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We propose a mapping between geometry and kinematics that implies the classical equivalence of any
theory of massless bosons—including spin and exhibiting arbitrary derivative or potential interactions—to
a nonlinear sigma model (NLSM) with a momentum-dependent metric in field space. From this kinematic
metric we construct a corresponding kinematic connection, covariant derivative, and curvature, all of which
transform appropriately under general field redefinitions, even including derivatives. We show explicitly
how all tree-level on-shell scattering amplitudes of massless bosons are equal to those of the NLSM via the
replacement of geometry with kinematics. Lastly, we describe how the recently introduced geometric soft
theorem of the NLSM, which universally encodes all leading and subleading soft scalar theorems, also
captures the soft photon theorems.
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I. INTRODUCTION

Color-kinematics duality is an extraordinary structure
relating the on-shell scattering amplitudes of gauge theory
and gravity [1–3]. Mechanically, the former is mapped to
the latter by promoting color structure constants fabc to
momentum-dependent functions that conform to identical
antisymmetry properties and Jacobi identities. Hence,
gravity is simply a gauge theory for which color has been
substituted for kinematics.
In this paper, we argue that the classical dynamics of any

theory of massless bosons is similarly obtained via a
mapping of geometry to kinematics. Our starting point is
the nonlinear sigma model (NLSM), which defines scalar
fields as coordinates on an internal field-space manifold
endowed with a metric and a well-known apparatus of
geometrical structures [4–18]. The dynamics of the NLSM
are then specified by the field-space metric and its
derivatives at the vacuum, gij, gij;k, gij;kl, etc. By uplifting
these metric coefficients to momentum-dependent func-
tions, we obtain a kinematic metric that defines a gener-
alized field-space geometry, simultaneously encoding
flavor, spin, and momentum all at once. We then construct
the kinematic analogs of the connection, covariant deriva-
tive, and curvature, which transform covariantly under
arbitrary field redefinitions. From this perspective, all
massless bosons—e.g., in higher-derivative scalar theories,

ϕ3 theory, and Yang-Mills (YM) theory—are described by
an NLSM for a concrete, calculable choice of momentum-
dependent metric. Our results imply the invariance of tree-
level on-shell scattering amplitudes under arbitrary field
redefinitions, even including derivatives of fields.
A powerful corollary of this geometry-kinematics duality

is that any tree-level on-shell scattering amplitude of
massless bosons is directly obtained from an NLSM
amplitude after a suitable replacement of geometry
with kinematics. This rewriting of the amplitude is field-
redefinition invariant term by term, though on occasion at
the expense of manifest locality. Furthermore, under this
substitution, the geometric soft theorem for any massless
scalar [19]—which generalizes the Adler zero [20] and
dilaton soft theorems [21–24]—also encodes the leading
and subleading soft photon theorems [25–28].

II. GEOMETRY OF FIELD SPACE

The NLSM is a general two-derivative theory of scalar
fields ϕi described by

L ¼ −
1

2
gijðϕÞ∂ϕi

∂ϕj; ð1Þ

where the spacetime metric is in mostly plus signature. The
field-space metric expanded about the vacuum is

gijðϕÞ ¼ gij þ gij;kϕk þ 1

2
gij;klϕkϕl þ � � � ; ð2Þ

where hereafter any quantity without an explicit ϕ argu-
ment is to be evaluated at the vacuum.
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On-shell scattering amplitudes are invariant under
changes of field basis whereby ϕi is rewritten in terms
of ϕ̃i through the mapping ϕiðϕ̃Þ. The Lagrangian becomes
L ¼ − 1

2
g̃ijðϕ̃Þ∂ϕ̃i

∂ϕ̃j, so the metric is a tensor that trans-

forms as g̃ijðϕ̃Þ ¼ ∂ϕk

∂ϕ̃i
∂ϕl

∂ϕ̃j gklðϕÞ. In turn, gijðϕÞ is associated
with a menagerie of geometric objects, such as the
connection ΓijkðϕÞ, curvature RijklðϕÞ, and so on.
Since on-shell scattering amplitudes of the NLSM are

field-basis independent, they depend solely on geometric
invariants, so e.g., at four- and five-point they are [19]

Aijkl ¼ Rijkluþ Rikjls;

Aijklm ¼ ∇kRiljms45 þ∇lRikjms35 þ∇lRijkms25

þ∇mRikjls34 þ∇mRijklðs24 þ s45Þ; ð3Þ

where sij ¼ −ðpi þ pjÞ2 and s, t, u ¼ s12, s23, s31.
Hereafter, indices in lexographical order i, j, k, etc., will
denote the flavors of the corresponding legs, 1, 2, 3, etc.

III. GEOMETRY OF KINEMATICS

Consider a single scalar with arbitrary interactions.
Despite the absence of flavor, there exists a notion of
kinematic geometry in which momentum plays the role of
the index. Concretely, we map the flavor multiplet of the
NLSM to a single scalar,

ϕi → ϕðpÞ: ð4Þ

Under this replacement, the internal field-space metric is
mapped to the momentum-dependent kinematic metric,

gij → gðp1; p2Þδðp12Þ
gij;k → gðp1; p2jp3Þδðp123Þ
gij;kl → gðp1; p2jp3; p4Þδðp1234Þ; ð5Þ

and so on, where p1���n ¼ p1 þ � � � þ pn. Note that the only
constraint on the functions on the right-hand sides is that
they are separately permutation invariant under exchange of
1 and 2, and under exchange of 3; 4;…; n. This ensures that
the kinematic metric has the same symmetry properties as
the usual metric on field space.
For later convenience, we canonically normalize the

kinetic terms. This condition in the NLSM maps to
gij ¼ δij → gðp1; p2Þ ¼ 1. Meanwhile, any sum over an
internal field-space index maps to an integral over momen-

tum,
P

i →
R
p ¼ R dDp

ð2πÞD. Together, these imply that the

field with lowered indices maps to ϕi ¼ gijϕj → ϕð−pÞ, so
raised and lowered indices correspond to incoming and
outgoing momenta. We will refer to the above replacements
as the geometry-kinematics mapping or duality.

Applying this replacement to the Lagrangian for the
NLSM in Eq. (1), we obtain the action for a single scalar
expressed in momentum space,

S¼ 1

2

Z
p1;p2

ðp1 ·p2Þϕðp1Þϕðp2Þ
�
δðp12Þ

þ
Z
p3

gðp1;p2jp3Þδðp123Þϕðp3Þ

þ 1

2

Z
p3;p4

gðp1; p2jp3; p4Þϕðp3Þϕðp4Þδðp1234Þ þ � � �
�
;

ð6Þ

which actually has sufficient freedom to parametrize
arbitrary higher-derivative and potential interactions. As
we will see, one simply compares the action for a given
scalar theory directly to Eq. (6), reading off the kinematic
metric coefficients in Eq. (5) by inspection. We will
implement this procedure in numerous examples later on.
By design, this setup reduces to the usual NLSM

whenever the metric coefficients in Eq. (5) are constant.
Furthermore, from Eq. (5) we see that geometry-kinematics
duality maps the full metric gijðϕÞ in Eq. (2), which is a
function of the fields, to a kinematic metric that is a
functional of the fields.

IV. INVARIANTS AND FIELD REDEFINITIONS

To calculate the kinematic analog of a given geometric
invariant, we express the invariant in the NLSM in terms of
the field-space metric and its derivatives and then apply the
geometry-kinematics replacement. For example, the NLSM
connection is Γijk ¼ 1

2
½gij;k þ gik;j − gjk;i�, which maps to

Γijk → Γðp1; p2; p3Þδðp123Þ for

Γðp1; p2; p3Þ

¼ 1

2
½gðp1; p2jp3Þ þ gðp1; p3jp2Þ − gðp2; p3jp1Þ�: ð7Þ

Similarly, the NLSM curvature is expressed in terms of the
metric as Rijkl ¼ 1

2
½gil;jk þ gjk;il − gik;jl − gjl;ik� þ � � �,

which maps to Rijkl → Rðp1; p2; p3; p4Þδðp1234Þ, where

Rðp1; p2; p3; p4Þ

¼ 1

2
½gðp1; p4jp2; p3Þ þ gðp2; p3jp1; p4Þ � � ��: ð8Þ

Here the sums over internal indices map to momentum
integrals, so for example a term like gik;mgmngnj;l is sent
to gðp1; p3j − p13Þgð−p24; p2jp4Þδðp1234Þ, and so on.
Higher-point geometric objects like ∇iRjklm are similarly
calculated by expanding explicitly in terms of the metric
and then applying the geometry-kinematics replacement.
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The kinematic curvature in Eq. (8) transforms as a
tensor—even for off-shell momenta—under the kinematic
generalization of a change of coordinates. Indeed, the
geometry-kinematics replacement sends an arbitrary
NLSM field redefinition, ϕi ¼ ϕ̃i þ 1

2
cijkϕ̃

jϕ̃k þ � � �, to

ϕðp1Þ¼ ϕ̃ðp1Þþ
1

2

Z
p2

cðp1;−p2;p12Þϕ̃ðp2Þϕ̃ð−p12Þþ���;

ð9Þ

where the functions on the right-hand side are arbitrary. The

NLSM Jacobian, ∂ϕi

∂ϕ̃j ¼ δij þ cijkϕ̃
k þ � � �, maps to

∂ϕðp1Þ
∂ϕ̃ðp2Þ

¼ δðp1 − p2Þ þ cðp1;−p2; p12Þϕ̃ð−p12Þ þ � � � :

ð10Þ

The astute reader will notice that the transformation in
Eq. (9) is literally the momentum-space expression
of a field redefinition of the single scalar allowing for
derivatives. For example, the specific transformation
ϕ ¼ ϕ̃þ 1

2
c3∂ϕ̃∂ϕ̃þ 1

6
c4ϕ̃∂ϕ̃∂ϕ̃þ � � � is obtained from

cðp1;p2;p3Þ¼−c3ðp2 ·p3Þ, cðp1;p2;p3;p4Þ¼−1
3
c4½ðp2·

p3Þþðp3 ·p4Þþðp4 ·p2Þ�, and so on. The kinematic cur-
vature is a tensor under an arbitrary derivative field
redefinition, i.e., for any choice of functions in Eq. (9).
In summary, kinematic geometry is formally identical to

the standard geometry in the NLSM, albeit with regular
derivatives with respect to a constant scalar background
effectively replaced with functional derivatives.

V. SCALAR THEORY

Let us now examine some examples, starting with the
case of a single scalar field.

A. Nambu-Goldstone boson theory

Consider a derivatively coupled scalar field described by
the Lagrangian,

L ¼ −
1

2
∂ϕ∂ϕ

�
1 −

λ4
4
∂ϕ∂ϕþ λ6

8
ð∂ϕ∂ϕÞ2 þ � � �

�
; ð11Þ

where λ4 ¼ λ6 ¼ 1 corresponds to Dirac-Born-Infeld
theory. Equation (11) matches Eq. (6) for the choice of
metric,

gðp1; p2jp3; p4Þ ¼
λ4
2
ðp3 · p4Þ;

gðp1; p2jp3; p4; p5; p6Þ ¼ λ6½ðp3 · p4Þðp5 · p6Þ þ � � ��:
ð12Þ

The corresponding kinematic curvature is

Rðp1; p2; p3; p4Þ ¼ −
λ4
4
ðt − uÞ; ð13Þ

evaluated here at four-point on-shell kinematics. As required,
this object has the requisite symmetry properties, Rðp1; p2;
p3; p4Þ ¼ −Rðp2; p1; p3; p4Þ ¼ Rðp3; p4; p1; p2Þ and sat-
isfies the first Bianchi identity, Rðp1; p2; p3; p4Þ þ Rðp2;
p3; p1; p4Þ þ Rðp3; p1; p2; p4Þ ¼ 0.
Plugging Eq. (13) into the four-point amplitude for the

NLSM in Eq. (3), we obtain the four-point amplitude:

Aðp1; p2; p3; p4Þ ¼
λ4
4
ðs2 þ t2 þ u2Þ; ð14Þ

which exactly matches the answer computed directly from
Eq. (11). By computing the six-point kinematic geometric
invariants—which automatically satisfy the first and sec-
ond Bianchi identities—and inserting them into the corre-
sponding NLSM six-point amplitude in [19], we also
obtain the correct six-point answer.
We have also verified that the four- and six-point

kinematic curvature invariants are invariant under deriva-
tive field redefinitions, even for off-shell kinematics. So
while NLSM amplitudes must be on shell in order to be
expressed solely in terms of curvature invariants, as in
Eq. (3), the curvature invariants themselves can be evalu-
ated off shell, and as advertised, they still satisfy all
properties required of true geometric invariants.

B. Higher-derivative theory

Our analysis generalizes to theories with even higher-
derivative interactions. For example, consider such a theory
defined by

L¼ −
1

2
∂ϕ∂ϕ

�
1−

λ4
6
ð½Π�2 − ½Π2�Þ þ λ6

120
ð½Π�4 − 6½Π�2½Π2�

þ 3½Π2�2þ 8½Π�½Π3�− 6½Π4�Þ
�
; ð15Þ

where Πμν ¼ ∂μ∂νϕ and the brackets indicate traces over
Lorentz indices. Here λ4 ¼ λ6 ¼ 1 defines the special
Galileon theory [29,30]. The kinematic metric is

gðp1; p2jp3; p4Þ ¼
λ4
3
ðp3 · p4Þ2; ð16Þ

and kinematic curvature for on-shell kinematics is

Rðp1; p2; p3; p4Þ ¼
λ4
12

ðt2 − u2Þ; ð17Þ

which again satisfies all appropriate symmetry properties.
Inserting the kinematic curvature into Eq. (3) yields
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Aðp1; p2; p3; p4Þ ¼ −
λ4
4
stu; ð18Þ

which is the correct four-point amplitude.
In order to define the kinematic geometry of a theory, a

choice must be made for the initial metric. Curiously, this
choice is in general ambiguous. For example, consider the
six-point operator ð∂ϕÞ2½Π2�2 in Eq. (15), which is obtained
from Eq. (6) for the kinematic metric

gðp1;p2jp3; p4; p5; p6Þ∼ ðp3 ·p4Þ2ðp5 ·p6Þ2 þ � � � ; ð19Þ

or, alternatively, for the choice

g0ðp1; p2jp3; p4; p5; p6Þ
∼ ðp1 · p2Þ½ðp3 · p4Þ2ðp5 · p6Þ þ � � ��: ð20Þ

Inserted into Eq. (6), g and g0 produce the same Lagrangian.
Their difference arises only because in each metric we have
chosen to associate a different pair of fields to the momenta
p1 and p2 in Eq. (6). Strangely, g and g0 induce curvature
six-point invariants, ∇2R and ∇02R0, which are not equal.
Despite this, both choices reproduce the correct on-shell
six-point amplitude. Furthermore, applying a field redefi-
nition to either g or g0 leaves their respective curvature
invariants ∇2R and ∇02R0 unchanged, albeit still unequal to
each other. Yet another ambiguity arises from total deriv-
atives, which evaporate from observables but can still
contribute to the kinematic metric. Let us return to these
issues shortly.

C. Potential theory

Rather surprisingly, our formalism can be applied to a
theory with an arbitrary potential even though the NLSM
has intrinsic derivative interactions. In particular, observe
that the theory

L ¼ −
1

2
∂ϕ∂ϕ − VðϕÞ ð21Þ

corresponds to Eq. (6) with the kinematic metric,

gðp1; p2jp3;…; pnÞ ¼ −
2

p1 · p2

ðn − 2Þ!
n!

VðnÞ; ð22Þ

where VðnÞ is the nth derivative of the potential. The factors
of 1

p1·p2
have the sole purpose of canceling the momenta that

appear in the very definition of the NLSM. The corre-
sponding kinematic curvature is

Rðp1; p2; p3;p4Þ ¼ V2
ð3Þ

�
1

t2
−

1

u2

�
þVð4Þ

3

�
1

t
−
1

u

�
; ð23Þ

which inserted into Eq. (3) correctly yields

Aðp1; p2; p3; p4Þ ¼ −V2
ð3Þ

�
1

s
þ 1

t
þ 1

u

�
− Vð4Þ: ð24Þ

We have verified explicitly that the resulting five- and six-
point amplitudes are also correct.
The above result is somewhat miraculous because the

amplitudes in the NLSM have a strict subset of the
factorization channels that appear in the theory defined
in Eq. (21). In particular, the NLSM amplitudes have no
factorization channels involving three-point subdiagrams.
Nevertheless, the nonlocal momentum dependence in
Eq. (22) enters precisely in a way that automatically
regenerates all three-point factorization channels.
Note that the on-shell three-point amplitude itself is

slightly subtle in this construction—it technically vanishes
in the NLSM since Aijk ∼ gij;kðp1 · p2Þ þ � � � and all dot
products of momenta vanish for three-point on-shell
kinematics. However, the metric in Eq. (22) has a denom-
inator that similarly vanishes in such a way that the
resulting three-point amplitude is actually nonzero.

D. Arbitrary theory

There exist some features universal to any massless
scalar theory. For example, observe that Eq. (13), Eq. (17),
and Eq. (23) take the form

Rðp1; p2; p3; p4Þ ∼ tρ − uρ; ð25Þ
where ρ is the parameter defined in [29,31,32] which
quantifies the numbers of derivatives per interaction. The
above expression for the kinematic curvature is actually
universal, since it is the unique function with the appro-
priate symmetries that satisfies the Bianchi identity.
For any massless scalar theory it is also possible to

explicitly construct a kinematic metric directly from its
Feynman rules. Inspired by Eq. (22), we define

gðp1;p2jp3;…;pnÞ ¼
2

p1 ·p2

ðn− 2Þ!
n!

Fðp1;p2;p3;…;pnÞ;

ð26Þ
where F is the n-point Feynman vertex. This choice of
kinematic metric is properly permutation invariant and
eliminates the ambiguities arising from metric choice and
total derivatives mentioned previously.
Amusingly, there is an alternative choice of

coordinates—the kinematic analog of Riemann normal
coordinates—defined through the on-shell scattering
amplitudes themselves. In particular, consider

gðp1; p2jp3Þ ¼ 0

gðp1; p2jp3; p4Þ ¼
1

6ðp1 · p2Þ
Aðp1; p2; p3; p4Þ

gðp1; p2jp3; p4; p5Þ ¼
1

10ðp1 · p2Þ
Aðp1; p2; p3; p4; p5Þ;

ð27Þ
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which generates kinematic curvature invariants such as

Rðp1; p2; p3; p4Þ ¼
1

3

�
1

u
−
1

t

�
Aðp1; p2; p3; p4Þ; ð28Þ

and so on. Inserting these geometric invariants into Eq. (3),
we obtain exactly the four- and five-point amplitudes input
into the metric at the start. Note that the extension of this
claim to six-point and beyond is more subtle, since it
depends on the precise off-shell continuation of the four-
point amplitude.

VI. GAUGE THEORY AND GRAVITY

Our approach generalizes to any theory of massless
bosons of arbitrary spin. For example, consider the geom-
etry-kinematics replacement that maps the scalar of the
NLSM to the gauge boson of YM theory, ϕi → Aa

μðpÞ,
together with

gij → gμνabðp1; p2Þδðp12Þ
gij;k → gμνjρabjcðp1; p2jp3Þδðp123Þ
gij;kl → gμνjρσabjcdðp1; p2jp3; p4Þδðp1234Þ; ð29Þ

and so on. The only restriction on the form factors on the
right-hand side is that they are symmetric under swapping
the momenta simultaneously with the color and Lorentz
indices for legs 1 and 2, and similarly for legs 3; 4;…; n.
Working in Feynman gauge, the kinetic term fixes
gμνabðp1; p2Þ ¼ δabη

μν. Meanwhile, the internal sums map
to

P
i →

P
a

P
μ

R
p, and so the field with lowered

indices is simply ϕi → Aμ
að−pÞ. Applying this geometry-

kinematics replacement to the NLSM Lagrangian in
Eq. (1), we obtain the action

S ¼ 1

2

Z
p1;p2

ðp1 · p2ÞAa
μðp1ÞAb

νðp2Þ
�
δabη

μνδðp12Þ

þ
Z
p3

gμνjρabjcðp1; p2jp3Þδðp123ÞAc
ρðp3Þ þ � � �

�
: ð30Þ

Meanwhile, YM theory in Feynman gauge is defined by

L ¼ −
1

4
Fa
μνF

μν
a −

1

2
∂Aa

∂Aa; ð31Þ

which corresponds to Eq. (30) for the choice of metric,

gμνjρabjcðp1; p2jp3Þ ¼ −
ifabc
p1 · p2

ðpμ
3η

νρ − pν
3η

μρÞ

gμνjρσabjcdðp1; p2jp3; p4Þ ¼ −
fabefcde

2ðp1 · p2Þ
ðημρηνσ − ημσηνρÞ:

ð32Þ

Computing kinematic curvature invariants and inserting
them into the four- and five-point NLSM amplitudes in
Eq. (3), we correctly obtain those of YM theory.
While the resulting amplitudes are of course gauge

invariant, the kinematic curvature invariants which enter
into them are not. This is unsurprising, since a generic
diagrammatic expansion of the amplitude—for example
the usual color-kinematics decomposition into kinematic
numerators—is also not in general manifestly gauge
invariant. This implies that to the extent to which the
kinematic metric parametrizes a bona fide, underlying
manifold, gauge-field configurations that are gauge
equivalent in fact label distinct points with different
local curvatures. We leave for future study whether
there exists a choice of kinematic metric that is gauge
invariant.
The above procedure also applies to gravity. We simply

promote the scalar of the NLSM to the graviton via
ϕi → hμνðpÞ, with the kinematic metric given by

gij → gμνρσðp1; p2Þδðp12Þ
gij;k → gμνρσjαβðp1; p2jp3Þδðp123Þ
gij;kl → gμνρσjαβγδðp1; p2jp3; p4Þδðp1234Þ; ð33Þ

and so on. Here it is convenient to choose deDonder gauge,
where the kinetic term, i.e., inverse propagator numerator,
is gμνρσðp1; p2Þ ¼ 1

2
ðημρηνσ þ ημσηνρ − ημνηρσÞ. Meanwhile,

internal summations are mapped to
P

i →
P

μ

P
ν

R
p,

while lowering indices corresponds to sending incoming
momenta to outgoing while contracting with a tensor,
ϕi → gμνρσhρσð−pÞ. Applying this geometry-kinematics
replacement to Eq. (1), one obtains the obvious generali-
zation of Eq. (6) and Eq. (30) to gravity.
Our construction applies even more generally to any

theory of multiple boson species of diverse flavors, spins,
and interactions. In particular, all tensorial manipulations in
the NLSM transfer wholesale to a general theory, i.e., the
internal index i is promoted to an array of quantum
numbers labeling momenta, color, and spin Lorentz indices
ðp; a; μ;…Þ. An explicit kinematic metric can always be
computed directly from the Feynman vertices in the
obvious generalization of Eq. (26). Thus, a geometric
organization of the amplitudes can be achieved for a
general theory of massless bosons, as we will elaborate
on further in [33].

VII. SOFT THEOREMS

On-shell scattering amplitudes in the NLSM obey a
universal soft theorem based on the geometry of field space
[19]. The soft limit of the tree-level n-point amplitude is
related to (n − 1)-point via
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lim
pn→0

Ai1���in ¼ ∇inAi1���in−1

¼ ∂inAi1���in−1 −
Xn−1
α¼1

Γj
injαAi1���j���in−1 ; ð34Þ

hereafter dropping all terms of order OðpnÞ. Note that the
partial derivative acts with respect to the vacuum expect-
ation value of the field, so ∂in ¼ ∂

∂hϕin i. Equation (34) has the
physical interpretation that the soft limit simply shifts the
vacuum expectation value of the corresponding background
scalar field. Note that Eq. (34) automatically incorporates
any cubic potential terms implicitly through the covariant
derivative, provided the potential is included in the metric
as in Eq. (22).
Now consider the Lagrangian for scalar quantum electro-

dynamics, L ¼ −jDϕj2 where Dμ ¼ ∂μ − iAμ. The photon
couples to a pair of complex scalars via the metric

gρ
ϕ̄ϕ
ðp1; p2jp3Þ ¼ −gρ

ϕϕ̄
ðp1; p2jp3Þ ¼

1

p1 · p2

ðp1 − p2Þρ:

ð35Þ

We now compute the corresponding kinematic connection
and insert it into Eq. (34), taking the leg n to be a photon
and legs 1;…; n − 1 to be scalars. For example, this maps

−Γj
injαAi1���j���in−1 → qα

en · pα

pn · pα

�
1þ pn ·

∂

∂pα

�
A; ð36Þ

where en is the polarization vector of the soft particle and
pα and qα ¼ �1 are the momentum and charge of the hard
leg, respectively. Here pn ·

∂

∂pα
appears because the con-

traction with the connection shifts the momentum pα in the
lower-point amplitude to pα þ pn. Meanwhile, the partial
derivative with respect to a background scalar in Eq. (34)
maps to one with respect to a background photon,

∂

∂hϕini → eμn
∂

∂hAμi
¼ −

Xn−1
α¼1

qαen ·
∂

∂pα
; ð37Þ

where we have used that the background photon is a
connection, and thus couples universally to momenta.
Thus, the covariant derivative of the NLSM maps to the
leading and subleading soft photon theorems [25–28],

∇i →
Xn−1
α¼1

1

pn · pα
½en · pα þ en · Jα · pn�; ð38Þ

where Jμνα ¼ pμ
α

∂

∂pαν
− pν

α
∂

∂pαμ
is the angular momentum

operator acting on a hard leg. The generalization to soft
gluons [34–36] and gravitons [26,27,36–39] will be
explored in detail in [33].

VIII. CONCLUSIONS

We have shown that an arbitrary theory of massless
bosons is classically equivalent to an NLSM with an
internal field-space metric which is momentum dependent.
The resulting kinematic metric induces a corresponding
geometrical structure, wherein the associated kinematic
curvatures are tensors under general field redefinitions.
Armed with these geometric objects, we trivially obtain any
tree amplitude of massless bosons from those of the NLSM
by a replacement of geometry for kinematics.
Our analysis has focused solely on tree-level dynamics,

but geometry-kinematics duality should also apply to loops
in the very same way as does color-kinematics duality. In
particular, any loop integrand constructed via generalized
unitarity from tree amplitudes will be manifestly a function
of loop momentum-dependent kinematic curvature invar-
iants. Upon integration, the resulting amplitudes will agree
with standard methods. However, like in color-kinematics
duality, the geometry-kinematics replacement must be
applied at integrand level and not postintegration.
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