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Effects of photon field on entanglement generation in charged particles
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The Bose-Marletto-Vedral experiment is a proposal for testing the quantum nature of gravity with

entanglement due to Newtonian gravity. This proposal has stimulated controversy on how the entanglement

due to Newtonian gravity is related to the essence of quantum gravity and the existence of gravitons.

Motivated by this, we analyze the entanglement generation between two charged particles coupled to a
photon field. We assume that each particle is in a superposition of two trajectories and that the photon field
is initially in a coherent state. Based on covariant quantum electrodynamics, the formula for the

entanglement negativity of the charged particles is derived for the first time. Adopting simple analytic
trajectories of the particles, we demonstrate the entanglement between them. It is observed that the
entanglement is suppressed by the decoherence due to the vacuum fluctuations of the photon field. We also

find that the effect of quantum superposition of bremsstrahlung appears in the entanglement negativity
formula. The similar structures between the gravity theory and electromagnetic theory suggests that a
similar feature may be observed in the entanglement generation by quantum gravitational radiation.

DOI: 10.1103/PhysRevD.106.045009

I. INTRODUCTION

The quantum field theory (QFT) is one of the most
successful theories to explain the motion of particles and
the interactions among them. However, the QFT of gravity
has not been completed. It is unclear whether gravity is
described by quantum mechanics or not [1,2], and many
efforts have been made to test the quantum nature of
gravity. In recent years, the proposal of the Bose-Marletto-
Vedral (BMV) experiment [3,4] for testing the quantum
nature of gravity has attracted considerable attention. In this
work, it was proposed that quantum entanglement due to
the Newtonian potential between two masses may be
evidence of quantum gravity. Triggered by previous inter-
esting works, the Newtonian entanglement has been evalu-
ated in several experimental proposals: matter-wave
interferometers [5,6], mechanical oscillators [7,8], opto-
mechanical systems [9-12], hybrid systems [13-16], and
others.

Entanglement due to gravity will be an important mile-
stone for quantum gravity; however, the implication of
the BMV experiment is still under debate [17-23]. For
example, the role of dynamical gravitons in Newtonian
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entanglement is not obvious. This is because the Newtonian
potential comes from the constraint equation in the Einstein
gravity and does not describe the dynamical degrees of the
freedom of gravity. To clarify this kind of question, it is
necessary to analyze entanglement generation in the con-
text of QFT. A crucial step in this direction is to understand
the features of quantized fields that appear in entanglement.

The primary purpose of this study is to proceed with
the step based on quantum electrodynamics (QED).
Particularly, we evaluate the effect of a photon field on
the entanglement generation between two charged par-
ticles. We assume that each of the charged particles is in a
superposition of two trajectories and that the photon field
coupled with them is initially in a coherent state. This
setting is an extension of that considered in [24,25], where
quantum decoherence and phase shift due to a photon field
were discussed. In [26-31], quantum decoherence due to
gravitons was also evaluated for a massive object in a
superposition state. In the present paper, using the extended
model, we derive the formula of the entanglement neg-
ativity of two charged particles for the first time. We use the
formula to exemplify the entanglement behavior of the
charged particles. Through the analysis, we find that two
quantum phenomena, the vacuum fluctuations of photon
field and the quantum superposition of bremsstrahlung,
appear in the entanglement negativity formula. Particularly,
the decoherence due to the fluctuating photon field

© 2022 American Physical Society
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suppresses the entanglement generation in the charged
particles. We also demonstrate that this decoherence
becomes significant when the decoherence due to the
photon emission occurs, which could be significantly
related to each other. We infer that the above observed
features are universal in the entanglement behavior of two
masses coupled to a quantized gravitational field.

The present paper is organized as follows. The entan-
glement generation by the Coulomb potential is studied in
Sec. II. In Sec. III, we consider the dynamics of the charged
particles in a spatial superposition. We first introduce a
single charged particle model that interacts with a photon
field. We then extend the above model to that with two
charged particles. We derive the reduced density matrix of
the charged particles to discuss the entanglement gener-
ation. In Sec. IV, we evaluate the entanglement generation
for two specific configurations. We discuss the reason for
the effect of the difference of the two configurations on the
entanglement generation between the two charged particles
in Sec. V. Section VI presents the summary and conclu-
sions. In Appendix A, we explain the Becchi-Rouet-Stora-
Tyutin (BRST) formalism for the gauge fixing in the
present paper. In Appendix B, we compute the inner
product introduced in Eq. (23) and derive Egs. (24) and
(25). In Appendix C, we derive the field strength of the
photon field caused by a charged particle in motion. In
Appendix D, we explain the 1/c¢ expansion of the phase
shift in the nonrelativistic regime, where ¢ is the speed of
light. In Appendix E, we present some details of the
calculation in Sec. III. Throughout the present paper, we
use the convention (—, +, +, +). We note that the charge

e = V/4ra is a dimensionless parameter with the fine-
structure constant @ = 1/137, and we use the natural units
¢ = h = ¢y =1 while we recover ¢ and # as necessary.

II. ENTANGLEMENT DUE TO COULOMB
INTERACTION OF TWO
CHARGED PARTICLES

A. Time evolution of two charged particles with
Coulomb interaction

In this section, we present the entanglement generation
for two charged particles 1 and 2 each in a superposition of
two trajectories (see Fig. 1). These particles are coupled
with each other by the Coulomb potential. The total
Hamiltonian is

H:ﬁll+g2+‘712,

where H, and H, are the Hamiltonians of the charged
particles 1 and 2, V, is the interaction Hamiltonian
between them with the coupling constant e, and X; and
X, denote each position operator of the two charged
particles. We stress that the Coulomb potential Vi, is an

particle 1 particle 2
A
T
L\ /IRh L) /|R)2
Y D > >T
D
FIG. 1. Configuration of trajectories of two charged particles.

The length scale of each superposition is L, the coordinate time
during which each particle is superposed is T, and the particles
are initially separated by the distance D.

operator of the position operators X; and X,. In the
following computation, we do not need the explicit forms
of H, and H,. As we will mention after Eq. (3), they are
implicitly given by specifying the trajectories of each
particle.

Each of the two charged particles at t =0 is in the
spatially superposed state

PO =5 3 PLIQ @)

P.Q=R,L

where |R); (|R),) and |L), (|L),) are the states with the
wave packets localized around positions x = X z(t = 0)
(@ =Xop(t=0)) and x =X, (t=0) (x =X, (t=0)),
respectively. We assume the following approximation,

21 (OP), ~ Xpp()[P). £5(1)]Q)y ~ Xaq(1)|Q)2. (3)

where R} (1) = efHitih)g o=itlHi+H)  and
eit(H1+H2)ﬁ2€—it(H1+H2)

R5(r) =
are the position operators in the
interaction picture. These assumptions are valid [25] when
the de Brogile wavelength A4z of the charged particle is
much smaller than the width Ax of its wave packet
(A4 < Ax). The trajectories of each particle Xp(#) and
X, (1) are determined by the Hamiltonians H, and H,. In

our computation, we specify the trajectories by hand.
The evolved state |¥(7)) is

P(T)) = e T|P(0)),
vty LB T 2 1
= ¢~ ITH+H) T exp [—i/ dt——————
o Ar|Ri(1) = R5(7)]

x |?(0)),
U iy o i
zie—zT(Hﬁ-Hz) Z e |P); ® |Q),. (4)

P.Q=R.L

where T is the time-ordered product, and the approximation
(3) was used in the third line. The phase shift
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Dp = /T dte—2 ! (5)
Ry Tan 1Xp(2) = Xoq(1)]

is induced by the Coulomb potential between particles 1
and 2. The density matrix of those particles is

pe = [¥(T))(¥(T)]

1 . ,
= Z Z Z e—ztpr-f-tCDprQ/ |Pf>1 <P%| ® |Qf>2<Q’f|,

P.Q=RLP Q—=RL

(6)

where |P;), = e T|P), and |Q;), = e=*7|Q), are the
states of the charged particles 1 and 2 moving along
trajectories P and Q, respectively.

B. Entanglement behavior of two charged particles

Here, we adopt the negativity .4 [32] to determine
whether the state of two charged particles is entangled or
not. We consider a density matrix p of a bipartite system
AB. The negativity is introduced as follows:

N = |4, (7)

4;<0

where A; are the negative eigenvalues of the partial trans-
position pTs with the elements (a|(b|pT™|d')|b’') =
(a'|(blpla)|b’) in a basis {|a)|b)},, of the system AB.
If the negativity does not vanish, then the system is
entangled, which follows by the positive partial transpose
criterion [33,34]. Additionally, the nonzero negativity is the
necessary and sufficient condition for the entanglement of a
two-qubit or a qubit-qutrit system [34]. Particularly, there is
only one negative eigenvalue A,,;, of the partial transposed
density matrix of a two-qubit system [35,36]. We rewrite
the negativity as

A = max[—Ayn, 0]. (8)

The minimum eigenvalue of the partial transpose of the
density matrix (6) is

; ©)

j'min = -

where @, is given as

O, =

e [T 1 1
_E/o dt<|X1R(f) — Xor (1) - X R (2) = X5 (1)

1 1
‘mmm—xmmrﬂxmn—&am) (10)

To evaluate @, and the negativity (8), we consider the
trajectories

Xip(1) = [epX(1),0,0]",  Xpq = [eoX(t) + D,0,0]",

X(1) :8L<1—%)2<%>2, (11)

where eg = —ep, = 1, L is the length scale of each super-
position, T is the timescale during which each particle is
superposed and D is the initial distance between those
particles (see Fig. 1). The function X(¢) is chosen so that
each particle has no velocity at t = 0 and ¢ = T to avoid the
UV divergence in our computation in the following
sections. We will comment on this point in more detail
around Eq. (32). There can be other possible choice for
superposition and trajectories. For example, the authors in
Ref. [37] considered two particles in superposition states of
multiple trajectories, and discussed the entanglement gen-
eration due to the Newtonian potential. The result indicated
that multiple trajectories cases are more resilient to
decoherence than the two trajectories case. In the present
paper, for simplicity, we consider the entanglement gen-
eration between two charged particles.

When the trajectories of each particle are specified by
Eq. (11), the quantity @, is given by

q’c:‘% OT‘”{%_ <D—;X(t)+D+;X(t)>]' (12)

Now, we recover the light velocity ¢ and the reduced Planck
constant 7. We focus on the two regimes ¢7 > D ~ L and
¢T > D > L, in which the charged particles move with
nonrelativistic  velocities (¢7 > L). In the regime
c¢T > D ~ L, the above formula of ®_, and the minimum
eigenvalue (9) are computed numerically. In the regime
c¢T > D> L, the quantity ®. (12) and the minimum
eigenvalue (9) are approximated as

16¢2 ¢TL?
315zhc D3

2 2

o X ﬂ% ’ min ~ (13)
315zhc D

where O(L?/D?) was ignored, and the Taylor expansion

sin®./2 ~ ®,/2 was used.

Figures 2(a) and 2(b) show the negativity in the regime
¢T> D ~L and cT > D > L. These results show that
the negativity decreases as the ratio D/cT increases.
Because the negativity is always positive, the two charged
particles 1 and 2 interacting with the Coulomb potential are
entangled in the regimes ¢7'> D ~ L and ¢T > D > L.

The entanglement generation here is understood to be
caused by the Coulomb potential (1) treated as an operator
of the positions of two charged particles 1 and 2, which
allows the quantum superposition of Coulomb potentials
associated with the superposition of the charged particles.
In the context of quantum information theory, it is well
known that the entanglement between two systems cannot
be created by local operations and classical communica-
tions (LOCC) [38]. This means that it is impossible to
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FIG. 2. Negativity ./ induced by the Coulomb potential between the charged particles. We adopted L/cT = 0.1.

create entanglement by classical interaction. It immediately
follows that if the Coulomb interaction entangles two
charged particles, then the interaction is quantum and
not described by LOCC.

In the next two sections, based on QED, we evaluate the
entanglement generation between two charged particles. We
first introduce the model of a single charged particle
interacting with a photon field, and then extend it to the
model of two charged particles, which corresponds to the
above setting. The results in the next two sections are based
on the first principle analysis of the QED, which is useful to
understand how the above result of entanglement generation
based on the operator valued Coulomb potential Eq. (1) is
related to the quantum field theory of electromagnetic field.
We will see that the contribution from the Coulomb potential
is reproduced in the behavior of the entanglement and is
consistent with the result of the nonrelativistic limit shown in
Fig. 2. This implies that the operator valued Coulomb
potential Eq. (1) is originated from the quantum field theory
of the electromagnetic field. As we will see below, this
entanglement generation is driven by the fact that a photon
field can be in a superposition state associated with the
superposition states of currents of the charged particles,
which shows the quantum nature of the photon field.

III. DYNAMICS OF CHARGED PARTICLES
COUPLED WITH A PHOTON FIELD

We consider the dynamics of charged particles coupled
with a photon field, where the charged particles are each in
a superposition of trajectories. After a brief review of the
model of a single charged particle, we extend it to the
model of two charged particles. For the covariant quanti-
zation of the electromagnetic field, we use the BRST
formalism [39] in the Feynman gauge. The details of the
BRST formalism are presented in Appendix A.

A. Model of a single charged particle

We consider a single charged particle and a photon field
coupled to it. The total Hamiltonian in the Schrodinger
picture is

H=fy+ iy +V, 7= / P, (A (x),  (14)
where I:Ip is the Hamiltonian of the charged particle, I:Iph is
the free Hamiltonian of the photon field, and V is their
interaction Hamiltonian. J 4 1s the current operator of the
charged particle, and A* is the photon field operator [the
U(1) gauge field].

We assume that the charged particle is superposed in two
different trajectories R and L. The charged particle is
initially in the superposed state of |R) and |L), where
IR)(|L)) is the state that the particle will go through a
trajectory R (L).

The photon field is assumed to be initially in a coherent
state. Then the total initial state at the time t = 0 is

o
V2

where [a), = D(a) |0) i is the coherent state of the photon
field. Here, [0),, is the vacuum state satisfying

¥(0)) (IR) + L)) & |a)pn, (15)

a,(k)|0),, = 0, and D(a) is the unitary operator referred
to as a displacement operator defined as

bla) :exp[ / Pl (R (k) —He)|,  (16)

where the complex function o# (k) characterizes the ampli-
tude and phase of the initial photon field. The form of the
complex function o¥(k) is restricted by the auxiliary
condition in the BRST formalism. Because we will find
that the entanglement between two charged particles does
not depend on o (k) in Sec. III A, the details on ¥ (k) are
omitted here. The details are presented in Appendix A. The
coherent state |@),y, is interpreted as a state in which there is
a mode of the electromagnetic field following Gauss’s law
due to the presence of charged particles.

We assume that the current operator J!(x)=

¢iflo! j1(0,x) =0 in the interaction picture defined with
I:IO = I:Ip + ﬂph is approximated by a classical current as
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T (x)IP)

Jh(x) = e/drdd—’f&@(x—xp(r)), (17)

~ Jp(x)[P),

where P=R,L, e is an electric charge, and X}(7)
represents each trajectory of the charged particle. This
approximation is valid for the following two assumptions
[25]: the first assumption is that the de Brogile wavelength
is smaller than the wave packet width of the particle. The
second assumption is that the Compton wavelength Ac of
the charged particle is much shorter than the wavelength of
the photon field 4,, (for example, the wavelength of the
photon field emitted from the charged particle) (Ac < 4,)-
Under this condition, the process of a pair creation and
annihilation is neglected.
The evolution of the initial state [¥(0)) is

W(T)) = e H7¥(0)).

= ¢=iHT T exp [—i A ! dtVl(t)] W(0)),
= ¢ Texp [—i/OT dt/d%j{‘(x)ﬁ}l(x)}
<5 3 IP) @ [,

P=R.L

e—if{OT

~

57 P) ® Ul

\/E P=R,L (18)

where the approximation in (17) was used in the fourth line,
Vi(1) = eforVeiflor and Al (x) = eo'A(0,x)e~Hof. “T”
in the second and third lines denotes the time ordered
product. The operator Up is given by

A T ~
Up = Texp {—i/ dt/ d3xJ’1§(x)A,5(x)],
0
= exp [—i / d*xJi(x) AL (x)
i
-3 [ [ esnenoiGue|. a9
where in the second line we used the Magnus expansion [40]

T exp [—i A Tdtm)} = exp[:o Q(T, 0)], (20)

—1

with

Q,(T,0) = —i / " ame),

(i

a,r.0) =55 [an [Maniir(n). vw). 20

and Q;-3(7,0) given by higher commutators, for example,
[[Vi(#)), Vi(£2)], V1(t3)]. We note that the commutator
[V1(1,). Vi(1,)] is proportional to the identity operator
and commutes with V(z) for any given time 7. Hence,
the terms €;53(7', 0) involving higher commutators vanish
in Eq. (19). G}, (x,y) in Eq. (19) is the retarded Green’s
function given by

A

G, (x,y) = —i[AL(x), AL (y)]0(x° — y°).

We obtain the reduced density matrix of the charged
particle as

(22)

pp = Trp[[W(T)) (¥(T)]]
1

=5 > wnlal U Tpla)pPr) (P
P,P’=R,L

1 .
_ 5 Z e~ Trpti®pp P (P},
PP'=RL

(23)

where [P;) = e=#T|P) is the state of the charged particle,
which moved along the trajectory P(= R,L). T'pp and
Oprp are

Tow = [ @' [ dUR) = 5005 0) = 350)

x ({AL(x). A (»)}). (24)

Bpp = / (I (x) = T5())A, (x)

_% / &y / d*y(J (x) = J () (5 () + J5(0))
x G, (x,y), (25)

where ({A}(x),A}(y)}) is the two-point function of the
vacuum given by

1
X0 =30 —ie) + e —yP?

: ) (26)

+ —(x0 =30 +ie)? + |x —y|?

(A A0 = 2 (—,

 A4Ax?

with the UV cutoff parameter €, and the field A,(x) is

3
Au(x) = /w)iizk@(aﬂ(k)eikm +c.c). (27)

The computation of the inner product (a/| U, Up ) in
(23) and the derivation of Egs. (24) and (25) are presented in
Appendix B. It is obvious that ['gg =171 =DPrr =Py, =0.
However, Iy and ®g;, are given as
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e / dx / (I (x) = T () (T () = T2 ()
<Nm»
:jidwﬁ@MMMm&@m, (28)

and
g = / (I (x) = T (1) A, (%)

-5 [ [ e

x G, (x,y),

— e § du () =5 § dn (50 + AL (29)

—JLx) R () + ()

where §.dx, = [y dx, — [ dx, is the integral along the
closed trajectory composed of trajectories R and L. Here,
Al (x) is the retarded potential given by

Ab(x) = / &Gl (x. ) I5(). (30)

According to (28), 'y, is always positive, and the interfer-
ence terms of pp (off-diagonal components) decay for a large
I'rr. The quantity I'g; is referred to as the decoherence
functional. The quantity ®g; = —®; i gives the phase shift
in the interference pattern of the charged particle.

In Appendix E, assuming the following trajectories of
the charged particle

€R = —€, = 1,

;(t) = 8L<1 —%)2(92, (31)

where L and T are the length and timescales of the
trajectories (also see Fig. 3), we obtain the decoherence
functional as

32 22

—_—, 32
3z T2 (32)

RL ~
when the charged particle has a nonrelativistic velocity
L/T <« 1. We mention here the reason to choose X(¢) in
Eq. (31). According to the function X(¢), the particle at
t =0 and r = T has zero velocity and is smoothly super-
posed and recombined. The smoothness of the trajectory
avoids a divergence in the calculations of decoherence,
which guarantees our results in a form independent of an
UV cutoff. The authors in [41] discussed the relation
between the smoothness of particle trajectories and the
UV divergence in decoherence effect. They reported that
the decoherence functional computed assuming smooth

¢ charged particle

DN/ IR)
>

FIG. 3. Configuration of a single charged particle trajectory.

trajectories is free from the UV cutoff and of the order of
O(e*v?), where v is the characteristic velocity of particle.
This is consistent with our result written by the character-
istic velocity L/T. The physical meaning of Iy is
interpreted in the following two ways. First, we consider
that decoherence occurs through photon emission. The
number of emitted photons is estimated as

wWT L\?2 L2
— =WI*~é 5| TP == (33)
v T T

where v = 1/T is the energy of a single photon in the unit
h=1, and W~ ¢?(L/T?)?* is the Larmor formula of the
power of radiation emitted from a nonrelativistic charged
particle. This formula shows the number of emitted photons
during the time 7. When this number exceeds one, i.e.,
WT/v > 1, the decoherence becomes significant. The
decoherence due to bremsstrahlung was also discussed
in [25]. Second, we can deduce that the decoherence is due
to the vacuum fluctuations of the photon field [42,43]. The
fluctuating photon field leads to dephasing effects,

(e'?) = e~ ()2 o o—(eAELT)*/2 (34)

where ¢ is the phase shift due to the fluctuating photon
field, and (¢*) ~ (eAELT)? is its variance. AE is the
vacuum fluctuation of the electric component of the photon
field, which is estimated as AE ~1/T? in [44]. The
variance of the phase shift is

2

1 2 L
(eAELT)? ~ (EFLT> = ezﬁ. (35)

This result is equivalent to Eq. (33), and the decoherence
becomes significant for (eAELT)* > 1.
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B. Model of two charged particles

In this subsection, we extend the previous model to the
model of two charged particles (for example, see Fig. 1).
The total Hamiltonian in the Schrédinger picture is com-
posed of the local Hamiltonians of each charged particle A,

and H,, the free Hamiltonian of the photon field ﬁlph and
the interaction term V as

H:H1+ﬁ2+ﬁph+‘,\/,

A

- / Pe(Tx) + @A), (36)

where J# and J4 are the current operators of each particle,

which are coupled with the photon field operator A*. We
consider the following initial condition at t = 0,

WO =5 3 PLQuldy  (37)

P.Q=R.L

where each particle is in superposition |R); + |L), and
IR), 4+ |L),, and the photon field is in a coherent state

|a),n- We assume that the current operators Th(x) =
eHorJ#(0, x)e~o in the interaction picture with respect
to I:IO =H +H,+H ph are approximated by the following
classical currents as

j;lll(x)|P>1%JlllP(x)|P>l’ jgl(x)|Q>2zJ’2’Q(x)|Q>2, (38)

dx¥
o) = e [ dr 5= Xipl))

T
1

ax
Tho(x) = e / dr de 8@ (x = Xa0(1)), (39)

where X'p(7) and X5 (7) with P,Q =R, L represent the

trajectories of each particle. The initial state evolves as
follows:

\W(T)) = exp[-iHT]|¥(0)).
i T exp [_i / szm)] ¥(0)).

o1 N
“e_IHOTz Z IP)11Q)2Upqla) ph, (40)
P.Q—R.L

where we used the approximations (38) in the third line. The
unitary operator f/pQ is given by

N T o
Upg = Texp {—i/ dt/ Ax(Jp + J’;Q)A}l(x)],
0
= exp [—i / d*x T (x) A} (x)

—é/d“X/d4y1§Q(X)J§Q(Y)GLv(X’Y)]’ (41)

where the Magnus expansion was used, and Jp, = Jp +J5.

Tracing out the degrees of freedom of the photon field to
focus on the quantum state of the charged particles, we obtain
the reduced density matrix of particles 1 and 2,

pi2 = Tron[[W(T)) (¥(T)]].

= Z Z Z ph<a|0;’Q’0pQ|a>ph
P.Q=R.LP ,Q—R.L
X [Pe); (P'¢] ® |Qg)2(Qsl,
1
Ly
P.Q=RLP.Q—=R.L
x [Pr)1 (P's| @ [Qp)o(Q'sl, (42)

e~ P’Q’PQ+KDP’Q’PQ

where [P;), = e T|P), and |Q;), = e~ #2T|Q), are the
states of the charged particles 1 and 2, which moved along the
trajectories P and Q, respectively. The quantities I'pypq and
CI)P’Q’PQ are

Oy = / P (Toy () = T ()4, (2)

- / dx / &y (e (x) = T ()

X (Jpg (¥) + Jpo(¥)) Gl (%) (44)

where ({Al(x),AL(y)}) and G!,(x,y) are the two-point
function (26) and the retarded Green’s function (22). A, (x) is
the coherent photon field (27). The above formulas (43) and
(44) are given by replacing the currents Ji, and J}, in Eqs. (24)
and (25) with Jp, and J; > respectively. In the next section,
we derive the entanglement negativity of the two charged
particles. We also demonstrate the entanglement behavior
for a couple of typical configurations of the particle’s
trajectories.
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IV. ENTANGLEMENT BEHAVIOR
OF TWO CHARGED PARTICLES

A. Formula of the negativity of two
charged particles

We evaluate the entanglement negativity with the for-
mula (8). The eigenvalues of the partial transposition pfz' with

the components (P'|(Q'[p13|P)|Q) = (P|{Q'|p12|P')|Q) are

1
Ay = 1 [1—e T Tcosh[[] + {(eT — eT2)?

+4e™ 2 sin? (@/2) + 2722 sinh? [T ]}, (45)

1
A= 1 1+ e T T2 cosh[[] + {(eT — e T2)?

+4e™1 2 sin? (©/2) 4 2172 sin? [T ]}2]. (46)

We note that A_ is the minimum eigenvalue 4,,;,, and hence
the negativity of the two charged particles is

A =max|[—Apin, 0],
1
1 [1—e T T2cosh[] = {(e7T1 —e2)?

+4e T T gin?(@/2) 4+ e Do ginh2 [, V], (47)

/Imin =

Because the density matrix p;, of the charged particles is
regarded as that of a two-qubit system, the negativity
completely determines whether the particles are entangled
or not. The quantities I'; (i =1, 2), I',, and ® are given as

r= g [ [ dar@armuaw. Ay
e? R .
= Zﬂé dx* ]i dy” ({A}(x). A, (y)}). (48)

Fo=; [ @ [ dyanmaso) (i, Amp

e? A 5
—f av j{ AL ALY (49)

G

o :%/d“x/d“y{AJ’l’(x)AJ’g(y) + AT (x) AT ()}

x G, (x,y)

— g <%C1 dx,AA%(x) + fi:z dx,,AA’f(x)) (50)

where AJY = Jii — Ji; and J%, is the current of the particle
i(=1,2) on the trajectory P(= R, L). The line integral along
the closed trajectory fci dx, is defined by fci dx, =
Jir dx, — [, dx,, where iP denotes the trajectory P of the

particle i. The quantity AA¥ = Al — A’ is the difference
between the retarded potentials defined by

Al (x) = / Gl (x5 (). (51)

The quantities I'; and I', depend on the trajectories of each
particle and have the similar form to 'y (28). These are the
decoherence functionals appearing in the interference terms
of each charged particle. In Appendix E 1, I'; and I', are
computed explicitly. I'; is characterized by the correlation
function between the photon field coupled to particle 1 and
the photon field coupled to particle 2. @ is computed from the
phase shifts by the retarded potentials of the photon field A%,
which is analogous to the Aharanov-Bohm effect. I', and ®
depend on the relative configuration of the trajectories of
particles 1 and 2. In Appendices E 2 and E 3, we explicitly
evaluate I', and ® assuming two specific configurations of
particles, which we refer to as the linear configuration
(Figs. 4 and 6) and the parallel configuration (Figs. 8 and 10)
in this paper. The quantities I';, I';, and ® are independent of
the complex function a, (k) of the initial coherent state of
the photon field, and hence the negativity .4 also does not
depend on a, (k). Hence, as mentioned around Eq. (16),
the entanglement between the particles does not depend
on a,(k). Using the Stokes’s theorem to rewrite the line
integrals in Egs. (48)—(50) by the surface integrals, we can
express the quantities I';, I';, and @ in terms of the field
strengths as

2
I'; —e—/ dal“// da/aﬁ<{ﬁllw(x)7ﬁv;ﬂ(x/)}>, (52)
16 Js, s,
e? . X
T, :1_6/ da/“’/ da,aﬂ<{F,Iw(x),Féﬂ(x')}>, (53)
Sy S,

e

(D_Z< /S do,, AF™(x) + /S do-wAFf;”(x)>, (54)

t
Yy particle 1
A
Ié - |L)1 |R)1

x

particle 2

’ |L)2 |R)2

FIG. 4. Linear configuration in the regimes ¢7 > D ~ L and
c¢T > D > L. The left panel shows the entire view of the linear
configuration.
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where §; is the surface surrounded by the closed trajectory C;,
Fl,=0,A,-9,A,, and AF" =Fg—F{ with the
retarded field strengths Fly = 0#A%, — 0" Alp.

In the following subsections, computing the quantities
I';,T., and @, we present the minimum eigenvalue (47) and
entanglement negativity .4~ of the charged particles.
Hereafter, we restore the reduced Planck constant 7 and
the light velocity ¢ to determine the nonrelativistic limit of
our analysis.

B. Linear configuration

We consider the linear configurations shown in Figs. 4
and 6. The parameters 7, L, and D represent the time of
maintaining a superposition state of each particle, the
length of separation between the superposed trajectories
of each particle, and the initial distance between the
charged particles 1 and 2, respectively.

1. ¢cT>D~L or cT > D > L regimes

To evaluate the minimum eigenvalue 4,,;,, which gives
the negativity of the two charged particles, we compute the
quantities I';, ', and @ by specifying the trajectories of the
particles. We consider the following trajectories

Xip = [1,epX(1),0,0]T,  X4,(1) = [t,eqX (1) + D,0,0]",

t\2/1\?
e =—er = L. X(t):8L<1—T> (?) |

where X/, and X’z‘Q with P,Q = R, L describe the trajec-
tories of particles 1 and 2, respectively. Figure 4 schemati-
cally shows the configuration of the particles. In the
regimes ¢T > D ~L and cT > D> L, the quantities

|

(55)

1
ﬂminzz[f‘] +F2—\/(F] —F2)2+(1)2+Fg:|,

I, I'.,, and @ are evaluated. As we show in
Appendix E 1, assuming the above trajectories, we can
compute I'; for ¢T > L as

. 322 [ L\2
322k \cT) -

In the regime ¢7 > D ~ L, the quantity I'; is analyti-

cally obtained as
I 64> L 2’
3n*hc \cT

and the quantity @ is numerically computed from the
formula

ez [T [2 v?
orn— [ ar|=(1-%
4rh 0 |:D( 6'2>

B ch p—ox) " prax)] Y
(1+5) o=z 550

where v = dX/dt. Substituting Egs. (56)—(58) into Eq. (47),
we evaluate the minimum eigenvalue 4,;, and the negativity
. The behavior is shown by the red curve in Fig. 5(a).
The derivation of Eqs. (57) and (58) is presented in
Appendix E 2 a. In the regime ¢7 > D > L, the quantities
I'. and @ are estimated as

64¢* (L2 4D* [D
Torvee— (=) (14 —=In|=| ),
3x°hc \cT (cT) cT

o~ 64¢2 L\2//[/cT 3+6cT
~315zhc \cT D D )’

and we obtain the following eigenvalue (47)

Fl :F2

(56)

(57)

N 16¢> L? 1 64e> [ L\2[[cT\3
" 3z2he (cT)? 4\ |315zhc \cT D

0.04
(@)
0.03
0.02
0.01
0.1 0.12 0.13 0.14 0.15
D/cr

FIG. 5.

+6CT 2+ 64e* L7 .
D 3n*hc (cT)?

Salf]) o

0.100 ()
0.001

= 10°°

1077

0.1 02 03 0.4 0.5
D/cT

Negativity ./ for the linear configuration. (a) is the case ¢T > D ~ L while (b)is thecase ¢T > D > L.Weadopted L /cT = 0.1.
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where in the first line we assumed that I';, I',, and ® are
small, and Eqgs. (56) and (59) were substituted in the second
line. Equation (59) is derived in Appendix E 2 a. The term
I'1 + T, in the first line of Eq. (60) (or the first positive
term in the second line) makes A, positive and reduces
the negativity. In contrast, the second term given by @
and I, (or the second term in the second line) decreases
Amins Where @ is much larger than I, because of
[,/®~ (D/cT)?> < 1. The quantity ® reflects the contri-
bution of the Coulomb potential (proportional to D3 term)
and its relativistic correction (proportional to D~! term).
Figures 5(a) and 5(b) show the negativity in the regimes
¢cT>D~L and cT > D> L, respectively. The blue
curve in each panel presents the behavior of the negativity
inFig. 2, which is given in the nonrelativistic limit and has no
contributions from the dynamical degrees of freedom of
the photon field. The red curve shows the behavior of the
negativity computed from our analysis. In Fig. 5(a) under the
regime ¢T > D ~ L, the red curve is similar to the blue
curve. This means that the Coulomb potential is dominant to
determine the negativity in this regime, and the relativistic
corrections are small. However, in Fig. 5(b) under the regime
c¢T > D > L, there is the parameter region without the
negativity. This is because the decoherence effects I'; and I,
are more dominant than the term @ mainly determined by the
Coulomb potential. In this regime, the computation of the
negativity in the nonrelativistic limit is not valid.

2. D> cT > L regime

Subsequently, we present the formula of the minimum
eigenvalue 4, in the regime D > ¢T > L. We assume the
trajectories of the charged particles 1 and 2 are given by

Xip(t) = [t.epX(1).0.0]",
X4 (1) = [t.eqX (1 = D) + D.,0,0]",

r=—c =1,  X(1)= 8L<1 —%)2@)2, (61)

where X’gQ is defined in D/c <t < T + D/c. The whole
configuration of the trajectories is shown in Fig. 6, in which
the superposition of particle 2 is formed after particle 1 is
superposed. The trajectories of the particles are arranged to
be causally connected.

We obtain the following formulas for the regime
D> cT>1L,

32 L2 o 32¢* L*(cT)?

T2 3% () €~ 2257%hc¢ DY
16¢> L*(cT

LU (62)
315zhc D

where I'; and I', are the same as those given in (56) because
they depend only on each particle motion, and the explicit

Y particle 2
L2/ \|R)2
particle 1
|Lh
r

|R)1

FIG. 6. Linear configuration in the D > ¢T > L regime.

derivation of I', and @ is presented in Appendix E2b. We
can then compute the eigenvalue (47) as

1
iminwz[rl +F2—\/<Fl —F2>2+©2+Fg N

16¢2 L2 16¢% ¢TL?

& - , 63
3n*he (cT)? 315zhe D? (63)

where in the first equality, the minimum eigenvalue was
approximated by assuming thatI'; (i = 1, 2), I'., and ® are
small. In the second equality, we substituted (62) and
neglected I'; because of I'./® ~ ¢T /D < 1 for the regime
D > cT > L. The positive term in the right-hand side of
Eq. (63), which is given by the decoherence functional I,
comes from the vacuum fluctuations of the photon field.
The negative term in Eq. (63) is given by the quantity @
depending on the phase shifts due to the retarded field [see
the formula of ® (50) and the discussion around (51)].
Figure 7 shows the minimum eigenvalue (63) for a fixed
L/cT =0.1 as a function of D/cT in the regime
D > ¢T > L. The minimum eigenvalue is always positive,
and hence the charged particles 1 and 2 are not entangled.

4.951x10™*
4.950x10°*

4.949x10™*

et [013]

4.948x10°4
4.947x10™*
=~ .4 ==
D/cT

FIG. 7. Minimum eigenvalue A, [pg] for the linear configu-
ration in the regime D > ¢T > L. We adopted L/cT = 0.1.
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This result shows that the decoherence due to the vacuum
fluctuation of the photon field suppresses the entanglement
generation due to the retarded field. In Sec. V, we will
discuss that the retarded field corresponds to the longi-
tudinal mode, that is, the nondynamical part of the
photon field.

C. Parallel configuration

Here, we consider the parallel configurations shown in
Figs. 8 and 10. The parameters 7', L, and D play the same
role as those in the linear configuration, which are the
typical scales appearing in the trajectories of the particles.

1. ¢cT > L > D or cT > D > L regimes

We first consider the trajectories of the two particles 1
and 2 as

Xip(1) = [1,epX(2),0,0]",  X5(t) = [t,eqX(t), D, 0]",

er=—e=1, X()= 8L<1 —%)2(%2. (64)

The schematic configuration is shown in Fig. 8. We
examine the quantities I'; (i =1, 2), I, and @ for the
regimes ¢ >L>D and ¢T> D> L to estimate
the minimum eigenvalue 4,;,. Even in this configuration,
the decoherence functionals I'; and I', for ¢7 > L are
identical to those in Eq. (56), that is,

particle 2
t
Y
4
T
FIG. 8. Parallel configuration in ¢T > D > L regime.
32¢* L?
IN=hr—5-—. 65
"2 3220 (cT)? (65)

This is because the decoherence functionals are given by
the local motions of each charged particle. In the following,
we evaluate I', and @ for each of the regimes ¢T > L > D
and ¢T > D > L.

In the regime ¢T > L > D, the quantities ', and @ are

L? e T 6412
(0P 1-— , (66
4rhe D < 105(cT)2> (66)

which are derived in Appendix E3a. The minimum
eigenvalue (47) for the regime ¢7 > L > D is given as

N 64¢?
“"3m2hc(cT)?

1
A pi] =
min 12} 4

(0]
F] —+ Fz - \/(Fl - F2)2 + 4Sin2 |:5:| + l—%

3

162 L2 1

2

e
N =~ [ 2sin]——2
3n*hc (cT)? 4 \/( o {47rhc D

In the above equation, the first term coming from
I’y + ', increases the minimum eigenvalue, whereas the
second term given by ® and I, decreases it. It should
be noted that the quantity ® can be @® > 1 because
of ¢T/D(1—L2/(cT)*)~cT/D>1 for the regime
cT'>L>D.

In the regime c¢7T > D> L, the quantities I', and
@ are

1
ﬂmin@fﬁ] ~ {Fl +1, - \/(Fl —)? + @ + Fg} ,

T 64L2 2 64e>  L? \2

105(cT) 3n*hc (cT)

[
2 2 2

roae 22 (L4 (22) | 2)).

3x°hc \cT cT cT

32¢*> [ L\2[/[cT\3® 6¢cT
e () () =2,

315xhc (cT) <<D> D > (68)

These formulas are derived in Appendix E 3. The minimum
eigenvalue (47) for the regime ¢7 > D > L is approxi-
mated as

1662

S5 Y ()T B C- BB
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0.500

0.100,

0.050
= oot0
0.005

0.001
5.x10™

0.001 0.005 0.010

D/cr

0.050 0.100

0.100 (b)
0.001
‘Z 10°°
107
%00 0.1 0.2 03 0.4 05

D/cT

FIG. 9. Negativity ./ for the parallel configuration. (a) is the case ¢T > L > D, whereas (b) is the case ¢T > D > L. We adopted

L/cT =0.1.

This minimum eigenvalue has the very similar feature to
that obtained in the case of the linear configuration. The
first positive contribution in (69) comes from the
decoherence functional I'; quantifying the decoherence
due to the vacuum fluctuations of the photon field. The
second negative contribution in (69) is computed from I,
and @, which is mostly from @& because of
[./®~ (D/cT)? < 1. The quantities T, and ® stem from
the vacuum correlation of the photon field and the phase
shifts due to the retarded field, respectively.

The panels in Figs. 9(a) and 9(b) present the behavior
of the negativity in the regimes c¢7 > L > D and
c¢T > D > L, respectively. The blue curve shows the
negativity in the nonrelativistic limit, which corresponds
to the electromagnetic version of the BMV experiment. The
red curve is given by our analysis. The behavior of the
negativity in Fig. 9(a) means that our analysis is consistent
with the nonrelativistic result. However, in Fig. 9(b), due to
the decoherence, the parameter region without the neg-
ativity appears, and hence the computation in the non-
relativistic limit becomes invalid in ¢7 > D > L.

2. D> cT > L regime

We consider the trajectories of two charged particles 1
and 2 as

Xip(1)=[1epX ()00, Xlp(t) =[1.cpX(1—D/c).D.0".

t\2[1\?
€R:—€L:1, X(Z‘)ZSL(l—T) (?> s

where X, and X5, with P,Q = R, L describe the trajectory
of each particle. Here, X’;Q is definedin D/c<t<T+D/c.
The spacetime configuration of the particles is presented in
Fig. 10. We examine the minimum eigenvalue in the
regime D > ¢T > L.

We have the following formulas of I'}, "5, I, and ® for
the regime D > ¢T > L,

(70)

N 64e> L
= 105zhc D(cT)’

(71)

32 L°
> 3n2he (cT)
32¢?  L*(cT)?
[~ - 2 i
225z hc D

Flzr

where I'} and I, are not at all different from those given in
(56) or (65), and the quantities I', and @ are derived in
Appendix E3b. Then, we can compute the minimum
eigenvalue (47) as

I
Iminlp13] 7 [0+ T2 = JO -y et r2,

_l6e* L? 16> L7
T 3x2hc (eT)? 105zhe D(cT)’

(72)

where the first term coming from the decoherence func-
tional I'; increases the minimum eigenvalue, and the second
term given by ® decreases it. In the second equality, we
neglected I, because of I',/® ~ (¢T/D)* < 1. Figure 11
shows the minimum eigenvalue (47) as a function of D/cT
in the regime D > ¢T > L, which is always positive.
Similar to the result in the case of the linear configuration

particle 2

Y |L)2 |R)2

T

particle 1

>T

FIG. 10. Parallel configuration in D > ¢T > L regime.
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4.90x10™*

o 4.85x10*

g [
E 480x10*
4.75x10°*
2 4 6 8 10
D/cT
FIG. 11. Minimum eigenvalue A, [plTé] for the parallel con-

figuration in the regime D > ¢T > L. We adopted L/cT = 0.1.

(see Fig. 11), the negativity remains zero, and the entan-
glement between the charged particles 1 and 2 does not
appear in the regime D > ¢T > L. We come to the same
conclusion that the decoherence due to the vacuum fluc-
tuations of the photon field prevents the entanglement
generation due to the retarded field.

It is important to note that the parameter dependence
appearing in the formulas of the minimum eigenvalue (63)
and (72) is different. The second terms of (63) and (72) are
proportional to —cTL?/D? and —L?/D(cT), respectively.
The latter is regarded as a consequence of the quantum
superposition of bremsstrahlung, as we will discuss in the
next section.

V. DISCUSSION

Before the main discussion in this section, we first
mention a basic property of the field strength of a charged
particle. Generally, the field strength of a charged particle is
decomposed into two terms F* = Fy* + Fy", which are
given as

oy e (= X))~ ()
B = - Pl - X)) )

(73)

O e o G G
G- X())al) o N
e oM AT

where X* is the spacetime position of the particle, v =
dX* /dt is the velocity, a* = dv*/dt is the acceleration, and
y = 1/y/—v"v, is the Lorentz factor. The retarded time ¢, is
given by —(r — 1) + |x — X(#,)| = 0. The above equations
are obtained in Appendix C. The field strength F}”
independent of acceleration has the longitudinal mode
of the retarded field. In fact, the inner product of the
unit vector n = (x — X(#,))/|x — X(¢.)| in the propagation

direction and the electric field E, with E!, = FY does not
vanish, n - E, # 0. The field strength F%* proportional to
the acceleration only has the transverse modes of the
retarded field. This is because the propagation direction
vector n, the electric field E, with E. = FY and the
magnetic field B, with B} = &% ; F 7K 12 (77 is the totally
antisymmetric tensor) satisfy

0,
"'Ea:ngni:M:(),
e — X(1,)|
1 ik 80 pr(xﬂ—xﬂ( ))
.B. = — 0i Fj € wp :O’ 75
n a 28 ]k n 2|x X( )| ( )

where the last equality of the first equation holds by the
light cone condition —(z —1,) + |x — X(¢,)| = 0.

With the above knowledge, we next discuss the origin of
the second terms in (63) and (72) computed from the
quantity ®. We derived those terms by assuming the regime
D > ¢T > L for each case of the linear and parallel
configurations. The regime D > ¢T is regarded as the
wave zone in which the distance between two charged
particles D is much larger than the wavelength of the
photon field 4, = ¢T emitted from each charged particle.
Hence it is important to understand how the radiative field
affects the quantity ®. Let us revisit the formula (54) of ®
expressed in terms of the field strengths,

P / o,y AFY (x) + / do, AF(x)).  (76)
4\ Js, S,

where S; is the surface surrounded by the spacetime
trajectories of the particle i(=1,2), and AFY =Fgx —F'i.
Here, Fly = 0#A%, — 0“Al}, are the retarded field strengths of
the charged particle i moving along the trajectory P(=R, L).
As mentioned in the above paragraph, the field strengths of
the particle i moving the trajectory P, F';y, are separated into
two parts Fiy = Fiy | + Fip ., and then the quantity @ is also
given as ® = ®, + ®, with

q)v = E (/ do-,ul/AFlZWV(x) +/ do_ﬂ”AFlfy"(x)> ’
4 S, ’ S, ’
o =5 ([ dnuarti+ [ dousrti). o
S, ' S

where AF, = Fig , — Fi{ and AF}, = Fig , — Fiy ,. The
term @, depends on the longltudmal mode (nondynamical
part) of the retarded photon field, and ®, comes from the
transverse modes (dynamical parts) of the retarded photon
field of the accelerated charged particles. In the linear and
parallel configurations, @, for the regime D > ¢T > L has
the same formula [see (E16) and (E29)], whereas @, for the
regime D > ¢T > L depends on each configuration: @,
vanishes in the linear configuration, but it does not in the
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Ri(

D

(a) Linear configuration

L),
A

R),

X

(b) Parallel configuration

FIG. 12. Angular distribution of the photon field induced by each trajectory of the accelerating charged particle 1 for linear
configuration (a) and parallel configuration (b) on the x-y plane at a constant time.

parallel configuration. To observe this, we focus on the fact
that @, in the configurations shown in Fig. 12 is given as

®, =3 / didxAF, =2 / didx(Efg, — E},). (78)
S, S,

where Ej, , = F{} , is the x component of the electric field
induced by the accelerated motion of the charged particle 1
on the trajectory P(= R, L). Here, the first term in the formula
of @, in (77) vanished by assuming that the retarded field
sourced by particle 2 is causally disconnected with particle 1.

Following the Larmor radiation formula, the electro-
magnetic wave emitted from the charged particle 1 cannot
propagate in the direction of the particle acceleration [45].
The shaded region in Fig. 12 shows the angular distribution
of the photon field of the charged particle 1 on each
trajectory. In the linear configuration, because each particle
moves along the x axis, the electromagnetic wave from
particle 1 does not propagate to particle 2. This leads to
ER2 — plla g and hence ®, = 0. In the parallel con-
figuration, because the electromagnetic wave from particle
1 can reach particle 2, the electric fields ER2 and EIL2
generated by the superposed particle 1 give a nontrivial ®,.
Hence, the origin of ®, is regarded as the quantum
superposition of bremsstrahlung from the charged particle
1 in a superposition state. As observed in the previous
section, the quantity ®(=®, + ®@,) decreases the minimum
eigenvalue A.;,. This suggests that the effect of the
quantum superposition of bremsstrahlung appears in the
formula of the entanglement. As observed in the previous
section, the decoherence due to the vacuum fluctuation of

the photon field suppresses the entanglement generation in
the charged particles.

VI. CONCLUSION

The BMV experiment is a proposal to detect the entangle-
ment generation due to the Newtonian gravity, which comes
from the nondynamical component of gravity. To understand
the entanglement generation in the context of QFT, we
evaluated the entanglement generation between two charged
particles coupled to a photon field on the basis of QED,
motivated by a similarity of the theory between gravity and
electromagnetism. We obtained the formula of the entangle-
ment negativity between two charged particles each in a
superposition of two trajectories for the first time. This
explicitly demonstrated the effect of a quantized photon field
on the entanglement generation between two charged par-
ticles. Our analysis automatically includes the contributions
not only from the longitudinal mode (nondynamical part) but
also from the transverse mode (dynamical part) of the photon
field. We demonstrated that the entanglement generation
induced by the Coulomb potential is reproduced in the
nonrelativistic limit of our formula, as expected. We also
demonstrated how the relativistic corrections to the Coulomb
entanglement arise. Particularly, the vacuum fluctuations of
the photon field cause quantum decoherence, which becomes
significant when the decoherence due to photon emission
becomes significant simultaneously, as discussed in Sec. III.
When the two charged particles are separated by a long
distance, the decoherence effect dominates, and the entan-
glement generation is suppressed. However, in such a
situation when the two particles are separated by a distance
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of a wave zone, the superposition of the electromagnetic
wave from the other charged particle influences the signature
of the quantum coherence. We found that the quantum
superposition of bremsstrahlung from a superposed trajec-
tory affects the signature of the quantum coherence between
the two particles; however, the entanglement is not generated
because the vacuum fluctuations of the photon field dominate
over the signature of the entanglement. This addresses the
issue whether the superposition of the bremsstrahlung from a
superposed trajectory could generate entanglement or not. In
the present paper, we discussed the entanglement generation
between two charged particles coupled with a photon field. It
may be interesting to consider the case of two charged
particles in superposition states of multiple trajectories.
These issues are left for a future study.

Thus, we evaluated the effect of the dynamical photon
field on the entanglement generation between two charged
particles each in a superposition state. We also demon-
strated that the quantum superposition of bremsstrahlung
contributes to the quantum coherence behavior between
two charged particles. One naturally expects that similar
features appear in the entanglement generation between
two masses in the framework of the quantized gravitational
field. The vacuum fluctuations of the graviton field and
the quantum superposition of gravitational radiation are
expected to be involved in the entanglement generation
between two masses. The theoretical framework in the
present paper is indeed useful for investigating a paradox in
the quantum gravity presented by [18,21] (see [46] for
details). It is important to extend our present work to the
theory of gravity to clarify the dynamical effects of the
quantized gravitational field, which remains as future work
for a deeper understanding of quantum gravity.
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APPENDIX A: BRST FORMALISM IN QED
1. BRST formalism

Here, we summarize the BRST formalism in QED. The
Lagrangian density in BRST formalism is written as
follows

2L = ZLaopp + L Grirps
1 .
ZQED = _ZFIWF”D + l//(l]/ﬂD” - m)l//, (Al)

where F,, = d,A, —9,A,, is the field strength of the U(1)
gauge field A, y is the Dirac field with mass m, = y7y°,

y* is the gamma matrix satisfying {y*,y"} =2¢"*, D, =
a,, + ieAM is the covariant derivative, which includes the
electromagnetic interaction term with the coupling constant
e, and Lgr,pp is the gauge fixing and Faddeev-Popov
ghost term. The Lagrangian density .Zogp is invariant
under the following transformation

w — ey ~ (1 —ied(x))y =y + Sy,

A, — A, +0,0(x)=A, +5A,, (A2)
where 6(x) is a real function. To give the gauge fixing
and Faddeev-Popov ghost term Zgp,.pp, we define
0(x) = AC(x), where 1 and C(x) are the global and local
Grassmann numbers. The field C(x) is the scalar field but it
satisfies the anticommutation relations {C(x),C(y)} =0,
which is the Faddeev-Popov ghost field. We rewrite oy and
0A, as follows

8u(x) = A(—ieC(x)w(x)) = 2w (x),

0A, = A(0,C(x)) = A0BA,. ogC(x) =0, (A3)
where the operator dp is defined so that the nilpotency
8% = 0 satisfies. We also introduce the antighost field C(x)
and the Nakanishi-Lautrup field B(x). They satisfy

53B(x) =0, (A4)

where « is an arbitrary parameter. The transformation of
(A3) and (A4) are referred to as the BRST transformation.
We can choose the gauge fixing and Faddeev-Popov ghost
term as follows
_ 1

.ZGF+FP = —léB(CF), Fz@”A”—i—EaB (AS)
Consequently, the full Lagrangian density in BRST for-
malism is

1 .
¥ = —ZFWF"” +w(iy*D,w — m)y
1 o
+5aB? — #'BA, — i9"Co,C. (A6)

The equations of motion for fields A,, B, C, C are given by
the Euler-Lagrange equations,

0=0F,—J,—9,B, (A7)
0=0"A, + aB, (A8)
0=0C=00C, (A9)

where J, = ey, p. The fields C(x) and C(x) follow the
free evolution and do not interact with the other fields.
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Substituting (A8) into (A6), we arrive at the following
Lagrangian density,
1 P
DE’ﬂ = _ZF”DF” +l//(l7/ﬂDﬂl//_ m)l//

1

~ 5. (0,44)? —i0Co, C. (A10)
04

and the BRST transformations are summarized as

d5A, =0,C, Spy=—ieCy, 65C=0, 65C=—(0,A").
a
(A1)

Because of the BRST transformation, the Lagrangian
density has a global symmetry (BRST symmetry)
A6 = 0. (A12)

Associated with this global symmetry, there is a conserved
current referred to as the BRST current J% defined by

1
T = 5p®; = —F*9,C —~0,A*0"C + J¥
Zaacpl p®) = ,C = =0,A*0'C + J'C,

(A13)
where ®; = {A,,.y, C, C}. The BRST charge Qy is given
by
Op = / dxJY(x) = / d3x{(aic)FiOHOC—;(aMAM)C .

(A14)
We perform the canonical quantization procedure in the

Feynman gauge (a = 1). The canonical conjugate momenta
are defined as

0L 0L

ﬂ'ﬂE—.:—Foﬂ— ODA” 0”, T, E—,:i_ 0,
6.,2” > 0.7 .

.= iC, . =—=1IC, (A15)
aC oC

where - denotes the derivative with respect to time x* = 7.
The commutation relations are assigned as follows

{r(x), ﬁx//(y)HxO:y" = léS(X -Y)
{C(x). 7. ()} pomyo = i8> (x —y),
{C(x). #2(0) Yoy = i8> (x —y),

(A (). 25 (9)]0=y0 = i8,8° (x —y).

The quantized BRST charge is given by

Op = / Px](0,8)F0 + 10¢ — (3,41 ¢

= / Px[—(02)C 4+ J°C + i7°%.]. (A16)

As is well known, when we quantize a gauge theory
while maintaining the Lorentz covariance, a state space V
with an indefinite metric is required. For the standard
probabilistic interpretation of quantum mechanics, a physi-
cal state |¥,yy) has no negative norm. Such a state with the
non-negative norm is identified by imposing the following
condition (the BRST condition)

QB|‘{IphyS> =0, (A17)

where the physical state [W,y,) satisfies (Wphys|Ppnys) = 0.

2. BRST charge in the interaction picture
and in the Schrodinger picture

We derive a useful form of the BRST charge for our
computation. Using (A16), we obtain the BRST charge in
the interaction picture,

Q}a(t) _ eiIfIOtQBe—iﬁlot
:/ x[= (0, C 4+ JOC" + ia"zL],  (A18)

where ¢! = eiflo! pe=iflor gy — {Aﬂ,frﬂ, C.C,
they satisfy the Heisenberg equation

7o 7:,J°), and

(A19)

The gauge field AL (x) and the ghost field C'(x) satisfy the
Klein-Gordon equation. The solutions are

N d3k )

Al(x) = | ——==(a,(k)e’** + H.c.), (A20
() o (W ) (A20)
El(x) = _ Lk (@(k)e*™ +He),  (A21)

(27)32k° o
where k° = |k|, a,(k) and &(k) are the annihilation

operators of the gauge field AL(x), and the ghost field
C!(x), respectively. The annihilation operators a,(k), c(k),
and the creation operators satisfy

[a, (k). aj (k)] = n,,6(k — k),
{e(k).e"(k')} = 5(k — k).

Substituting (A20) and (A21) into (A16), we obtain the
BRST charge in the interaction picture

(A22)
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Ok ()= \/‘(l_;%g Kkﬂaﬂ (k) +j?(Tt’kl;)ei’<°f> ct(k) +H.c} ,

(A23)

20 . . . .
where J; (1, k) is the Fourier transformation of J{(¢,x)

k2
d ]? t, k) ikx
V (2n)?

Using the BRST charge in the interaction picture and
(A16), the BRST charge in the Schrodinger picture is
obtained as

0y =0} (1)

R(t.x) = (A24)

20

&k [ < J (k)) }
+ cf(k)+H.c.|, (A25
(TE o (k) (A25)
where we used
e—iﬁgtaﬂ(k)elHOt a (k) ikot

e—zHOtAT(k) iHyt _ T(k) —ikO¢ ,

=¢
M7 (1, k) et ot = J° (k). (A26)

20 . . .
Here, J is the Fourier transform of the matter current in the
Schrodinger picture.

3. BRST condition for our models with charged
particles

We use the explicit form of the BRST charge in the
Schrodinger picture (A25) to derive the BRST condition
for our models. Assuming a physical state |¥.s) =
¥ nys) ® [0), where |0), is the ground state of the ghost

field, and using (A25), we can reduce the BRST condition
(A17) as

(k”&ﬂ (k) + f/éi)) W) = 0.

When |‘I‘ph .) is the initial state given in (15), (A27) gives
the equation,

(A27)

20
0= (k/‘& (k) +J¢2(%>|w;hys>
(o ey LY L
_ (k a, (k) + @) 5 (R +1L) ® el
n BN
<R+ 1) ® (#0,00 + 0 a (A28

where the approximation (17) was used in the second line,
and note that J9 (k) = J? (k) = J°(k) at the initial time.
Hence the initial coherent state of the photon field must
satisfy

(k"&ﬂ(k) 7 0(")> @)y = 0. (A29)

V2K°

Because the displacement operator D(a) given in (16) has
the following relation

A

D¥(a)a, (k)D(a) = a,(k) + a, (k). (A30)

we obtain the constraint for the complex function o (k) as

70
Kia (k) = —1/2%3. (A31)

This is the BRST condition for the model of a single
charged particle. The BRST condition for the model of two
charged particles is obtained using the same procedure.

APPENDIX B: COMPUTATION OF THE INNER
PRODUCT IN EQ. (23) AND DERIVATION
OF EQS. (24) AND (25)
Here, we compute the inner product ph(a|f]; 0p|a>ph in
Eq. (23). The inner product is rewritten as

ph<a|U;/ﬁP|a>ph
= (01D (@)U}, D (@) D' (a) UpD(a)(0)
(

= (01D () Up D ()" (D () UpD(a))[0)y,.  (BI)

where we used |a) = D(a)|0)ph, and the identity operator
1 = D(a)D"(a) was inserted between the unitary operators
(AJI,, and Up in the first equality. Because the displacement

operator D(a) satisfies Eq. (A30), we obtain

A

D (a)A}(x)D(a) = Al (x) + A,(x), (B2)

where A,(x) is defined in Eq. (27). Subsequently, we
obtain
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D¥(a)Up(x)D(ar) =exp —/d4 /d4yJ” Wh(y) Gl (x, )] D (a)exp {—i/d“x.l’li(x);\},(x)}b(a),

=exp ——/d4x/d4y1§(x)J1g(Y)

Gt (x. y)] exp {—i / eI DT ()AL (x)b(a)},

=exp ——/d4 /d4yJ” WH(»)G, (x,y)—i/d“x]’}‘,(x)AH(x)] exp {—i/d“xl’lﬁ.(x)ﬁi(x)], (B3)

where the formula of the unitary operator Up (19) was substituted and G}, (x.y) denotes the retarded Green’s function given
in Eq. (22). In the third equality we used Eq. (B2). We further obtain

(D" (@)UpD())" (D" (@) UpD(a))

_exp[/d4 [ s

() = Tp(X)Tp(¥) Gl (x. ) + i/d“X(J’ér(X) - Jﬁ(X))A;l(X)]

X exp [i / d4xJ’;,(x)A},(x)] exp {—i / d4xJ§(x)AL(x)],

= exp [%/d“x/d“y(l’;,(x).lp

(¥) = Tp(X)Tp(¥) Gl (x. ) + i/d“X(J’ér(X) - J’E(X))Aﬂ(X)]

wenp i [ (0 () = SH0NAL) +5 [ atxetsa 0501, AL |

= exp [%/d‘*x/d“y(]’lﬁ (x)J5,

() = FHB0 Gl +1 [ A (3) = Th()A, <x>]

X exp [i/d“X(J’S/(X)—J’S(X))AL( )+ /d4xd4 (Vo () T5(y) = J%/(y)J’E(X))GLy(x,y)}

=exp [i/d“x(] (x) = Jh5(x
X exp [i / (I (x) — J4(x)AL (x)} ,

= eXp [iq)p/p + i@pp/],

where the Baker-Campbell-Hausdorff formula eAeb =
eATBHAB)/ 2+ waq used in the second equality, and the
relation [A}(x), AL(y)] = iG}, (x.y) — iG},(y, x) was sub-
stituted in the third equality “---” in the Baker-Campbell-
Hausdorff formula indicates the terms involving the higher
commutators of A and B. In our case, the commutator
[AL (x),AL(y)] is proportional to the identity operator, so the
higher commutators vanish. In the last equality, we defined
(:)Pp and ®pp as

Opp = / A (x) — S ODAL (). (BS)

ey e f

_ BA)UA) + 50)) G, yﬂ

(B4)
Opp = / (I (x) = Th()A, (x)
/ dx / (I (x) = Th(x)
X (15(y) +J;<y>>c,av<x,y>. (B6)

Using the cumulant expansion for a given density matrix p,
<em/i>p _ TrLae”A}

= exp |i2(A), 3 (A~ (A), )2, + |, (BY)
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where 1 is a c-number parameter, A is an operator, and - - -”

the inner product (B1) as

o (01D (@) UL UpD(@)[0), = €/®re  (0]e™®w'[0)

is the term with the third or higher cumulant, we can compute

= cerexp [(6) = (Gn = (O] )+

= ermexp |3 [ a0 = H) B 0) = S0 OALORL) O

— o Tty

We used Eq. (B4) and the cumulant expansion with
P =10)n(0 in the first and second
lines, respectively. (-) denotes the vacuum expectation
value. In the third equality, we substituted Eq. (B5), and
the term *“---” with the nth cumulant for n > 3 vanishes
because the free vacuum state |0),, is Gaussian. In the last

equality, we defined I'pp as

e = [ dxdy () = 05 0) = J50)
{0144 AL [0y
=3 [ R0 = ) UE6) - 50)

x ({Au(x). AL ()})-

Replacing the currents J5, and Jp, with Jpq and Jp,, in the
above procedure, we can also derive (42).

APPENDIX C: LIENARD-WIECHERT
POTENTIALS AND FIELD STRENGTH

In this section, we derive the field strength induced
by a charged particle [45]. The current of a charged particle
is given as a four-vector current in a covariant form
with

JH(x) = e/dr%éw(x—X(r)), (C1)

where X*(7) is the trajectory of the charged particle
parametrized by a proper time 7. Using this current and
the retarded Green’s function,

My

G (x,y) = m (x*=y").  (C2)

(b —y| =

we obtain the retarded potential as

(B8)

A (x) = / &Gy (x,y)J*(y)

e w()
S =X(z) u(n) ()

where u* = dX*/dz is the four velocity of the charge, and
7, is determined by the light cone condition

—(t=X%(z,)) + |x = X(z,)| = 0. (C4)
From the definition of the field strength F** =0"AY —d“A*,
we obtain
P = F% 4 Y, (C5)
o _ ¢ =X (@)uw(z) - (¢ = X*(z,))u ()
4n [(x = X(z)) - u(z)P?
(Co)
HY ¢ Ho_ XH
5 ((r (7))

C Arl(x = X(x,)) - u(r,)]

x| w(r _(x_X(Tr))'i‘(Tr)uyT
( () = =Xz ul “))
(= X()) ils,)
(=X (r) () ”)’
)

- (= x+(s) (i) -

where i = du”/dz is the four acceleration. We use the
coordinate time ¢ instead of the proper time 7 to rewrite the
above field strengths. The four-vector and four acceleration
as a function of ¢ are

o axr dX” ”
dr dt AL
. du# dy
Ho— T, m " Cs
i - ydtv +7%a (C8)

where v# and a* are the velocity and acceleration measured
in the coordinate time ¢, and y is the Lorentz factor. These
are defined by
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o = X {1 "_Xr w4V _ { _dZX]T
dt Tdt ] dt Tdr |
1 1
T it (C9)

We then determine the following retarded potential and its
field strength as

uiy € v (t,)
ST T M
w__ € (xﬂ_Xﬂ(tr))vU(tr)_(xb_Xy(tr))Uﬂ(tr)
TR = (R RTCS)
P = ¢

471'[()6 - X(tr)) : U(Ir)]z

=30 (0 -

))-alt) |
(= XG) v(n) (‘))

(=) ()= (e ) )|
(C12)
where the retarded time ¢, is given by
—(t=t)+ x=X(1,)] =0. (C13)

APPENDIX D: 1/¢ EXPANSION OF ®

We present the 1/c¢ expansion of the quantity

® = 2%c (7({ dx, AA% (x) + %: dxMAA’l‘(x)), (D1)
where
A = p:ZR;P% [(x - Xi:(%i;’;’? UiP(tiP)] P2

- X2(tr)

1
= f—;|X1(t)

and v* = [c,v]T, eg = 1, ¢, = —1, and t,p satisfies the light
cone condition —c(r—1t;p)+|x—X;p(t;p)| =0. We restored
the reduced Planck constant 7 and the light velocity c.
Substituting (D2) into (D1), we obtain

- 8;; <f % Q;L Q [(x Xsz(%f(it)z)?)sz(tzQ)}

+(1<—>2)),

e v1p(1) - v2g(tq)
Sﬂ'h/dt Z P Q[ (Xyp(t) = X(sz))‘UzQ(sz)]

P.Q=RL

+ (1< 2), (D3)

where we changed the integral as fc_ dxt =

dop-rpep [(dXlp/dt)dt = p gy ep [Vip(dt (i =1,
2) in the second line. The integrands have the form

01(1) - 0 (t,)
c(X1(1) — X, (1)) - va(2,)
_ CZ—Vl(f)‘Vz(tr)
c(=c(t— 1) + (X1 (1) = X5 (1,)) -
-1
T X (1) = Xa (1) — (X, (1)

o (1)

where the light cone condition —c(t—1,.)+ |X,(7) —
X,(t,)| = 0 was used in the second line. The 1/c¢ expansion
of the retarded time ¢, is

v2(tr)) ’

- Xz(tr)) : v2(tr)/c
(D4)

o= 0 - %007+ () - Xalo) 2"26(’)|X1<r>—xz<r>|+o(—),
X (1) = X5 (1) X, (1) = X,(1) »(@) 1
- () o)

(D5)
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where r(t) = X,(t) — X,(¢) and r(z) = |r(¢)|. The denominator of the integrand (D4) is

va(t)

X1 (1) = Xa (1) = (X1 (1) = X(2,)) -
)

= X = Xa(0)) - (Xi() = Xo(a) -2V,

c

(r-v))? 13 r-a 1
=r|l -—= Ool—=. D6
r[ * 2r2c? 22 i 2¢? i el (D6)

and the numerator of (D4) is

1_M:1_v«mo(i), (D7)

c? c? c

where the light cone condition and the Taylor expansion were used and the argument ¢ was omitted. Then, (D4) reduces to

VN (1)va,(1,) _ -1 (1 () -vz(tr))
(X1 (1) = Xa(t)) - v02(t) X1 (1) = Xa (1) = (X1 () = Xao(t)) - va(t)/ € c? ’
B -1 VW 1
TR (1 c? )+0<3)’

We find that the 1/c¢ expansion of @ is

v1p(1) - v2q(t2q) ]
dt €p€ { + (1 < 2),
8”h PQZRLPQ (X1p(1) = X(t2q)) - v20(t2q)
: 1 Xp-X ) (Xip—Xoo) -
~—€/wz g e s (Koo ) et ey
8zh PQ=R.L [X1p — Xaq 4 2¢? 1Xip — X2Q| 2c

For the nonrelativistic limit ¢ — oo, the quantity ® is

@ ¢ /dt > PQ__L(1e2) ¢ /dt< ! ! L1 )
- - — >2)=—— - - .
8zh P.O=R.L X 1p — Xaq 4rh Xir —Xor|  [Xir—Xor| [XiL—Xor|  [XiL— X

(D10)
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This result is equivalent to the quantity (10) (in the unit
7 = 1) computed in the nonrelativistic regime.

APPENDIX E: DETAIL DERIVATION
OF Iy, Ty, I, T, AND ®

1. Computations of I'gy,, I';, and I',

We first calculate the quantity I'y;. We assume the
following trajectories:

XII;(I) = [t, €PX(t),O,O]T, €ER = —€L = 1,
We present the detailed calculation of 'y, '}, T'5, I, and ) )
@. In this calculation, we assume that the charged particle has X(t) = 8L (1 — i) (i) ) (E1)
the nonrelativistic velocity. We recover the constants ¢ and 7 T T
when we show the result of the calculation or use the formula
of the 1/c expansion of @ derived as (D9). Using Eq. (28), we obtain
e? Al n
I're = 7 dxt dy"({A”(x),A,,(y)}>,
c ¢
e’ n n
< § v AL 00 AL 0,
’7/41/ 1 1
b d* b dv ,
f{ xf Y < —t’—i€)2+—t—t’+i€)2)
dX” axy T dX dX 1 1
[T Y 7 (Y0
1671 dt dt ) Jo dt dt —(t—1t —ie)* —(t—1 +ie)
2T T dXgr dX dXg dX 1 1
_ez/d[/dﬂ ) /R_/L TRV L2 )
167° /o 0 dt dt dt dt —(t—1t —ie)* —(t—1 +ie)
32¢* L
T 32T (E2)

where we took the limit ¢ — 0 after the integration, and in
the second line we used the dipole approximation [41,47]
which ignores the spatial dependence of the photon field.
The dipole approximation is valid when the wave length of
the photon field A, =T is considerably larger than the
typical size (~L) of the region where the charge exists. This
condition is always satisfied if we assume the nonrelativ-
istic velocity L/T < 1.

We next consider the quantity I'; (48) given in the model
of two charged particles. Because of the time and spatial
translation invariance of the vacuum state, I'; is indepen-
dent of the choice of the origin. Assuming that each of the
charged particles 1 and 2 follows the trajectories defined by
(ET) up to the choice of the origin of the time or spatial axis,
we can evaluate I'; and I', as

322 L2

h=h=Tu~ 3nthc (¢T)?

(E3)

where we recovered the constants ¢ and 7.

2. Computations of I'. and ® for the
linear configuration

a.T>D~L or T> D> L regimes

Here, we focus on the regime 7> D~ L or T > D >
L for the linear configuration. We assume the trajectories of
two charged particles 1 and 2 as follows

Xio = [t,epX(1),0,0]T, Xho (1) =[t,60X (1) +D,0,0]T,
2

n=—e. =1, X(t)—8L<1—%)2<%> .

The parameters L and D should be D > L > 2X(¢) to avoid
overlapping each trajectory of particles 1 and 2. First, we
focus on the regime 7 > D ~ L. The quantity I\ is
computed by Eq. (49) as

(E4)
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2

ro=5f @ f adem.amy.

G
2

~S f av f dy* ({AL(x",0), AL (,°, 0)}),
C, C,

e’ f n 1 1
= — dxt dy* . ( + - >,
2 C C, X - y - l€)2 _(XO - yO + l€)2
_ / T (X1 _ Xy / e (Fora _ dXo1, 1 N 1
82 0 dt dt 0 dr dr’ —(l -t - i€)2 —(t -+ i€)2 ’

2/ dt/Tdt/ XmR XmL ) dXZR_dXZL 1 n 1
T8 0 dt dr di J\—=(t=1 —ie)*> —(t—1 +ie)?)’

64¢% L2
_ il E5
372 T2 (E5)

where the dipole approximation was used in the second line because of the condition 7" > L. The quantity ® is evaluated
using the result of (D9) as

2
e €p€Q Vip - V2Q
o=-" / 'y [1 -
8xh P.O=R.L |X1P - X2Q| C2

1 Xp—X 2 Xip—X50)-
L {U%Q ( 1P~ 429 -v2Q> }_( 1P 22Q) azo] +(1<2),

202 Xyp — Xog| 2
—y o S 1 0o PO
- 5; a5 (1-5) = () (p=wn * ravan) * 5 D=k~ o o))
~=i [ 45(-58)- (&) G 57 =

where we have recovered the natural units ¢ and 7 to show the result of the 1/c expansion. Next, we consider the regime
T > D > L. In this regime, we obtain the I, and ® using (49) and (E6) as follows:

82

B A vt Ao,

77;41/ 1 1 >
— dxt dy” ,
c, féz Y < (x0—y0 —ie)? + |x — y|2 —(x% =0 +ie)? + |x —y|?
e2 o/ 1 1
—d d* b dy )
) c, . féz Y ( (x0 =0 —ie)? +D2+—(x0—y0+i6)2—|—D2>

e / dt dXIfR dX/fL /T dt/ dXZRﬂ _ dXZLﬂ 1 n 1
T8 dt dt ) Jo dr dr —(t—1 —ie)>*+D* —(1—17+ie?+D?)’

/ dt/ XmR XmL ) dXZR_dXZL 1 N 1
dt di di J\—(t—1{ —ie)>+D*> —(t—1 +ie)*+D?)’
4e? [2 D> [D
~ 03¢ (1+—1nH>, (E7)

T 32 T2 T2 T

where the distance between the particles |x — y| was approximated as D because of D > L in the third line, and in the final
line we took the limit ¢ — 0 and the leading order of 7/D < 1 after the integration, and

045009-23



SUGIYAMA, MATSUMURA, and YAMAMOTO

PHYS. REV. D 106, 045009 (2022)

e? 2
o= dt
4nh [D
e? 2
& dt
4nh [D

Q

IR P AU S U)
4rh Dc2 D’ |

64¢2 6¢T n
T D

~ 3157k
where we took the leading order of 4X2%(t)/D?>~
O(L?/D?) <1 in the second line, and neglected
O(L*/D*) in the last line. Therefore, we obtain the result
in the linear configuration in ¢7 > D > L regime as

[~ 32¢2  L?
T2 3% (T
64e> L? 4D?

Few Snzhc (cT)? <1 ey [CBT} >

saie () (5 (5))

~ 315nhc

(E9)

(5)

<

(“i—z)‘(” )(D it D+12X<r>>]’
(-9)-362)

Sl

=)

)

b. D > T > L regime

Here, we focus on the regime D > T > L and calculate
the quantities I', and ®. We assume the following trajec-
tories of the two charged particles 1 and 2 as

X’fp() [t.epX(1).0.0]".
2q(t) =[t.€X (t—D) +D.0.0]",

en=—e—1, X()=8L (1 —;)2 (;)2 (E10)

where X’;Q isdefined in D < t < T + D. First, we calculate
the quantity I'; in this regime by using (49) as

1
—(x0 =)0 +ie)* + Ix—y|2>’

2 e f B

2 Je, o, ~ AnP \—(x" =)0 —ie)? + |x —y|?
e? n 1 1

N— ¢ d P dy - + )
2 72 . 72 472 (—(xO —yW—ie)?+D* —(x"—=y"+ie)? + D?

dt Xy _ Xy, / p dr dXry
dt dt D dr

dXo1, 1 1
- / 2+ / P \2 2/
dt —(t—1 —ie)>+D* —(t—17+ie)*+D

go‘(\[\)
o\_,

T T+D dX\x dX;_ dXor
dt dr - .
[) < dt dt dr

dX, 1 N 1
di J\—(t—1 —ie)* + D> —(t—=1t +ie)®>+D?)’

t—t + ie)?
ppUmrie”

e? 4 T+ dX(t) dX(f — D) (t—1 —ie)?
N —— dt dar . 1
872 D> / A dt dr { + D?
e? e dX ) dX(t —D)
2712D4 {
o 32¢2 L2T2
- 22572 DY

b

D2

(t—1 —ie)®> + (t =1 +ie)?},

(E11)

where the distance between the particles |x — y| was approximated as D because of D > L in the third line. We used the
geometric series expansion because of |(# — 7 & i€)| < T < D in the third to last line, and in the final line, we took the limit
€ — 0 after the integration. We next calculate the quantity @ using Eq. (54) in this regime. The quantity @ is
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e v v
o=¢ < /S o, AFY (x) + ﬂ do,, AF! (x)),

_¢ / do,, AF (x),
4 /s,

T+D Xow (1)
:5/ dt/ ’
Xo(1)

T+D X
/ / ! dxAFOl(t x+D,0,0),
XoL(1)

+D
dxAF9(1,x,0,0),

(E12)

N\W

where the region S, ={D<t<T+D,X5(t)+D <
x < Xor(t)+ D,y =0,z =0}, and the first term in the
first line vanishes because, in this configuration, particle 1
does not experience the retarded field of particle 2. We
changed the variable x — x + D in the final line. The
quantity @ is decomposed into two terms ® = @, + @,
which are given as follows [see Egs. (C11) and (C12) in
Appendix C]

e T+D X (1)
D, —/ / dxAFOl (t,x+ D,0,0),
2 XL (1)
e/ / dx Z e { e (t—tip)vip(tip) = (x + D = Xip(tip)) . (E13)
2 PERL dryiplt — tip — (x + D — X1p(t1p))v1p(11p)]
@, f/ dt/ dxAFOl (t.x +D.0,0),
2Jp Xo.(1)
e T+D XZR e
— dt/ dx €
ZA Xop (1) PZR:L Panlt—t1p — (x + D = Xip(t1p))vip(11p)]?
(x + D —Xp(typ))aip(tip)
r—t t I3
) [( 2 <a1p( te) t—tip— (x+D—Xp(tip))vip(tip) nie(te)
(x+ D — Xp(11p))*ap(t1p) ﬂ
(f— tip) = (x + D = Xp(tip))v1p(tip) ) |
T+D Xor( (t—tp)? D — X p(t1p))?
/ ax( . Z { ip)” — (x + ip(t1p)) 3} ap(tip), (E14)
Xu()  pPoRL [t=tip— (x + D —Xyp(tip))vip(tip)]
where the retarded time 7, is approximated by neglecting O(L*/D?) as
tp =1t —|x = Xpp(tip)| = 1 - \/(x + D —Xp(typ))* ~1 =D, (E15)
where (x — Xp(t1p)) ~ O(L). For D > ¢T > L, we can approximate ®, as
/T+D /X’R d [ e (t=tp)vip(tip) = (x + D = Xip(tip))
x €p 3>
X (1) P_RL 4ryiplt — tip — (x + D — X1p(t1p) ) v1p(11p)]
T+D Xor(t [— Xp(t—D D
£ 170 [ g3 o 1=D) Hult=) _xt )
D Xo1(1) P=R,L D D
e* [T+D viR(t=D)—vi(t=D)  Xg(t—=D) =X (t—D)
. A dt(Xor (1) — X1 (1)) { D2 + D3 )
16e2 L2T
= El6
315z D3 ( )

Moreover, in the second line of the above equation, we

approximated the denominator as

(x + D = Xp(t1p))v1p(t1p)] & (1 = v7p(1 =
=D(1 —v3p(t—
~D,

riplt — tip —

D))~'[D -
D))~

substituted the retarded condition (E15) into Eq. (E16) and

(x+D—Xp(t—
M=+ (x=Xp(t-

D))vip(t — D)],
D))/D)vp(t — D)],

(E17)
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where vp ~ O(L/T), v3p ~ O(L?/T?),and (x — X,p)/D ~  We assume the following trajectories of the two charged
O(L/D) were neglected in the last line. However, the  particles 1 and 2 as
quantity @, is exactly equal to zero because of the retarded
time condition (E15). This result indicates that in the context
of Eq. (78), the electric field EX**(Ey"?) is equal to zero X! (1) = [1,epX(£),0,0]T,  Xho (1) = [t,e0X(1), D,0]",
because the electromagnetic wave cannot propagate the Q 5 )
direction of the acceleration of the charged particle 1. er=—€e.=1, X(1)=8L (1 _i) <£) . (E19)
Therefore, we summarize the result in the linear configura- T T
tion in D > ¢T > L regime as follows
2 g2 2 g2 2
r,=r, z%L_Z N 3262 L (C4T) , In these regimes, the approximate form of I'. is equal
3n*he (cT) 225nz°he D to (E7). Neglecting O(D?/T?) in T > L > D, we obtain
N 16€> L2(L;T) . (E18) the quantity T, as
315zhc D

3. Computation of I'. and ® 64e2 2
for parallel configuration c 3272

a.T>L>DorT>D> L regimes

(E20)

Here, we focus on the regimes 7>L>D or
T> D> L and calculate the quantities I'. and ®.  The quantity ® up to O(1/c?) obtained from (D9) is
|

2 Vip-V 1 Xp—-X 2 Xip—Xa)-a
o — e Jr Z €peQ [1_ 1P22Q+_{U%Q_<M ) }_( 1P 2Q) @2 + (1 < 2),

_ .
vl péir 1P =Xl ¢ 2¢? Xip—Xpq| ¢ 2¢?

2
e €P€Q _ UIPDZQ

Sy 1o
8rh PERL \/(le — X5q)? + D? c

1 Xip — Xoq 2 (X1p — Xoq)axq
#aer{ o (w ) gt e TeR)

Xip— Xag)* + D?

e’ 2 v? 2 D? v Xa
=—— [dt| = |l ——| ————= |1 l+————— | 5+—| | E21
] (5|5 v |+ () = 5 ) e21)
I
For ¢T > L > D, the quantity ® is approximated as o= e? dr 2 | v?
~ dzn D| 2
2 D? v Xa
: Ja(il2 el (i) 33)
P=—— [di| - |l == 2 2 2 222 )
Arh <D[ 2¢? jX +D 5 5 28X54+ DY) e
# ]+ ]+D72 £+¥ z_:—h [%_41] —;;Xd]’
VAX? 1 D? 24x*+D%)) ¢ 2]) g ‘
2 5 2 _32¢% (TL? (1 6D? ) (E23)
N—— —|l-— T 3 B z)
yys D{ 202}’ 315zhc D (cT)
e’ T 64L>
=l —-— ], E22
2zhce D ( 105((:T)2> (E22)

where we used the Taylor expansion (4X? + D?)*~D>*(1+
4aX?/D?) in the first line and neglected O(L3/T?) in the

where we neglected O(D/L) in the second line. In the  second line. Consequently, I'y, I, I';, and @ in the parallel
regime ¢7 > D > L, we obtain configuration are obtained as
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32¢7  L? 64e>  L?
Nl L e
3n*hc (cT) 3n*hc (cT)
e* T 6412
L S Dl E24
2nhe D < 105(CT)2> (E24)
for ¢cT > L > D, and
32¢2 L2
M =Ty~ =
2T 302 (cT)?
64¢2 L2 4D? D
) ol sIn|—| ],
3r*he (cT) (cT) cT
32¢? cTL? 6D?
o (12 (E25)
315zhc D (cT)

for ¢T > D > L, respectively.

b. D > T > L regime

Here, we consider the D > T > L regime and calculate
the quantities I'. and ®. In this regime, the trajectories
of the two charged particles 1 and 2 are assumed as
follows

[,epX(1),0,0]T,  X5p(1) =[t,epX(r—D),D,0]T,

X(r)=8L (1 —%)2 (%)2 (E26)

Xip(t) =

€R:—€L:1,

(t—=tip)vip(tip) — (x

where X’z‘Q is defined in D <t < T + D. The quantity I'; is
equal to the Eq. (E11) because we can approximate the
difference of the distance of the two charged particles
|x —y|~D and use the geometric series expansion
because of |(t—¢ +ie)|]/D <T/D <1 in this regime
[detailed derivation, see Eq. (E11)]. The quantity @ is
obtained as

o="° / do,, AFY (x) + / do,, AF (x) ),
4\ Js, S,

:g ﬁ do,, AF™ (x),

T+D Xor (1)
—E/ dt/ * dxAF{'(1,x,D,0),
2 Jp X1 (1)

where we note that the region S, ={D <t<T+D,
Xo (1) £x < Xor,y=D,z=0}; in this configuration
of interest, the first term in the first line vanishes
because the retarded field from particle 2 is causally
disconnected with particle 1. The retarded time 7y, is
approximated as

(E27)

tip=t—|x—Xp(tip)| =1— \/(X—le(flp))z +D?

(x—Xp(t= D))

~t—D— R
2D

(E28)

where (x—Xp(t;p))~O(L) and O(L?/D?) was neglected.
We therefore obtain the quantity ®, and ®, as

e [T+D Xog (1
o, =— dt
2
D Xo (1)

[e
P—R 47[]/1P[t—[lp

— Xip(t1p)) ]

(x = X1p(t1p)) v1p(t1p)]?

2 rT4D Xop (1 -D —Xp(t—D
e [ dxzep[””’( =
"8 Jp X)) P=RL D Dr
e? [T+D viR(t=D) —vy (t=D) Xg(t=D)—=X, (t=D)
= [ a2 + - J
16¢ LT
_ 16e? LT E2
3157 D?° (E29)

where in the second line of the above equation, the denominator was approximated in the same manner performed

in (E17), and
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e T+D Xor(1) e
o, = —/ dt/ dx €
2Jp Xou (1) Z P4”[f —tip — (x = X1p(t1p) ) v1p(t1p)]?

(x = Xyp(tip))arp(tip)

(0= 1) (annlre) +

e2 [T+D Xog (1

t—tip— (x = X1p(t1p))vip(tip)
(t=11p)* = (x = X1p(11p))?

owlin)) -

(t=tip) = (x = Xyp(t1p))v1p(tip)

(x = Xip(t1p))*arp(1p) ﬂ ,

ZQD

(1)
dt dx € arn(t).
XL (1) PgR:,L ’ {[’ —tp—(x— le(tlp))vlp(tlp)P] e (fip)

2 [THD [X(0) D?
= e_/ dt/ T dx Z ep{
87 Jp Xl poge L= tie = (x = Xip(tip))vip(t1p)]

2 (T+D Xor (1) t—D
v [ / ix Y p2rli=D),
87 Jp Xop (1) D

P=R,.L
e2 [T+D

ar(t—D)—a, (t—D)

:§ A dl‘(XZR(l) _XZL(I))|: D
64 L?

T 1052 DT’

where we substituted the retarded time condition (E28) into
the second line of the above equation and neglected the
O(L?/D?) and v~ O(L/T) in the third line of the
denominator. Consequently, the quantity @ is

. 64¢e? L | T2 N 64e? L2
~ 105z DT 12D?>) = 105z DT’

(E31)

3] ap(tip),

J

(E30)

[
where we neglected the second term because of D > T in
the last equality. Thus, I';,I5,I;, and ® in the parallel
configuration in the regime D > ¢T > L are

L' =T 32¢7 L? 32 LA(cT)?
2T 3% (T ¢~ 2257%h¢ DY
64e> L7

- . E32
105zhc D(cT) (E32)
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