part of length j.
The coefficients λ̃ are rational functions defined in terms
of (4.3),

λ̃ðnÞl ðKÞ ≔
Xn

l0¼maxðl;1Þ

�
K
2

�
l0−l 1

ðl0 − lÞ! λ
ðnÞ
l0 : ð5:22Þ

Similarly, the SUð2NÞ indices with N ¼ 1, 2, 3, 4 can be
written as

IN¼4SUð2NÞ ¼ ð−1ÞN
XN
l¼1

ð−1Þl22lλ̃ð2Nþ2Þ2lþ1 ð2Þ
2ð2lÞ!

×

�
1

4π

�
2l−1 ϑð2lÞ4 ð0Þ

ϑ01ð0Þ
: ð5:23Þ

We conjecture that this expression captures the unflavored
Schur indices of all N ¼ 4 super Yang-Mills theories with
SUðevenÞ gauge groups.

VI. SUPERCONFORMAL QCD

A third class of Lagrangian theories we consider is
N ¼ 2 superconformal QCD. The case with gauge group
SUð2Þ has been considered in Sec. III B and was revisited
from the point of view of class S in Sec. IV. While by now
the computations are familiar, their concrete application
tends to be technical, so we will be a bit more schematic in
this section.

A. SUð3Þ superconformal QCD

The Schur index of SUð3Þ superconformal QCD is given
by the contour integral

ISUð3ÞSQCD¼−
1

3!
ηðτÞ16

I Y2
A¼1

daA
2πiaA

Q
A≠Bϑ1ðaA−aBÞQ

3
A¼1

Q
6
i¼1ϑ4ðaA−biÞ

≡
I Y2

A¼1

daA
2πiaA

ZðaÞ; ð6:1Þ

where a3 ¼ −a1 − a2 and a3 ¼ ða1a2Þ−1.

TABLE I. Unflavored indices for various low-rankN ¼ 4 theories with SU gauge groups. In (5.20) and (5.23) we present conjectures
generalizing these closed-form expressions to all ranks.

G Schur index

SUð2Þ 1
4π

ϑ00
4
ð0Þ

ϑ0
1
ð0Þ

SUð3Þ 1
24
þ 1

2
E2

SUð4Þ ϑ00
4
ð0Þ

48πϑ0
1
ð0Þ þ

ϑ0000
4
ð0Þ

192π3ϑ0
1
ð0Þ

SUð5Þ 3
640
þ 1

16
E2 − 1

4
½E4 − 1

2
ðE2Þ2�

SUð6Þ 1
360π

ϑð2Þ
4
ð0Þ

ϑ0
1
ð0Þ þ 1

1152π3
ϑð4Þ
4
ð0Þ

ϑ0
1
ð0Þ þ 1

23040π5
ϑð6Þ
4
ð0Þ

ϑ0
1
ð0Þ

SUð7Þ 5
7168
þ 37

3840
E2 − 5

96
½E4 − 1

2
ðE2Þ2� þ 1

6
½E6 − 3

4
E4E2 þ 1

8
E3
2�

SUð8Þ 1
2240π

ϑð2Þ
4
ð0Þ

ϑ0
1
ð0Þ þ 1

46080π3
ϑð4Þ
4
ð0Þ

ϑ0
1
ð0Þ þ 1

92160π5
ϑð6Þ
4
ð0Þ

ϑ0
1
ð0Þ þ 1

5160960π7
ϑð8Þ
4
ð0Þ

ϑ0
1
ð0Þ

SUð9Þ 35
294912

þ 3229
1935360

E2 − 47
4608
½E4 − 1

2
ðE2Þ2� þ 7

144
½E6 − 3

4
E4E2 þ 1

8
ðE2Þ3�

− 1
8
½E8 − 2

3
E6E2 − 1

4
ðE4Þ2 − 1

48
ðE2Þ4 þ 1

4
E4ðE2Þ2�

SUð11Þ 63
2883584

þ 10679
34406400

E2 − 1571
774144

ðE4 − 1
2
ðE2Þ2Þ þ 133

11520
ðE6 − 3

4
E4E2 þ 1

8
Þ

− 3
64
ðE8 − 2

3
E6E2 − 1

4
ðE4Þ2 þ 1

4
E4ðE2Þ62 − 1

48
ðE2Þ4Þ

þ 1
10
ðE10 − 5

8
E8E2 − 5

12
E6E4 þ 5

24
E6ðE2Þ2 þ 5

32
ðE4Þ2E2 − 5

96
E4ðE2Þ3 þ 1

384
ðE2Þ5Þ

12It is curious to observe that almost identical expressions E2k
appear in the translation (A43) from the twisted Eisenstein series
E2k½##� to Jacobi theta functions, and that the same numbers λ̃ will
appear in the residues of A1-indices [see (7.28)].
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The a1 integral can easily be performed by considering the (imaginary) poles and residues listed in the following table:
Note that the two residues sharing the same index j1 are opposite to one another. We define

Rj1 ≔ Res
a1¼bj1þτ

2

ZðaÞ ¼ − Res
a1¼−a2−bj1þτ

2

ZðaÞ: ð6:2Þ

Poles ðj1 ¼ 1;…; 6Þ Residues

a1 ¼ bj1 þ τ
2 1

6
ηðτÞ13q1

8

Q
A≠B ϑ1ðaA−aBÞja1¼bj1þτ2Q

i
ϑ4ða2−biÞ

Q
i
ϑ4ða2þbj1þbiþτ

2
Þ
Q

i≠j1
ϑ4ðbi−bj1−τ

2
Þ

a1 ¼ −a2 − bj1 þ τ
2 1

6
ηðτÞ13q1

8

Q
A≠B ϑ1ðaA−aBÞja1¼−a2−bj1þτ2Q

i
ϑ4ða2−biÞ

Q
i
ϑ4ða2þbj1þbi−τ

2
Þ
Q

i≠j1
ϑ4ðbi−bj1þτ

2
Þ

Choosing the reference value a1 ¼ 0, the index becomes after the a1-integration

ISUð3Þ SQCD ¼
I

da2
2πia2

ðR0Z þR1Z þR2ZÞ; ð6:3Þ

where

R0Z ≔ Zða1 ¼ 0Þ; R1Z ≔
X6
j1¼1

Rj1E1

�−1
bj1

�
; R2Z ≔

X6
j1¼1

Rj1E1

� −1
a2bj1

�
: ð6:4Þ

The a2-integral picks up the following poles and residues:

Factor Poles Residues

R0Z a2 ¼ �bj2 þ τ
2 �R0j2 ≔ �

iηðτÞ13ϑ1ð2bj1 Þϑ4ðbj1 Þ3
6
Q

i≠j1
ϑ1ðbj1−biÞϑ1ðbj1þbiÞ

Q
i≠j1

ϑ4ðbiÞ
Rj1 bj2 þ τ

2
; j2 ≠ j1 Rj1j2 ≔

ηðτÞ10ϑ1ð2bj1þbj2 Þϑ1ðbj1þ2bj2 Þ
6
Q

i≠j1 ;j2
ϑ1ðbj1−biÞϑ1ðbj2−biÞ

Q
i≠j1 ;j2

ϑ4ðbj1þbj2þbiÞ
−bj1 − bj2 ; j2 ≠ j1 −Rj1j2

Note that

Res
a2¼bj2þτ

2

Rj1 ¼ − Res
a2¼−bj1−bj2

Rj1 ¼
�
Rj1j2 j2 ≠ j1
0 j2 ¼ j1

: ð6:5Þ

Choosing again a2 ¼ 0 as the reference value which happens to be a zero of Zða1 ¼ 0Þ, the index can be computed by
finishing the a2-integral,

ISUð3Þ SQCD ¼
X6
j2¼1

2R0j2E1

�−1
bj2

�
þ

X6
j1;j2¼1

Rj1j2

�
E1

�−1
bj2

�
þ E1

� −1
bj1bj2q

−1
2

��
E1

�−1
bj1

�

þ
X6

j1;j2¼1
Rj1j2

�
E2

�
1

bj1bj2

�
− E2

�
1

bj2q
−1
2

��
; ð6:6Þ

where we noticed that

R0j ≡ Res
a2→bjþτ

2

Zða1 ¼ 0Þ ¼
�

Res
a1→bjþτ

2

ZðaÞ
�
a2¼0

: ð6:7Þ

SUð3Þ superconformal QCD is a theory of class S of type a2 associated with four-punctured spheres with two maximal
and two minimal punctures. The manifest flavor symmetry is SUð3Þ

cð1Þ
1
;cð1Þ

2

×Uð1Þdð1Þ × SUð3Þ
cð2Þ
1
;cð2Þ

2

×Uð1Þdð2Þ where we
assigned names to the fugacities of the respective flavor symmetry factors in their subscript. They are related to the bs we
have used above as
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cð1Þ1 ¼ b1b2; cð1Þ2 ¼ b2b3; dð1Þ ¼ b1b2b3; ð6:8Þ

cð2Þ1 ¼ b4b5; cð2Þ2 ¼ b5b6; dð2Þ ¼ b4b5b6: ð6:9Þ

With this parametrization, we shall denote the index as
ISUð3ÞSQCDðcð1Þ; cð2Þ; dð1Þ; dð2ÞÞ, and it will be used to
compute the Schur index of the E6 SCFT in the next
section.

B. SUð4Þ superconformal QCD

The Schur index of SUð4Þ superconformal QCD is
computed by the integral

ISUð4ÞSQCD¼þ
1

4!
ηðτÞ26

I Y3
A¼1

daA
2πiaA

Q
A≠Bϑ1ðaA−aBÞQ

3
A¼1

Q
6
i¼1ϑ4ðaA−biÞ

≡
I Y3

A¼1

daA
2πiaA

ZðaÞ; ð6:10Þ

where a4 ¼ −a1 − a2 − a3.
We simply list the relevant poles and residues as we

integrate a1, a2, a3 one after another.

Factor a1-poles Residues

Z a1 ¼ bj1 þ τ
2

Rj1
a1 ¼ −a2 − a3 − bj1 þ τ

2
−Rj1

Factor a2-poles Residues

Zða1 ¼ 0Þ a2 ¼ bj2 þ τ
2

R0j2
a2 ¼ −a3 − bj1 þ τ

2
−R0j2

Rj1 a2 ¼ bj2 þ τ
2

Rj1j2
a2 ¼ −a3 − bj1 − bj2 −Rj1j2

Factor a3-poles Residues

Rj1j2 a3 ¼ bj3 þ τ
2

Rj1j2j3
a3 ¼ −bj1 − bj2 − bj3 þ τ

2
−Rj1j2j3

In the above, Rj; Rj1j2 , R0j ¼ Rj0 and so forth denote
residues of the integrand. Using also that

Rj0 ≔ Rjða2 ¼ 0Þ ¼ Resa2¼bjþτ
2
Zða1 ¼ 0Þ ¼ R0j; ð6:11Þ

R0j2j3 ≔ Resa2¼bj2þτ2
a3¼bj3þ

τ
2

Zða1 ¼ 0Þ; ð6:12Þ

and similarly for Rj10j3 and Rj1j20, we find

ISUð4ÞSQCD ¼
X8

j1;j2;j3¼0
Rj1j2j3

Y3
A¼1

E1

� −1
bjA

�
þ

X8
j1 ;j2¼0
j3¼1

ðRj1j2j3ÞE1

�−1
bj1

�
E1

�−1
bj2

�
E1

� −1
bj1bj2bj3

�

−
X8
j1¼0

j2 ;j3¼1

Rj1j2j3

�
E2

�
1

bj1bj2bj3q
−1
2

�
þ E2

�
1

bj3q
1
2

��

þ
X8
j3¼0

j1j2¼1

Rj1j2j3E1

�−1
bj3

�
E2

�
1

b−1j1 q
1
2

�
þ

X8
j1;j2;j3¼1

Rj1j2j3E1

� −1
bj1bj2bj3

�
E2

�
1

b−1j1 q
1
2

�

þ 1

12

X8
j1;j2¼1

�X8
j3¼0

Rj1j2j3E1

�−1
bj3

�
þ

X8
j3¼1

Rj1j2j3E1

� −1
bj1bj2bj3

��

þ
X8

j1;j2;j3¼1
Rj1j2j3

�
−
1

8
E1

� −1
bj1bj2bj3

�
−

1

24
E3

� −1
bj1bj2bj3

��
: ð6:13Þ

C. SUðNÞ superconformal QCD

So far, we have not encountered an obstruction to
evaluating Schur indices using the integral formulas
presented in Sec. II. However, the formulas given there
only allow us to compute integrals whose integrand is an
elliptic function times an Eisenstein series. When per-
forming the integrals defining the Schur index one by
one, a situation could arise where the integrand contains,
apart from an elliptic function, products of the Eisenstein

series, several of which contain the integration variable.
The integration formulas of Sec. II are insufficient to
evaluate such integrals. In this section we show that this
situation does not occur for SUðN ≥ 4Þ superconformal
QCD and thus that all their Schur indices can in principle
be evaluated in closed form using the technology
developed in this paper. In Sec. VII A, however, we will
encounter a situation where more general integration
formulas are needed.
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The integral we would like to evaluate is

ISUðNÞ SQCD ¼
ð−iÞðN−N2ÞηðτÞ−2þ3NþN2

N!

×
I YN

A¼1

daA
2πiaA

Q
A≠Bϑ1ðaA − aBÞQ

N
A¼1

Q
2N
i¼1 ϑ4ðaA − biÞ

;

ð6:14Þ

where again aN ¼ −
P

N−1
A¼1 aA. We will denote the full

integrand as Z. If we compute the integrals of a1;…; aN−1
one after another, then the first integral picks up two types
of poles,

a1 ¼ pð1Þj1
≔ bj1 þ

τ

2
;

a1 ¼ p̃ð1Þj1
≔ −bj1 − a2 − � � � − aN−1 þ

τ

2
;

j1 ¼ 1;…; 2N: ð6:15Þ

It can be verified that the residues of pð1Þj1
and p̃ð1Þj1

are
opposite. As before, we denote them Rj1 and −Rj1 , and the
first integral then equals

Zða1¼0Þþ
X2N
j1¼1

Rj1E1

�−1
bj1

�
þ
X2N
j1

Rj1E1

� −1
a2 �� �aN−1bj1

�
:

ð6:16Þ

If we define pð1Þ0 ¼ 0; R0 ¼ Zða1 ¼ 0Þ; E1½−1b0 � ¼ 1, it can
be written more succinctly as

X2N
j1¼0

Rj1E1

�−1
bj1

�
þ
X2N
j1

Rj1E1

� −1
a2 � � � aN−1bj1

�
: ð6:17Þ

Note that the residues Rj1 contain a2 in the denominator via
two types of factors,

Y2N
j¼1

ϑ4ða2 − bjÞ and

Y2N
j¼1

ϑ4

�
−bj1 −

τ

2
− a2 − � � � − aN−1 − bj

�
; ð6:18Þ

where the first factor was present in the original integrand,
while the second comes from evaluating

Q
2N
j¼1 ϑ4ðaN − bjÞ

at pj1 . These factors lead to two types of a2-poles,

a2 ¼ pð2Þj2
≡ bj2 þ

τ

2
;

a2 ¼ p̃ð2Þj2
¼ −bj2 − a1 − a3 − � � � þ

τ

2

����
a1¼pð1Þj1

: ð6:19Þ

The corresponding residues are

Rj2j1 ≔ Res
a2¼pð2Þj2

Rj1 and Res
a2¼p̃ð2Þj2

Rj1 ¼ −Rj2j1 : ð6:20Þ

Furthermore, the variables aA>1 appear in a single
Eisenstein series inside each term, and they are organized
in the product

Q
A>1 aA. Therefore aA>1, and a2, in

particular, can be further integrated with our integration
formula.
Let us now show that one can carry out all N − 1

integrals inductively. Suppose we can perform the a1;…;k-
integrals as above. It is not difficult to see that the residue
(and we also replace ResaA¼bjAþτ

2
by limaA→0 when jA ¼ 0)

Rjk���j2j1 ≡ Res
ak¼bjkþτ

2

� � � Res
ak¼bj1þτ

2

ðintegrandÞ ð6:21Þ

has two types of poles in akþ1,

pðkþ1Þjkþ1 ≡ bjþ1 þ
τ

2
;

p̃ðkþ1Þjkþ1 ≡ −a1 − � � � − ak þ akþ2 þ � � � aN−1 þ
τ

2
; ð6:22Þ

where again the a1;…; ak should be properly substituted.
Assume that the result of the first k-integrals is a sum of
terms of the form

� � � þ Rjk���j1E�

� �
�

�
� � �E�

� �
�

�
þ � � � ; ð6:23Þ

where at most only one E� in each product contains the
combination

Q
A>k aA,while the remainingE� factors depend

only on b’s. One can perform the akþ1 integral because
(i) If the product of E� ’s inside a term is completely

independent of ak>A, then the integral will produce

�
Rjkþ1jk���j1E1

� −1
bjkþ1

�
þ Rjkþ1jk���j1E1

� −1
akþ2 � � �aN−1 × ðb’sÞ

��
E�

� �
�

�
� � �E�

� �
�

�
; ð6:24Þ

where we also denote the R0jk���j1 ¼ Rjk���j1ðakþ1 ¼ 0Þ, E1½−1b0 � ¼ 1.
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(ii) If, instead, one E� factor depends on some combination akþ1 � � � aN−1, then the integration of that term leads to terms
of the form

Rjkþ1jk���j1E�

� �
�

�
� � �E�þ1

� �
akþ2 � � � aN−1 × b’s

�
; from akþ1 → pðkþ1Þjkþ1 ; ð6:25Þ

Rjkþ1���j1E�

� �
�

�
� � �E�þ1

� �
b’s

�
; from akþ1 → p̃ðkþ1Þjkþ1 ; ð6:26Þ

Rjkþ1���j1E�

� �
�

�
� � �E1

� −1
bjkþ1

�
; from akþ1 → pðkþ1Þjkþ1 ; ð6:27Þ

Rjkþ1���j1E�

� �
�

�
� � �E1

� −1
akþ2 � � �aN−1 × ðb’sÞ

�
; from akþ1 → p̃ðkþ1Þjkþ1 : ð6:28Þ

Now we see that in each term that is generated by the
akþ1-integral, only one E� factor depends on the combi-
nation akþ2 � � � aN−1, and one can keep on integrating akþ2,
and so forth. However, deriving a compact closed-form
expression for all the superconformal QCD indices has
proved to be challenging. We hope to return to this in the
future.

VII. APPLICATIONS

In this section we consider three applications of the
closed-form expressions for the Schur index derived in the
previous sections. In particular, we derive closed-form
expressions for several non-Lagrangian theories; we con-
sider the modular properties of the Schur index, which are
of particular importance when viewing the Schur index as
the vacuum character of a vertex operator algebra via the
SCFT/VOA correspondence; and finally we look at defect
indices. These applications are meant to illustrate the
usefulness of our closed-form expressions, but are not
intended as an exhaustive study of each of these topics.

A. Non-Lagrangian theories

In the previous sections, we have focused on evaluating
the Schur index of Lagrangian theories, as those are
naturally computed by integrals of multivariate elliptic

functions. However, the Schur indices of several non-
Lagrangian theories are algebraically related to indices
of Lagrangian theories and can thus be derived in closed
form as well.
The first example is the trinion theory T3, i.e., the

theory of class S of type a2 associated with a sphere with
three maximal punctures. This theory can be identified
with the E6 superconformal field theory of Minahan and
Nemeschansky [41]. What is more, in [22,42], it was
shown that its Schur index IT3 can be expressed as a finite
sum involving the index of SUð3Þ superconformal QCD.
This comes about as follows: one starts by observing that
SUð3Þ superconformal QCD is of class S of type a2,
associated with a Riemann sphere with two maximal and
two minimal punctures. The theory has two interesting
S-duality frames—in fact, their duality is the well-known
Argyres-Seiberg duality [43]. The first frame is the gauge
theory description in terms of an SUð3Þ gauge theory with
six fundamental flavors. The second one involves the E6

superconformal field theory and a hypermultiplet with
SUð2Þ flavor symmetry. These are gauged together along
an SUð2Þ (sub)group of their respective flavor symmetries.
At the level of the (Schur) index, the integral implementing
this latter gauging can be inverted [44]. Using the result in
Sec. VI A we then find

IE6
ðc⃗ð1Þ; c⃗ð2Þ; ðwr; w−1r; r−2ÞÞ ¼

ISUð3Þ SQCDðc⃗ð1Þ; c⃗ð2Þ; w
1
3

r ;
w−1

3

r Þw→q
1
2w

θðw2Þ þ
ISUð3ÞSQCDðc⃗ð1Þ; c⃗ð2Þ; w

1
3

r ;
w−1

3

r Þw→q−
1
2w

θðw−2Þ ; ð7:1Þ

where ðwr;w−1r; r−2Þ denotes an SUð3Þ fugacity and the
theta function θðzÞ is defined by

θðzÞ≡ ϑ1ðzÞ
iz

1
2q

1
8ðq; qÞ : ð7:2Þ

At first sight, we can use this result for the index of the
trinion theory T3 to compute the indices of all theories of
class S of type a2. However, it turns out that one runs into
integrals that cannot be evaluated with the integration
formulas presented in Sec. II. In particular, one encounters
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integrals whose integrand is an elliptic function multiplied
by a product of Eisenstein series several of which contain
the integration variable. Hence, a systematic computation
of indices of theories of class S of type a2 is beyond the
scope of this paper.13

Similarly, we can derive closed-form expressions for the
indices of the theories of class S often denoted as R0;N , and
in particular, using these results, we can also evaluate the
Schur index of the E7 Minahan-Nemeschansky theory [45].
As a theory of class S, R0;N correspond to a sphere with two
maximal punctures and one puncture associated with the
partition ½N − 2; 12�. It arises in the strong-coupling limit of
SUðNÞ superconformal QCD in very much the sameway as
the E6 theory appeared after applying Argyres-Seiberg
duality: gauging the diagonal of an SUð2Þ subgroup of the
flavor symmetry of R0;N and the SUð2Þ flavor symmetry of
a hypermultiplet describes an S-duality frame of SUðNÞ
superconformal QCD. Hence, using the Spiridonov-
Warnaar inversion formula, one can obtain the R0;N indices
from those of SUðNÞ superconformal QCD. Finally, one
derives the index of the E7 Minahan-Nemeschansky theory
by Higgsing the R0;4 theory.
Another series of non-Lagrangian theories whose Schur

indices are related to those of Lagrangian theories were

discussed in [40,46]. The theories in question are defined
by conformally gauging different sets of DpðGÞ super-
conformal field theories [47,48].14 Due to the restrictions
considered in [40,48], at most four Dpi

ðGÞ theories can be
gauged along their common G-symmetry forming a quiver
structure Γ̂½G� with one gauge node and four (or less)
Dpi
ðGÞ-legs, where Γ̂ ¼ D4; E6;7;8. It was pointed out in

[40] that for a set of Γ andG such that Γ̂½G� is flavorless, the
Schur index I Γ̂½G� is actually related to the one of N ¼ 4

super Yang-Mills with gauge group G as

I Γ̂½G�ðqÞ ∼ IN¼4Gðb ¼ q
αΓ
2
−1; q → qαΓÞ: ð7:3Þ

Here αΓ is the largest comark associated with the affine
Dynkin diagram Γ̂, and more explicitly, αD4

¼ 2, αE6
¼ 3,

αE7
¼ 4, αE8

¼ 6. Applying our closed-form expressions
for the N ¼ 4 indices, we have, for example,

I D̂4½SUð3Þ� ¼qIN¼4SUð3Þðb¼1;q2Þ¼ 1

24
þ1

2
E2ð2τÞ: ð7:4Þ

Denoting ϑ̂iðzÞ≡ ϑiðz; 4τÞ, one also finds

I Ê7½SUð3Þ� ¼ q−1IN¼4SUð3Þðb ¼ q; q4Þ

¼ 1

12π

ϑ̂4ðτÞ
ϑ̂1ðτÞ

�
−
ϑ̂04ð0Þ
ϑ̂4ð0Þ

−
ϑ̂04ðτÞ
ϑ̂4ðτÞ

−
i
π

ϑ̂04ð0Þ
ϑ̂4ð0Þ

ϑ̂04ðτÞ
ϑ̂4ðτÞ

−
i
π

ϑ̂04ðτÞ2
ϑ̂4ðτÞ2

−
i
2π

ϑ̂004ð0Þ
ϑ̂4ð0Þ

þ i
2π

ϑ̂004ðτÞ
ϑ̂4ðτÞ

�
ð7:5Þ

and, with the notation Êk½ϕθ�≡ Ek½ϕθ�ð12 τÞ,

I Ê6½SUð4Þ� ¼
ϑ4ð3τj 12 τÞ
ϑ4ð12τj 12 τÞ

�
−
i
3
Ê3

�−1
q9

�
þ i
2
Ê1

�−1
q3

�
Ê1

�−1
q6

�
−
i
6
Ê1

�−1
q3

�
þ i
24

Ê1

�−1
q3

�
þ i
24

Ê1

�−1
q9

��
: ð7:6Þ

B. Modular properties

Recall that with any four-dimensional N ¼ 2 supercon-
formal field theory one can associate a VOA [7]. The Schur
index of the four-dimensional theory equals the vacuum
character of the chiral algebra. The modular properties of
these vacuum characters are of intrinsic interest. By showing
that unflavored Schur indices must satisfy a modular differ-
ential equation, it was found in [21] that the vacuum character
of any vertex operator algebra associated with a four-dimen-
sional sueprconformal field theory is an element of a vector-
valued (quasi)modular form. Establishing this fact directly,
however, has so far been complicated due to a lack of closed-
form expressions. In this paper, we have found precisely such

expressions in terms of functions with well-understood
modular properties and, even better, for the fully flavored
indices. In this subsectionwe thus study themodular behavior
of the Schur index in several examples.

1. Small N = 4 VOA at c = − 9

Recall that the associated vertex operator algebra of
N ¼ 4 super Yang-Mills theory with gauge group SUð2Þ is
the small N ¼ 4 vertex operator (super)algebra at c ¼ −9.
It contains an ŝuð2Þk¼−3

2
affine subalgebra. It is convenient

to include the level k ¼ − 3
2
in the character as follows:

13We have been informed that [38] has obtained results for
unflavored Schur indices of a number of higher-rank theories of
class S.

14The DpðGÞ theories can be given a class S description in
terms of a regular full puncture (hence providing a G flavor
subgroup) and one irregular puncture, often denoted as
ðGb½p − h∨�; FÞ.
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Iðy; bÞ ¼ yk

2π

ϑ04ðbÞ
ϑ1ð2bÞ

; ð7:7Þ

where we introduced a novel fugacity y ¼ e2πiy and used
our result of (3.7). Consider the following representation of
the S and T modular transformations:�

y −
b2

τ
;
b
τ
;−

1

τ

�
←
S ðy; b; τÞ⟶T ðy; b; τ þ 1Þ: ð7:8Þ

One can easily check that S4 ¼ ðSTÞ6 ¼ 1. Using the S and
T transformation of ϑi, it is easy to derive that

Iðy; bÞ⟶STS I logðy; bÞ ≔ −bchbcβγðy; bÞ þ ð1 − τÞIðy; bÞ;
ð7:9Þ

where we denoted

chbcβγðy; bÞ ≔ iyk
ϑ4ðbÞ
ϑ1ð2bÞ

¼ ykq
3
8
ðb−1q−1

2; qÞðbq3
2; qÞ

ðb−2; qÞðb2q; qÞ :

ð7:10Þ

As the notation suggests, this is simply a character of
a free ðbcβγÞ-system of weights and uð1Þ-charges as
follows:

h m

ðb; cÞ ð3
2
;− 1

2
Þ ð1

2
;− 1

2
Þ

ðβ; γÞ (1,0) ð1;−1Þ

Note that we applied STS rather than just S as the index
is acted on only by Γ0ð2Þ rather than the full SLð2;ZÞ.
Various comments are in order:
(1) The transformation property in (7.9) shows that I is

a quasi-Jacobi form [23].
(2) The modularly transformed expression I logðy; bÞ

has a smooth b → 1 limit, unlike chbcβγðy; bÞ on
its own. In fact, this limit precisely matches the
logarithmic solution to the (unflavored) modular
differential equations of [21]. More precisely, as
the logarithmic solution is ambiguous in that one can

add an arbitrarymultiple of the vacuum character to it,
the limit b → 1 reproduces the STS-transformation of
the unflavored vacuum character:

IðyÞ ¼ yk

4π

ϑ004ð0Þ
ϑ01ð0Þ

⟶
STS

−
i
2
yk

ϑ4ð0Þ
ϑ01ð0Þ

þ ð1 − τÞIðyÞ:

ð7:11Þ

(3) The logarithmic expression I logðbÞ is a solution to
all flavored modular differential equations that arise
in the null-supermultiplet of the Sugawara condition,
as is of course Iðy; bÞ itself.

(4) The character chbcβγðy; bÞ is proportional to the
residue of the integrand of the contour integral
defining the Schur index [see (3.4)]. Moreover, it
precisely equals the character of the free fields used
in [31,32] to construct the vertex operator algebra.

(5) Finally, note that in [31] it was shown that
chbcβγðy; bÞ is reducible and is given by the sum
of the vacuum character and the character IM of the
(unique) irreducible nonvacuum module M (in
category O):

chbcβγðy; bÞ ¼ Iðy; bÞ þ IMðy; bÞ: ð7:12Þ

2. soð8Þ current algebra at k = − 2

Next we look at the modular properties of the vacuum
character of csoð8Þ−2, which is the vertex operator algebra
associated with SUð2Þ superconformal QCD. We use the
compact formula (4.1) with g ¼ 0, n ¼ 4, and we also
introduce some additional y variables to define

I0;4ðy; bÞ ≔ y−21 y−22 y−23 y−24 I0;4ðbÞ ≔ y−2I0;4ðbÞ: ð7:13Þ

Under the S-transformation, the variables yi, bi, and τ
transform as

ðyi; bi; τÞ⟶S
�
yi −

b2i
τ
;
bi
τ
;−

1

τ

�
: ð7:14Þ

The index then transforms as (where the sums and products
over i run over i ¼ 1;…; 4, and αi ¼ �1, as before)

I0;4ðy; bÞ⟶S log q
2π

I0;4ðy; bÞ þ
ηðτÞ2

4π
Q

4
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Y
i

αi

�
log

�Y
i

bαii

�
E1

�
1Q
i b

αi
i

�
: ð7:15Þ

This result can be rewritten as

I0;4ðy; bÞ⟶S log q
2π

I0;4ðy; bÞ þ
y−2

π

X4
i¼1
ðlogmiÞRi; ð7:16Þ
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where Rj¼1;2;3;4 are the residues Rjþ in (3.11) upon
replacing the flavor fugacities there by those associated
with the four punctures,

m1¼b1b2; m2¼
b1
b2

; m3¼b3b4; m4¼
b3
b4

: ð7:17Þ

Further computing the S-transformations of the resi-
dues Rj, we conclude that fI0;4; Rjg are closed under
S-transformations

I0;4ðy; bÞ⟶S log q
2π

I0;4ðy; bÞ þ
y−2

π

X4
j¼1
ðlogmjÞRj; ð7:18Þ

y−2Rj⟶
S
iy−2Rj: ð7:19Þ

Let us make some comments:
(1) One again observes that the flavored vacuum char-

acter transforms as a quasi-Jacobi form.
(2) The S-transformation takes a similar form to the one

we encountered in the STS-transformation of
IN¼4 SUð2Þ. What is more, the residues can once
again be interpreted as the vacuum character of a
system of free fields.15

(3) The four residues Rj can be shown to be linear
combinations of the characters of the modules of
ŝoð8Þ−2. Apart from the vacuum module, it was
shown in [51] that there are four nontrivial highest-
weight modules. The finite part of their highest
weights is given by λ ¼ wðω1 þ ω3 þ ω4Þ − ρ,
where w ¼ 1; s1;3;4 are the basic Weyl reflections
of soð8Þ, and ωi are its fundamental weights. Their
conformal weights are all equal to h ¼ −1.

(4) Finally, and of course a consequence of the previous
comment, one can show that all Rj solve the full
complement of flavored modular differential equa-
tions that follow from flavored null relations and
which the vacuum character also satisfies [21,52].

C. Defect index from Higgsing

As a third application of our closed-form expressions, we
illustrate the computation of indices of four-dimensional
N ¼ 2 superconformal field theories in the presence of
BPS surface defects as engineered by the position-
dependent Higgsing procedure of [53]. In this procedure,
when applied to theories of class S of type a1, one starts
with an IR theory T g;n of genus g with n punctures, and
glues in an additional trinion theory to obtain the UV theory
T g;nþ1. Note that the UV index Ig;nþ1ðbÞ depends on one

more flavor fugacity, denoted as b, than the IR index Ig;n.
One can give a position-dependent vacuum expectation
value to a suitably chosen Higgs branch operator charged
under the symmetry measured by b. This triggers a
renormalization group flow, at the end of which one
recovers the original IR theory T g;n coupled to a surface
operator. The vacuum expectation value of the Higgs
branch operator depends on an integer κ ≥ 0. At the level
of the index the Higgsing operation is implemented by a
residue computation:

2ð−1Þκq−1
2
κðκþ2Þ−1

2 Res
b→q

κþ1
2

ηðτÞ2
b

Ig;nþ1 ¼ IdefectðκÞ
g;n : ð7:20Þ

Here we already incorporated the normalization prefactor
of [54], Rð0;κÞ ¼ ð−1Þκq−1

2
κð2þκÞ, multiplied with a factor

q
cUV−cIR

24 ¼ q−
5
12 to bridge the gap in central charge between

the UV theory and the IR theory, and an extra factor q−1=12

that allows us to write ðq; qÞ2∞ as the square of Dedekind eta
functions. In particular, at κ ¼ 0 the right-hand side is
expected to be the original IR index. Armed with the
compact expression (4.1), we are able to take a closer look
at these defect indices.
We first note that bi → q

κþ1
2 are not poles of I0;3, despite

the presence of ϑ1ð2biÞ in the denominator. This is due to
the fact that

X
αi

�Y3
i¼1

αi

�
E1

� −1
bα11 bα22 q

κþ1
2
α3

�
¼ 0: ð7:21Þ

Instead, I0;3 has poles when b1b
α2
2 bα33 ¼ qlþ1

2 reflects the
poles of the E1’s. These poles are expected from the

standard expression I0;3ðbÞ ¼
Q
��

ηðτÞ
ϑ4ðb1�b2�b3Þ.

Besides the trinion index, all other indices do have
poles at bi ¼ q

κþ1
2 arising from the ϑ1’s in the denominator.

Let us consider the residue of Ig;nþ1ðbÞ of the pole at

b≡ bnþ1 → q
κþ1
2 with κ ∈ N,

Res
b→q

κþ1
2

ηðτÞ2
b

Ig;nþ1ðbÞ ¼ ð−1Þκq
ðκþ1Þ2

2
in

2

ηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2biÞ

×
X
α⃗¼�

Yn
i¼1

αi
Xnþ1þ2g−2

l¼1
λðnþ1þ2g−2Þl El

×

� ð−1Þnþ1
bα11 � � �bαnn q

κþ1
2

�
: ð7:22Þ

Here we have performed the sum over αnþ1 using the
symmetry property of El, and the fact that

λðevenÞodd ¼ λðoddÞeven ¼ 0. The residue computation makes use

of (A17), which introduces a −i
2
ð−1Þκqðκþ1Þ

2

2 factor: the −i

15Also, these free fields can be used to build the vertex operator
algebra, but, crucially differently from the N ¼ 4 super Yang-
Mills cases considered in detail in [32], they are still subjected to
a Becchi-Rouet-Stora-Tyutin constraint [49,50].
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removes one i from the original inþ1, while the sum over
αnþ1 cancels the 1

2
.

When κ ¼ 0, one has

Res
b→q

1
2

ηðτÞ2
b

Ig;nþ1ðbÞ ¼
in

2
q

1
2

ηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2b1Þ

X
α⃗¼�

Yn
i¼1

αi

×
Xnþ1þ2g−2

l¼1

Xl
l0¼0

λðnþ1þ2g−2Þl

2l
0
l0!

× El−l0

� ð−1ÞnQ
n
i¼1 b

αi
i

�
: ð7:23Þ

Here we applied the half-period shift properties of the
Eisenstein series (A26). It turns out that the coefficients λ
satisfy an equation for any function f,

Xnþ1þ2g−2

l¼1

Xl
l0¼0

l−l0¼nmod 2

λðnþ1þ2g−2Þl

2l
0
l0!

fðl−l0Þ¼1

2

Xnþ2g−2
k¼1

λðnþ2g−2Þk fðkÞ;

ð7:24Þ

and when ðn; kÞ ¼ ðeven; oddÞ or ðodd; evenÞ,

X
αi¼�1

�Yn
i¼1

αi

�
Ek

� �1Q
n
i¼1 b

αi
i

�
¼ 0: ð7:25Þ

Consequently, the well-known result is recovered,

2q−
1
2Res
b→q

1
2

ηðτÞ2
b

Ig;nþ1ðbÞ ¼ Ig;n: ð7:26Þ

For κ ≥ 1, by using (A26), one instead has

Res
b→q

κþ1
2

ηðτÞ2
b

Ig;nþ1ðbÞ¼ð−1Þκq
ðκþ1Þ2

2
in

2

ηðτÞnþ2g−2Q
n
i¼1ϑ1ð2biÞ

X
α⃗¼�

�Yn
i¼1

αi

� Xnþ1þ2g−2

l¼1
λðnþ1þ2g−2Þl

Xl
l0¼0

�
κþ1

2

�
l0 1

l0!
El−l0

� ð−1Þnþκ
bα11 � ��bαnn

�
:

ð7:27Þ

After a bit of rewriting, the residues read

ð−1Þκqðκþ1Þ
2

2
in

2

ηðτÞnþ2g−2Q
n
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Yn
i¼1

αi

� Xnþ1þ2g−2

l¼1
λ̃ðnþ1þ2g−2Þl ðκ þ 1ÞEl

� ð−1Þnþκ
bα11 � � � bαnn

�
; ð7:28Þ

where16

λ̃ðnþ1þ2g−2Þl ðKÞ ≔
Xnþ1þ2g−2

l0¼maxðl;1Þ
λðnþ1þ2g−2Þl0

�
K
2

�
l0−l 1

ðl0 − lÞ! :

ð7:29Þ

Due to (7.25), in the simplest cases when
ðg; nÞ ¼ ð0; 4 or 5Þ, the sum over l on the right-hand side
of the residue contains only one term, with only l ¼ 1 and

coefficient λ̃ð2Þ1 ðKÞ ¼ λð2Þ1 þ K
2
λð2Þ2 ¼ K

2
contributing for

n ¼ 4 and only l ¼ 2 with coefficient λ̃ð3Þ2 ðKÞ ¼ λð3Þ2 þ
K
2
λð3Þ3 ¼ K

2
contributing when n ¼ 5. A simple consequence

is that for these two cases

2ð−1Þκq−1
2
κðκþ2Þ−1

2 Res
b→q

κþ1
2

ηðτÞ2
b

Ig;nðbÞ

¼ ðκ þ 1ÞIg;n−1; κ is even ðn ¼ 4 or 5Þ; ð7:30Þ

2ð−1Þκq−1
2
κðκþ2Þ−1

2 Res
b→q

κþ1
2

ηðτÞ2
b

Ig;nðbÞ

¼ κ þ 1

2
Ĩg;n−1; κ is odd ðn ¼ 4 or 5Þ: ð7:31Þ

Here,

Ĩ0;3 ¼
−iηðτÞQ

3
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Y3
i¼1

αi

�
E1

� þ1Q
3
i¼1 b

αi
i

�
; ð7:32Þ16Curiously, the entries λ̃ðK ¼ 2Þ have already appeared in the

unflavored indices of N ¼ 4 SUðNÞ gauge theories.
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Ĩ0;4 ¼
ηðτÞ2Q

4
i¼1 ϑ1ð2biÞ

X
α⃗¼�

�Y4
i¼1

αi

�
E2

� −1Q
4
i¼1 b

αi
i

�
; ð7:33Þ

which are simply twice I0;3 (I0;4) with E1½−1# � (E2½þ1# �)
replaced by E1½−1# � (E2½−1# �).
In [53] it was shown that the residue prescription (7.20)

can be equivalently implemented by the action of a
difference operator Sð0;κÞ. See also [54].17 For κ ¼ 1, it
reads

Sð0;1ÞfðaÞ ¼ −q−1
2ða2fðaq−1

2Þ þ a−2fðaq1
2ÞÞ: ð7:34Þ

Note that E2 enjoys the shift property (A26), and it is thus
straightforward to verify that indeed

Ĩ0;4 ¼ Sð0;1ÞI0;4ðb1;2;3; b4Þ
¼ −q−1

2b24I0;4ðb1;2;3; b4q−1
2Þ − q−

1
2b−24 I0;4ðb1;2;3; b4q1

2Þ:
ð7:35Þ

Note that this equality holds at the level of analytic
functions. In other words, the replacements b4 → b4q�

1
2

should be performed before expanding I0;4 in a q-series.
What is more, the difference operator acts equivalently on
any of the other fugacities.
The two terms on the right-hand side of (7.35) admit a

nice interpretation from the point of view of the SCFT/
VOA correspondence. Recalling that the suð2Þ algebras
associated with the punctures are critical, i.e., their affine
level equals k ¼ −2, one can easily convince oneself that
these terms equal exactly, including prefactors, the char-
acter of the spectrally flowed module by plus one and
minus one unit, respectively [55]. Altogether, we see that
the defect with κ ¼ 1 corresponds to the thus-defined
twisted module of the associated vertex operator algebra.18

VIII. DISCUSSION

In this paper we introduced techniques to evaluate the
contour integrals defining the Schur limit of the super-
conformal index of a large class of Lagrangian four-
dimensional N ¼ 2 superconformal field theories. Our
methods heavily rely on the multivariate ellipticity of their
integrand, which, in particular, guarantees that also their
residues are elliptic. We have shown that after a single
contour integration, ellipticity of the full integrand is lost,
which is why we have developed integral formulas to deal
with integrals such as (2.16). Armed with these formulas,

we have evaluated in closed form the fully flavored Schur
indices of all theories of class S of type a1, we have
computed the indices of various low-rank N ¼ 4 super
Yang-Mills theories and conjectured general expressions
for the unflavored indices of N ¼ 4 super Yang-Mills
theories with gauge group SUðNÞ, we have analyzed
superconformal QCD theories, and finally we have
studied various applications of our closed-form, analytical
expressions.
While our method is highly successful, it is not omnipo-

tent: the integral formulas introduced in (2.16) and (2.18)
are insufficient to compute the Schur index of any and all
Lagrangian theories. For example, to evaluate the Schur
index of multinode linear quivers with gauge group SUðNÞ,
N ≥ 3, we additionally need to be able to compute integrals
of the form

I
dz
2πiz

fðzÞEk

��1
za

�
El

��1
zb

�
� � � : ð8:1Þ

We hope to return to this in the future.
As alluded to in the Introduction, the residue of a class of

poles of the integrand of the flavored Schur index of four-
dimensionalN ¼ 4 super Yang-Mills theories with simple,
simply laced gauge groups is equal to the character of the
free fields that can be used to realize the vertex operator
algebra corresponding to the N ¼ 4 theory [32]. At the
level of the vertex operator algebra itself, the N ¼ 4
algebra can be obtained as a subalgebra of said free field
algebra Vbcβγ—it is carved out as the kernel of a screening
charge. Denoting the projection operator onto this kernel
as P, we thus have

IN¼4ðbÞ ¼ strVbcβγ
PqL0− c

24bf: ð8:2Þ

Our results [see, for example, (3.7) and (5.10)] seem to
indicate that one can pull the projection operator out of the
trace. It would be very interesting to understand this
operation better and to generalize it to the N ¼ 3 theories
also considered in [32]. What is more, it is conceivable
that our closed-form expressions for the index arise by
applying the flavored version of Zhu’s recursion formula
[21,52,56–58] to the one-point function of the projection
operator P.
Some more future lines of inquiry are as follows. Besides

evaluating the Schur index itself, one can consider the
index of the theory in the presence of various local or
nonlocal operators compatible with the supercharges defin-
ing the index. For example, in [3], a localization compu-
tation is carried out to compute correlation functions of
Schur operators, and the results are given once again in
terms of contour integrals. The methods developed in this
paper easily carry over to this case and allow one to
compute Schur correlation functions in closed form (pos-
sibly with the help of the more general integral formulas

17We have included the normalizing prefactor of the difference
operator already in the definition of the residue (7.20).

18More generally, in theories of class S of type a1, defects with
even κ correspond to untwisted modules of the vertex operator
algebra, while those with odd κ are associated with twisted
modules.
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mentioned above).19 Furthermore, BPS surface operators
engineered by 4d/2d coupled systems [17,63], and BPS line
operators can also be inserted [64]. At least in simple cases,
the resulting index can be written as a modified contour
integral which can be evaluated with our methods. What is
more, these setups have an interesting interpretation in
terms of modules when viewed through the lens of the
VOA/SCFT correspondence [15,17,65,66]. It would
therefore be of great interest to compute the closed-form
indices of these systems and to analyze their modular
properties.
As mentioned above, we have derived a compact formula

for the Schur indices of all the theories of class S of type a1.
Similarly, it would be useful to also obtain compact
formulas for the flavored indices of N ¼ 4 super Yang-
Mills theories and superconformal QCD. Such results
would, for example, allow one to analyze their large N
behavior and its gravity dual interpretation. See, for
example, [67,68] for a recent discussion on the correspon-
dence between the N ¼ 4 UðNÞ Schur index and the
theory of D3 branes wrapping the S5 in AdS5 × S5.
Finally, in the recent literature, a “BAE approach” to

compute the superconformal index of four-dimensional
N ¼ 1 and N ¼ 4 theories has been developed. In this
approach, the index is written as a sum over solutions
to some Bethe-Ansatz-like equations. See, for example,
[69–72]. For N ¼ 4 theories, such a Bethe-Ansatz expan-
sion can be interpreted holographically as accounting for
the contributions of wrapped D3-branes [73]. While this
approach does not seem to be naively applicable to the
various limits of enhanced supersymmetry (Macdonald,
Hall-Littlewood, Schur) of N ¼ 2 superconformal indices,
it could be of interest to compare our results with a carefully
performed limit of the “BAE” final result.20
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APPENDIX A: SPECIAL FUNCTIONS

The techniques introduced in this paper to evaluate Schur
indices in closed form heavily rely on various families of
elliptic functions, in particular Jacobi theta functions, the
Eisenstein series, and the family of Weierstrass functions.
In this appendix we first collect their definitions and basic
properties, and then we list several useful identities in the
last subsection.

1. The Weierstrass family

An elliptic function with respect to the complex structure
τ can be viewed as a meromorphic function on C with
double periodicity

fðzÞ ¼ fðzþ τÞ ¼ fðzþ 1Þ; ðA1Þ

where τ ∈ C with a positive imaginary part. One may
therefore restrict the domain to be the fundamental paral-
lelogram in Cwith vertices 0, 1, τ, 1þ τ. Alternatively, one
may view an elliptic function as a meromorphic function on
the torus T2

τ with complex structure τ. In this appendix and
in the main text we often omit the specification of the
complex structure τ in our notations.
One may visualize or construct basic elliptic functions by

starting with functions on C of the form fðzÞ≡ z−k

and subsequently try to enforce periodicity by summing
over all shifts by the periods 1 and τ, schematically,
PkðzÞ≡P

m;nðz −m − nτÞ−k. After subtracting divergen-
ces, one arrives at the following set of (almost) elliptic
functions.

(i) The Weierstrass ζ-function is defined by

ζðzÞ≔1

z
þ

X0
ðm;nÞ∈Z2
ðm;nÞ≠ð0;0Þ

�
1

z−m−nτ
þ 1

mþnτ
þ z
ðmþnτÞ2

�
:

ðA2Þ
In the following and in the main text we will often
abbreviate

X0
ðm;nÞ∈Z2
ðm;nÞ≠ð0;0Þ

→
X0
m;n

;
X
m∈Z
m≠0

→
X0
m

: ðA3Þ

The ζ function is not quite elliptic, but instead it
satisfies

ζðzþ 1jτÞ − ζðzjτÞ ¼ 2η1ðτÞ; ðA4Þ

ζðzþ τjτÞ− ζðzjτÞ ¼ 2η2ðτÞ≡ 2τη1ðτÞ− 2πi; ðA5Þ

where η1 and η2 are independent of z and are both
related to the Eisenstein series E2. We will come
back to this in Appendix A 4. Note that ζ has a
simple pole at each lattice point mþ nτ with unit

19As a next step, it may be of interest to revisit the dimensional
reduction of these correlators to three dimensions, where they are
related to the deformation quantizations of [59]. See [60–62].

20An older approach aims to express the fully refined index in
terms of vortex partition functions/holomorphic blocks. See, for
example, [74,75]. It would also be of interest to reanalyze these
results armed with our closed-form expressions.
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residue. The fact that ζ fails to be fully elliptic is tied
to the fact that meromorphic functions on T2 with a
single simple pole do not exist. In this sense ζðzÞ is
the best one can do in terms of double periodicity.

(ii) The Weierstrass ℘-function

℘ðzÞ≔ 1

z2
þ

X
ðm;nÞ≠ð0;0Þ

�
1

ðz−m− nτÞ2 −
1

ðmþ nτÞ2
�
:

ðA6Þ
This function is elliptic,

℘ðzÞ ¼ ℘ðzþ 1Þ ¼ ℘ðzþ τÞ: ðA7Þ

Following from the simple fact that ∂zz−1 ¼ −z−2,
one has

℘ðzÞ ¼ −∂zζðzÞ: ðA8Þ

By definition, ℘ has only one double pole on T2
τ .

(iii) The descendants ∂nz℘ðzÞ are all elliptic functions, all
with a single (nþ 2)th order pole on T2

τ .

2. Jacobi theta functions

The standard Jacobi theta functions are defined as

ϑ1ðzjτÞ≔−i
X
r∈Zþ1

2

ð−1Þr−1
2e2πirzq

r2
2 ; ϑ2ðzjτÞ≔

X
r∈Zþ1

2

e2πirzq
r2
2 ;

ðA9Þ

ϑ3ðzjτÞ ≔
X
n∈Z

e2πinzq
n2
2 ; ϑ4ðzjτÞ ≔

X
n∈Z
ð−1Þne2πinzqn2

2 :

ðA10Þ
In the main text and these appendixes we will often omit
jτ in the notation. It is well-known that the Jacobi theta
functions can be rewritten as a triple product of the
q-Pochhammer symbol, for example,

ϑ1ðzÞ¼−iz12q1
8ðq;qÞðzq;qÞðz−1;qÞ; ðz;qÞ≔

Yþ∞
k¼0
ð1−zqÞ:

ðA11Þ

The functions ϑiðzÞ behave nicely under full-period
shifts,

ϑ1;2ðzþ 1Þ ¼ −ϑ1;2ðzÞ; ϑ3;4ðzþ 1Þ ¼ þϑ3;4ðzÞ;
ðA12Þ

ϑ1;4ðzþ τÞ ¼ −λϑ1;4ðzÞ; ϑ2;3ðzþ τÞ ¼ þλϑ2;3ðzÞ;
ðA13Þ

where λ≡ e−2πize−πiτ. In particular, one can derive

ϑ1ðzþmτ þ nÞ ¼ ð−1Þmþne−2πimzq−
1
2
m2

ϑ1ðzÞ: ðA14Þ
Moreover, the four Jacobi theta functions are related by
half-period shifts which can be summarized as in the
following diagram:

where μ ¼ e−πize−
πi
4 and f!a g means

eitherf

�
zþ1

2

�
¼agðzÞ or f

�
zþ τ

2

�
¼agðzÞ; ðA15Þ

depending on whether the arrow is horizontal or (slanted)
vertical, respectively.
The functions ϑiðzjτÞ transform nicely under the modu-

lar S and T transformations, which act, as usual, on the

nome and flavor fugacity as ðzτ ;− 1
τÞ 

S ðz; τÞ!T ðz; τ þ 1Þ.
In summary

where α ¼ ffiffiffiffiffiffiffi
−iτ
p

e
πiz2
τ .

The τ-derivative of the Jacobi theta functions is related to
the double z-derivative as

4πi∂τϑiðzjτÞ ¼ ϑ00i ðzjτÞ: ðA16Þ

Finally, we will frequently encounter residues of the ϑ
functions. In particular,

Res
a→b

1
nq

k
nþ 1

2ne2πi
l
n

1

a
1

ϑ4ðna−bÞ¼
1

n
1

ðq;qÞ3 ð−1Þ
kq

1
2
kðkþ1Þ; ðA17Þ

Res
a→b

1
nq

k
ne2πi

l
n

1

a
1

ϑ1ðna−bÞ¼
1

n
i

ηðτÞ3 ð−1Þ
kþlq1

2
k2 : ðA18Þ
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Note that the ð−1Þl in the second line is related to the presence of a branch point at z ¼ 0 according to (A11). Let us quickly
derive the second formula,

Res
a→b

1
nq

k
ne2πi

l
n

1

a
1

ϑ1ðna − bÞ ≔
I
b
1
nq

k
ne2πi

l
n

da
2πia

1

ϑ1ðna − bÞ ¼
I
1

dz
2πiz

1

ϑ1ðnzþ kτ þ lÞ ¼
I
1

dz
2πiz
ð−1Þkþlznkq1

2
k2

ϑ1ðnzÞ

¼
I
1

dz
2πiz

ð−1Þkþlznkq1
2
k2

−iq1
8z

1
2ðq; qÞðznq; qÞðz−nq; qÞð1 − z−nÞ ¼

1

n
i

ηðτÞ3 ð−1Þ
kþlqk2

2 : ðA19Þ

Here we used the shift property of ϑ1 and (A11).

3. Eisenstein series

The twisted Eisenstein series are defined as

Ek≥1

�
ϕ

θ

�
≔ −

BkðλÞ
k!

ðA20Þ

þ 1

ðk − 1Þ!
X0
r≥0

ðrþ λÞk−1θ−1qrþλ
1 − θ−1qrþλ

þ ð−1Þ
k

ðk − 1Þ!
X
r≥1

ðr − λÞk−1θqr−λ
1 − θqr−λ

; ðA21Þ

where ϕ≡ e2πiλ with 0 ≤ λ < 1, BkðxÞ denotes the kth Bernoulli polynomial, and the prime in the sum indicates that the
r ¼ 0 should be omitted when ϕ ¼ θ ¼ 1. Additionally, we also define

E0

�
ϕ

θ

�
¼ −1: ðA22Þ

When k ¼ 2n is even, the θ ¼ ϕ ¼ 1 limit reproduces the usual Eisenstein series E2n, while when k is odd, θ ¼ ϕ ¼ 1 is a
vanishing limit except for k ¼ 1 where it is singular,21

E2n

�þ1
þ1

�
¼ E2n; E1

�þ1
z

�
¼ 1

2πi
ϑ01ðzÞ
ϑ1ðzÞ

; E2nþ1≥3

�þ1
þ1

�
¼ 0: ðA23Þ

As a result, among all the Ek½�1z �, only E1½�1z � has a pole at
z ¼ 1.
A closely related property is the symmetry of the

Eisenstein series

Ek

��1
z−1

�
¼ ð−1ÞkEk

��1
z

�
: ðA24Þ

The twisted Eisenstein series of neighboring weights are
related by

q∂qEk

�
ϕ

b

�
¼ ð−kÞb∂bEkþ1

�
ϕ

b

�
: ðA25Þ

When shifting the argument z of the Eisenstein series by
several half or full periods τ, one has for any nonzero n ∈ Z

Ek

��1
zq

n
2

�
¼

Xk
l¼0

�
n
2

�
l 1

l!
Ek−l

� ð−1Þnð�1Þ
z

�
: ðA26Þ

To prove these equalities recursively, one can start with the
identification (A41) between Eisenstein series and the
Jacobi theta functions, where the periodicity of the latter
is clear, and then apply (A25). A similar discussion can also
be found in [23,76]. A natural consequence is that22

Δk

��1
z

�
≡ Ek

��1
zq

1
2

�
− Ek

� �1
zq−

1
2

�

¼
Xbk−12 c
m¼0

1

22mð2mþ 1Þ!Ek−1−2m

�∓1

z

�
; ðA27Þ

or more generally

21See Appendix A 4.

22In fact, these equalities remain true even after replacing 1 by
e2πiλ and −1 by e2πiðλþ1

2
Þ.
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Ek

� �1
zq

1
2
þn

�
−Ek

� �1
zq−

1
2
−n

�

¼2
Xbk−12 c
m¼0

�
2nþ1

2

�
2mþ1 1

ð2mþ1Þ!Ek−1−2m

�∓1

z

�
: ðA28Þ

The Eisenstein series are often reorganized into twisted
elliptic-P functions, generalizing the Weierstrass ℘-family.
In particular [57],

Pk¼1

�
ϕ

θ

�
ðyÞ ≔ −

1

y

X
m≥0

Em

�
ϕ

θ

�
ym; ðA29Þ

while the remaining twisted-Pk with higher k are obtained
by taking y-derivatives. In particular, we will later use

P2ðyÞ ≔ −
X∞
n¼1

1

2n
E2nðτÞy2n; ðA30Þ

whose derivative reproduces P1½þ1þ1�ðyÞ up to a y−1 term.
With P, the difference equations can be further reorgan-

ized into the more compact formula

Δk

��1
z

�
¼ −2

I
0

dy
2πi

1

yk
sinh

�
y
2

�
P1

�∓1

z

�
ðyÞ; ðA31Þ

where the y-contour goes around the origin. Conversely, the
individual twisted Eisenstein series can be rewritten in
terms of the above differences Δk. Let us define Sl by

1

2

y
sinh y

2

≡X
l≥0

Slyl: ðA32Þ

It is straightforward to show that

Ek

��1
z

�
¼

Xk
l¼0

SlΔk−lþ1

�∓1

z

�
: ðA33Þ

a. Constant terms

The constant terms in z of the Eisenstein series play an
important role in the main text when writing down the
integration formulas. These numbers are given by

const term of E2nþ1

��1
z

�
¼ 0; except for const term of E1

�þ1
z

�
¼ −

1

2
;

const term of E2n

�þ1
z

�
¼ −

B2n

ð2nÞ! ¼ −
�
y
2
coth

y
2

�
2n
;

const term of E2n

�−1
z

�
¼ −S2n ¼ −

�
y
2

1

sinh y
2

�
2n
; ðA34Þ

and their differences are given by

D2n ≡ S2n −
B2n

ð2nÞ!

¼ const term of

�
E2n

�þ1
z

�
− E2n

�−1
z

��

¼
�
−
y
2
tanh

y
4

�
2n
: ðA35Þ

In the above, ½fðyÞ�k denotes the kth coefficient of the
Tayler expansion in y around y ¼ 0, and B2n are simply the
Bernoulli numbers. For the reader’s convenience, we
collect here the first few values of these numbers,

n ¼ 1 2 3 4 5 6
1
ð2nÞ!B2n

1
12

− 1
720

1
30240

− 1
1209600

1
47900160

− 691
1307674368000

S2n − 1
24

7
5760

− 31
967680

127
154828800

− 73
3503554560

1414477
2678117105664000

D2n − 1
8

1
384

− 1
15360

17
10321920

− 31
743178240

691
653996851200

4. Useful identities

The Jacobi theta functions satisfy a collection of dupli-
cation formulas, for example,

ϑ1ð2zÞϑ01ð0Þ ¼ 2π
Y4
i¼1

ϑiðzÞ ¼ πϑ1ð2zÞ
Y4
i¼2

ϑið0Þ; ðA36Þ

ϑ4ð2zÞϑ4ð0Þ3¼ϑ4ðzÞ4−ϑ1ðzÞ4¼ϑ3ðzÞ4−ϑ2ðzÞ4: ðA37Þ

The z → 0 limit of the first line gives the well-known
identity ϑ01ð0Þ ¼ πϑ2ð0Þϑ3ð0Þϑ4ð0Þ. The derivatives of ϑi
satisfy, among a few other relations,

EXACT SCHUR INDEX IN CLOSED FORM PHYS. REV. D 106, 045017 (2022)

045017-29



d
dz

�
ϑ1ðzÞ
ϑ4ðzÞ

� ¼ ϑ4ð0Þ2
ϑ2ðzÞϑ3ðzÞ
ϑ4ðzÞ2

⇒
ϑ04ðzÞ
ϑ4ðzÞ

−
ϑ01ðzÞ
ϑ1ðzÞ

¼ −πϑ4ð0Þ2
ϑ2ðzÞϑ3ðzÞ
ϑ1ðzÞϑ4ðzÞ

: ðA38Þ

One can express both the Weierstrass family and the
Eisenstein series in terms of the Jacobi theta functions. For
example,

ζðzÞ ¼ ϑ01ðzÞ
ϑ1ðzÞ

− 4π2zE2: ðA39Þ

The quasiperiodicity of ζ now follows, and one can express
the ηiðτÞ in (A4) as

η1ðτÞ ¼ −2π2E2; η2ðτÞ ¼ τη1ðτÞ − πi: ðA40Þ

The schematic relation between the Eisenstein series and
the Jacobi theta functions can be summarized in the
diagram

In more details, the Eisenstein series can be rewritten in
terms of ratios of ϑ functions and their derivatives,

Ek

�þ1
z

�
¼ −½e− y

2πiDz−P2ðyÞ�kϑ1ðzÞ; ðA41Þ

where P2 is a Weierstrass elliptic-P function (A30), ½fðyÞ�k
denotes the kth coefficient of the Taylor series of fðyÞ
around y ¼ 0, and we define an abstract differential
operator Dn

z by

Dz � � �Dz|fflfflfflfflffl{zfflfflfflfflffl}
n copies

ϑiðzÞ ¼ Dn
zϑiðzÞ≡ ϑðnÞi ðzÞ

ϑiðzÞ
: ðA42Þ

More explicitly, we have

Ek

�þ1
z

�
¼

Xbk=2c
l¼0

ð−1Þkþ1
ðk − 2lÞ!

�
1

2πi

�
k−2l

E2l
ϑðk−2lÞ1 ðzÞ
ϑ1ðzÞ

;

ðA43Þ

where we define

E2 ≔ E2; E4 ≔ E4 þ
1

2
ðE2Þ2;

E6 ≔ E6 þ
3

4
E4E2 þ

1

8
ðE2Þ3;…; ðA44Þ

E2l ≔
X
fnpgP

p≥1
ð2pÞnp¼2l

Y
p≥1

1

np!

�
1

2p
E2p

�
np
: ðA45Þ

The conversion fromEk½−1�z� can be obtained by replacing ϑ1
with ϑ2;3;4 according to the previous diagram. One can
show these relations by observing that both sides satisfy the
same difference equations. (Those of the Eisenstein series
have been discussed in the previous subsection.) For the
reader’s convenience we list the first few conversions here:

E1

�þ1
z

�
¼ 1

2πi
ϑ01ðzÞ
ϑ1ðzÞ

; ðA46Þ

E2

�þ1
z

�
¼ 1

8π2
ϑ001ðzÞ
ϑ1ðzÞ

−
1

2
E2; ðA47Þ

E3

�þ1
z

�
¼ i

48π3
ϑ0001 ðzÞ
ϑ1ðzÞ

−
i
4π

ϑ01ðzÞ
ϑ1ðzÞ

E2; ðA48Þ

E4

�þ1
z

�
¼ −

1

384π4
ϑ00001 ðzÞ
ϑ1ðzÞ

þ 1

16π2
E2

ϑ001ðzÞ
ϑ1ðzÞ

−
1

4

�
E4 þ

1

2
ðE2Þ2

�
; ðA49Þ

E5

�þ1
z

�
¼ −

i
3840π5

ϑð5Þ1 ðzÞ
ϑ1ðzÞ

þ i
96π3

E2

ϑð3Þ1 ðzÞ
ϑ1ðzÞ

−
i
8π

�
E4 þ

1

2
ðE2Þ2

�
ϑ01ðzÞ
ϑ1ðzÞ

; ðA50Þ
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E6

�þ1
z

�
¼ 1

46080π6
ϑð6Þ1 ðzÞ
ϑ1ðzÞ

−
1

768π4
E2

ϑð4Þ1 ðzÞ
ϑ1ðzÞ

þ 1

32π2

�
E4 þ

1

2
ðE2Þ2

�
ϑð2Þ1 ðzÞ
ϑ1ðzÞ

−
1

6

�
E6 þ

3

4
E4E2 þ

1

8
E3
2

�
: ðA51Þ

From the above conversion one computes the residues of Eisenstein series,

Res
z→1

1

z
Ek

�þ1
z

�
¼ δk1; Res

z→q
1
2
þn

1

z
Ek

�−1
z

�
¼ 1

2k−1ðk − 1Þ! : ðA52Þ

Moreover, the Eisenstein series satisfy the following relations:

X
�
Ek

�
ϕ

�z

�
ðτÞ ¼ 2Ek

�
ϕ

z2

�
ð2τÞ;

X
�
� Ek

�
ϕ

�z

�
ðτÞ ¼ −2Ek

�
ϕ

z2

�
ð2τÞ þ 2Ek

�
ϕ

z

�
ðτÞ;

Ek

�þ1
z

�
ð2τÞ þ Ek

�−1
z

�
ð2τÞ ¼ 2

2k
Ek

�þ1
z

�
;

Ek

�þ1
z

�
ð2τÞ − Ek

�−1
z

�
ð2τÞ ¼ −

2

2k
Ek

�þ1
z

�
ðτÞ þ 2Ek

�þ1
z

�
ð2τÞ;

X
��

Ek

��1
�z

�
ðτÞ ¼ 4

2k
Ek

�þ1
z2

�
ðτÞ: ðA53Þ

Applying the shift z → zq
1
2, one can also generate similar

formulas with E1½�1� � → E1½∓1
� �. These formulas are gen-

eralizations of the duplication formulas; for instance, the
last identity at k ¼ 1 reduces to the duplication for-
mula (A36). Combining the duplication formulas and
(A38), one finds the useful identity

E1

�þ1
z

�
− E1

�−1
z

�
¼ ηðτÞ3

2i
ϑ1ð2zÞϑ4ð0Þ2
ϑ1ðzÞ2ϑ4ðzÞ2

: ðA54Þ

APPENDIX B: FOURIER SERIES

In this paper, the Schur index of a Lagrangian theory is
computed by directly evaluating the contour multi-integral
of a multivariate elliptic function, one integral after
another. Expanding the elliptic function in terms of a
sum of ζ-functions allows us to perform the first integral,
but unfortunately, the result is in general nonelliptic with

respect to the remaining integration variables due to the
presence of the Eisenstein series E1.
Luckily, in all cases that we will be dealing with, albeit

lacking ellipticity, each summand in the result is always a
product of an elliptic function (with respect to the remain-
ing integration variables)—the residues Ri—and some
Eisenstein series. A powerful tool to compute integrals
of such almost elliptic functions is the Fourier series of the
Eisenstein series.
Let us start by defining the Fourier series

SkðzÞ≔
X0
n

1

sinknπτ
e2πinz; for k∈N≥1; and S1ðzÞ¼−1:

ðB1Þ

This series is a Taylor series in q provided the imaginary
part of z is not too large. Concretely, let z ¼ zR þ λτ, and
hen the summand reads

1

sinknπτ
qnλ ∝

qnλ

ðqn
2 − q−

n
2Þk ¼

8>><
>>:

qðλþ
k
2
Þn

ð1−qþnÞk ∼ qðλþk
2
Þnð1þ qþn þ � � �Þk; n > 0

qðλ−
k
2
Þn

ð1−q−nÞk ∼ qðλ−k
2
Þnð1þ q−n þ � � �Þk; n < 0

: ðB2Þ

When − k
2
≤ λ ≤ k

2
, Sk can be expanded in non-negative powers in q. In the following and in the main text, we will always

operate under the assumption that the entire argument of Sk sits well within this range.
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The simplest Eisenstein series can be Fourier expanded as

E1

�−1
z

�
¼ 1

2i
S1ðzÞ; E1

�þ1
z

�
¼ −

1

2
þ 1

2i
S1

�
z −

τ

2

�
;

ðB3Þ

E2

�−1
z

�
¼ −

1

4
S2

�
zþ τ

2

�
þ i
4
S1ðzÞ þ

1

24
;

E2

�þ1
z

�
¼ −

1

4
S2ðzÞ −

1

12
: ðB4Þ

The first line can be seen by first translating the E1 to Jacobi
theta functions and applying the well-known Fourier expan-
sion of ϑ0iðzÞ=ϑiðzÞ [77]. The second line follows by
analyzing the τ-derivative of the first. From these results,
the Fourier expansion of ζðzÞ can also be determined. Recall
that both ζ and E1 are related to Jacobi theta functions by
(A39) and (A46), and therefore when ζ ¼ ζR þ λτ with
λ ∈ ½0; 1Þ,

ζðzÞ ¼ 2πiE1

�þ1
z

�
− 4π2zE2

¼ πS1

�
z −

τ

2

�
− πi − 4π2zE2: ðB5Þ

To obtain the Fourier expansions for higher Eisenstein
series, we make the following Ansatz:

E2n

�þ1
z

�
¼

Xn
m¼0

c2nð2mÞS2mðzÞ;

E2nþ1

�−1
z

�
¼

Xn
m¼0

c2nþ1ð2mþ 1ÞS2mþ1ðzÞ: ðB6Þ

In particular, the known Fourier series for low weight
Eisenstein series then imply

c0ð0Þ¼1; c1ð1Þ¼
1

2i
; c2ð2Þ¼−

1

4
; c2ð0Þ¼þ

1

12
:

ðB7Þ
These data initiate a recursion for the coefficients.

Concretely, using (A27), we see that

Xn
m¼0

c2nþ1ð2mþ 1Þ2iS2mðzÞ

¼
Xn
l¼0

1

22lð2lþ 1Þ!E2n−2l

�−1
z

�

¼
Xn
l¼0

1

22lð2lþ 1Þ!
Xn−l
m¼0

c2n−2lð2mÞS2mðzÞ

¼
Xn
m¼0

Xn−m
l¼0

1

22lð2lþ 1Þ! c2n−2lð2mÞS2mðzÞ: ðB8Þ

Such analysis provides recursion relations for c’s,

2ic2nþ1ð2mþ1Þ¼
Xn−m
l¼0

1

22lð2lþ1Þ!c2n−2lð2mÞ; m∈N;

ðB9Þ
2ic2nþ2ð2mþ2Þ

¼
Xn−m
l¼0

1

22lð2lþ1Þ!c2nþ1−2lð2mþ1Þ; m∈N; ðB10Þ

with c2nþ2ð0Þ undetermined since the constant term in
E2nþ2 does not contribute to the difference equation.
However, the constant terms of the twisted Eisenstein
series E2n are of course well-known in terms of the
Bernoulli numbers, and thus [note the minus sign in
S0ðzÞ ¼ −1]

c2nð0Þ ¼ ð−1Þconst term of E2n

�þ1
z

�
¼ þ B2n

ð2nÞ! :

ðB11Þ
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