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In this work we revisit the famous Fermi two-atom problem, which concerns how relativistic causality
impacts atomic transition probabilities, using the tools from relativistic quantum information and algebraic
quantum field theory. The problem has sparked different analyses from many directions and angles since
the proposed solution by Buchholz and Yngvason [Phys. Rev. Lett. 73, 613 (1994)]. Some of these
analyses employ various approximations, heuristics, and perturbative methods, which tends to render some
of the otherwise useful insights somewhat obscured. It is also noted that they are all studied in flat
spacetime. We show that current tools in relativistic quantum information, combined with an algebraic
approach to quantum field theory, are now powerful enough to provide fuller and cleaner analysis of
the Fermi two-atom problem for arbitrary curved spacetimes in a completely nonperturbative manner.
Our result gives the original solution of Buchholz and Yngvason a very operational reinterpretation in terms
of qubits interacting with a quantum field and allows for various natural generalizations and inclusion of
detector-based local measurement for the quantum field [Phys. Rev. D 105, 065003 (2022)].
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I. INTRODUCTION

Fermi’s two-atom problem is the thought experiment
proposed by Fermi [1] and attracted much attention after
being revisited 60 years later by Hegerfeldt [2]. The
problem states that there is an apparent tension between
quantum electrodynamics and Einstein causality in the
following thought experiment. Suppose we have two atoms
A and B are separated by some distance r. If at some time
t ¼ 0 atom A is excited, atom B is in the ground state, and
no photon is present (the electromagnetic field is in its
vacuum state). The claim is that immediately at t ¼ 0þ,
there is nonzero probability that atom B gets excited, in
apparent violation of Einstein causality that imposes the
maximum speed of causal propagation at the speed of light.
It was already apparent since the work of Buchholz and

Yngvason [3] that there were some problems with Fermi’s
original thought experiment. In essence, the issue is that
one needs to calculate the excitation probability of B
irrespective of the initial states of A and the electromagnetic
field and furthermore without “damaging” approximations
such as the rotating wave approximations. Furthermore,
one should not invoke any procedure that involves
“projective measurement” of the electromagnetic field
state, which already leads to causality violation for a
related but different reason [4]. Note that the proposed
“solutions” by Hegerfeldt are perhaps asking too much to

any practicing experimentalists: to name one, they suggest
that it may be unphysical to demand statistical independ-
ence of state preparation of the two atoms in full quantum
electrodynamics. Overall, the consensus since the result of
Ref. [3] is that there is no causality violation, so for all
practical purposes we can say that the problem has been
“solved.”
Nonetheless, we believe that the existing analyses and

solutions are somewhat unsatisfactory for at least two
reasons. First, while Hegerfeldt’s arguments in Ref. [2]
are powerful in that they only appeal to positivity of the
Hamiltonian, in practical situations many state preparation
procedures using realistic systems should not require one to
carefully track a “soft photon cloud” (nowadays known as
preparation of dressed states) to make useful experiments1

(see, e.g., [6]). Similarly, Buchholz and Yngvason’s
solutions, obtained using “primitive causality” and “causal
(statistical) independence,” rest on the use of expectation
values of observables which would only hold in the limit of
infinitely many repeated experiments [7]. Both approaches
seem to at least agree that strict localization of states are
untenable. We believe that, while the analyses are valid,
they are perhaps too strong for illustrating relativistic
causality in light-matter interaction type of scenarios, both
theoretically and experimentally.

*e2tjoa@uwaterloo.ca

1Of course there are experiments where dressing is important
or if the objective is to work with dressed states (see, e.g., [5] and
references therein).
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Second, many of the analyses that involve the use of
nonrelativistic detectors use perturbative expansions and
approximations that need to be carefully controlled. For
example, Buscemi and Compagno [8] showed using per-
turbation theory that the Fermi problem analyzed via a
pointlikeUnruh-DeWitt (UDW)detector [9,10] is consistent
with causality,2 while a Glauber detector [11]—essentially a
UDW detector with rotating wave approximation—is not.
Some other related analyses that pertain to the Fermi
problem as a common theme are given in, for instance,
Refs. [12–17].
In any case, subsequent studies via the Unruh-DeWitt

detector model, which treats a two-level quantum system
(“qubits”) as a detector interacting with a quantum field,
more or less settle the debate in the perturbative regime in
flat spacetimes, with or without a cavity [6,18–20]. These
more modern and careful works are notable for being closer
to quantum information theory where cleaner tools are
available and experiments are quite advanced. Furthermore,
it is now well understood that, within the perturbative
regime, there is some (mild) causality violation for detector
models with finite size that is completely separate from the
Fermi problem itself but rather related to the nonrelativistic
nature of any model of a quantum-mechanical detector
[20–24]. Modern analysis of the impact of rotating wave
approximations on causality outside the context of the
Fermi problem has also been investigated in Refs. [25–27].
In this work we would like to clean up all the existing

analyses about the Fermi two-atom problem by providing a
fully nonperturbative calculation using the Unruh-DeWitt
detector model very commonly used in relativistic quantum
information (RQI) combined with the framework of alge-
braic quantum field theory (AQFT). This allows us to
(i) generalize the Fermi two-atom problem to arbitrary
globally hyperbolic curved spacetimes where relativistic
causality still needs to hold; (ii) remove any issue having to
do with perturbative expansions and potentially contentious
and harder-to-control approximations; and (iii) give much
more economical expressions using the language in quan-
tum information (QI) and AQFT. In fact, the economy of
expression is essentially due to the fact that the calculation
is very closely related to how we study quantum commu-
nication channels in quantum information theory. The
approach is based on the “delta-coupling” Unruh-DeWitt
detector model, where the detectors interact with the field
very rapidly, effectively at a single instant in time (for some
applications of delta coupling in RQI, see Refs. [28–30]
for relativistic quantum communication or Refs. [31–34]
for correlation harvesting).

At this point we should mention that by “nonperturbative
regime” we mean that the interaction picture unitary
evolution induced by the detector-field interaction
Hamiltonian is a finite sum of bounded operators, without
truncation of Dyson series expansion at some finite powers
of coupling strengths, as is usually done in many situations
where the interaction involves weak coupling. This relies on
physical arguments that we can remove the time-ordering
operation in this “rapid coupling” regime. We do not mean
that this calculation is nonperturbative in the sense that we
solved exactly for the full interacting theory of the detector-
field system as a dynamical system, which is a generally
difficult problem related to Haag’s theorem and the exist-
ence of interaction picture representations in general (see,
e.g., Ref. [35] and references therein for discussions). We
will thus refer to the latter as having an exact solution for the
dynamical system, while here we give a nonperturbative
solution, i.e., nonperturbative in the usual sense of having no
truncation of any series expansion. In this context, we may
also regard the delta-coupling regime as a limit where
effectively we are performing “resummation” of the series
expansion of the unitary evolution.
As a side bonus, we will show that there is no difficulty

in extending the calculations to include nonvacuum states
of the field, and for quasi-free states (field states with
vanishing one-point functions) essentially no extra calcu-
lation needs to be done at all. While nonvacuum states may
obscure the interpretation of the Fermi problem, we will see
that one can really separate the causal propagation of
information from the nonlocal correlations due to the
highly entangled nature of quantum field states—this is
essentially the case because the causal nature of QFT is
state independent and only the nonlocal correlations in the
field are state dependent [36]. It is part of the author’s
intention to bridge and popularize the two approaches from
RQI and AQFT and make them work more seamlessly
(see also, e.g., [29,37]). We also show briefly that local
measurement theory for quantum field theory outlined in
Ref. [38] naturally fits the Fermi problem in the non-
perturbative approach.
We remark that the approach we adopt here should give a

more complete closure to the Fermi problem in a manner
that is as transparent as possible. The only real (significant)
simplification we make in this work is the use of a scalar
field rather than an actual electromagnetic field and, hence,
a monopole detector rather than an atomic dipole (a more
general UDW model involving dipole-electromagnetic
interaction was considered, e.g., in Refs. [39,40]), since
in the Fermi problem the “directionality” of the vector field
is irrelevant to the discussion of relativistic causality.
Extensions to more complicated coupling should be
straightforward.
Our paper is organized as follows. In Sec. II we review the

algebraic approach to scalar QFT in (3þ 1)-dimensional
globally hyperbolic Lorentzian spacetime. In Sec. III we

2Strictly speaking the calculation of probability in Ref. [8] is
ultraviolet divergent due to the pointlike limit and sharp switch-
ing of the detector; thus, some form of “renormalization” is
required.
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introduce the delta-coupled UDW detector model to set up
the Fermi two-atom problem. In Sec. IV we revisit the
Fermi problem and show that it is consistent with relativ-
istic causality in a fully nonperturbative manner, valid
for any globally hyperbolic curved spacetime and for any
choice of quasi-free Hadamard states for the field. In Sec. V
we include a brief discussion on what happens to the Fermi
problem setup if some actual measurement process is
performed by one of the detectors. In Sec. VI we will
comment on several directions for further investigations.
We adopt the natural units c ¼ ℏ ¼ 1 and mostly plus

signature for the metric. We adopt the physicists’ con-
vention of denoting Hermitian conjugate by †, but we retain
the term C� algebra where � involution is the mathema-
ticians’ version of Hermitian conjugation; context should
make things clear.

II. AQFT FOR SCALAR FIELD
IN CURVED SPACETIME

In order to ensure that this work is self-contained, in this
section we briefly review the algebraic framework for
quantization of a real scalar field in arbitrary (globally
hyperbolic) curved spacetimes. We will follow the conven-
tion in Ref. [41]. Note that in the AQFT literature there are
various different conventions being used (see, e.g., [42–46]).
A highly recommended accessible introduction to � algebras
and C� algebras for applications in this setting can be found
in Ref. [46] (see also [47]).
Readers are recommended to skip to Sec. III or IV if they

are more interested in the qubit side of the Fermi two-atom
problem and less on the field-theoretic side, referring to this
section when certain details need to be consulted.

A. Algebra of observables and states

We consider a free, real scalar field ϕ in (3þ 1)-
dimensional globally hyperbolic Lorentzian spacetime
ðM; gabÞ. The field obeys the Klein-Gordon equation

Pϕ ¼ 0; P ¼ ∇a∇a −m2 − ξR; ð1Þ
where ξ ≥ 0, R is the Ricci scalar and ∇ is the Levi-Civita
connection with respect to gab. Global hyperbolicity
ensures that M admits foliation by spacelike Cauchy
surfaces Σt labeled by time parameter t. It also guarantees
that the wave equation (1) has a well-posed initial value
problem throughout M.
Let f ∈ C∞

0 ðMÞ be a smooth compactly supported test
function on M. The retarded and advanced propagators
E� ≡ E�ðx; yÞ associated to the Klein-Gordon operator P
are Green’s functions obeying

E�f ≡ ðE�fÞðxÞ ≔
Z

dV 0E�ðx; x0Þfðx0Þ; ð2Þ

where we have the inhomogeneous equation PðE�fÞ ¼ f.
Here dV 0 ¼ d4x0

ffiffiffiffiffiffi−gp
is the invariant volume element.

The causal propagator is defined to be the advanced-
minus-retarded propagator E ¼ E− − Eþ. If O is an open
neighborhood of some Cauchy surface Σ and φ is any real
solution with compact Cauchy data to Eq. (1), denoted
by φ ∈ SolRðMÞ, then there exists f ∈ C∞

0 ðMÞ with
suppðfÞ ⊂ O such that φ ¼ Ef [45] (see also [48] for
more details on the causal propagator).
Next, we review algebraic approach for the real scalar

quantum field theory (for comparison with canonical quan-
tization formulation see, e.g., [45,46,49]). In AQFT, the
quantization of the real scalar field is regarded as anR-linear
mapping from the space of smooth compactly supported
test functions to a unital � algebra AðMÞ given by

ϕ̂∶ C∞
0 ðMÞ → AðMÞ; f ↦ ϕ̂ðfÞ; ð3Þ

which obeys the following conditions:
(a) (Hermiticity) ϕ̂ðfÞ† ¼ ϕ̂ðfÞ for all f ∈ C∞

0 ðMÞ;
(b) (Klein-Gordon) ϕ̂ðPfÞ ¼ 0 for all f ∈ C∞

0 ðMÞ;
(c) [canonical commutation relations (CCR)]

½ϕ̂ðfÞ; ϕ̂ðgÞ� ¼ iEðf; gÞ1 for all f; g ∈ C∞
0 ðMÞ, where

Eðf; gÞ is the smeared causal propagator

Eðf; gÞ ≔
Z

dVfðxÞðEgÞðxÞ; ð4Þ

(d) (time slice axiom) let Σ ⊂ M be a Cauchy surface and
O a fixed open neighborhood of Σ.AðMÞ is generated
by the unit element 1 [hence, AðMÞ is unital] and
the smeared field operators ϕ̂ðfÞ for all f ∈ C∞

0 ðMÞ
with suppðfÞ ⊂ O.

The � algebraAðMÞ is called the algebra of observables of
the scalar field. The smeared field operator reads

ϕ̂ðfÞ ¼
Z

dVϕ̂ðxÞfðxÞ; ð5Þ

where the object ϕ̂ðxÞ is to be regarded as an operator-valued
distribution.
The algebra of observables AðMÞ will appear more

concrete if we make its connection with the symplectic
structure of the theory more explicit. First, the vector space
SolRðMÞ can be made into a symplectic vector space by
equipping it with a symplectic form σ∶SolRðMÞ×
SolRðMÞ → R, defined as

σðϕ1;ϕ2Þ ≔
Z
Σt

dΣa½ϕ1∇aϕ2 − ϕ2∇aϕ1�; ð6Þ

where dΣa ¼ −tadΣ,−ta is the inward-directed unit normal
to the Cauchy surface Σt and dΣ ¼ ffiffiffi

h
p

d3x is the induced
volume form on Σt [50,51]. This definition is independent
of the Cauchy surface. With this, we can regard ϕ̂ðfÞ as a
symplectically smeared field operator [42]:

ϕ̂ðfÞ≡ σðEf; ϕ̂Þ; ð7Þ
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and the CCR algebra can be written as

½σðEf; ϕ̂Þ; σðEg; ϕ̂Þ� ¼ iσðEf; EgÞ1 ¼ iEðf; gÞ1; ð8Þ

where σðEf; EgÞ ¼ Eðf; gÞ in the second equality follows
from Eqs. (5) and (7). The symplectic smearing has the
advantage of keeping the dynamical content manifest at the
level of the field operators (via the causal propagator).
Thinking of the field operator as a symplectically smeared
field operator can be useful in some contexts, such as when
studying scalar QFT at Iþ (see, e.g., [41,52]).
It is often more convenient to work with the “exponen-

tiated” version of AðMÞ called the Weyl algebra [denoted
by WðMÞ], since its elements are (formally) bounded
operators. The Weyl algebra WðMÞ is a unital C� algebra
generated by elements which formally take the form

WðEfÞ≡ eiϕ̂ðfÞ; f ∈ C∞
0 ðMÞ: ð9Þ

These elements satisfy Weyl relations

WðEfÞ† ¼ Wð−EfÞ;
WðEðPfÞÞ ¼ 1;

WðEfÞWðEgÞ ¼ e−
i
2
Eðf;gÞWðEðf þ gÞÞ; ð10Þ

where f; g ∈ C∞
0 ðMÞ. Note that the microcausality con-

dition (also known as relativistic causality or Einstein
causality) can be seen as follows: using the Weyl relations
Eq. (10) and the fact that suppðEfÞ ⊂ JþðsuppðfÞÞ, where
JþðsuppðfÞÞ is the causal future of suppðfÞ, we have [43]

½WðEfÞ;WðEgÞ� ¼ 0; ð11Þ

whenever suppðfÞ ∩ suppðgÞ ¼ ∅ (supports of f and g are
causally disjoint, i.e., “spacelike separated”).3

After specifying the algebra of observables, we need to
provide a quantum state for the field theory. In AQFT the
state is called an algebraic state, defined by a C-linear
functional ω∶AðMÞ → C [similarly for WðMÞ] such that

ωð1Þ ¼ 1; ωðA†AÞ ≥ 0 ∀ A ∈ AðMÞ: ð12Þ

That is, a quantum state is normalized to unity and positive-
semidefinite operators have non-negative expectation
values. The state ω is pure if it cannot be written as
ω ¼ αω1 þ ð1 − αÞω2 for any α ∈ ð0; 1Þ and any two
algebraic states ω1 and ω2; otherwise, we say that the
state is mixed. For the Weyl algebra, the same definition
works but with element A ∈ WðMÞ.

The connection to the usual notion of Hilbert space
(Fock space) in canonical quantization comes from the
Gelfand-Naimark-Segal (GNS) reconstruction theorem
[42,45,46]. This says that we can construct a GNS triple4

ðHω; πω; jΩωiÞ, where πω∶AðMÞ → EndðHωÞ is a Hilbert
space representation with respect to state ω such that any
algebraic state ω can be realized as a vector state
jΩωi ∈ Hω. The observables A ∈ AðMÞ are then repre-
sented as operators Â ≔ πωðAÞ acting on the Hilbert space.
With the GNS representation, the action of algebraic states
take the familiar form

ωðAÞ ¼ hΩωjÂjΩωi: ð13Þ

The main advantage of the AQFT approach is that it is
independent of the representations of the CCR algebra
chosen: there are as many representations as there are
algebraic states ω. Since QFT in curved spacetimes admits
infinitely many unitarily inequivalent representations of the
CCR algebra, this allows us to work with all of them
simultaneously until the very last step.
For the Weyl algebra, the algebraic state and GNS

representation gives concrete realization of “exponentiation
of ϕ̂ðfÞ” as a bounded operator acting on the Hilbert space.
We remind the reader that the exponentiation in Eq. (9) is
only formal as we cannot literally regard the smeared field
operator ϕ̂ðfÞ as the derivative ∂tjt¼0WðtEfÞ. This is
because the Weyl algebra itself does not have the right
topology for this to work out [46]; however, one can take
the derivative at the level of the GNS representation: that is,
if Πω∶WðMÞ → BðHωÞ is a GNS representation with
respect to ω, then we do have

πωðϕ̂ðfÞÞ¼−i
d
dt

����
t¼0

Πωðeitϕ̂ðfÞÞ≡−i
d
dt

����
t¼0

eitπωðϕ̂ðfÞÞ; ð14Þ

where now ϕ̂ðfÞ is a smeared field operator acting on
Hilbert space Hω. This is then taken to define the formal
n-point functions to be the expectation value in its GNS
representation. For example, the smeared Wightman two-
point function reads

ωðϕ̂ðfÞϕ̂ðgÞÞ ≔ hΩωjπωðϕ̂ðfÞÞπωðϕ̂ðgÞÞjΩωi

≡ −
∂
2

∂s∂t

����
s;t¼0

hΩωjeisπωðϕ̂ðfÞÞeitπωðϕ̂ðgÞÞjΩωi;

ð15Þ

which we also denote by Wðf; gÞ. In what follows we will
write the formal two-point functions ωðϕ̂ðfÞϕ̂ðgÞÞ with this
understanding that the actual calculation is (implicitly)
done with respect to the GNS representation in question:3Abstractly, we would consider elements of the Weyl algebra

to be WðϕÞ for some ϕ ∈ SolRðMÞ. In this form, however,
microcausality is less obvious because the third Weyl relation
would have read Wðϕ1ÞWðϕ2Þ ¼ e−iσðϕ1;ϕ2Þ=2Wðϕ1 þ ϕ2Þ.

4Strictly speaking we also need to provide a dense subset
Dω ⊂ Hω since the field operators are unbounded operators.
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for instance, in Minkowski spacetime the vacuum
GNS representation would give the Minkowski vacuum
jΩωi ¼ j0Mi.
It is worth noting that not every field state is expressible as

a density matrix in a particular GNS representation. For
example, a thermal state at temperature β−1 cannot bewritten
as ρ̂β ¼ e−βĤ=Z since the partition function Z is divergent
and hence the expression is only formal. In the algebraic
framework, this problem is avoided since the Kubo-Martin-
Schwinger (KMS) condition [53,54] characterizes thermal
states via the correlation functions. All we need to know is
how to write the corresponding algebraic state ωβð·Þ. In
general, given a GNS representation πω associated to an
algebraic state ω, the family of density matrices ρ̂ ∈ DðHωÞ
in that GNS representation defines a family of algebraic
states ρ̂ ↦ ωρ̂: such a family of states fωρ̂g for which a valid
density matrix exists in Hω are called normal states5 in the
folium of Πω of the Weyl algebra [47].

B. Quasi-free states

In the AQFT approach there are too many algebraic states
and not all of them are physically relevant. The general
consensus is that physically reasonable states ω should fall
under the class of Hadamard states [45,49,55]. Roughly
speaking, these states have the right “singular structure” at
short distances that respects the local flatness property in
general relativity and has finite expectation values over all
observables (see [49] and references therein for more tech-
nical details). In this work, we would like to work with
Hadamard states that are alsoquasi-free, denoted byωμ: these
are the states which can be completely described only by their
two-point correlators.6 Well-known field states such as the
vacuum states and thermal states are all quasi-free states, with
thermal states (thermality defined according to the KMS
condition [49]) being an example of mixed quasi-free states.
Let us now review the construction of a quasi-free

state following Ref. [29] (based on Refs. [45,46,49]).
Any quasi-free state ωμ is associated to a real inner product
μ∶ SolRðMÞ × SolRðMÞ → R obeying the inequality

jσðEf; EgÞj2 ≤ 4μðEf; EfÞμðEg; EgÞ; ð16Þ

for any f; g ∈ C∞
0 ðMÞ. The state is pure if it saturates the

above inequality appropriately [42]. Then the quasi-free
state ωμ is defined as

ωμðWðEfÞÞ ≔ e−μðEf;EfÞ=2: ð17Þ

We will drop the subscript μ and simply write ω in what
follows (unless otherwise stated). Note that Eq. (17) is not
very useful since it does not give us a way to evaluate
μðEf;EfÞ.
In order to obtain a practical expression for the norm-

squared jjEfjj2 ≔ μðEf; EfÞ, we make SolRðMÞ into a
Hilbert space in the following sense.7 In Ref. [49] it was
shown that we can always construct a one-particle struc-
ture associated to quasi-free state ωμ, namely a pair ðK;HÞ,
where H is a Hilbert space ðH; h·; ·iHÞ together with an
R-linear map K∶SolRðMÞ → H such that for ϕ1;ϕ2 ∈
SolRðMÞ
(a) KSolRðMÞ þ iKSolRðMÞ is dense in H;
(b) μðϕ1;ϕ2Þ ¼ RehKϕ1; Kϕ2iH;
(c) σðϕ1;ϕ2Þ ¼ 2ImhKϕ1; Kϕ2iH.
In the language of canonical quantization, the linear map K
projects out the “positive-frequency part” of the real
solution to the Klein-Gordon equation. The smeared
Wightman two-point function Wðf; gÞ is then related to
μ, σ by [46,49]

Wðf; gÞ ≔ ωðϕ̂ðfÞϕ̂ðgÞÞ ¼ μðEf; EgÞ þ i
2
Eðf; gÞ; ð18Þ

where we have used the fact that σðEf; EgÞ ¼ Eðf; gÞ. We
also have Eðf; fÞ ¼ 0; thus, we get

jjEfjj2 ¼ Wðf; fÞ ¼ hKEf;KEfiH: ð19Þ

Therefore, we can compute μðEf; EfÞ if either (i) we know
the (unsmeared) Wightman two-point distribution of the
theory associated to some quantum field state or (ii) we
know the inner product h·; ·iH and how to project using K.
The inner product h·; ·iH is precisely the Klein-Gordon

innerproductð·; ·ÞKG∶SolCðMÞ × SolCðMÞ → C restricted
toH, defined by

ðϕ1;ϕ2ÞKG ≔ iσðϕ�
1;ϕ2Þ; ð20Þ

where the symplectic form is now extended to complexified
solutionSolCðMÞ of theKlein-Gordon equation.The restric-
tion toH is necessary since ð·; ·ÞKG is not an inner product on
SolCðMÞ. In particular, we have

SolCðMÞ ≅ H ⊕ H̄; ð21Þ

where H̄ is the complex conjugate Hilbert space ofH [42]. It
follows that Eq. (17) can be written as

5Not all algebraic states associated to a GNS representation are
expressible in terms of a density matrix: thermal states ωβ are
therefore not a normal state of ΠωðWðMÞÞ (viewed as a von
Neumann algebra) where Πω is the vacuum representation [47].

6This means all odd-point functions vanish, nonvanishing two-
point functions ωðϕ̂ðfÞϕ̂ðgÞÞ ≠ 0, and all even-point functions
can be written as a linear combination of products of two-point
functions. The term Gaussian states is sometimes reserved
for those that can be completely specified by its one-point and
two-point functions.

7Wewill assume that the Hilbert space is already completed via
its inner product.
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ωμðWðEfÞÞ ¼ e−
1
2
Wðf;fÞ ¼ e−

1
2
jjKEfjj2KG : ð22Þ

The expression in Eq. (22) gives us a concrete way to
calculate jjEfjj2 more explicitly. For example, we know
that the (unsmeared) Wightman two-point distribution for
the vacuum representation can be calculated in canonical
quantization in the usual way, which reads

Wðx; yÞ ¼
Z

d3kukðxÞu�kðyÞ; ð23Þ

where ukðxÞ are (positive-frequency) modes of Klein-
Gordon operator P normalized with respect to Klein-
Gordon inner product Eq. (20):

ðuk; uk0 ÞKG ¼ δ3ðk − k0Þ; ðuk; u�k0 ÞKG ¼ 0;

ðu�k; u�k0 ÞKG ¼ −δ3ðk − k0Þ: ð24Þ

If we know the set fukg, we can calculate the symmetrically
smeared two-point function

Wðf; fÞ ¼
Z

dVdV 0fðxÞfðyÞWðx; yÞ: ð25Þ

In other words, for all practical purposes knowing the
Klein-Gordon norm of KEf or the symmetrically smeared
Wightman two-point functions is enough to completely
work out many calculations for quasi-free states. One can
also extend the calculation to include complex smearing
(see, e.g., [46] for this).

III. DELTA-COUPLED UDW
DETECTOR MODEL

In this section we first review the covariant generaliza-
tion of the UDW detector model, as done in the spirit of
Refs. [23,24,29]. The UDW detector model is a simplifi-
cation of light-matter interaction where the dipole-electro-
magnetic interaction is reduced to a scalar version. This
model gives a good approximation of light-matter inter-
action when no angular momentum is exchanged (since the
scalar field has no vectorial component) [39].

A. Covariant UDW detector model

Consider two observers Alice and Bob each carrying
a UDW detector in spacetime M. The UDW detector is
a two-level system (“a qubit”) with a free Hamiltonian
given by

hj ¼
Ωj

2
ðσ̂zj þ 1Þ; j ¼ A; B; ð26Þ

where σ̂zj is the usual Pauli-Z operator for detector j, whose
ground and excited states jgji and jeji have energy 0 and

Ωj, respectively. Let τj be the proper time of detector j
whose center of mass travels along the worldline xjðτjÞ.
A priori the proper times may not coincide (i.e., the sense
that dτA=dτB ≠ 1) due to relativistic redshift caused by
relative motion or a different gravitational potential.
The covariant generalization of the UDW model is given

by the following interaction Hamiltonian four-form (in the
interaction picture) [23,24]:

hI;jðxÞ ¼ dVfjðxÞμ̂jðτjðxÞÞ ⊗ ϕ̂ðxÞ; ð27Þ

where dV ¼ d4x
ffiffiffiffiffiffi−gp

is the invariant volume element inM
and fjðxÞ ∈ C∞

0 ðMÞ prescribes the interaction region
between detector j and the field. The monopole moment
of detector j, denoted μ̂jðτjÞ, is given by

μ̂jðτjÞ ¼ σ̂xjðτjÞ ¼ σ̂þj e
iΩjτj þ σ̂−j e

−iΩjτj ; ð28Þ

where σ̂� are the suð2Þ ladder operators with σ̂þj jgji ¼ jeji
and σ̂−j jeji ¼ jgji.
The total unitary time evolution for the detector-field

system is given by the time-ordered exponential (in the
interaction picture) [23,24]:

U ¼ T t exp

�
−i

Z
M

dVhI;AðxÞ þ hI;BðxÞ
�
: ð29Þ

Since the spacetime is globally hyperbolic, we can take the
time ordering to be with respect to the global time function
t. Without loss of generality we can set tðτA;0Þ ¼ τA;0 ¼ 0.
At this point, depending on the problem at hand

one may proceed to evaluate the time evolution perturba-
tively or nonperturbatively. There is a great deal of
flexibility when one chooses to work within the pertur-
bative regime, but there is mild causality violation and
“broken covariance” whose origin can be traced to the
combination of time ordering and nonrelativistic nature
of the detector model [23,24].8 Since our goal is to
reformulate the Fermi problem in the clearest possible
manner, we will adopt a nonperturbative approach based
on delta coupling.

B. Delta coupling and the choice
of coordinate systems

The delta-coupling regime for the UDW model is the
regimewhere the interaction timescale between the detector
and the field is assumed to be much faster than all
the relevant timescales of the problem: that is, we model
the interaction with each detector as taking place at a single
instant in time (with respect to some time function,

8As articulated in Ref. [56], this should not come as a surprise
or a source of concern, so long as one is aware of the regime of
validity and approximations being used.
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typically the detector’s proper time or the global time
function). This regime is particularly suited for the analysis
of the Fermi two-atom problem.
Mathematically, each detector interacts at some fixed

τj ¼ τj;0 in its own center-of-mass rest frame. In terms of
the detector’s proper frame (e.g., using Fermi normal
coordinates [23,24,57]) the spacetime smearing can be
factorized into products of switching functions and its
spatial profile:

fjðxÞ ¼ λjηjδðτj − τj;0ÞFjðx̄Þ; ð30Þ

where we have written x ¼ ðτ; x̄Þ in the local coordinates of
the detector and Fjðx̄Þ gives the spatial profile of the
detector. In Fermi normal coordinates (FNCs) we also have
that the center-of-mass trajectory is xjðτÞ≡ ðτ; 0Þ.
For the Fermi problem, we require that we can order

Alice and Bob’s local operations as being time ordered with
respect to some common time function t. Since the supports
of Alice and Bob are assumed to not overlap due to
compactly supported interaction regions, we can always do
this unambiguously. In what follows we assume that the
two detectors are on static trajectories so that tj ¼ tðτjÞ
(independent of the spatial coordinates x). In this case, it
means that we need to be able to have tðτA;0Þ < tðτB;0Þ.
Using the global time function t coming from the foliation
M ≅ R × Σt, the time function can be used to order the
two local unitaries for each detector, so that the unitary U
reduces to a product of two simple unitaries U ¼ UBUA,
where

Uj ¼ exp ½−iμ̂jðτj;0Þ ⊗ Ŷj�; ð31Þ

Ŷj ¼ ϕ̂ðfjÞ ¼
Z
M

dVfjðxÞϕ̂ðxÞ; ð32Þ

with fjðxÞ is given in Eq. (30) and tðτA;0Þ < tðτB;0Þ. This
unitary can be written as a sum of bounded operators

Uj ¼ 1 ⊗ cos Ŷj − iμ̂jðτj;0Þ ⊗ sin Ŷj; ð33Þ

where the smeared operator Ŷj should read

Ŷj ¼ λjηj

Z
τ¼τj;0

dΣFðx̄Þϕ̂ðxðτj;0; x̄ÞÞ; ð34Þ

where dΣ is the induced volume element for constant-τj
slices associated to the rest frame of the detectors. We will
leave it as Ŷj ¼ ϕ̂ðfjÞ to keep it manifestly coordinate
independent in the sense of Eq. (32), and indeed we do not
need any detailed description of Ŷj in what follows. For
simplicity we assume that the constants ηj (with dimension
of [Length]) are equal.

Finally, we should state for completeness that the results
of this work using a delta-coupled detector are not strictly
speaking at the level of rigor of pure mathematics. This is
because the spacetime smearing fjðxÞ for delta coupling in
Eq. (30) does not belong to C∞

0 ðMÞ. We have in mind
physical intuition that delta coupling corresponds to very
rapid interaction, i.e., an approximation of smooth com-
pactly supported functions that are very localized in time.9

Justifying this fully rigorously would take us too far away;
however, one can adopt the gapless detector model as done
in Ref. [37] and make analogous calculations in what
follows. The results can be shown to be analogous, except
that now the notions of ground and excited states are harder
to see because the energy levels are degenerate. Therefore,
the use of AQFT in this work is mainly to ensure that the
setting generalizes easily to arbitrary curved spacetimes
and for any of the GNS representations, since canonical
quantization somewhat obscures the essential physics of the
Fermi two-atom problem.

IV. FERMI TWO-ATOM PROBLEM AND
RELATIVISTIC CAUSALITY

We are now ready to set up the Fermi two-atom problem.
Let us consider the initial state of the detector-field system
to be given by initially uncorrelated state

ρ̂0 ¼ ρ̂0A ⊗ ρ̂0B ⊗ ρ̂0ϕ: ð35Þ

We are interested in what happens to Bob’s detector given
what happens to Alice’s detector. Thus we are interested in
the quantum channel Φ∶DðHBÞ → DðHBÞ, where DðHBÞ
is the space of density matrices associated to Hilbert space
of Bob’s detector HB. The channel is naturally defined in
the Stinespring representation

Φðρ̂0BÞ ¼ trA;ϕðUρ̂0U†Þ: ð36Þ

Note that this is different from the context of quantum
communication where we are interested instead in the
channel acting on Alice’s state mapping into Bob’s Hilbert
space, which would be some channel E∶DðHAÞ →
DðHBÞ.
We can calculate the channel explicitly in closed form.

Since the expression for the full density matrix will be very
useful for future calculations and in other contexts [58], we
will expand them completely here. It is useful to organize
the calculations in terms of ρ̂0B:

9This is in the same spirit as to how Gaussian spacetime
smearing, which is also not in C∞

0 ðMÞ, gives a very good
approximation to compactly supported smearing functions be-
cause the tails are exponentially suppressed.
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ρ̂ABϕ¼Uðρ̂0A⊗ ρ̂0B⊗ ρ̂0ϕÞU†

¼ ρ̂0B⊗ðρ̂0A⊗CBCAρ̂
0
ϕCACBþμ̂Aρ̂

0
Aμ̂A⊗CBSAρ̂0ϕSACBþ iρ̂0Aμ̂A⊗CBCAρ̂

0
ϕSACB− iμ̂Aρ̂0A⊗CBSAρ̂0ϕCACBÞ

þμ̂Bρ̂
0
Bμ̂B⊗ðρ̂0A⊗SBCAρ̂

0
ϕCASBþμ̂Aρ̂

0
Aμ̂A⊗SBSAρ̂0ϕSASBþ iρ̂0Aμ̂A⊗SBCAρ̂

0
ϕSASB− iμ̂Aρ̂0A⊗SBSAρ̂0ϕCASBÞ

þ iρ̂0Bμ̂B⊗ðρ̂0A⊗CBCAρ̂
0
ϕCASBþμ̂Aρ̂

0
Aμ̂A⊗CBSAρ̂0ϕSASBþ iρ̂0Aμ̂A⊗CBCAρ̂

0
ϕSASB− iμ̂Aρ̂0A⊗CBSAρ̂0ϕCASBÞ

− iμ̂Bρ̂0B⊗ðρ̂0A⊗SBCAρ̂
0
ϕCACBþμ̂Aρ̂

0
Aμ̂A⊗SBSAρ̂0ϕSACBþ iρ̂0Aμ̂A⊗SBCAρ̂

0
ϕSACB− iμ̂Aρ̂0A⊗SBSAρ̂0ϕCACBÞ; ð37Þ

using the shorthand Cj ≡ cos Ŷj and Sj ≡ sin Ŷj, and here
it is understood that μ̂j ≡ μ̂jðτj;0Þ in order to alleviate
notation. For an algebraic state associated to ρ̂0ϕ (which
defines the distinguished folium of normal states associated
to some algebraic state Hω; cf. Sec. II or Ref. [47]) let us
define another shorthand10

γijkl ≔ ωðXðiÞ
A XðjÞ

B XðkÞ
B XðlÞ

A Þ
≡ trðρ̂0ϕXðiÞ

A XðjÞ
B XðkÞ

B XðlÞ
A Þ; ð38Þ

where i; j; k; l ¼ c, s for cosine and sine, respectively,

e.g., XðcÞ
A ≡ cos ŶA. By taking a partial trace over A and ϕ,

we get

Φðρ̂0BÞ ¼ ðγcccc þ γsccs þ iαðγsccc − γcccsÞÞρ̂0B
þ ðγcssc þ γssss þ iαðγsssc − γcsssÞÞμ̂Bρ̂0Bμ̂B
þ iðγcscc þ γsscs þ iαðγsscc − γcscsÞÞρ̂0Bμ̂B
− iðγccsc þ γscss þ iαðγscsc − γccssÞÞμ̂Bρ̂0B; ð39Þ

where α ¼ trðμ̂Aρ̂0AÞ. The coefficients can be computed
straightforwardly for quasi-free or Gaussian states using
only properties of the Weyl algebra andWeyl relations (10).
Note that, as stated in Eq. (39), the result is valid for any
initial state of Alice and Bob, and furthermore it is also
valid for any initial algebraic state of the field.
For the Fermi two-atom problem, the channel simplifies

considerably because we are going to consider the field to
be in the vacuum state, which is a subclass of quasi-free
Hadamard states. We will also set Alice’s state to be in the
excited state ρ̂0A ¼ jeAiheAj. This gives us α ¼ 1, and
furthermore γijkl ¼ 0 if there are an odd number of sines
and cosines. The channel thus reduces to

Φðρ̂0BÞ¼ðγccccþγsccsÞρ̂0BþðγcsscþγssssÞμ̂Bρ̂0Bμ̂B
− iðγsscc−γcscsÞρ̂0Bμ̂Bþ iðγscsc−γccssÞμ̂Bρ̂0B: ð40Þ

Let us compute the coefficients. We first prove useful
identities below, which will give very efficient shortcut for
the computation.
Lemma 1.—We have the “twisted” product-to-sum for-

mulas for Weyl algebra:

2CiCj ¼ Ciþje−iEij=2 þ Ci−jeiEij=2; ð41aÞ

−2SiSj ¼ Ciþje−iEij=2 − Ci−jeiEij=2; ð41bÞ

2CiSj ¼ Siþje−iEij=2 − Si−jeiEij=2; ð41cÞ

2SiCj ¼ Siþje−iEij=2 þ Si−jeiEij=2; ð41dÞ

whereCi�j ≡ cosðϕ̂ðfi � fjÞÞ, Si�j ≡ sinðϕ̂ðfi � fjÞÞ and
Eij ≔ Eðfi; fjÞ is the smeared causal propagator. If
suppðfiÞ and suppðfjÞ are spacelike separated, we have
Eij ¼ 0 and these reduce to the standard product-to-sum
formula in trigonometry for complex numbers (or for
commuting operators).
Proof.—We just prove for one case and the rest follows

analogously. In terms of the Weyl algebra we have the
algebraic exponential of the field operator

WðEfÞ≡ eiϕ̂ðfÞ; ð42Þ

so that Ci ¼ 1
2
ðWðEfiÞ þWð−EfiÞÞ. We have

2CiCj ¼
1

2
½WðEfiÞWðEfjÞ þWð−EfiÞWð−EfjÞ

þWðEfiÞWð−EfjÞ þWð−EfiÞWðEfjÞ�

¼ 1

2
½WðEðfi þ fjÞÞ þWð−Eðfi þ fjÞÞ�e−iEij=2

þ 1

2
½WðEðfi − fjÞÞ þWð−Eðfi − fjÞÞ�eiEij=2

¼ Ciþje−iEij=2 þ Ci−jeiEij=2: ð43Þ

In the second equality we have used the Weyl relations to
extract the phase that depends on the causal propagator.
Clearly, this reflects the non-Abelian nature of the Weyl
algebra, and for the cases when the field operators
commute, this reduces to the well-known trigonometric
product-to-sum formula. ▪

10This shorthand is slightly different from the definition given
in Ref. [29] but simpler to use in terms of the ordering of the
operators.
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With this, we can now compute the coefficients straight-
forwardly. For example, we have

γcccc ¼
1

4
ωðC2

AþB þ C2
A−B þ C2A þ C2B cos 2EABÞ; ð44Þ

γsccs ¼
1

4
ωðS2AþB þ S2A−B − C2A þ C2B cos 2EABÞ: ð45Þ

Using linearity of the algebraic state, the first coefficient in
Eq. (40) reduces to

γcccc þ γsccs ¼
1

2
ð1þ νB cosð2EABÞÞ; ð46Þ

where νB ¼ ωðWð2EfBÞÞ ¼ e−2WðfB;fBÞ. We can work out
the rest:

γcssc þ γssss ¼
1

2
ð1 − νB cosð2EABÞÞ; ð47Þ

γsscc − γcscs ¼ γscsc − γccss ¼
i
2
νB sinð2EABÞ; ð48Þ

and hence we can write

Φðρ̂0BÞ ¼
1þ νB cosð2EABÞ

2
ρ̂0B

þ 1 − νB cosð2EABÞ
2

μ̂Bρ̂
0
Bμ̂B

þ νB sinð2EABÞ
2

½ρ̂0B; μ̂B�: ð49Þ

At this point, we are ready to see how the Fermi two-
atom problem looks like. It is now clear that, from Eq. (49),
the only way detector A can influence detector B’s
excitation is via the causal propagator EAB. If A and B
are spacelike separated, then EAB ¼ 0, in which case we get

Φðρ̂0BÞ → ð1 − pÞρ̂0B þ pμ̂Bρ̂0Bμ̂B: ð50Þ
This is nothing but a Pauli channel with the probability of
applying Pauli operator μ̂B ≡ μ̂Bðτ0;BÞ given by

p ¼ 1 − νB
2

¼ 1 − e−2WðfB;fBÞ

2
: ð51Þ

As an example, if μ̂B ¼ σ̂xB, then this is just the bit-flip
channel. What this means is that the channel only depends
on the local field fluctuations around Bob’s qubit, since the
probability only depends on smeared Wightman two-point
function WðfB; fBÞ where B is located. If we now pick
the initial state of detector B to be in the ground state, then
the excitation probability11

PrðjgBi → jeBiÞ ¼ jheBjΦðjgBihgBjÞjeBij2; ð52Þ

which is purely a function of fB and is independent of fA.
In fact, this conclusion is independent of the initial state of
B: we only pick the ground state to match the Fermi two-
atom problem. Furthermore, we are able to arrive at this
conclusion without performing any integral or Dyson series
expansion.
If the detectors are causally connected via the field, i.e.,

when EAB ≠ 0, then the story is different, since now the
final state of the detector depends on detector A’s support
(recall that we assumed in the Fermi problem that the state
of detector A is fixed to be ρ̂0A ¼ jeAiheAj). Hence, indeed
the excitation probability will now depend on both fA and
fB. This cleanly (re)affirms the causal behavior of the
relativistic quantum field and its interactions with atomic-
like systems or any incarnation of light-matter interactions
involving quantum fields.
We emphasize that we reached these conclusions about

causal behavior of the light-matter interaction with a
quantum field without performing a single integration over
any field modes and fully nonperturbatively; hence, the
outcome in terms of the qubit channel (49) is very trans-
parent. Furthermore, notice that we have expressed this in
terms of causal propagator EAB ≡ EðfA; fBÞ without
making any reference to a particular choice of globally
hyperbolic spacetime ðM; gABÞ or any trajectory12 or
interaction profile fj of the detectors for that matter
(although we picked instantaneous switching which is
suited for this problem). Consequently, this conclusion
remains true even if the spacetime has highly nontrivial
causal structure, such as Schwarzschild background where
the causal propagator cannot even be easily written in
closed form [59]. We are not even choosing the kind of
monopole operator of the detector: all we needed (and
achieved) is to show that nothing about detector A
influences the density matrix of detector B in as effortless
a manner as possible.

V. EFFECT OF PROJECTIVE MEASUREMENT
ON ALICE’S DETECTOR

In this section we briefly discuss what happens when we
allow detector-based measurement into the problem.
Suppose that, after interaction with the field, we want to
measure detector A and making sure that it is in the ground
state. We perform projective measurement on detector A
which induces a positive-valued operator measure (POVM)
on the field; recall that we cannot perform projective
measurement directly on the field as it violates relativistic
causality [4,38]. For simplicity we just consider the case

11Actually, since the stateΦðρ̂0BÞ is in the interaction picture, we
should convert this to the Schrödinger picture first. However, it
does notmatter since this conversion is a unitary constructed out of
the free Hamiltonian of detector B and it cannot change proba-
bilities, so all the conclusions in what follows are unchanged.

12We picked static trajectories because the time ordering is
straightforward and we do not need general trajectories for the
Fermi problem, but really this choice need not be made so long as
one is careful about the spatial dependence ofmonopole operators.
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when we project to the ground state P ¼ jgAihgAjwhile the
detector is initially in the excited state.
Following the procedure outlined in Ref. [38], the

density matrix of the field after projective measurement
to detector A becomes

ρ̃ϕ ¼ trAB½ðP ⊗ 1ÞUAρ̂
0U†

AðP ⊗ 1Þ�
tr½ðP ⊗ 1ÞUAρ̂

0U†
A�

: ð53Þ

For the choice of projectors, initial state, and the monopole
μ̂A ¼ σ̂xA, the expression simplifies greatly to

ρ̃ϕ ¼ SAρ̂0ϕSA
trρ̂0ϕS

2
A

: ð54Þ

However, this updated state should only apply to observers
in the causal future of detector A: if detector B is spacelike
separated from A, then Bob cannot learn about the
measurement outcome of detector B and the final state
remains the same [38], i.e.,

ρ̃ϕ ¼ CAρ̂
0
ϕCA þ SAρ̂0ϕSA; ð55Þ

which is essentially the statistical mixture of the two
projective measurement outcomes. This state will give
exactly the same result as if no measurement has been
performed on Alice’s detector.
In terms of algebraic state, the interpretation is somewhat

simpler in the following sense: using the fact that ω and ρ
are related as ωðAÞ≡ trðρ̂AÞ for Weyl element A ¼ WðEgÞ
with suppðgÞ ⊆ JþðsuppðfAÞÞ, we can write

ω̃ðAÞ ¼ ωðSAASAÞ
ωðS2AÞ

; ð56Þ

otherwise, ω̃ðAÞ ¼ ωðAÞ when suppðgÞ ⊈ JþðsuppðfAÞÞ.
Here we assume that Alice performs the measurement
directly after interaction with the field for convenience.
What we are updating is simply the expectation values of
the field observables in the causal future of the measure-
ment process (as argued in Ref. [38]). Note that this state
update is not directly related to the causal propagator since,
in general, suppðEfAÞ ⊂ JþðsuppðfAÞÞ as a proper subset;
i.e., we allow the possibility that Bob can learn about the
measurement some other way (even classically without
going through the quantum field). For example, Bob can be
timelike separated from Alice in Minkowski space (and,
hence, can learn about Alice’s measurement in principle),
but if the field used in the Fermi problem is massless, then
EðfA; fBÞ ¼ 0 also for timelike-separated regions, since
the support of E is localized along the null directions. The
point is that the state update above is “outside” the AQFT
framework itself: for free field theory it is an extra rule
induced from detector-based measurement theory.

If Bob is in the causal future of Alice, then, by going
through analogous computation to arrive at our earlier
result and writing ρ̃ABϕ ¼ jeAiheAj ⊗ ρ̂0B ⊗ ρ̃ϕ, we see that
Bob’s interaction with the field gives rise to a different
channel

Φ̃ðρ̂0BÞ ¼ trAϕðUBρ̃ABϕU
†
BÞ

¼ ω̃ðC2
BÞρ̂0B þ ω̃ðS2BÞμ̂Bρ̂0Bμ̂B

þ iω̃ðSBCBÞρ̂0Bμ̂B − iω̃ðCBSBÞρ̂0Bμ̂B; ð57Þ

where suppðfBÞ ⊆ JþðsuppfAÞ, but not necessarily
EðfA; fBÞ ≠ 0. In particular, supposing that μ̂B ¼ σ̂xB, the
probability of finding the detector in the excited state is
given by

ePrðjgBi → jeBiÞ ¼ jheBjΦ̃ðjgBihgBjÞjeBij2
¼ jω̃ðS2BÞj2
≠ PrðjgBi → jeBiÞ: ð58Þ

This difference arises because, even if the causal propagator
EðfA; fBÞ ¼ 0, the two channels with or without meas-
urement are not the same, i.e., Φ̃ðρ̂0BÞ ≠ Φðρ̂0BÞ. This has to
do with the fact that Bob need not learn about Alice’s
measurement outcome using the scalar field that the two
atoms are involved in this setup. Having more information
about Alice’s state implies that Bob learns more about the
state of the field before turning on detector B. So even if
detector B is not influenced by the excitation of detector A
that gets propagated by the field, Bob’s result depends on
whether he learns about Alice’s measurement procedure.
In any case, even with local measurement induced by the

detector, the whole setting still respects Einstein causality
simply because Bob cannot learn about Alice’s measure-
ment outcome without following the relativistic principle.
In particular, if Bob is spacelike separated from Alice’s
measurement process, then Bob can basically treat the
situation as if measurement did not occur and the calcu-
lation in the previous section just carries forward as is. We
then simply recover the result in the previous section where
detector B is completely independent of what happens to
detector A.

VI. DISCUSSION AND OUTLOOK

To summarize, we have reframed the Fermi two-atom
problem using an Unruh-DeWitt detector model, but this
time we approached the problem using a fully nonperturba-
tive method via delta coupling. Indeed, the delta-coupling
approach is naturally suited for the Fermi problem. We
showed that, using the tools from (relativistic) quantum
information theory, the calculation provides a much cleaner
and transparent approach to demonstrate the causal nature of
the detector-field interaction in the Fermi two-atom problem
that is (i) valid for arbitrary globally hyperbolic curved
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spacetimes, (ii) independent of the detector configuration
(monopole operator) of detector B, and (iii) fully non-
perturbatively, without any use of perturbation theory or
complicated integration.Allwe used is simply the properties
of the algebra of observables of the field theory, the choice of
quasi-free Hadamard state (which is the vacuum for the
Fermi two-atom problem), and the causal relation between
the two local interaction regions fA and fB of each detector
with the field.
It is worth stressing that, in the physics community

familiar with relativistic quantum field theory, this result—
that there is no causality violation in the Fermi two-atom
problem—is far from surprising and should be required to
be true. Furthermore, recall that the conclusion that the
Fermi two-atom setup should be causal is not new:
Refs. [6,18–20] are good representative examples where
perturbative methods are computed reliably enough to
arrive at the same conclusion. Indeed, in Ref. [18] the
setup was shown to be causal to all orders in perturbation
theory by treating the Fermi problem as a communication
via quantum channel between the two parties. What we
have done amounts to cleaning up the approach in a way
that is nearly effortless, fully compatible with quantum
information framework, and generalizes easily to curved
spacetimes, where the causal propagator (smeared field
commutator) can be very difficult to construct explicitly.
Let us briefly go through several generalizations that

could have been easily done in this work. First, note that we
have only used the quasi-free nature of the field state. We
did not even use directly the Hadamard property, since for
the Fermi two-atom problem it is somewhat inconsequen-
tial what the value of the smeared Wightman two-point
function WðfB; fBÞ is. Therefore, our results actually will
still be true even if the field is not in the vacuum state: all
that matters is that the probability of the Pauli channel p
only depends on fB. The choice of vacuum state merely
reflects the original setup of the Fermi two-atom problem.
In particular, any other quasi-free pure states with vanishing
odd-point functions will automatically work verbatim
without a single extra computation needed since it only
changes the value of p: this includes, for instance,
(squeezed) thermal states. It should be of no surprise, after
this demonstration, that the Fermi two-atom problem
should be generalizable to arbitrary physically reasonable
(Hadamard) field states, although the computation may
become more involved—the quasi-free states (for which the
vacuum state is included) made the calculation essentially
effortless, with no integral to be performed to arrive at the
result.
The nonperturbative method adopted here also allowed

for very nice inclusion of the recently proposed local
measurement theory for QFT which is based on POVM
induced by UDW detectors [38]. Although not needed
for the Fermi problem, we considered a slightly tweaked
problem where we want to include a measurement step: that

is, what happens to B if A is measured to be in the ground
state after interaction with the field.13 The calculations done
here gave us a cleaner calculation than Ref. [38] when
restricted to the delta-coupling regime. While we did not
consider more complicated situations with multiple mea-
surements and more than two observers for the Fermi
problem, we believe that the approach adopted here would
be useful for protocols where detector-based local meas-
urement theory for the field would become an important
component. We leave this for future work.
Last but not least, it would also be interesting to explore

the benefit of using such a nonperturbative approach on
nonstandard settings, such as the scenarios considered in
Ref. [17] where the causal structure itself is somewhat fuzzy
or when quantum reference frames are employed. We also
see no obstruction to generalize this to arbitrary detector
system such as qudits or harmonic oscillators, as well as any
type of relativistic quantum fields: so long as the detectors
interact locally with the field and the field obeys relativistic
(Einstein) causality, it will lead to analogous conclusions.
We leave these for future investigations as well. As far as we
are concerned, we believe this is the most general setting we
need to consider in the Fermi two-atom problem, and the
use of quantum information language allowed us to provide
a neater presentation of the problem for more quantum-
information-oriented readers.
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