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The state of a quantum system acquires a phase factor, called the geometric phase, when taken
around a closed trajectory in the parameter space, which depends only on the geometry of the parameter
space. Because of its sensitive nature, the geometric phase is instrumental in capturing weak effects
such as the acceleration-induced noninertial quantum field theoretic effects. In this paper, we
study the geometric phase response of a circularly rotating detector inside an electromagnetic cavity.
Using the cavity, the noninertial contribution to the geometric phase can be isolated from or
strengthened relative to the inertial contribution. We show that the accumulative nature of the
geometric phase may facilitate the experimental observation of the resulting, otherwise feeble,
noninertial contribution to the modified field correlations inside the cavity. Specifically, we show
that the atom acquires an experimentally detectable geometric phase at accelerations of the order of
∼107 m=s2 which is experimentally feasible.
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I. INTRODUCTION

The experimental detection of noninertial effects in
quantum field theory, e.g., the Unruh effect [1–4] and
Hawking radiation [5,6], has remained elusive to date
because of the requirement of extreme conditions. For
example, in the Unruh effect, to perceive a thermal effect
of 1 K, typically an acceleration of the order of 1021 m=s2

is required [4]. Numerous attempts have been made
to relax extreme conditions using sophisticated tech-
niques and precise measurements, but only to a limited
success [7–14].
It has been further advocated that quantum features

such as the geometric phase (GP) may be of much usage in
bringing down the scales involved. A quantum system
taken around a closed path by varying the parametersR of
its HamiltonianHðRÞ acquires a phase that is geometric in
nature. This phase is different from the standard dynami-
cal phase of quantum systems in the sense that it depends
only on the geometry of the parameter space [15]. In a
quantum system interacting with an environment, the GP
depends not only on the unitary evolution, but also on
transition and decoherence rates [16]. Moreover, due to its
accumulative and sensitive nature, the GP can be helpful
in capturing weak effects such as noninertial effects in
quantum field theory.

It has been proposed [17] that by using the GP the
Unruh effect can be detected for accelerations as low as
1017 m=s2, which, though a significant reduction in the
acceleration typically required, is still extremely chal-
lenging to achieve. In Ref. [18], the GP acquired by a
circularly rotating detector in free space was studied, but
the detector’s noninertial response remains too feeble to
be detectable at physically realizable accelerations.
Interestingly, the usage of an electromagnetic cavity has

been argued to further relax the acceleration requirement
by a few orders [10,11,19]. For example, by studying the
spontaneous emission rate of an atom circularly rotating
inside an electromagnetic cavity, it has been shown that
noninertial effects can be detected at accelerations as low as
1012 m=s2 [19].
In this paper, we study the GP acquired by a circularly

rotating two-level atom inside an electromagnetic cavity.
Since the GP is sensitive to transition rates and we already
know that the transition rates become significantly modi-
fied inside the cavity [20], we expect the noninertial
component of the GP to be correspondingly modified.
The accumulative nature of the GP [15,21] facilitates the
detection of weak effects such as the noninertial modifi-
cations to the field correlators, whereas using the electro-
magnetic cavity the atom’s noninertial response can be
isolated from, or strengthened relative to, the inertial
response [19].
By studying the GP response of the atom inside an

electromagnetic cavity, we show that the acceleration-
induced modifications to the field correlators can be
detected at much lower accelerations and with much relaxed
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parameters for the experimental setup. Specifically, we show
that the atom acquires an experimentally detectable GP at
accelerations of the order of 107 m=s2 which is experimen-
tally feasible. Therefore, an efficient GPmeasurement inside
a cavity is supposed to manifest noninertial quantum field
theoretic effects more robustly as compared to any other
setup proposed so far.
The paper is organized as follows. In Sec. II, we

introduce the background relevant to understanding our
results. We begin by discussing the reduced dynamics of
the two-level system interacting with an external environ-
ment and introduce the notion of the GP for mixed states. In
Sec. III, we present our results on the GP response of the
circularly rotating detector. We conclude and discuss our
results in Sec. IV.

II. GP IN OPEN QUANTUM SYSTEM

In this section, we introduce the concept of the GP for
an open quantum system. For that, consider a two-level
atom interacting with an electromagnetic field. The atomic
ground and excited states are denoted, respectively, by jgi
and jei. The proper frequency gap between the two atomic
levels is Ω0, and the atom carries an electric dipole moment
four-vector d̂0μ. Throughout this paper, primed quantities
refer to the atom’s comoving frame. In the interaction
picture, the dipole moment operator d̂0ðτÞ is given in terms
of its matrix elements (as they will appear in later
expressions) by

d̂0ðτÞ ¼ d0σ− expð−iΩ0τÞ þ d0�σþ expðiΩ0τÞ; ð1Þ

where d0 ≡ hgjd̂0ðτ ¼ 0Þjei and σþ ¼ σ†− ¼ jeihgj is the
step-up operator for the atomic states. For simplicity, we
assume that d0 ¼ ð0; d0; 0Þ. The electromagnetic field
is assumed to be in the inertial vacuum state j0i. The
interaction Hamiltonian between the atom and the electro-
magnetic field is given by ĤI ¼ −d̂μEμ [22], where
Eμ ≡ Fμνuν, Fμν is the electromagnetic field strength tensor,
and uν is the four-velocity of the atom. The interaction
Hamiltonian takes the form ĤI ¼ −d̂0 · E0 in the rest frame
of the atom, whereE0 is the electric field 3-vector as seen by
the atom. The electric field operator inside a quantization
volume V is given by [23]

E½xðτÞ� ¼ i
X
k;λ

E kϵk;λðak;λe−iðωktðτÞ−k:xðτÞÞ − H:c:Þ; ð2Þ

where E k ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωk=ð2ϵ0VÞ

p
, ϵk;λ with λ ¼ 1, 2 are the two

orthogonal polarization vectors, and H.c. denotes Hermitian
conjugate.
In the rest frame of the atom, the evolution of the atom-

field composite system is governed by [24]

dρAFðτÞ
dτ

¼ −
i
ℏ
½H:ρAFðτÞ�; ð3Þ

where ρAF is the density operator of the composite system
and τ is the proper time of the atom. From Eq. (3), we can
obtain the Lindblad evolution of the reduced density
operator for the atom ρðτÞ≡ TrFðρAFÞ, which is given
by [25]

dρðτÞ
dτ

¼ −
i
ℏ
½Heff ; ρðτÞ� þL ½ρðτÞ�; ð4Þ

where

L ½ρ� ¼ 1

2

X3
i;j¼1

aijð2σjρσi − σiσjρ − ρσiσjÞ ð5Þ

captures the dissipation and decoherence of the atom
induced by its interaction with the electromagnetic field.
The Heff represents the Hamiltonian of the two-level atom
with the renormalized atomic level spacing Ω, which
consists of the Lamb shift [24]. The σi’s are the standard
Pauli matrices [26], and the coefficients aij are given by [27]

aij ¼ Aδij − iBϵijkδk3 − Aδi3δj3; ð6Þ
with A and B defined as

A ¼ 1

4
½Γ↓ þ Γ↑�; B ¼ 1

4
½Γ↓ − Γ↑�; ð7Þ

whereas

Γ↓↑ ¼ jhψfjd̂0ð0Þjψ iij2
Z

∞

−∞
dτ− e�iΩ0τ−G0þðxðτ−ÞÞ; ð8Þ

withþ and − corresponding to Γ↓ and Γ↑, i.e., the emission
and the absorption rates, respectively. Here, τ− ≡ τ2 − τ1;
jψ ii; jψfi ∈ fjgi; jeig; and G0þðxðτ−ÞÞ≡ h0jE0yðτ1Þ×
E0yðτ2Þj0i is the two-point vacuum Wightman function.
By taking the initial state of the atom to be

jψð0Þi ¼ cosðθ=2Þjei þ sinðθ=2Þjgi ð9Þ
and solving Eq. (4), we get the reduced density operator
to be

ρðτÞ ¼
�
e−4Aτcos2ðθ=2Þ þ B−A

2A ðe−4Aτ − 1Þ 1
2
e−2Aτ−iΩτ sin θ

1
2
e−2AτþiΩτ sin θ 1 − e−4Aτcos2ðθ=2Þ − B−A

2A ðe−4Aτ − 1Þ

�
; ð10Þ
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in which the effect of the environment is contained in A and B. The GP for an N-level quantum system in a mixed state and
evolving nonunitarily is given by [21]

γg ¼ arg

�XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkð0ÞpkðTÞ

p
hϕkð0ÞjϕkðTÞie−

R
T

0
hϕkðτÞj _ϕkðτÞidτ

�
; ð11Þ

where pkðτÞ and jϕkðτÞi are instantaneous eigenvalues and
eigenvectors, respectively, of the system’s density operator
ρðτÞ. The eigenvalues of ρðτÞ are

p�ðτÞ ¼
1

2
ð1� λÞ; ð12Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r23 þ e−4A sin2 θ

p
and r3 ¼ e−4Aτ cos θþ

B
A ðe−4Aτ − 1Þ. Since p−ð0Þ ¼ 0, the only eigenvector that
contributes to γg is the one corresponding topþ, which reads

jϕþðτÞi ¼ sinðθτ=2Þjþi þ eiΩ0τ cosðθτ=2Þj−i; ð13Þ

with

tanðθτ=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
λþ r3
λ − r3

s
: ð14Þ

By substituting Eqs. (12) and (13) in the expression of theGP
in Eq. (11), we get [28]

γg ¼ −
Ω
2

×
Z

T

0

dτ

�
1−

R −Re4Aτ þ cosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4Aτsin2θþ ðR −Re4Aτ þ cos θÞ2

p �
;

ð15Þ

whereR ≡ B=A. The above expression is valid for all times
T. Now, if we take T ¼ 2πn=Ω0, where n is the number of
quasicycles, and if A=Ω0 ≪ 1, we can further simplify the
expression for γg and obtain [28]

γg ¼ −πnð1 − cos θÞ − 2π2n2

Ω0

ð2Bþ A cos θÞsin2θ; ð16Þ

where n is restricted by the demand πnA=Ω0 ≪ 1, because,
to obtain Eq. (16) from Eq. (15), we need 4Aϕ=Ω0 ≪ 1 and
for n cycles ϕ ¼ 2πn. The GP has two contributions: The
first term in Eq. (16) is due to the unitary evolution of the
atom, and the second term is coming from the nonunitary
evolution of the atom which results from the atom’s inter-
action with the environment. We will shortly see that, in the
case of noninertial motion of the atom, the nonunitary
contribution can be further separated into an inertial and a
noninertial part. Furthermore, using the cavity’s resonance

structure, the noninertial contribution to the GP can be
significantly enhanced.

III. GP RESPONSE OF THE CIRCULARLY
ROTATING DETECTOR

In this section, we study the GP acquired by an atom
moving on a circular trajectory of radius R and angular
frequency ω, inside an electromagnetic cavity. The rotating
ðτ; x0; y0; z0Þ and the inertial coordinates (t, x, y, z) are
related as

x0 ¼ x − x0 − R cosωt;

y0 ¼ y;

z0 ¼ z − z0 − R sinωt;

τ ¼ ð1 − ω2R2=c2Þ1=2t; ð17Þ

where ðx0; 0; z0Þ is the center of the circular trajectory. We
have seen in Eq. (16) that the GP depends directly on the
quantities A and B which, in turn, depend on the atomic
transition rates. The noninertial motion of the atom affects
only the transition rates and leaves the form of the Lindblad
master equation [Eq. (4)] unchanged. Therefore, the
expression of the GP in Eq. (15) can be used in the case
of a rotating atom with modified transition rates. It is
natural to start, therefore, by computing the transition rates
and then obtain the GP.
We study the GP in two different regimes distinguished

by the relative magnitudes of the rotational frequency of the
atom (ω) and the atomic frequency gap (Ω0). Specifically,
we study the ω ≫ Ω̄0 and ω ≪ Ω̄0 regimes, where
Ω̄0 ≡Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2R2=c2

p
. As we shall see, in the ω ≫ Ω̄0

regime, the noninertial contribution in the spontaneous
decay rate dominates over the inertial one when the normal
frequency of the cavity is tuned at ωþ Ω̄0. In the ω ≪ Ω̄0

regime, on the other hand, the inertial contribution to the
GP overshadows the noninertial component. However, with
a suitable choice of parameters, the noninertial contribution
can be made comparable to the inertial component.
Therefore, in both regimes, we can analyze the noninertial
contribution to the GP effectively.

A. Transition rates in the atom’s frame

If the atom-field composite system is initially in the state
je; 0i, then the total probability of spontaneous emission, in
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the comoving frame, using Born’s rule is given, to leading
order in the atomic dipole moment, by

P↓ ¼
X
Ψ

����hg;Ψj
�
−i
ℏ

Z
∞

−∞
dτHIðτÞ

�
je; 0i

����2

≡ 1

ℏ2

Z
dτ1

Z
dτ2hejd̂0μðτ2Þjgihgjd̂0νðτ1ÞjeiG0þ

μν

¼ jd0j2
ℏ2

Z
dτ1

Z
dτ2 eiΩ0ðτ2−τ1ÞG0þ

22; ð18Þ

where primed quantities are the quantities as seen from
the comoving frame, G0þ

μν ≡ h0jE0
μðτ2ÞE0

νðτ1Þj0i is the two-
point vacuum Wightman tensor, and jΨi are different
possible final states of the field. G0þ

22 can be obtained from
its inertial counterpart, using Eq. (17), as

G0þ
22 ¼

X
μν

∂xμ

∂x02
∂xν

∂x02
Gþ

μν ¼ Gþ
22; ð19Þ

where

xμðτÞ ¼ ðtðτÞ; xðτÞ; yðτÞ; zðτÞÞ
¼ ðcγτ; x0 þ R cosðωγτÞ; 0; z0 þ R sinðωγτÞÞ ð20Þ

is the atomic position four-vector in the lab frame, with
γ ≡ ð1 − ζðωÞÞ−1=2, and ζðωÞ≡ ω2R2=c2. The electric

field perceived by the atom and as reported by the inertial
observer is given by EμðxλÞ ¼ FμνðxλÞuν, where uν ≡
dxνðτÞ=dτ is the atomic four-velocity in the lab frame.
Therefore, using Eq. (20), we have

E2 ¼ γ½Ey − ωRfBz sinðωγτÞ − Bx cosðωγτÞg�: ð21Þ

Furthermore, using Eq. (21), we can obtain Gþ
22, and

consequently, with Eq. (18) and writing dτ ¼ dt=γ, we
obtain

P↓ ¼
jdj2
γ2ℏ2

Z
dt1

Z
dt2 eiΩ̄0ðt2−t1Þh0jγ½Eyðxμ1Þ

−Rωsinðωt1ÞBzðxμ1Þ−Rωcosðωt1ÞBxðxμ1Þ�× γ½Eyðxμ2Þ
−Rωsinðωt2ÞBzðxμ2Þ−Rωcosðωt2ÞBxðxμ2Þ�j0i; ð22Þ

where E ¼ ðEx; Ey; EzÞ and B ¼ ðBx; By; BzÞ are the
electric and magnetic field 3-vectors, respectively, as seen
by static observers in the lab frame and xμ1 and xμ2 are two
spacetime points. Similarly, we can compute the absorption
probability ðP↑Þ which is obtained by changing Ω̄0 in
Eq. (22) to −Ω̄0.
Effecting a change of time variables, tþ ≡ ðt1 þ t2Þ=2

and t− ≡ t2 − t1, and evaluating the correlators [19], we get
the transition rates in the lab frame for small ζðωÞ, and to
the first order in ζðωÞ, as

Γlab
↓↑ ¼ η

Z
∞

0

dk ρðkÞωk

�
δð�Ω̄0 − ωkÞ þ

R2ω2

2c2
1

2
½δð�Ω̄0 − ωk þ ωÞ þ δð�Ω̄0 − ωk − ωÞ�

−
ω2
kR

2

c2
2

5

�
δð�Ω̄0 − ωkÞ −

1

2
ðδð�Ω̄0 þ ω − ωkÞ þ δð�Ω̄0 − ω − ωkÞÞ

	�
; ð23Þ

where η≡ jdj2=ð3πℏϵ0VÞ; þ and − correspond, respec-
tively, to the spontaneous decay rate ðΓ↓Þ and the excitation
rate ðΓ↑Þwith ρðkÞ being the density of the field states. The
transition rates in the comoving frame can be obtained as
Γ↓↑ ¼ γΓlab

↓↑. Inside a cavity, the density of states can be
taken to be of Lorentzian form [29]:

ρðωkÞ ∼
ðωc=QÞ

ðωc=QÞ2 þ ðωk − ωcÞ2
; ð24Þ

where ωc is the normal frequency and Q is the quality
factor of the cavity. The expression for the transition
rates takes a simpler form in the two regimes, namely,
ω ≫ Ω̄0 and ω ≪ Ω̄0. Now, we shall explore the transition
rates and the GP response of the atom in these two
regimes.

1. Case 1: ω ≫ Ω̄0

Using Eq. (23) and Γ↓↑ ¼ γΓlab
↓↑, the spontaneous emis-

sion rate in the ω ≫ Ω̄0 regime can be obtained as

Γ↓ ¼ ηγ

�
Ω̄0

�
1 −

2

5
ζðΩ̄0Þ

�
ρðΩ̄0Þ þ

9

20
ζðωÞωþρðωþÞ

�
:

ð25Þ

By expanding the first term in Eq. (25) to the first order in
ζðωÞ and using γ ¼ 1þ ζðωÞ=2þOðζðωÞ2Þ, we can write
the spontaneous emission rate to the first order in ζðωÞ as

Γ↓ ¼ ηρðΩ0ÞΩ0 þ Γni
↓ ; ð26Þ

where the first term is the inertial contribution, obtained by
taking the ω → 0 limit, and the second term is the purely
noninertial contribution coming through the rotation.
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The purely noninertial contribution to the spontaneous
decay rate can be obtained as follows:

Γni
↓ ¼ Γ↓ − Γ↓ðω → 0Þ; ð27Þ

which, to the first order in ζðωÞ, turns out to be

Γni
↓ ¼ ηζðωÞΩ0

2

�
−Ω0ρ

0ðΩ0Þ þ
9

10

ωþ
Ω0

ρðωþÞ
�
; ð28Þ

where ρ0ðωÞ ¼ ∂ρ=∂ω.
Again, using Eq. (23) and Γ↓↑ ¼ γΓlab

↓↑, the absorption
rate in the ω ≫ Ω̄0 regime turns out to be

Γ↑ ¼ 9

20
ηγζðωÞρðω−Þω−; ð29Þ

where ω� ≡ ω� Ω̄0. Note that, as expected, the absorption
rate has only a noninertial contribution. Furthermore, using
γ ¼ 1þ ζðωÞ=2þ OðζðωÞ2Þ, the absorption rate to the
first order in ζðωÞ is given by

Γ↑ ¼ 9

20
ηζðωÞρðω−Þω−: ð30Þ

From Eq. (7), we know that A is the sum of the spontaneous
emission and absorption rates and, therefore, up to the first
order in ζðωÞ, is given by

A ¼ η

4

�
ρðΩ0ÞΩ0 −

ζðωÞ
2

Ω2
0ρ

0ðΩ0Þ

þ 9

20
ζðωÞfωþρðωþÞ þ ρðω−Þω−g

�
: ð31Þ

Similarly, B is obtained by replacing the term in curly
brackets in Eq. (31) by ωþρðωþÞ − ρðω−Þω−. Using
Eq. (16), we obtain the nonunitary GP acquired by the
atom in n number of quasicycles to be

φ> ¼ −
2π2n2

Ω0

η

4

��
ρðΩ0ÞΩ0 −

ζðωÞ
2

Ω2
0ρ

0ðΩ0Þ
�
ð2þ cos θÞ

þ 9

20
ζðωÞfωþρðωþÞð2þ cos θÞ

−ω−ρðω−Þð2− cos θÞg
�
sin2θ; ð32Þ

where a quasicycle consists of a time period of T ¼ 2π=Ω0.
Note that we are using the symbol φ> to denote the
nonunitary GP in the ω ≫ Ω̄0 regime. Next, we discuss
some numerical estimates of the GP for realistic settings
[19,30,31].
For Ω0 ¼ 10 MHz, Q ¼ 107, and ω ¼ 5 GHz, when

ωc ¼ ωþ, that is, when the cavity is tuned to Ω̄0 þ ω, we
have ρðΩ0Þ ∼ 10−14, ρ0ðΩ0Þ ∼ 10−7, ρðωþÞ ∼ 10−2, and

ρðω−Þ ∼ 10−13, thus making the noninertial contribution
to A and B highly dominant over the inertial contribution.
The parameters mentioned above lead to an average
acceleration a ¼ ω2R ∼ 1013 m=s2. Figure 1(a) illustrates
the variation of the inertial and the noninertial contributions
to the spontaneous decay rate as the cavity is tuned to
different frequencies. When we use A and B obtained by
tuning the cavity to ωþ, the nonunitary GP [see Eq. (32)]
acquired by the atom is predominantly noninertial [see
Fig. 1(b)]. In Fig. 1(b), we plot the inertial and the
noninertial contributions to the GP acquired by the atom
as a function of the number of quasicycles for V ¼ 10−7 m3

and R ¼ 10−6 m. With these values for the parameters,
πAn=Ω0 ∼ 10−16n, which decides the allowed number of
quasicycles consistent with the approximation made to
obtain Eq. (16). We note from Fig. 1(b) that the system
acquires an experimentally observable [32] noninertial
GP ∼ 10−6 rad (1 s rad) in roughly 105 quasicycles,
whereas the inertial contribution to the GP is ∼10−13 rad
in the same number of quasicycles.

2. Case 2: ω ≪ Ω̄0

If ω ≪ Ω̄0, the spontaneous emission rate can be
approximated, to the leading order in ζðωÞ, to be

Γ↓ ¼ η

�
ρðΩ0ÞΩ0 −

ζðωÞ
2

Ω2
0ρ

0ðΩ0Þ

þ ζðωÞ
4

ðρðΩ̄þ
0 ÞΩ̄þ

0 þ ρðΩ̄−
0 ÞΩ̄−

0 Þ

−
2

5

�
ζðΩ0ÞρðΩ0ÞΩ0 −

1

2
ðζðΩ̄þ

0 ÞρðΩ̄þ
0 ÞΩ̄þ

0

þ ζðΩ̄−
0 ÞρðΩ̄−

0 ÞΩ̄−
0 Þ
	�

; ð33Þ

where Ω̄�
0 ¼ Ω̄0 � ω > 0. The absorption rate to the first

order in ζðωÞ vanishes. Therefore, we have

A ¼ B ¼ Γ↓=4; ð34Þ

which leads to a nonunitary GP given by

φ< ¼ −
π2n2

2Ω0

Γ↓ð2þ cos θÞsin2θ; ð35Þ

where we have used the symbol φ< to denote the
nonunitary GP in the ω ≪ Ω̄0 regime.
The GP acquired by the rotating atom can be measured

using atom interferometry [33]. Atom interferometry
employs the wave nature of atoms to detect the relative
phase between any two atoms. To measure the noninertial
GP acquired by the rotating atom, an inertial reference atom
can be used. Thus, the inertial GP cancels out between the
two interferometer arms, and the noninertial GP leads to a
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shift in the interference fringes. It is clear that, in order to
ascribe the fringe shift to the noninertial GP, the cancella-
tion of the inertial GP should be better than the magnitude
of the noninertial GP. If the inertial and noninertial phase
contributions are comparable, this condition can be easily
achieved. Next, we show that it is, in fact, possible, with a
suitable choice of parameters, to make the two contribu-
tions comparable even in the ω ≪ Ω̄0 regime. Note that the
noninertial GP response has terms like ζðΩ̄þ

0 ÞρðΩ̄þ
0 ÞΩ̄þ

0 and
ζðΩ̄−

0 ÞρðΩ̄−
0 ÞΩ̄−

0 that dominate over the inertial as well
as other noninertial terms when the cavity is tuned to Ω̄þ

0

and Ω̄−
0 , respectively, for a suitable choice of R. With the

parameter set ω ∼ 105 Hz, V ¼ 10−3 m3, and R ∼ 10−3 m,
if we tune the cavity to Ω̄þ

0 , we have ρðΩ0Þ ∼ 10−10,
ρ0ðΩ0Þ ∼ 10−5, ρðΩ̄þ

0 Þ ∼ 1, and ρðΩ̄−
0 Þ ∼ 10−11, and the

inertial and noninertial contributions to the transition rate
become comparable [see Fig. 1(c)]. Although with this
parameter set, the resulting nonunitary GP per cycle, to
which the inertial and noninertial contributions are com-
parable, is extremely small, due to the accumulative nature
of the GP it can be enhanced by allowing the atom to evolve
for a higher number of quasicycles. With the parameter set
considered here, the average acceleration turns out to be

a ¼ ω2R ∼ 107 m=s2. Figure 1(d) gives the plot of the
inertial and noninertial contributions to the GP as a function
of the number of quasicycles. With the parameters taken in
Fig. 1(d), the allowed number of quasicycles consistent
with Eq. (16) is determined by πAn=Ω0 ≪ 1; that is,
10−21n ≪ 1.

IV. DISCUSSION AND CONCLUSION

It is essential to note that, although a circularly rotating
detector does not perceive the Minkowski vacuum to be in a
thermal state, it does perceive modified field correlators
[34,35]. In fact, although the field content perceived by
the rotating detector remains zero, the detector still has a
nonzero excitation rate [36,37]. This distinguishes the
uniform linear and circular acceleration scenarios, because,
in the case of uniform linear acceleration, the field content
is truly changed, which constitutes the Unruh effect.
However, both the Unruh effect and the response of a
circularly rotating detector can be understood in terms of
acceleration-induced modifications to the field correlators.
Therefore, although detecting the modified field correlators
by a circularly rotating detector is not direct evidence for
the standard Unruh effect, any such detection serves as a

(a) (b)

(c) (d)

FIG. 1. The plot for Γ↓ versus ωc and the nonunitary GP versus the number of quasicycles (n) in the two regimes discussed in the
paper. We plot the inertial (φin) and the noninertial contributions (φn−in) to the nonunitary GP here. (a),(b) ω ≫ Ω̄0 with ω ¼ 5 GHz,
Ω0 ¼ 10 MHz, V ¼ 10−7 m3, and R ¼ 10−6 m, which correspond to an average acceleration a ¼ ω2R ∼ 2.5 × 1013 m=s2. For this set
of parameters, πnA=Ω0 ∼ 10−16n. (c),(d) ω ≪ Ω̄0 with ω ¼ 0.1 MHz, Ω0 ¼ 10 MHz, V ¼ 10−3 m3, and R ¼ 10−3 m, which
correspond to an average acceleration a ¼ ω2R ∼ 107 m=s2. The plots are for θ ¼ π=2 in Eq. (9). The vertical black dashed lines
in (a) and (b) mark the normal frequencies at which the cavity is tuned to obtain the GP versus n plots in (b) and (d).
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manifestation of quantum field-theoretic noninertial
effects [14].
Here, we have studied the GP acquired by a circularly

rotating two-level atom, inside an electromagnetic cavity,
interacting with the electromagnetic field in the inertial
vacuum. The acceleration-induced modifications to the field
correlators perceived by the atom depend on the angular
frequency of the rotating atom. We have studied the GP in
two distinct regimes characterized by ω ≫ Ω̄0 and ω ≪ Ω̄0.
The ω ≪ Ω̄0 regime is of particular experimental interest,
because one of the main hindrances to the detection of
acceleration-inducedmodifications to field correlators is that
such detection requires very high accelerations.
In theω ≫ Ω̄0 regime, forω ∼ 109 Hz andΩ0 ∼ 107 Hz,

we have shown that the atom acquires a noninertial GP ∼
10−6 rad in 105 quasicycles, i.e., ∼10−2 s, while the inertial
contribution remains insignificant, thereby successfully
isolating the noninertial response to the GP from the
inertial one.
In general, in the ω ≪ Ω̄0 regime, the noninertial GP

comes out bemuchweaker than the inertial GP.However, we
show that it is possible to make the two contributions
comparable by tuning the cavity to Ω̄0 þ ω and taking a
larger radius (R). Specifically, we achieve this by weakening
the inertial response by tuning the cavity away from the
atomic resonance. Note that we cannot indiscriminately
increase R, because an atom rotating on a larger radius
requires a bigger cavity to encase it and a larger cavity
volume suppresses the overall detector response. By
allowing the atom to evolve for ∼107 quasicycles, a non-
inertial GP ∼ 10−6 rad can be acquired, which is comparable
to the inertial GP acquired by the atom. This will enable the
possibility of the detection of acceleration-induced modifi-
cations to field correlators with much more relaxed param-
eters compared to previous studies [17,19].

Specifically, we have shown, in the ω ≪ Ω̄0 regime,
that it is possible to detect the acceleration-induced
modifications to the field correlators at an acceleration
of ∼107 m=s2. Compare this with the accelerations
required for the noninertial effects to be substantial in
other proposals. For example, the Unruh effect demands
acceleration of the order of 1021 m=s2 if the detector
transition rates are used as an observable [3,38] and
1017 m=s2 if the GP is used as an observable [17].
Similarly, detecting noninertial effects using a circularly
rotating atom inside an electromagnetic cavity, by observ-
ing the atomic spontaneous decay rate, requires an
acceleration of the order of 1012 m=s2 [19]. Thus, we
demonstrate that, aided by the cavity, usage of the GP
response for observing weak, but nontrivial, noninertial
effects in quantum field theory is a very sensitive and
powerful tool.
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