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The Bose-Marletto-Vedral experiment is a proposal for testing the quantum nature of gravity with
entanglement due to Newtonian gravity. This proposal has stimulated controversy on how the entanglement
due to Newtonian gravity is related to the essence of quantum gravity and the existence of gravitons.
Motivated by this, we analyze the entanglement generation between two charged particles coupled to a
photon field. We assume that each particle is in a superposition of two trajectories and that the photon field
is initially in a coherent state. Based on covariant quantum electrodynamics, the formula for the
entanglement negativity of the charged particles is derived for the first time. Adopting simple analytic
trajectories of the particles, we demonstrate the entanglement between them. It is observed that the
entanglement is suppressed by the decoherence due to the vacuum fluctuations of the photon field. We also
find that the effect of quantum superposition of bremsstrahlung appears in the entanglement negativity
formula. The similar structures between the gravity theory and electromagnetic theory suggests that a
similar feature may be observed in the entanglement generation by quantum gravitational radiation.
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I. INTRODUCTION

The quantum field theory (QFT) is one of the most
successful theories to explain the motion of particles and
the interactions among them. However, the QFT of gravity
has not been completed. It is unclear whether gravity is
described by quantum mechanics or not [1,2], and many
efforts have been made to test the quantum nature of
gravity. In recent years, the proposal of the Bose-Marletto-
Vedral (BMV) experiment [3,4] for testing the quantum
nature of gravity has attracted considerable attention. In this
work, it was proposed that quantum entanglement due to
the Newtonian potential between two masses may be
evidence of quantum gravity. Triggered by previous inter-
esting works, the Newtonian entanglement has been evalu-
ated in several experimental proposals: matter-wave
interferometers [5,6], mechanical oscillators [7,8], opto-
mechanical systems [9–12], hybrid systems [13–16], and
others.
Entanglement due to gravity will be an important mile-

stone for quantum gravity; however, the implication of
the BMV experiment is still under debate [17–23]. For
example, the role of dynamical gravitons in Newtonian

entanglement is not obvious. This is because the Newtonian
potential comes from the constraint equation in the Einstein
gravity and does not describe the dynamical degrees of the
freedom of gravity. To clarify this kind of question, it is
necessary to analyze entanglement generation in the con-
text of QFT. A crucial step in this direction is to understand
the features of quantized fields that appear in entanglement.
The primary purpose of this study is to proceed with

the step based on quantum electrodynamics (QED).
Particularly, we evaluate the effect of a photon field on
the entanglement generation between two charged par-
ticles. We assume that each of the charged particles is in a
superposition of two trajectories and that the photon field
coupled with them is initially in a coherent state. This
setting is an extension of that considered in [24,25], where
quantum decoherence and phase shift due to a photon field
were discussed. In [26–31], quantum decoherence due to
gravitons was also evaluated for a massive object in a
superposition state. In the present paper, using the extended
model, we derive the formula of the entanglement neg-
ativity of two charged particles for the first time. We use the
formula to exemplify the entanglement behavior of the
charged particles. Through the analysis, we find that two
quantum phenomena, the vacuum fluctuations of photon
field and the quantum superposition of bremsstrahlung,
appear in the entanglement negativity formula. Particularly,
the decoherence due to the fluctuating photon field
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suppresses the entanglement generation in the charged
particles. We also demonstrate that this decoherence
becomes significant when the decoherence due to the
photon emission occurs, which could be significantly
related to each other. We infer that the above observed
features are universal in the entanglement behavior of two
masses coupled to a quantized gravitational field.
The present paper is organized as follows. The entan-

glement generation by the Coulomb potential is studied in
Sec. II. In Sec. III, we consider the dynamics of the charged
particles in a spatial superposition. We first introduce a
single charged particle model that interacts with a photon
field. We then extend the above model to that with two
charged particles. We derive the reduced density matrix of
the charged particles to discuss the entanglement gener-
ation. In Sec. IV, we evaluate the entanglement generation
for two specific configurations. We discuss the reason for
the effect of the difference of the two configurations on the
entanglement generation between the two charged particles
in Sec. V. Section VI presents the summary and conclu-
sions. In Appendix A, we explain the Becchi-Rouet-Stora-
Tyutin (BRST) formalism for the gauge fixing in the
present paper. In Appendix B, we compute the inner
product introduced in Eq. (23) and derive Eqs. (24) and
(25). In Appendix C, we derive the field strength of the
photon field caused by a charged particle in motion. In
Appendix D, we explain the 1=c expansion of the phase
shift in the nonrelativistic regime, where c is the speed of
light. In Appendix E, we present some details of the
calculation in Sec. III. Throughout the present paper, we
use the convention ð−;þ;þ;þÞ. We note that the charge
e ¼ ffiffiffiffiffiffiffiffi

4πα
p

is a dimensionless parameter with the fine-
structure constant α ¼ 1=137, and we use the natural units
c ¼ ℏ ¼ ϵ0 ¼ 1 while we recover c and ℏ as necessary.

II. ENTANGLEMENT DUE TO COULOMB
INTERACTION OF TWO
CHARGED PARTICLES

A. Time evolution of two charged particles with
Coulomb interaction

In this section, we present the entanglement generation
for two charged particles 1 and 2 each in a superposition of
two trajectories (see Fig. 1). These particles are coupled
with each other by the Coulomb potential. The total
Hamiltonian is

Ĥ ¼ Ĥ1 þ Ĥ2 þ V̂12; V̂12 ¼
e2

4π

1

jx̂1 − x̂2j
; ð1Þ

where Ĥ1 and Ĥ2 are the Hamiltonians of the charged
particles 1 and 2, V̂12 is the interaction Hamiltonian
between them with the coupling constant e, and x̂1 and
x̂2 denote each position operator of the two charged
particles. We stress that the Coulomb potential V̂12 is an

operator of the position operators x̂1 and x̂2. In the
following computation, we do not need the explicit forms
of Ĥ1 and Ĥ2. As we will mention after Eq. (3), they are
implicitly given by specifying the trajectories of each
particle.
Each of the two charged particles at t ¼ 0 is in the

spatially superposed state

jΨð0Þi ¼ 1

2

X
P;Q¼R;L

jPi1jQi2; ð2Þ

where jRi1 (jRi2) and jLi1 (jLi2) are the states with the
wave packets localized around positions x ¼ X1Rðt ¼ 0Þ
(x ¼ X2Rðt ¼ 0Þ) and x ¼ X1Lðt ¼ 0Þ (x ¼ X2Lðt ¼ 0Þ),
respectively. We assume the following approximation,

x̂I
1ðtÞjPi1 ≈X1PðtÞjPi1; x̂I

2ðtÞjQi2 ≈X2QðtÞjQi2; ð3Þ

where x̂I
1ðtÞ ¼ eitðĤ1þĤ2Þx̂1e−itðĤ1þĤ2Þ and x̂I

2ðtÞ ¼
eitðĤ1þĤ2Þx̂2e−itðĤ1þĤ2Þ are the position operators in the
interaction picture. These assumptions are valid [25] when
the de Brogile wavelength λdB of the charged particle is
much smaller than the width Δx of its wave packet
(λdB ≪ Δx). The trajectories of each particle X1PðtÞ and
X2QðtÞ are determined by the Hamiltonians Ĥ1 and Ĥ2. In
our computation, we specify the trajectories by hand.
The evolved state jΨðTÞi is

jΨðTÞi ¼ e−iĤT jΨð0Þi;

¼ e−iTðĤ1þĤ2ÞT exp
�
−i

Z
T

0

dt
e2

4π

1

jx̂I
1ðtÞ − x̂I

2ðtÞj
�

× jΨð0Þi;

≈
1

2
e−iTðĤ1þĤ2Þ

X
P;Q¼R;L

e−iΦPQ jPi1 ⊗ jQi2; ð4Þ

where T is the time-ordered product, and the approximation
(3) was used in the third line. The phase shift

FIG. 1. Configuration of trajectories of two charged particles.
The length scale of each superposition is L, the coordinate time
during which each particle is superposed is T, and the particles
are initially separated by the distance D.
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ΦPQ ¼
Z

T

0

dt
e2

4π

1

jX1PðtÞ −X2QðtÞj
ð5Þ

is induced by the Coulomb potential between particles 1
and 2. The density matrix of those particles is

ρc ¼ jΨðTÞihΨðTÞj

¼ 1

4

X
P;Q¼R;L

X
P0;Q0¼R;L

e−iΦPQþiΦP0Q0 jPfi1hP0f j ⊗ jQfi2hQ0
f j;

ð6Þ

where jPfi1 ¼ e−iĤ1T jPi1 and jQfi2 ¼ e−iĤ2T jQi2 are the
states of the charged particles 1 and 2 moving along
trajectories P and Q, respectively.

B. Entanglement behavior of two charged particles

Here, we adopt the negativity N [32] to determine
whether the state of two charged particles is entangled or
not. We consider a density matrix ρ of a bipartite system
AB. The negativity is introduced as follows:

N ¼
X
λi<0

jλij; ð7Þ

where λi are the negative eigenvalues of the partial trans-
position ρTA with the elements hajhbjρTA ja0ijb0i ¼
ha0jhbjρjaijb0i in a basis fjaijbiga;b of the system AB.
If the negativity does not vanish, then the system is
entangled, which follows by the positive partial transpose
criterion [33,34]. Additionally, the nonzero negativity is the
necessary and sufficient condition for the entanglement of a
two-qubit or a qubit-qutrit system [34]. Particularly, there is
only one negative eigenvalue λmin of the partial transposed
density matrix of a two-qubit system [35,36]. We rewrite
the negativity as

N ¼ max½−λmin; 0�: ð8Þ

The minimum eigenvalue of the partial transpose of the
density matrix (6) is

λmin ¼ −
1

2

���� sin
�
Φc

2

�����; ð9Þ

where Φc is given as

Φc ¼ −
e2

4π

Z
T

0

dt

�
1

jX1RðtÞ −X2RðtÞj
−

1

jX1RðtÞ −X2LðtÞj

−
1

jX1LðtÞ −X2RðtÞj
þ 1

jX1LðtÞ −X2LðtÞj
�
: ð10Þ

To evaluate Φc and the negativity (8), we consider the
trajectories

X1PðtÞ ¼ ½ϵPXðtÞ; 0; 0�T; X2Q ¼ ½ϵQXðtÞ þD; 0; 0�T;

XðtÞ ¼ 8L

�
1 −

t
T

�
2
�
t
T

�
2

; ð11Þ

where ϵR ¼ −ϵL ¼ 1, L is the length scale of each super-
position, T is the timescale during which each particle is
superposed and D is the initial distance between those
particles (see Fig. 1). The function XðtÞ is chosen so that
each particle has no velocity at t ¼ 0 and t ¼ T to avoid the
UV divergence in our computation in the following
sections. We will comment on this point in more detail
around Eq. (32). There can be other possible choice for
superposition and trajectories. For example, the authors in
Ref. [37] considered two particles in superposition states of
multiple trajectories, and discussed the entanglement gen-
eration due to the Newtonian potential. The result indicated
that multiple trajectories cases are more resilient to
decoherence than the two trajectories case. In the present
paper, for simplicity, we consider the entanglement gen-
eration between two charged particles.
When the trajectories of each particle are specified by

Eq. (11), the quantity Φc is given by

Φc ¼−
e2

4π

Z
T

0

dt
�
2

D
−
�

1

D−2XðtÞþ
1

Dþ2XðtÞ
��

: ð12Þ

Now, we recover the light velocity c and the reduced Planck
constant ℏ. We focus on the two regimes cT ≫ D ∼ L and
cT ≫ D ≫ L, in which the charged particles move with
nonrelativistic velocities (cT ≫ L). In the regime
cT ≫ D ∼ L, the above formula of Φc and the minimum
eigenvalue (9) are computed numerically. In the regime
cT ≫ D ≫ L, the quantity Φc (12) and the minimum
eigenvalue (9) are approximated as

Φc ≈
64e2

315πℏc
cTL2

D3
; λmin ≈ −

16e2

315πℏc
cTL2

D3
; ð13Þ

where OðL3=D3Þ was ignored, and the Taylor expansion
sinΦc=2 ≈Φc=2 was used.
Figures 2(a) and 2(b) show the negativity in the regime

cT ≫ D ∼ L and cT ≫ D ≫ L. These results show that
the negativity decreases as the ratio D=cT increases.
Because the negativity is always positive, the two charged
particles 1 and 2 interacting with the Coulomb potential are
entangled in the regimes cT ≫ D ∼ L and cT ≫ D ≫ L.
The entanglement generation here is understood to be

caused by the Coulomb potential (1) treated as an operator
of the positions of two charged particles 1 and 2, which
allows the quantum superposition of Coulomb potentials
associated with the superposition of the charged particles.
In the context of quantum information theory, it is well
known that the entanglement between two systems cannot
be created by local operations and classical communica-
tions (LOCC) [38]. This means that it is impossible to

EFFECTS OF PHOTON FIELD ON ENTANGLEMENT … PHYS. REV. D 106, 045009 (2022)

045009-3



create entanglement by classical interaction. It immediately
follows that if the Coulomb interaction entangles two
charged particles, then the interaction is quantum and
not described by LOCC.
In the next two sections, based on QED, we evaluate the

entanglement generation between two charged particles.We
first introduce the model of a single charged particle
interacting with a photon field, and then extend it to the
model of two charged particles, which corresponds to the
above setting. The results in the next two sections are based
on the first principle analysis of the QED, which is useful to
understand how the above result of entanglement generation
based on the operator valued Coulomb potential Eq. (1) is
related to the quantum field theory of electromagnetic field.
Wewill see that the contribution from theCoulomb potential
is reproduced in the behavior of the entanglement and is
consistentwith the result of the nonrelativistic limit shown in
Fig. 2. This implies that the operator valued Coulomb
potential Eq. (1) is originated from the quantum field theory
of the electromagnetic field. As we will see below, this
entanglement generation is driven by the fact that a photon
field can be in a superposition state associated with the
superposition states of currents of the charged particles,
which shows the quantum nature of the photon field.

III. DYNAMICS OF CHARGED PARTICLES
COUPLED WITH A PHOTON FIELD

We consider the dynamics of charged particles coupled
with a photon field, where the charged particles are each in
a superposition of trajectories. After a brief review of the
model of a single charged particle, we extend it to the
model of two charged particles. For the covariant quanti-
zation of the electromagnetic field, we use the BRST
formalism [39] in the Feynman gauge. The details of the
BRST formalism are presented in Appendix A.

A. Model of a single charged particle

We consider a single charged particle and a photon field
coupled to it. The total Hamiltonian in the Schrödinger
picture is

Ĥ ¼ Ĥp þ Ĥph þ V̂; V̂ ¼
Z

d3xĴμðxÞÂμðxÞ; ð14Þ

where Ĥp is the Hamiltonian of the charged particle, Ĥph is
the free Hamiltonian of the photon field, and V̂ is their
interaction Hamiltonian. Ĵμ is the current operator of the
charged particle, and Âμ is the photon field operator [the
U(1) gauge field].
We assume that the charged particle is superposed in two

different trajectories R and L. The charged particle is
initially in the superposed state of jRi and jLi, where
jRiðjLiÞ is the state that the particle will go through a
trajectory R (L).
The photon field is assumed to be initially in a coherent

state. Then the total initial state at the time t ¼ 0 is

jΨð0Þi ¼ 1ffiffiffi
2

p ðjRi þ jLiÞ ⊗ jαiph; ð15Þ

where jαiph ¼ D̂ðαÞj0iph is the coherent state of the photon
field. Here, j0iph is the vacuum state satisfying

âμðkÞj0iph ¼ 0, and D̂ðαÞ is the unitary operator referred
to as a displacement operator defined as

D̂ðαÞ ¼ exp

�Z
d3kðαμðkÞâ†μðkÞ − H:c:Þ

�
; ð16Þ

where the complex function αμðkÞ characterizes the ampli-
tude and phase of the initial photon field. The form of the
complex function αμðkÞ is restricted by the auxiliary
condition in the BRST formalism. Because we will find
that the entanglement between two charged particles does
not depend on αμðkÞ in Sec. III A, the details on αμðkÞ are
omitted here. The details are presented in Appendix A. The
coherent state jαiph is interpreted as a state in which there is
a mode of the electromagnetic field following Gauss’s law
due to the presence of charged particles.
We assume that the current operator ĴμI ðxÞ¼

eiĤ0tĴμð0;xÞe−iĤ0t in the interaction picture defined with
Ĥ0 ¼ Ĥp þ Ĥph is approximated by a classical current as

FIG. 2. Negativity N induced by the Coulomb potential between the charged particles. We adopted L=cT ¼ 0.1.
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ĴμI ðxÞjPi ≈ JμPðxÞjPi;

JμPðxÞ ¼ e
Z

dτ
dXμ

P

dτ
δð4Þðx − XPðτÞÞ; ð17Þ

where P ¼ R;L, e is an electric charge, and Xμ
PðτÞ

represents each trajectory of the charged particle. This
approximation is valid for the following two assumptions
[25]: the first assumption is that the de Brogile wavelength
is smaller than the wave packet width of the particle. The
second assumption is that the Compton wavelength λC of
the charged particle is much shorter than the wavelength of
the photon field λph (for example, the wavelength of the
photon field emitted from the charged particle) (λC ≪ λph).
Under this condition, the process of a pair creation and
annihilation is neglected.
The evolution of the initial state jΨð0Þi is

jΨðTÞi ¼ e−iĤT jΨð0Þi;

¼ e−iĤ0TT exp

�
−i

Z
T

0

dtV̂IðtÞ
�
jΨð0Þi;

¼ e−iĤ0TT exp

�
−i

Z
T

0

dt
Z

d3xĴμI ðxÞÂI
μðxÞ

�

×
1ffiffiffi
2

p
X
P¼R;L

jPi ⊗ jαiph;

≈
e−iĤ0Tffiffiffi

2
p

X
P¼R;L

jPi ⊗ ÛPjαiph; ð18Þ

where the approximation in (17) was used in the fourth line,
V̂IðtÞ ¼ eiĤ0tV̂e−iĤ0t and ÂI

μðxÞ ¼ eiĤ0tÂð0; xÞe−iĤ0t. “T”
in the second and third lines denotes the time ordered
product. The operator ÛP is given by

ÛP ¼ T exp

�
−i

Z
T

0

dt
Z

d3xJμPðxÞÂI
μðxÞ

�
;

¼ exp
�
−i

Z
d4xJμPðxÞÂI

μðxÞ

−
i
2

Z
d4x

Z
d4yJμPðxÞJνPðyÞGr

μνðx; yÞ
�
; ð19Þ

where in the second linewe used theMagnus expansion [40]

T exp

�
−i

Z
T

0

dtV̂IðtÞ
�
¼ exp

�X∞
k¼1

ΩkðT; 0Þ
�
; ð20Þ

with

Ω1ðT; 0Þ ¼ −i
Z

T

0

dtV̂IðtÞ;

Ω2ðT; 0Þ ¼
ð−iÞ2
2

Z
T

0

dt1

Z
t1

0

dt2½V̂Iðt1Þ; V̂Iðt2Þ�; ð21Þ

and Ωk≥3ðT; 0Þ given by higher commutators, for example,
½½V̂Iðt1Þ; V̂Iðt2Þ�; V̂Iðt3Þ�. We note that the commutator
½V̂Iðt1Þ; V̂Iðt2Þ� is proportional to the identity operator
and commutes with V̂IðtÞ for any given time t. Hence,
the terms Ωk≥3ðT; 0Þ involving higher commutators vanish
in Eq. (19). Gr

μνðx; yÞ in Eq. (19) is the retarded Green’s
function given by

Gr
μνðx; yÞ ¼ −i½ÂI

μðxÞ; ÂI
νðyÞ�θðx0 − y0Þ: ð22Þ

We obtain the reduced density matrix of the charged
particle as

ρp ¼ Trph½jΨðTÞihΨðTÞj�

¼ 1

2

X
P;P0¼R;L

phhαjÛ†
P0ÛPjαiphjPfihP0f j

¼ 1

2

X
P;P0¼R;L

e−ΓP0PþiΦP0P jPfihP0f j; ð23Þ

where jPfi ¼ e−iĤpT jPi is the state of the charged particle,
which moved along the trajectory Pð¼ R;LÞ. ΓP0P and
ΦP0P are

ΓP0P ¼
1

4

Z
d4x

Z
d4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ − JνPðyÞÞ

× hfÂI
μðxÞ; ÂI

νðyÞgi; ð24Þ

ΦP0P ¼
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ

−
1

2

Z
d4x

Z
d4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ þ JνPðyÞÞ

×Gr
μνðx; yÞ; ð25Þ

where hfÂI
μðxÞ; ÂI

νðyÞgi is the two-point function of the
vacuum given by

hfÂI
μðxÞ; ÂI

νðyÞgi ¼
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þ jx − yj2

þ 1

−ðx0 − y0 þ iϵÞ2 þ jx − yj2
�

ð26Þ

with the UV cutoff parameter ϵ, and the field AμðxÞ is

AμðxÞ ¼
Z

d3k

ð2πÞ3=2
ffiffiffiffiffiffiffi
2k0

p ðαμðkÞeikνxν þ c:c:Þ: ð27Þ

The computation of the inner product phhαjÛ†
P0ÛPjαiph in

(23) and the derivation of Eqs. (24) and (25) are presented in
Appendix B. It is obvious that ΓRR¼ΓLL¼ΦRR¼ΦLL¼0.
However, ΓRL and ΦRL are given as
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ΓRL ¼ 1

4

Z
d4x

Z
d4yðJμRðxÞ − JμLðxÞÞðJνRðyÞ − JνLðyÞÞ

× hfÂI
μðxÞ; ÂI

νðyÞgi;

¼ e2

4

I
C
dxμ

I
C
dyμhfÂI

μðxÞ; ÂI
νðyÞgi; ð28Þ

and

ΦRL ¼
Z

d4xðJμRðxÞ − JμLðxÞÞAμðxÞ

−
1

2

Z
d4x

Z
d4yðJμRðxÞ − JμLðxÞÞðJνRðyÞ þ JνLðyÞÞ

×Gr
μνðx; yÞ;

¼ e
I
C
dxμAμðxÞ − e

2

I
C
dxμðAμ

RðxÞ þ Aμ
LðxÞÞ; ð29Þ

where
H
C dxμ ¼

R
R dxμ −

R
L dxμ is the integral along the

closed trajectory composed of trajectories R and L. Here,
Aμ
PðxÞ is the retarded potential given by

Aμ
PðxÞ ¼

Z
d4yGr

μνðx; yÞJνPðyÞ: ð30Þ

According to (28), ΓRL is always positive, and the interfer-
ence terms of ρP (off-diagonal components) decay for a large
ΓRL. The quantity ΓRL is referred to as the decoherence
functional. The quantity ΦRL ¼ −ΦLR gives the phase shift
in the interference pattern of the charged particle.
In Appendix E, assuming the following trajectories of

the charged particle

Xμ
PðtÞ ¼ ½t; ϵPXðtÞ; 0; 0�T; ϵR ¼ −ϵL ¼ 1;

XðtÞ ¼ 8L

�
1 −

t
T

�
2
�
t
T

�
2

; ð31Þ

where L and T are the length and timescales of the
trajectories (also see Fig. 3), we obtain the decoherence
functional as

ΓRL ≈
32

3π2
e2L2

T2
; ð32Þ

when the charged particle has a nonrelativistic velocity
L=T ≪ 1. We mention here the reason to choose XðtÞ in
Eq. (31). According to the function XðtÞ, the particle at
t ¼ 0 and t ¼ T has zero velocity and is smoothly super-
posed and recombined. The smoothness of the trajectory
avoids a divergence in the calculations of decoherence,
which guarantees our results in a form independent of an
UV cutoff. The authors in [41] discussed the relation
between the smoothness of particle trajectories and the
UV divergence in decoherence effect. They reported that
the decoherence functional computed assuming smooth

trajectories is free from the UV cutoff and of the order of
Oðe2v2Þ, where v is the characteristic velocity of particle.
This is consistent with our result written by the character-
istic velocity L=T. The physical meaning of ΓRL is
interpreted in the following two ways. First, we consider
that decoherence occurs through photon emission. The
number of emitted photons is estimated as

WT
ν

¼ WT2 ∼ e2
�
L
T2

�
2

T2 ¼ e2
L2

T2
; ð33Þ

where ν ¼ 1=T is the energy of a single photon in the unit
ℏ ¼ 1, and W ∼ e2ðL=T2Þ2 is the Larmor formula of the
power of radiation emitted from a nonrelativistic charged
particle. This formula shows the number of emitted photons
during the time T. When this number exceeds one, i.e.,
WT=ν ≥ 1, the decoherence becomes significant. The
decoherence due to bremsstrahlung was also discussed
in [25]. Second, we can deduce that the decoherence is due
to the vacuum fluctuations of the photon field [42,43]. The
fluctuating photon field leads to dephasing effects,

heiϕi ¼ e−hϕ2i=2 ∼ e−ðeΔELTÞ2=2; ð34Þ

where ϕ is the phase shift due to the fluctuating photon
field, and hϕ2i ∼ ðeΔELTÞ2 is its variance. ΔE is the
vacuum fluctuation of the electric component of the photon
field, which is estimated as ΔE ∼ 1=T2 in [44]. The
variance of the phase shift is

ðeΔELTÞ2 ∼
�
e
1

T2
LT

�
2

¼ e2
L2

T2
: ð35Þ

This result is equivalent to Eq. (33), and the decoherence
becomes significant for ðeΔELTÞ2 ≥ 1.

FIG. 3. Configuration of a single charged particle trajectory.
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B. Model of two charged particles

In this subsection, we extend the previous model to the
model of two charged particles (for example, see Fig. 1).
The total Hamiltonian in the Schrödinger picture is com-
posed of the local Hamiltonians of each charged particle Ĥ1

and Ĥ2, the free Hamiltonian of the photon field Ĥph and
the interaction term V̂ as

Ĥ ¼ Ĥ1 þ Ĥ2 þ Ĥph þ V̂;

V̂ ¼
Z

d3xðĴμ1ðxÞ þ Ĵμ2ðxÞÞÂμðxÞ; ð36Þ

where Ĵμ1 and Ĵμ2 are the current operators of each particle,
which are coupled with the photon field operator Âμ. We
consider the following initial condition at t ¼ 0,

jΨð0Þi ¼ 1

2

X
P;Q¼R;L

jPi1jQi2jαiph; ð37Þ

where each particle is in superposition jRi1 þ jLi1 and
jRi2 þ jLi2, and the photon field is in a coherent state
jαiph. We assume that the current operators ĴμiIðxÞ ¼
eiĤ0tĴμi ð0; xÞe−iĤ0t in the interaction picture with respect
to Ĥ0 ¼ Ĥ1 þ Ĥ2 þ Ĥph are approximated by the following
classical currents as

Ĵμ1IðxÞjPi1≈Jμ1PðxÞjPi1; Ĵμ2IðxÞjQi2≈Jμ2QðxÞjQi2; ð38Þ

Jμ1PðxÞ ¼ e
Z

dτ
dXμ

1P

dτ
δð4Þðx − X1PðτÞÞ;

Jμ2QðxÞ ¼ e
Z

dτ
dXμ

2Q

dτ
δð4Þðx − X2QðτÞÞ; ð39Þ

where Xμ
1PðτÞ and Xμ

2QðτÞ with P;Q ¼ R;L represent the
trajectories of each particle. The initial state evolves as
follows:

jΨðTÞi ¼ exp½−iĤT�jΨð0Þi;

¼ e−iĤ0TT exp

�
−i

Z
T

0

dtV̂IðtÞ
�
jΨð0Þi;

≈ e−iĤ0T
1

2

X
P;Q¼R;L

jPi1jQi2ÛPQjαiph; ð40Þ

where we used the approximations (38) in the third line. The
unitary operator ÛPQ is given by

ÛPQ ¼ T exp

�
−i

Z
T

0

dt
Z

d3xðJμ1P þ Jμ2QÞÂI
μðxÞ

�
;

¼ exp

�
−i

Z
d4xJμPQðxÞÂI

μðxÞ

−
i
2

Z
d4x

Z
d4yJμPQðxÞJνPQðyÞGr

μνðx; yÞ
�
; ð41Þ

where theMagnus expansionwas used, and JμPQ¼Jμ1PþJμ2Q.
Tracing out the degrees of freedom of the photon field to
focus on the quantum state of the charged particles, we obtain
the reduced density matrix of particles 1 and 2,

ρ12 ¼ Trph½jΨðTÞihΨðTÞj�;

¼ 1

4

X
P;Q¼R;L

X
P0;Q0¼R;L

phhαjÛ†
P0Q0ÛPQjαiph

× jPfi1hP0f j ⊗ jQfi2hQ0
f j;

¼ 1

4

X
P;Q¼R;L

X
P0;Q0¼R;L

e−ΓP0Q0PQþiΦP0Q0PQ

× jPfi1hP0f j ⊗ jQfi2hQ0
f j; ð42Þ

where jPfi1 ¼ e−iĤ1T jPi1 and jQfi2 ¼ e−iĤ2T jQi2 are the
states of the charged particles 1 and 2,whichmoved along the
trajectories P and Q, respectively. The quantities ΓP0Q0PQ and
ΦP0Q0PQ are

ΓP0Q0PQ ¼ 1

4

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞ

× ðJνP0Q0 ðyÞ − JνPQðyÞÞhfÂI
μðxÞ; ÂI

νðyÞgi; ð43Þ

ΦP0Q0PQ ¼
Z

d4xðJμP0Q0 ðxÞ − JμPQðxÞÞAμðxÞ

−
1

2

Z
d4x

Z
d4yðJμP0Q0 ðxÞ − JμPQðxÞÞ

× ðJνP0Q0 ðyÞ þ JνPQðyÞÞGr
μνðx; yÞ; ð44Þ

where hfÂI
μðxÞ; ÂI

νðyÞgi and Gr
μνðx; yÞ are the two-point

function (26) and the retardedGreen’s function (22).AμðxÞ is
the coherent photon field (27). The above formulas (43) and
(44) are givenby replacing the currents JμP and J

μ
P0 inEqs. (24)

and (25) with JμPQ and JμP0Q0 , respectively. In the next section,
we derive the entanglement negativity of the two charged
particles. We also demonstrate the entanglement behavior
for a couple of typical configurations of the particle’s
trajectories.
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IV. ENTANGLEMENT BEHAVIOR
OF TWO CHARGED PARTICLES

A. Formula of the negativity of two
charged particles

We evaluate the entanglement negativity with the for-
mula (8). The eigenvalues of the partial transpositionρT1

12 with
the components hP0jhQ0jρT1

12jPijQi ¼ hPjhQ0jρ12jP0ijQi are

λ� ¼ 1

4
½1 − e−Γ1−Γ2 cosh½Γc� � fðe−Γ1 − e−Γ2Þ2

þ 4e−Γ1−Γ2 sin2ðΦ=2Þ þ e−2Γ1−2Γ2 sinh2½Γc�g1
2�; ð45Þ

λ0� ¼ 1

4
½1þ e−Γ1−Γ2 cosh½Γc� � fðe−Γ1 − e−Γ2Þ2

þ 4e−Γ1−Γ2 sin2ðΦ=2Þ þ e−2Γ1−2Γ2 sinh2½Γc�g1
2�: ð46Þ

We note that λ− is the minimum eigenvalue λmin, and hence
the negativity of the two charged particles is

N ¼max½−λmin;0�;

λmin ¼
1

4
½1−e−Γ1−Γ2 cosh½Γc�−fðe−Γ1 −e−Γ2Þ2

þ4e−Γ1−Γ2 sin2ðΦ=2Þþe−2Γ1−2Γ2 sinh2½Γc�g1
2�: ð47Þ

Because the density matrix ρ12 of the charged particles is
regarded as that of a two-qubit system, the negativity
completely determines whether the particles are entangled
or not. The quantities Γi (i ¼ 1, 2), Γc, and Φ are given as

Γi ¼
1

4

Z
d4x

Z
d4yΔJμi ðxÞΔJνi ðyÞhfÂI

μðxÞ; ÂI
νðyÞgi

¼ e2

4

I
Ci

dxμ
I
Ci

dyνhfÂI
μðxÞ; ÂI

νðyÞgi; ð48Þ

Γc ¼
1

2

Z
d4x

Z
d4yΔJμ1ðxÞΔJν2ðyÞhfÂI

μðxÞ; ÂI
νðyÞgi

¼ e2

2

I
C1

dxμ
I
C2

dyνhfÂI
μðxÞ; ÂI

νðyÞgi; ð49Þ

Φ ¼ 1

2

Z
d4x

Z
d4yfΔJμ1ðxÞΔJν2ðyÞ þ ΔJμ2ðxÞΔJν1ðyÞg

×Gr
μνðx; yÞ

¼ e
2

�I
C1

dxμΔA
μ
2ðxÞ þ

I
C2

dxμΔA
μ
1ðxÞ

�
; ð50Þ

where ΔJμi ¼ JμiR − JμiL and JμiP is the current of the particle
ið¼1; 2Þ on the trajectory Pð¼ R;LÞ. The line integral along
the closed trajectory

H
Ci
dxμ is defined by

H
Ci
dxμ ¼R

iR dxμ −
R
iL dxμ, where iP denotes the trajectory P of the

particle i. The quantity ΔAμ
i ¼ Aμ

iR − Aμ
iL is the difference

between the retarded potentials defined by

Aμ
iPðxÞ ¼

Z
d4yGr

μνðx; yÞJνiPðyÞ: ð51Þ

The quantities Γ1 and Γ2 depend on the trajectories of each
particle and have the similar form to ΓRL (28). These are the
decoherence functionals appearing in the interference terms
of each charged particle. In Appendix E 1, Γ1 and Γ2 are
computed explicitly. Γc is characterized by the correlation
function between the photon field coupled to particle 1 and
the photon field coupled to particle 2.Φ is computed from the
phase shifts by the retarded potentials of the photon fieldAμ

iP,
which is analogous to the Aharanov-Bohm effect. Γc and Φ
depend on the relative configuration of the trajectories of
particles 1 and 2. In Appendices E 2 and E 3, we explicitly
evaluate Γc and Φ assuming two specific configurations of
particles, which we refer to as the linear configuration
(Figs. 4 and 6) and the parallel configuration (Figs. 8 and 10)
in this paper. The quantities Γi, Γc, andΦ are independent of
the complex function αμðkÞ of the initial coherent state of
the photon field, and hence the negativity N also does not
depend on αμðkÞ. Hence, as mentioned around Eq. (16),
the entanglement between the particles does not depend
on αμðkÞ. Using the Stokes’s theorem to rewrite the line
integrals in Eqs. (48)–(50) by the surface integrals, we can
express the quantities Γi, Γc, and Φ in terms of the field
strengths as

Γi ¼
e2

16

Z
Si

dσμν
Z
Si

dσ0αβhfF̂I
μνðxÞ; F̂I

αβðx0Þgi; ð52Þ

Γc ¼
e2

16

Z
S1

dσμν
Z
S2

dσ0αβhfF̂I
μνðxÞ; F̂I

αβðx0Þgi; ð53Þ

Φ ¼ e
4

�Z
S1

dσμνΔF
μν
2 ðxÞ þ

Z
S2

dσμνΔF
μν
1 ðxÞ

�
; ð54Þ

FIG. 4. Linear configuration in the regimes cT ≫ D ∼ L and
cT ≫ D ≫ L. The left panel shows the entire view of the linear
configuration.

SUGIYAMA, MATSUMURA, and YAMAMOTO PHYS. REV. D 106, 045009 (2022)

045009-8



whereSi is the surface surrounded by the closed trajectoryCi,
F̂I
μν ¼ ∂μÂ

I
ν − ∂νÂ

I
μ, and ΔFμν

i ¼ Fμν
iR − Fμν

iL with the
retarded field strengths Fμν

iP ¼ ∂
μAν

iP − ∂
νAμ

iP.
In the following subsections, computing the quantities

Γi, Γc, andΦ, we present the minimum eigenvalue (47) and
entanglement negativity N of the charged particles.
Hereafter, we restore the reduced Planck constant ℏ and
the light velocity c to determine the nonrelativistic limit of
our analysis.

B. Linear configuration

We consider the linear configurations shown in Figs. 4
and 6. The parameters T, L, and D represent the time of
maintaining a superposition state of each particle, the
length of separation between the superposed trajectories
of each particle, and the initial distance between the
charged particles 1 and 2, respectively.

1. cT ≫ D ∼ L or cT ≫ D ≫ L regimes

To evaluate the minimum eigenvalue λmin, which gives
the negativity of the two charged particles, we compute the
quantities Γi, Γc, andΦ by specifying the trajectories of the
particles. We consider the following trajectories

Xμ
1P ¼ ½t; ϵPXðtÞ;0;0�T; Xμ

2QðtÞ ¼ ½t; ϵQXðtÞ þD;0;0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ð55Þ

where Xμ
1P and Xμ

2Q with P;Q ¼ R;L describe the trajec-
tories of particles 1 and 2, respectively. Figure 4 schemati-
cally shows the configuration of the particles. In the
regimes cT ≫ D ∼ L and cT ≫ D ≫ L, the quantities

Γi, Γc, and Φ are evaluated. As we show in
Appendix E 1, assuming the above trajectories, we can
compute Γi for cT ≫ L as

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc

�
L
cT

�
2

: ð56Þ

In the regime cT ≫ D ∼ L, the quantity Γc is analyti-
cally obtained as

Γc ≈
64e2

3π2ℏc

�
L
cT

�
2

; ð57Þ

and the quantity Φ is numerically computed from the
formula

Φ ≈ −
e2

4πℏ

Z
T

0

dt

�
2

D

�
1 −

v2

c2

�

−
�
1þ v2

c2

��
1

D − 2XðtÞ þ
1

Dþ 2XðtÞ
��

; ð58Þ

where v ¼ dX=dt. Substituting Eqs. (56)–(58) into Eq. (47),
we evaluate the minimum eigenvalue λmin and the negativity
N . The behavior is shown by the red curve in Fig. 5(a).
The derivation of Eqs. (57) and (58) is presented in
Appendix E 2 a. In the regime cT ≫ D ≫ L, the quantities
Γc and Φ are estimated as

Γc ≈
64e2

3π2ℏc

�
L
cT

�
2
�
1þ 4D2

ðcTÞ2 ln
�
D
cT

��
;

Φ ≈
64e2

315πℏc

�
L
cT

�
2
��

cT
D

�
3

þ 6cT
D

�
; ð59Þ

and we obtain the following eigenvalue (47)

λmin ≈
1

4

�
Γ1 þ Γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 − Γ2Þ2 þΦ2 þ Γ2

c

q �
;

≈
16e2

3π2ℏc
L2

ðcTÞ2 −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
64e2

315πℏc

�
L
cT

�
2
��

cT
D

�
3

þ 6cT
D

��
2

þ
�
64e2

3π2ℏc
L2

ðcTÞ2
�
1þ 4D2

ðcTÞ2 ln
�
D
cT

���
2

s
; ð60Þ

FIG. 5. NegativityN for the linear configuration. (a) is the casecT ≫ D ∼ Lwhile (b) is the casecT ≫ D ≫ L.WeadoptedL=cT ¼ 0.1.
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where in the first line we assumed that Γi, Γc, and Φ are
small, and Eqs. (56) and (59) were substituted in the second
line. Equation (59) is derived in Appendix E 2 a. The term
Γ1 þ Γ2 in the first line of Eq. (60) (or the first positive
term in the second line) makes λmin positive and reduces
the negativity. In contrast, the second term given by Φ
and Γc (or the second term in the second line) decreases
λmin, where Φ is much larger than Γc because of
Γc=Φ ≈ ðD=cTÞ3 ≪ 1. The quantity Φ reflects the contri-
bution of the Coulomb potential (proportional to D−3 term)
and its relativistic correction (proportional to D−1 term).
Figures 5(a) and 5(b) show the negativity in the regimes

cT ≫ D ∼ L and cT ≫ D ≫ L, respectively. The blue
curve in each panel presents the behavior of the negativity
in Fig. 2,which is given in the nonrelativistic limit andhas no
contributions from the dynamical degrees of freedom of
the photon field. The red curve shows the behavior of the
negativity computed fromour analysis. In Fig. 5(a) under the
regime cT ≫ D ∼ L, the red curve is similar to the blue
curve. This means that the Coulomb potential is dominant to
determine the negativity in this regime, and the relativistic
corrections are small. However, in Fig. 5(b) under the regime
cT ≫ D ≫ L, there is the parameter region without the
negativity. This is because the decoherence effectsΓ1 andΓ2

aremore dominant than the termΦmainly determined by the
Coulomb potential. In this regime, the computation of the
negativity in the nonrelativistic limit is not valid.

2. D ≫ cT ≫ L regime

Subsequently, we present the formula of the minimum
eigenvalue λmin in the regimeD ≫ cT ≫ L. We assume the
trajectories of the charged particles 1 and 2 are given by

Xμ
1PðtÞ ¼ ½t; ϵPXðtÞ; 0;0�T;

Xμ
2QðtÞ ¼ ½t; ϵQXðt−DÞ þD;0; 0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ð61Þ

where Xμ
2Q is defined in D=c ≤ t ≤ T þD=c. The whole

configuration of the trajectories is shown in Fig. 6, in which
the superposition of particle 2 is formed after particle 1 is
superposed. The trajectories of the particles are arranged to
be causally connected.
We obtain the following formulas for the regime

D ≫ cT ≫ L,

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; Γc ≈ −
32e2

225π2ℏc
L2ðcTÞ2

D4
;

Φ ≈
16e2

315πℏc
L2ðcTÞ
D3

; ð62Þ

where Γ1 and Γ2 are the same as those given in (56) because
they depend only on each particle motion, and the explicit

derivation of Γc and Φ is presented in Appendix E 2 b. We
can then compute the eigenvalue (47) as

λmin ≈
1

4

�
Γ1 þ Γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 − Γ2Þ2 þΦ2 þ Γ2

c

q �
;

≈
16e2

3π2ℏc
L2

ðcTÞ2 −
16e2

315πℏc
cTL2

D3
; ð63Þ

where in the first equality, the minimum eigenvalue was
approximated by assuming that Γi (i ¼ 1, 2), Γc, and Φ are
small. In the second equality, we substituted (62) and
neglected Γc because of Γc=Φ ≈ cT=D ≪ 1 for the regime
D ≫ cT ≫ L. The positive term in the right-hand side of
Eq. (63), which is given by the decoherence functional Γi,
comes from the vacuum fluctuations of the photon field.
The negative term in Eq. (63) is given by the quantity Φ
depending on the phase shifts due to the retarded field [see
the formula of Φ (50) and the discussion around (51)].
Figure 7 shows the minimum eigenvalue (63) for a fixed

L=cT ¼ 0.1 as a function of D=cT in the regime
D ≫ cT ≫ L. The minimum eigenvalue is always positive,
and hence the charged particles 1 and 2 are not entangled.

FIG. 6. Linear configuration in the D ≫ cT ≫ L regime.

FIG. 7. Minimum eigenvalue λmin½ρT1

12� for the linear configu-
ration in the regime D ≫ cT ≫ L. We adopted L=cT ¼ 0.1.
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This result shows that the decoherence due to the vacuum
fluctuation of the photon field suppresses the entanglement
generation due to the retarded field. In Sec. V, we will
discuss that the retarded field corresponds to the longi-
tudinal mode, that is, the nondynamical part of the
photon field.

C. Parallel configuration

Here, we consider the parallel configurations shown in
Figs. 8 and 10. The parameters T, L, and D play the same
role as those in the linear configuration, which are the
typical scales appearing in the trajectories of the particles.

1. cT ≫ L ≫ D or cT ≫ D ≫ L regimes

We first consider the trajectories of the two particles 1
and 2 as

Xμ
1PðtÞ ¼ ½t; ϵPXðtÞ; 0; 0�T; Xμ

2QðtÞ ¼ ½t; ϵQXðtÞ; D; 0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1 −

t
T

�
2
�
t
T

�
2

: ð64Þ

The schematic configuration is shown in Fig. 8. We
examine the quantities Γi (i ¼ 1, 2), Γc, and Φ for the
regimes cT ≫ L ≫ D and cT ≫ D ≫ L to estimate
the minimum eigenvalue λmin. Even in this configuration,
the decoherence functionals Γ1 and Γ2 for cT ≫ L are
identical to those in Eq. (56), that is,

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 : ð65Þ

This is because the decoherence functionals are given by
the local motions of each charged particle. In the following,
we evaluate Γc andΦ for each of the regimes cT ≫ L ≫ D
and cT ≫ D ≫ L.
In the regime cT ≫ L ≫ D, the quantities Γc and Φ are

Γc≈
64e2

3π2ℏc
L2

ðcTÞ2 ; Φ≈
e2

4πℏc
cT
D

�
1−

64L2

105ðcTÞ2
�
; ð66Þ

which are derived in Appendix E 3 a. The minimum
eigenvalue (47) for the regime cT ≫ L ≫ D is given as

λmin½ρT1

12� ≈
1

4

"
Γ1 þ Γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 − Γ2Þ2 þ 4sin2

�
Φ
2

�
þ Γ2

c

s #
;

≈
16e2

3π2ℏc
L2

ðcTÞ2 −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2 sin

�
e2

4πℏc
cT
D

�
1 −

64L2

105ðcTÞ2
���

2

þ
�

64e2

3π2ℏc
L2

ðcTÞ2
�

2

s
: ð67Þ

In the above equation, the first term coming from
Γ1 þ Γ2 increases the minimum eigenvalue, whereas the
second term given by Φ and Γc decreases it. It should
be noted that the quantity Φ can be Φ ≫ 1 because
of cT=Dð1 − L2=ðcTÞ2Þ ≈ cT=D ≫ 1 for the regime
cT ≫ L ≫ D.
In the regime cT ≫ D ≫ L, the quantities Γc and

Φ are

Γc ≈
64e2

3π2ℏc

�
L
cT

�
2
�
1þ

�
2D
cT

�
2

ln

�
D
cT

��
;

Φ ≈
32e2

315πℏc

�
L
cT

�
2
��

cT
D

�
3

−
6cT
D

�
: ð68Þ

These formulas are derived in Appendix E 3. The minimum
eigenvalue (47) for the regime cT ≫ D ≫ L is approxi-
mated as

λmin½ρT1

12� ≈
1

4

�
Γ1 þ Γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 − Γ2Þ2 þΦ2 þ Γ2

c

q �
;

≈
16e2

3π2ℏc
L2

ðcTÞ2 −
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
32e2

315πℏc

�
L
cT

�
2
��

cT
D

�
3

−
6cT
D

��
2

þ
�
64e2

3π2ℏc

�
L
cT

�
2
�
1þ

�
2D
cT

�
2

ln

�
D
cT

���
2

s
; ð69Þ

FIG. 8. Parallel configuration in cT ≫ D ≫ L regime.
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This minimum eigenvalue has the very similar feature to
that obtained in the case of the linear configuration. The
first positive contribution in (69) comes from the
decoherence functional Γi quantifying the decoherence
due to the vacuum fluctuations of the photon field. The
second negative contribution in (69) is computed from Γc
and Φ, which is mostly from Φ because of
Γc=Φ ≈ ðD=cTÞ3 ≪ 1. The quantities Γc and Φ stem from
the vacuum correlation of the photon field and the phase
shifts due to the retarded field, respectively.
The panels in Figs. 9(a) and 9(b) present the behavior

of the negativity in the regimes cT ≫ L ≫ D and
cT ≫ D ≫ L, respectively. The blue curve shows the
negativity in the nonrelativistic limit, which corresponds
to the electromagnetic version of the BMVexperiment. The
red curve is given by our analysis. The behavior of the
negativity in Fig. 9(a) means that our analysis is consistent
with the nonrelativistic result. However, in Fig. 9(b), due to
the decoherence, the parameter region without the neg-
ativity appears, and hence the computation in the non-
relativistic limit becomes invalid in cT ≫ D ≫ L.

2. D ≫ cT ≫ L regime

We consider the trajectories of two charged particles 1
and 2 as

Xμ
1PðtÞ¼½t;ϵPXðtÞ;0;0�T; Xμ

2PðtÞ¼½t;ϵPXðt−D=cÞ;D;0�T;

ϵR¼−ϵL¼1; XðtÞ¼8L

�
1−

t
T

�
2
�
t
T

�
2

; ð70Þ

where Xμ
1P and X

μ
2Q with P;Q ¼ R;L describe the trajectory

of each particle. Here, Xμ
2Q is defined in D=c≤ t≤TþD=c.

The spacetime configuration of the particles is presented in
Fig. 10. We examine the minimum eigenvalue in the
regime D ≫ cT ≫ L.
We have the following formulas of Γ1, Γ2, Γc, and Φ for

the regime D ≫ cT ≫ L,

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; Φ ≈ −
64e2

105πℏc
L2

DðcTÞ ;

Γc ≈ −
32e2

225π2ℏc
L2ðcTÞ2

D4
; ð71Þ

where Γ1 and Γ2 are not at all different from those given in
(56) or (65), and the quantities Γc and Φ are derived in
Appendix E 3 b. Then, we can compute the minimum
eigenvalue (47) as

λmin½ρT1

12� ≈
1

4

h
Γ1 þ Γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΓ1 − Γ2Þ2 þΦ2 þ Γ2

c

q i
;

≈
16e2

3π2ℏc
L2

ðcTÞ2 −
16e2

105πℏc
L2

DðcTÞ ; ð72Þ

where the first term coming from the decoherence func-
tional Γi increases the minimum eigenvalue, and the second
term given by Φ decreases it. In the second equality, we
neglected Γc because of Γc=Φ ≈ ðcT=DÞ3 ≪ 1. Figure 11
shows the minimum eigenvalue (47) as a function of D=cT
in the regime D ≫ cT ≫ L, which is always positive.
Similar to the result in the case of the linear configuration

FIG. 9. Negativity N for the parallel configuration. (a) is the case cT ≫ L ≫ D, whereas (b) is the case cT ≫ D ≫ L. We adopted
L=cT ¼ 0.1.

FIG. 10. Parallel configuration in D ≫ cT ≫ L regime.
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(see Fig. 11), the negativity remains zero, and the entan-
glement between the charged particles 1 and 2 does not
appear in the regime D ≫ cT ≫ L. We come to the same
conclusion that the decoherence due to the vacuum fluc-
tuations of the photon field prevents the entanglement
generation due to the retarded field.
It is important to note that the parameter dependence

appearing in the formulas of the minimum eigenvalue (63)
and (72) is different. The second terms of (63) and (72) are
proportional to −cTL2=D3 and −L2=DðcTÞ, respectively.
The latter is regarded as a consequence of the quantum
superposition of bremsstrahlung, as we will discuss in the
next section.

V. DISCUSSION

Before the main discussion in this section, we first
mention a basic property of the field strength of a charged
particle. Generally, the field strength of a charged particle is
decomposed into two terms Fμν ¼ Fμν

v þ Fμν
a , which are

given as

Fμν
v ðxÞ ¼ −

e
4π

ðxμ − XμðtrÞÞvνðtrÞ − ðμ ↔ νÞ
γ2½ðx − XðtrÞÞ · vðtrÞ�3

; ð73Þ

Fμν
a ðxÞ ¼ e

4π½ðx − XðtrÞÞ · vðtrÞ�2
�
ðxμ − XμðtrÞÞ

�
aνðtrÞ

−
ðx − XðtrÞÞ · aðtrÞ
ðx − XðtrÞÞ · vðtrÞ

vνðtrÞ
�
− ðμ ↔ νÞ

�
; ð74Þ

where Xμ is the spacetime position of the particle, vμ ¼
dXμ=dt is the velocity, aμ ¼ dvμ=dt is the acceleration, and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−vμvμ

p
is the Lorentz factor. The retarded time tr is

given by −ðt − trÞ þ jx − XðtrÞj ¼ 0. The above equations
are obtained in Appendix C. The field strength Fμν

v

independent of acceleration has the longitudinal mode
of the retarded field. In fact, the inner product of the
unit vector n ¼ ðx − XðtrÞÞ=jx − XðtrÞj in the propagation

direction and the electric field Ev with Ei
v ¼ F0i

v does not
vanish, n · Ev ≠ 0. The field strength Fμν

a proportional to
the acceleration only has the transverse modes of the
retarded field. This is because the propagation direction
vector n, the electric field Ea with Ei

a ¼ F0i
a and the

magnetic field Ba with Bi
a ¼ ε0ijkF

jk
a =2 (εμνρσ is the totally

antisymmetric tensor) satisfy

n · Ea ¼ F0i
a ni ¼

F0μ
a ðxμ − XμðtrÞÞ
jx − XðtrÞj

¼ 0;

n · Ba ¼
1

2
ε0ijkF

jk
a ni ¼

ε0μνρF
νρ
a ðxμ − XμðtrÞÞ

2jx − XðtrÞj
¼ 0; ð75Þ

where the last equality of the first equation holds by the
light cone condition −ðt − trÞ þ jx − XðtrÞj ¼ 0.
With the above knowledge, we next discuss the origin of

the second terms in (63) and (72) computed from the
quantityΦ. We derived those terms by assuming the regime
D ≫ cT ≫ L for each case of the linear and parallel
configurations. The regime D ≫ cT is regarded as the
wave zone in which the distance between two charged
particles D is much larger than the wavelength of the
photon field λp ¼ cT emitted from each charged particle.
Hence it is important to understand how the radiative field
affects the quantity Φ. Let us revisit the formula (54) of Φ
expressed in terms of the field strengths,

Φ ¼ e
4

�Z
S1

dσμνΔF
μν
2 ðxÞ þ

Z
S2

dσμνΔF
μν
1 ðxÞ

�
; ð76Þ

where Si is the surface surrounded by the spacetime
trajectories of the particle ið¼1; 2Þ, and ΔFμν

i ¼Fμν
iR−Fμν

iL.
Here,Fμν

iP ¼ ∂
μAν

iP − ∂
νAμ

iP are the retarded field strengths of
the charged particle imoving along the trajectory Pð¼R;LÞ.
As mentioned in the above paragraph, the field strengths of
the particle imoving the trajectory P, Fμν

iP , are separated into
two partsFμν

iP ¼ Fμν
iP;v þ Fμν

iP;a, and then the quantityΦ is also
given as Φ ¼ Φv þΦa with

Φv ¼
e
4

�Z
S1

dσμνΔF
μν
2;vðxÞ þ

Z
S2

dσμνΔF
μν
1;vðxÞ

�
;

Φa ¼
e
4

�Z
S1

dσμνΔF
μν
2;aðxÞ þ

Z
S2

dσμνΔF
μν
1;aðxÞ

�
; ð77Þ

whereΔFμν
i;v ¼ Fμν

iR;v − Fμν
iL;v andΔF

μν
i;a ¼ Fμν

iR;a − Fμν
iL;a. The

term Φv depends on the longitudinal mode (nondynamical
part) of the retarded photon field, and Φa comes from the
transverse modes (dynamical parts) of the retarded photon
field of the accelerated charged particles. In the linear and
parallel configurations,Φv for the regimeD ≫ cT ≫ L has
the same formula [see (E16) and (E29)], whereas Φa for the
regime D ≫ cT ≫ L depends on each configuration: Φa
vanishes in the linear configuration, but it does not in the

FIG. 11. Minimum eigenvalue λmin½ρT1

12� for the parallel con-
figuration in the regime D ≫ cT ≫ L. We adopted L=cT ¼ 0.1.
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parallel configuration. To observe this, we focus on the fact
that Φa in the configurations shown in Fig. 12 is given as

Φa ¼
e
4

Z
S2

dtdxΔF01
1;a ¼

e
4

Z
S2

dtdxðEx
1R;a − Ex

1L;aÞ; ð78Þ

where Ex
1P;a ¼ F01

1P;a is the x component of the electric field
induced by the accelerated motion of the charged particle 1
on the trajectoryPð¼ R;LÞ. Here, the first term in the formula
of Φa in (77) vanished by assuming that the retarded field
sourced by particle 2 is causally disconnectedwith particle 1.
Following the Larmor radiation formula, the electro-

magnetic wave emitted from the charged particle 1 cannot
propagate in the direction of the particle acceleration [45].
The shaded region in Fig. 12 shows the angular distribution
of the photon field of the charged particle 1 on each
trajectory. In the linear configuration, because each particle
moves along the x axis, the electromagnetic wave from
particle 1 does not propagate to particle 2. This leads to
E1R;a
x ¼ E1L;a

x ¼ 0 and hence Φa ¼ 0. In the parallel con-
figuration, because the electromagnetic wave from particle
1 can reach particle 2, the electric fields E1R;a

x and E1L;a
x

generated by the superposed particle 1 give a nontrivial Φa.
Hence, the origin of Φa is regarded as the quantum
superposition of bremsstrahlung from the charged particle
1 in a superposition state. As observed in the previous
section, the quantityΦð¼Φv þΦaÞ decreases the minimum
eigenvalue λmin. This suggests that the effect of the
quantum superposition of bremsstrahlung appears in the
formula of the entanglement. As observed in the previous
section, the decoherence due to the vacuum fluctuation of

the photon field suppresses the entanglement generation in
the charged particles.

VI. CONCLUSION

The BMVexperiment is a proposal to detect the entangle-
ment generation due to the Newtonian gravity, which comes
from the nondynamical component of gravity. To understand
the entanglement generation in the context of QFT, we
evaluated the entanglement generation between two charged
particles coupled to a photon field on the basis of QED,
motivated by a similarity of the theory between gravity and
electromagnetism. We obtained the formula of the entangle-
ment negativity between two charged particles each in a
superposition of two trajectories for the first time. This
explicitly demonstrated the effect of a quantized photon field
on the entanglement generation between two charged par-
ticles. Our analysis automatically includes the contributions
not only from the longitudinalmode (nondynamical part) but
also from the transversemode (dynamical part) of the photon
field. We demonstrated that the entanglement generation
induced by the Coulomb potential is reproduced in the
nonrelativistic limit of our formula, as expected. We also
demonstrated how the relativistic corrections to the Coulomb
entanglement arise. Particularly, the vacuum fluctuations of
the photon field cause quantumdecoherence,which becomes
significant when the decoherence due to photon emission
becomes significant simultaneously, as discussed in Sec. III.
When the two charged particles are separated by a long
distance, the decoherence effect dominates, and the entan-
glement generation is suppressed. However, in such a
situation when the two particles are separated by a distance

x

y

D

R 1L 1

T
L

R 2L 2

y

x

t

T

x

y

D

L

R 1L 1

R 2

L 2

(a) Linear configuration (b) Parallel configuration

FIG. 12. Angular distribution of the photon field induced by each trajectory of the accelerating charged particle 1 for linear
configuration (a) and parallel configuration (b) on the x-y plane at a constant time.
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of a wave zone, the superposition of the electromagnetic
wave from the other charged particle influences the signature
of the quantum coherence. We found that the quantum
superposition of bremsstrahlung from a superposed trajec-
tory affects the signature of the quantum coherence between
the two particles; however, the entanglement is not generated
because thevacuum fluctuations of the photon field dominate
over the signature of the entanglement. This addresses the
issuewhether the superposition of the bremsstrahlung from a
superposed trajectory could generate entanglement or not. In
the present paper, we discussed the entanglement generation
between two charged particles coupled with a photon field. It
may be interesting to consider the case of two charged
particles in superposition states of multiple trajectories.
These issues are left for a future study.
Thus, we evaluated the effect of the dynamical photon

field on the entanglement generation between two charged
particles each in a superposition state. We also demon-
strated that the quantum superposition of bremsstrahlung
contributes to the quantum coherence behavior between
two charged particles. One naturally expects that similar
features appear in the entanglement generation between
two masses in the framework of the quantized gravitational
field. The vacuum fluctuations of the graviton field and
the quantum superposition of gravitational radiation are
expected to be involved in the entanglement generation
between two masses. The theoretical framework in the
present paper is indeed useful for investigating a paradox in
the quantum gravity presented by [18,21] (see [46] for
details). It is important to extend our present work to the
theory of gravity to clarify the dynamical effects of the
quantized gravitational field, which remains as future work
for a deeper understanding of quantum gravity.
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APPENDIX A: BRST FORMALISM IN QED

1. BRST formalism

Here, we summarize the BRST formalism in QED. The
Lagrangian density in BRST formalism is written as
follows

L ¼ L QED þL GFþFP;

L QED ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμ −mÞψ ; ðA1Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength of the Uð1Þ
gauge field Aμ, ψ is the Dirac field with massm, ψ̄ ¼ ψ†γ0,

γμ is the gamma matrix satisfying fγμ; γνg ¼ 2ημν, Dμ ¼
∂μ þ ieAμ is the covariant derivative, which includes the
electromagnetic interaction term with the coupling constant
e, and L GFþFP is the gauge fixing and Faddeev-Popov
ghost term. The Lagrangian density L QED is invariant
under the following transformation

ψ → e−ieθðxÞψ ≃ ð1 − ieθðxÞÞψ ≡ ψ þ δψ ;

Aμ → Aμ þ ∂μθðxÞ≡ Aμ þ δAμ; ðA2Þ

where θðxÞ is a real function. To give the gauge fixing
and Faddeev-Popov ghost term L GFþFP, we define
θðxÞ≡ λCðxÞ, where λ and CðxÞ are the global and local
Grassmann numbers. The field CðxÞ is the scalar field but it
satisfies the anticommutation relations fCðxÞ; CðyÞg ¼ 0,
which is the Faddeev-Popov ghost field. We rewrite δψ and
δAμ as follows

δψðxÞ ¼ λð−ieCðxÞψðxÞÞ≡ λδBψðxÞ;
δAμ ¼ λð∂μCðxÞÞ≡ λδBAμ; δBCðxÞ ¼ 0; ðA3Þ

where the operator δB is defined so that the nilpotency
δ2B ¼ 0 satisfies. We also introduce the antighost field C̄ðxÞ
and the Nakanishi-Lautrup field BðxÞ. They satisfy

δBC̄ðxÞ ¼ iBðxÞ; δBBðxÞ ¼ 0; ðA4Þ

where α is an arbitrary parameter. The transformation of
(A3) and (A4) are referred to as the BRST transformation.
We can choose the gauge fixing and Faddeev-Popov ghost
term as follows

L GFþFP ¼ −iδBðC̄FÞ; F ¼ ∂
μAμ þ

1

2
αB: ðA5Þ

Consequently, the full Lagrangian density in BRST for-
malism is

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμψ −mÞψ

þ 1

2
αB2 − ∂

μBAμ − i∂μC̄∂μC: ðA6Þ

The equations of motion for fields Aμ; B; C; C̄ are given by
the Euler-Lagrange equations,

0 ¼ ∂
νFνμ − Jμ − ∂μB; ðA7Þ

0 ¼ ∂
μAμ þ αB; ðA8Þ

0 ¼ □C ¼ □C̄; ðA9Þ

where Jμ ¼ eψ̄γμψ . The fields CðxÞ and C̄ðxÞ follow the
free evolution and do not interact with the other fields.
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Substituting (A8) into (A6), we arrive at the following
Lagrangian density,

L ¼ −
1

4
FμνFμν þ ψ̄ðiγμDμψ −mÞψ

−
1

2α
ð∂μAμÞ2 − i∂μC̄∂μC; ðA10Þ

and the BRST transformations are summarized as

δBAμ ¼ ∂μC; δBψ ¼−ieCψ ; δBC¼ 0; δBC̄¼ i
α
ð∂μAμÞ:
ðA11Þ

Because of the BRST transformation, the Lagrangian
density has a global symmetry (BRST symmetry)

λδBL ¼ 0: ðA12Þ

Associated with this global symmetry, there is a conserved
current referred to as the BRST current JμB defined by

JμB ¼
X
I

∂L

∂ð∂μΦIÞ
δBΦI ¼ −Fμν

∂νC −
1

α
∂νAν

∂
μCþ JμC;

ðA13Þ

where ΦI ¼ fAμ;ψ ; C; C̄g. The BRST charge QB is given
by

QB≡
Z

d3xJ0BðxÞ¼
Z

d3x

�
ð∂iCÞFi0þJ0C−

1

α
ð∂μAμÞ _C

�
:

ðA14Þ

We perform the canonical quantization procedure in the
Feynman gauge (α ¼ 1). The canonical conjugate momenta
are defined as

πμA ≡ ∂L

∂ _Aμ

¼ −F0μ − ð∂νAνÞη0μ; πψ ≡ ∂L

∂ _ψ
¼ iψ̄γ0;

πc ≡ ∂L

∂ _C
¼ i _̄C; πc̄ ≡ ∂L

∂
_̄C
¼ i _C; ðA15Þ

where “·” denotes the derivative with respect to time x0 ¼ t.
The commutation relations are assigned as follows

fψ̂ðxÞ; π̂ψ ðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
fĈðxÞ; π̂cðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
f ˆ̄CðxÞ; π̂c̄ðyÞgjx0¼y0 ¼ iδ3ðx − yÞ;
½ÂμðxÞ; π̂νAðyÞ�jx0¼y0 ¼ iδνμδ3ðx − yÞ:

The quantized BRST charge is given by

Q̂B ¼
Z

d3x½ð∂iĈÞF̂i0 þ Ĵ0Ĉ − ð∂μÂμÞ _̂C�

¼
Z

d3x½−ð∂iπ̂iÞĈþ Ĵ0Ĉþ iπ̂0π̂c̄�: ðA16Þ

As is well known, when we quantize a gauge theory
while maintaining the Lorentz covariance, a state space V
with an indefinite metric is required. For the standard
probabilistic interpretation of quantum mechanics, a physi-
cal state jΨphysi has no negative norm. Such a state with the
non-negative norm is identified by imposing the following
condition (the BRST condition)

Q̂BjΨphysi ¼ 0; ðA17Þ

where the physical state jΨphysi satisfies hΨphysjΨphysi ≥ 0.

2. BRST charge in the interaction picture
and in the Schrödinger picture

We derive a useful form of the BRST charge for our
computation. Using (A16), we obtain the BRST charge in
the interaction picture,

Q̂I
BðtÞ ¼ eiĤ0tQ̂Be−iĤ0t

¼
Z

d3x½−ð∂iπ̂iIÞĈþ Ĵ0I Ĉ
I þ iπ̂0Iπ̂Ic̄�; ðA18Þ

where ϕ̂I ¼ eiĤ0tϕ̂e−iĤ0t; ϕ̂¼ fÂμ; π̂μ; Ĉ;
ˆ̄C; π̂c; π̂c̄; Ĵ

0g, and
they satisfy the Heisenberg equation

i _̂ϕ
I ¼ ½ϕ̂I; Ĥ0�: ðA19Þ

The gauge field ÂI
μðxÞ and the ghost field ĈIðxÞ satisfy the

Klein-Gordon equation. The solutions are

ÂI
μðxÞ ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ32k0
p ðâμðkÞeik·x þ H:c:Þ; ðA20Þ

ĈIðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k0

p ðĉðkÞeik·x þ H:c:Þ; ðA21Þ

where k0 ¼ jkj, âμðkÞ and ĉðkÞ are the annihilation
operators of the gauge field ÂI

μðxÞ, and the ghost field
ĈIðxÞ, respectively. The annihilation operators âμðkÞ, ĉðkÞ,
and the creation operators satisfy

½âμðkÞ; â†νðk0Þ� ¼ ημνδðk − k0Þ;
fĉðkÞ; ĉ†ðk0Þg ¼ δðk − k0Þ: ðA22Þ

Substituting (A20) and (A21) into (A16), we obtain the
BRST charge in the interaction picture
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Q̂I
BðtÞ¼

Z
d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ��
kμâμðkÞþ

ˆ̃J
0
I ðt;kÞffiffiffiffiffiffiffi
2k0

p eik
0t

�
c†ðkÞþH:c:

�
;

ðA23Þ

where ˆ̃J
0
I ðt; kÞ is the Fourier transformation of Ĵ0I ðt; xÞ

Ĵ0I ðt; xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p ˆ̃J
0
I ðt; kÞeik·x: ðA24Þ

Using the BRST charge in the interaction picture and
(A16), the BRST charge in the Schrödinger picture is
obtained as

Q̂B¼e−iĤ0tQ̂I
BðtÞeiĤ0t

¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p �
ðkμâμ

�
kþ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
c†ðkÞþH:c:

�
; ðA25Þ

where we used

e−iĤ0tâμðkÞeiĤ0t ¼ âμðkÞeik0t;
e−iĤ0tĉ†ðkÞeiĤ0t ¼ ĉ†ðkÞe−ik0t;

e−iĤ0t ˆ̃J
0
I ðt; kÞeiĤ0t ¼ ˆ̃J

0ðkÞ; ðA26Þ

Here, ˆ̃J
0
is the Fourier transform of the matter current in the

Schrödinger picture.

3. BRST condition for our models with charged
particles

We use the explicit form of the BRST charge in the
Schrödinger picture (A25) to derive the BRST condition
for our models. Assuming a physical state jΨphysi ¼
jΨ0

physi ⊗ j0ic, where j0ic is the ground state of the ghost
field, and using (A25), we can reduce the BRST condition
(A17) as �

kμâμðkÞ þ
ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jΨ0

physi ¼ 0: ðA27Þ

When jΨ0
physi is the initial state given in (15), (A27) gives

the equation,

0 ¼
�
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jΨ0

physi;

¼
�
kμâμðkÞ þ

ˆ̃J
0ðkÞffiffiffiffiffiffiffi
2k0

p
�

1ffiffiffi
2

p ðjRi þ jLiÞ ⊗ jαiph;

≈
1ffiffiffi
2

p ðjRi þ jLiÞ ⊗
�
kμâμðkÞ þ

J̃0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jαiph; ðA28Þ

where the approximation (17) was used in the second line,
and note that J̃0RðkÞ ¼ J̃0LðkÞ ¼ J̃0ðkÞ at the initial time.
Hence the initial coherent state of the photon field must
satisfy

�
kμâμðkÞ þ

J̃0ðkÞffiffiffiffiffiffiffi
2k0

p
�
jαiph ¼ 0: ðA29Þ

Because the displacement operator D̂ðαÞ given in (16) has
the following relation

D̂†ðαÞâμðkÞD̂ðαÞ ¼ âμðkÞ þ αμðkÞ; ðA30Þ

we obtain the constraint for the complex function αμðkÞ as

kμαμðkÞ ¼ −
J̃0ðkÞffiffiffiffiffiffiffi
2k0

p : ðA31Þ

This is the BRST condition for the model of a single
charged particle. The BRST condition for the model of two
charged particles is obtained using the same procedure.

APPENDIX B: COMPUTATION OF THE INNER
PRODUCT IN EQ. (23) AND DERIVATION

OF EQS. (24) AND (25)

Here, we compute the inner product phhαjÛ†
P0ÛPjαiph in

Eq. (23). The inner product is rewritten as

phhαjÛ†
P0ÛPjαiph

¼ phh0jD̂†ðαÞÛ†
P0D̂ðαÞD̂†ðαÞÛPD̂ðαÞj0iph;

¼ phh0jðD̂†ðαÞÛP0D̂ðαÞÞ†ðD̂†ðαÞÛPD̂ðαÞÞj0iph; ðB1Þ

where we used jαi ¼ D̂ðαÞj0iph, and the identity operator

Î ¼ D̂ðαÞD̂†ðαÞ was inserted between the unitary operators
Û†

P0 and ÛP in the first equality. Because the displacement
operator D̂ðαÞ satisfies Eq. (A30), we obtain

D̂†ðαÞÂI
μðxÞD̂ðαÞ ¼ ÂI

μðxÞ þ AμðxÞ; ðB2Þ

where AμðxÞ is defined in Eq. (27). Subsequently, we
obtain
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D̂†ðαÞÛPðxÞD̂ðαÞ¼ exp

�
−
i
2

Z
d4x

Z
d4yJμPðxÞJνPðyÞGr

μνðx;yÞ
�
D̂†ðαÞexp

�
−i

Z
d4xJμPðxÞÂI

μðxÞ
�
D̂ðαÞ;

¼ exp

�
−
i
2

Z
d4x

Z
d4yJμPðxÞJνPðyÞGr

μνðx;yÞ
�
exp

�
−i

Z
d4xJμPðxÞD̂†ðαÞÂI

μðxÞD̂ðαÞ
�
;

¼ exp

�
−
i
2

Z
d4x

Z
d4yJμPðxÞJνPðyÞGr

μνðx;yÞ− i
Z

d4xJμPðxÞAμðxÞ
�
exp

�
−i

Z
d4xJμPðxÞÂI

μðxÞ
�
; ðB3Þ

where the formula of the unitary operator ÛP (19) was substituted andGr
μνðx; yÞ denotes the retarded Green’s function given

in Eq. (22). In the third equality we used Eq. (B2). We further obtain

ðD̂†ðαÞÛP0D̂ðαÞÞ†ðD̂†ðαÞÛPD̂ðαÞÞ

¼ exp

�
i
2

Z
d4x

Z
d4yðJμP0 ðxÞJνP0 ðyÞ − JμPðxÞJνPðyÞÞGr

μνðx; yÞ þ i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ
�

× exp

�
i
Z

d4xJμP0 ðxÞÂI
μðxÞ

�
exp

�
−i

Z
d4xJμPðxÞÂI

μðxÞ
�
;

¼ exp

�
i
2

Z
d4x

Z
d4yðJμP0 ðxÞJνP0 ðyÞ − JμPðxÞJνPðyÞÞGr

μνðx; yÞ þ i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ
�

× exp

�
i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞÂI
μðxÞ þ

1

2

Z
d4xd4yJμP0 ðxÞJνPðyÞ½ÂI

μðxÞ; ÂI
νðyÞ�

�
;

¼ exp

�
i
2

Z
d4x

Z
d4yðJμP0 ðxÞJνP0 ðyÞ − JμPðxÞJνPðyÞÞGr

μνðx; yÞ þ i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ
�

× exp

�
i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞÂI
μðxÞ þ

i
2

Z
d4xd4yðJμP0 ðxÞJνPðyÞ − JνP0 ðyÞJμPðxÞÞGr

μνðx; yÞ
�
;

¼ exp

�
i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ þ
i
2

Z
d4x

Z
d4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ þ JνPðyÞÞGr

μνðx; yÞ
�

× exp
�
i
Z

d4xðJμP0 ðxÞ − JμPðxÞÞÂI
μðxÞ

�
;

¼ exp ½iΦP0P þ iΘ̂PP0 �; ðB4Þ

where the Baker-Campbell-Hausdorff formula eÂeB̂ ¼
eÂþB̂þ½Â;B̂�=2þ��� was used in the second equality, and the
relation ½ÂI

μðxÞ; ÂI
νðyÞ� ¼ iGr

μνðx; yÞ − iGr
νμðy; xÞ was sub-

stituted in the third equality “� � �” in the Baker-Campbell-
Hausdorff formula indicates the terms involving the higher
commutators of Â and B̂. In our case, the commutator
½ÂI

μðxÞ; ÂI
νðyÞ� is proportional to the identity operator, so the

higher commutators vanish. In the last equality, we defined
Θ̂PP0 and ΦP0P as

Θ̂PP0 ¼
Z

d4xðJμP0 ðxÞ − JμPðxÞÞÂI
μðxÞ; ðB5Þ

ΦP0P ¼
Z

d4xðJμP0 ðxÞ − JμPðxÞÞAμðxÞ

þ 1

2

Z
d4x

Z
d4yðJμP0 ðxÞ − JμPðxÞÞ

× ðJνP0 ðyÞ þ JνPðyÞÞGr
μνðx; yÞ: ðB6Þ

Using the cumulant expansion for a given density matrix ρ,

heiλÂiρ ¼ Tr½ρeiλÂ�

¼ exp

�
iλhÂiρ −

1

2
λ2hðÂ − hÂiρÞ2iρ þ � � �

�
; ðB7Þ
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where λ is a c-number parameter, Â is an operator, and “� � �” is the term with the third or higher cumulant, we can compute
the inner product (B1) as

phh0jD̂†ðαÞÛ†
P0ÛPD̂ðαÞj0iph ¼ eiΦP0P

phh0jeiΘ̂PP0 j0iph;

¼ eiΦP0P exp

�
ihΘ̂PP0 i −

1

2
hðΘ̂PP0 − hΘ̂PP0 iÞ2i þ � � �

�
;

¼ eiΦP0P exp

�
−
1

2

Z
d4xd4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ − JνPðyÞÞphh0jÂI

μðxÞÂI
νðyÞj0iph

�
;

¼ e−ΓP0PþiΦP0P : ðB8Þ

We used Eq. (B4) and the cumulant expansion with
ρ ¼ j0iphh0j, λ ¼ 1 and Â ¼ Θ̂PP0 in the first and second
lines, respectively. h·i denotes the vacuum expectation
value. In the third equality, we substituted Eq. (B5), and
the term “� � �” with the nth cumulant for n ≥ 3 vanishes
because the free vacuum state j0iph is Gaussian. In the last
equality, we defined ΓP0P as

ΓP0P ¼
1

2

Z
d4xd4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ − JνPðyÞÞ

× phh0jÂI
μðxÞÂI

νðyÞj0iph;

¼ 1

4

Z
d4xd4yðJμP0 ðxÞ − JμPðxÞÞðJνP0 ðyÞ − JνPðyÞÞ

× hfÂI
μðxÞ; ÂI

νðyÞgi:

Replacing the currents JμP and JμP0 with JμPQ and JμP0Q0 in the
above procedure, we can also derive (42).

APPENDIX C: LIÉNARD-WIECHERT
POTENTIALS AND FIELD STRENGTH

In this section, we derive the field strength induced
by a charged particle [45]. The current of a charged particle
is given as a four-vector current in a covariant form
with

JμðxÞ ¼ e
Z

dτ
dXμ

dτ
δð4Þðx − XðτÞÞ; ðC1Þ

where XμðτÞ is the trajectory of the charged particle
parametrized by a proper time τ. Using this current and
the retarded Green’s function,

Gr
μνðx; yÞ ¼ −

ημν
4πjx − yj δðjx − yj − ðx0 − y0ÞÞ; ðC2Þ

we obtain the retarded potential as

AμðxÞ ¼
Z

dyGr μ
νðx; yÞJνðyÞ

¼ e
4π

uμðτrÞ
ðx − XðτrÞÞ · uðτrÞ

; ðC3Þ

where uμ ¼ dXμ=dτ is the four velocity of the charge, and
τr is determined by the light cone condition

−ðt − X0ðτrÞÞ þ jx − XðτrÞj ¼ 0: ðC4Þ

From the definition of the field strength Fμν¼∂
μAν−∂

νAμ,
we obtain

Fμν ¼ Fμν
v þ Fμν

a ; ðC5Þ

Fμν
v ¼ −

e
4π

ðxμ − XμðτrÞÞuνðτrÞ − ðxν − XνðτrÞÞuμðτrÞ
½ðx − XðτrÞÞ · uðτrÞ�3

;

ðC6Þ

Fμν
a ¼ e

4π½ðx−XðτrÞÞ · uðτrÞ�2
ððxμ −XμðτrÞÞ

×

�
_uνðτrÞ−

ðx−XðτrÞÞ · _uðτrÞ
ðx−XðτrÞÞ · uðτrÞ

uνðτrÞ
�

− ðxν −XνðτrÞÞ
�
_uμðτrÞ−

ðx−XðτrÞÞ · _uðτrÞ
ðx−XðτrÞÞ · uðτrÞ

uμðτrÞ
�
;

ðC7Þ

where _uμ ¼ duμ=dτ is the four acceleration. We use the
coordinate time t instead of the proper time τ to rewrite the
above field strengths. The four-vector and four acceleration
as a function of t are

uμ ¼ dXμ

dτ
¼ γ

dXμ

dt
¼ γvμ;

_uμ ¼ duμ

dτ
¼ γ

dγ
dt

vμ þ γ2aμ; ðC8Þ

where vμ and aμ are the velocity and acceleration measured
in the coordinate time t, and γ is the Lorentz factor. These
are defined by
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vμ ¼ dXμ

dt
¼

�
1;
dX
dt

�
T
; aμ ¼ dvμ

dt
¼

�
0;
d2X
dt2

�
T
;

γ ¼ 1ffiffiffiffiffiffiffiffi
−v2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p : ðC9Þ

We then determine the following retarded potential and its
field strength as

AμðxÞ ¼ e
4π

vμðtrÞ
ðx − XðtrÞÞ · vðtrÞ

; ðC10Þ

Fμν
v ¼−

e
4π

ðxμ−XμðtrÞÞvνðtrÞ−ðxν−XνðtrÞÞvμðtrÞ
γ2½ðx−XðtrÞÞ ·vðtrÞ�3

; ðC11Þ

Fμν
a ¼ e

4π½ðx−XðtrÞÞ · vðtrÞ�2

×

�
ðxμ −XμðtrÞÞ

�
aνðtrÞ−

ðx−XðtrÞÞ · aðtrÞ
ðx−XðtrÞÞ · vðtrÞ

vνðtrÞ
�

− ðxν −XνðtrÞÞ
�
aμðtrÞ−

ðx−XðtrÞÞ · aðtrÞ
ðx−XðtrÞÞ · vðtrÞ

vμðtrÞ
��

;

ðC12Þ

where the retarded time tr is given by

−ðt − trÞ þ jx − XðtrÞj ¼ 0: ðC13Þ

APPENDIX D: 1=c EXPANSION OF Φ

We present the 1=c expansion of the quantity

Φ ¼ e
2ℏc

�I
C1

dxμΔA
μ
2ðxÞ þ

I
C2

dxμΔA
μ
1ðxÞ

�
; ðD1Þ

where

ΔAμ
i ðxÞ ¼

X
P¼R;L

ϵP
e
4π

�
vμiPðtiPÞ

ðx − XiPðtiPÞÞ · viPðtiPÞ
�
; ðD2Þ

and vμ ¼ ½c; v�T, ϵR ¼ 1, ϵL ¼ −1, and tiP satisfies the light
cone condition −cðt−tiPÞþjx−XiPðtiPÞj¼0. We restored
the reduced Planck constant ℏ and the light velocity c.
Substituting (D2) into (D1), we obtain

Φ ¼ e2

8πℏc

�I
C1

dxμ
X
Q¼R;L

ϵQ

�
vμ2Qðt2QÞ

ðx − X2Qðt2QÞÞ · v2Qðt2QÞ
�

þ ð1 ↔ 2Þ
�
;

¼ e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ

�
v1PðtÞ · v2Qðt2QÞ

cðX1PðtÞ − Xðt2QÞÞ · v2Qðt2QÞ
�

þ ð1 ↔ 2Þ; ðD3Þ

where we changed the integral as
H
Ci
dxμ ¼P

P¼R;L ϵP
R ðdXμ

iP=dtÞdt ¼
P

P¼R;L ϵP
R
vμiPðtÞdt (i ¼ 1,

2) in the second line. The integrands have the form

v1ðtÞ · v2ðtrÞ
cðX1ðtÞ − X2ðtrÞÞ · v2ðtrÞ

¼ c2 − v1ðtÞ · v2ðtrÞ
cð−cðt − trÞ þ ðX1ðtÞ − X2ðtrÞÞ · v2ðtrÞÞ

;

¼ −1
jX1ðtÞ − X2ðtrÞj − ðX1ðtÞ − X2ðtrÞÞ · v2ðtrÞ=c

×

�
1 −

v1ðtÞ · v2ðtrÞ
c2

�
; ðD4Þ

where the light cone condition −cðt − trÞ þ jX1ðtÞ −
X2ðtrÞj ¼ 0was used in the second line. The 1=c expansion
of the retarded time tr is

tr ¼ t −
1

c
jX1ðtÞ − X2ðtrÞj;

¼ t −
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðtÞ − X2ðtrÞÞ2

q
;

¼ t −
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
X1ðtÞ − X2ðtÞ þ

v2ðtÞ
c

jX1 − X2ðtÞj
�

2

s
þO

�
1

c3

�
;

¼ t −
1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðtÞ − X2ðtÞÞ2 þ ðX1ðtÞ − X2ðtÞÞ ·

2v2ðtÞ
c

jX1ðtÞ − X2ðtÞj
r

þO

�
1

c3

�
;

¼ t −
jX1ðtÞ − X2ðtÞj

c

�
1þ X1ðtÞ − X2ðtÞ

jX1ðtÞ − X2ðtÞj
·
v2ðtÞ
c

�
þO

�
1

c3

�
;

¼ t −
rðtÞ
c

− rðtÞ · vðtÞ
c2

þO
�
1

c3

�
; ðD5Þ
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where rðtÞ ¼ X1ðtÞ − X2ðtÞ and rðtÞ ¼ jrðtÞj. The denominator of the integrand (D4) is

jX1ðtÞ − X2ðtrÞj − ðX1ðtÞ − X2ðtrÞÞ ·
v2ðtrÞ
c

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðtÞ − X2ðtrÞÞ2

q
− ðX1ðtÞ − X2ðtrÞÞ ·

v2ðtrÞ
c

;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
rþ v2

�
r
c
þ r · v2

c2

�
−
r2a2
2c2

�
2

s
−
�
rþ v2

r
c

�
·
1

c

�
v2 −

r
c
a2

�
þO

�
1

c3

�
;

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2r · v2

�
r
c
þ r · v2

c2

�
− 2r ·

r2a2
2c2

þ r2v22
c2

s
−
�
r · v2
c

þ rv22
c2

−
r
c2

r · a2

�
þO

�
1

c3

�
;

¼ r

�
1þ r · v2

r2

�
r
c
þ r · v2

c2

�
− r ·

a2
2c2

þ v22
2c2

−
ðr · v2Þ2
2r2c2

�
−
�
r · v2
c

þ rv22
c2

−
r
c2

r · a2

�
þO

�
1

c3

�
;

¼ r

�
1þ r · v2

r2

�
r
c
þ r · v2

c2

�
− r ·

a2
2c2

þ v22
2c2

−
ðr · v2Þ2
2r2c2

−
r · v2
rc

−
v22
c2

þ r · a2
c2

�
;

¼ r

�
1þ ðr · v2Þ2

2r2c2
−

v22
2c2

þ r · a2
2c2

�
þO

�
1

c3

�
; ðD6Þ

and the numerator of (D4) is

1 −
v1ðtÞ · v2ðtrÞ

c2
¼ 1 −

v1 · v2
c2

þO
�
1

c3

�
; ðD7Þ

where the light cone condition and the Taylor expansion were used and the argument t was omitted. Then, (D4) reduces to

vμ1ðtÞv2μðtrÞ
cðX1ðtÞ − X2ðtrÞÞ · v2ðtrÞ

¼ −1
jX1ðtÞ − X2ðtrÞj − ðX1ðtÞ − X2ðtrÞÞ · v2ðtrÞ=c

�
1 −

v1ðtÞ · v2ðtrÞ
c2

�
;

¼ −1

r½1þ ðr·v2Þ2
2r2c2 −

v2
2

2c2 þ r·a2
2c2 �

�
1 −

v1 · v2
c2

�
þO

�
1

c3

�
;

¼ −
1

r

�
1 −

ðr · v2Þ2
2r2c2

þ v22
2c2

−
r · a2
2c2

−
v1 · v2
c2

�
þO

�
1

c3

�
;

≈ −
1

jX1 − X2j
�
1 −

v1 · v2
c2

þ 1

2c2

�
v22 −

�
X1 − X2

jX1 − X2j
· v2

�
2
	
−
ðX1 − X2Þ · a2

2c2

�
: ðD8Þ

We find that the 1=c expansion of Φ is

Φ¼ e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ

�
v1PðtÞ · v2Qðt2QÞ

cðX1PðtÞ−Xðt2QÞÞ · v2Qðt2QÞ
�
þ ð1↔ 2Þ;

≈−
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ
jX1P −X2Qj

�
1−

v1P · v2Q
c2

þ 1

2c2

�
v22Q −

�
X1P −X2Q

jX1P −X2Qj
· v2Q

�
2
	
−
ðX1P −X2QÞ · a2Q

2c2

�
þ ð1↔ 2Þ:

ðD9Þ
For the nonrelativistic limit c → ∞, the quantity Φ is

Φ→ −
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ
jX1P −X2Qj

þ ð1↔ 2Þ ¼ −
e2

4πℏ

Z
dt

�
1

jX1R −X2Rj
−

1

jX1R −X2Lj
−

1

jX1L −X2Rj
þ 1

jX1L −X2Lj
�
:

ðD10Þ
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This result is equivalent to the quantity (10) (in the unit
ℏ ¼ 1) computed in the nonrelativistic regime.

APPENDIX E: DETAIL DERIVATION
OF ΓRL, Γ1, Γ2, Γc, AND Φ

We present the detailed calculation of ΓRL;Γ1;Γ2;Γc, and
Φ. In this calculation, we assume that the charged particle has
the nonrelativistic velocity. We recover the constants c and ℏ
whenwe show the result of the calculation or use the formula
of the 1=c expansion of Φ derived as (D9).

1. Computations of ΓRL, Γ1, and Γ2

We first calculate the quantity ΓRL. We assume the
following trajectories:

Xμ
PðtÞ ¼ ½t; ϵPXðtÞ; 0; 0�T; ϵR ¼ −ϵL ¼ 1;

XðtÞ ¼ 8L

�
1 −

t
T

�
2
�
t
T

�
2

: ðE1Þ

Using Eq. (28), we obtain

ΓRL ¼ e2

4

I
C
dxμ

I
C
dyμhfÂI

μðxÞ; ÂI
νðyÞgi;

≈
e2

4

I
C
dxμ

I
C
dyμhfÂI

μðx0; 0Þ; ÂI
νðy0; 0Þgi;

¼ e2

4

I
C
dxμ

I
C
dyμ

ημν
4π2

�
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�
;

¼ e2

16π2

Z
T

0

dt

�
dXμ

R

dt
−
dXμ

L

dt

�Z
T

0

dt0
�
dXRμ

dt0
−
dXLμ

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�
;

¼ e2

16π2

Z
T

0

dt
Z

T

0

dt0
�
dXR

dt
−
dXL

dt

�
·

�
dXR

dt0
−
dXL

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�
;

¼ 32e2

3π2
L2

T2
; ðE2Þ

where we took the limit ϵ → 0 after the integration, and in
the second line we used the dipole approximation [41,47]
which ignores the spatial dependence of the photon field.
The dipole approximation is valid when the wave length of
the photon field λp ¼ T is considerably larger than the
typical size (∼L) of the region where the charge exists. This
condition is always satisfied if we assume the nonrelativ-
istic velocity L=T ≪ 1.
We next consider the quantity Γi (48) given in the model

of two charged particles. Because of the time and spatial
translation invariance of the vacuum state, Γi is indepen-
dent of the choice of the origin. Assuming that each of the
charged particles 1 and 2 follows the trajectories defined by
(E1) up to the choice of the origin of the time or spatial axis,
we can evaluate Γ1 and Γ2 as

Γ1 ¼ Γ2 ¼ ΓRL ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; ðE3Þ

where we recovered the constants c and ℏ.

2. Computations of Γc and Φ for the
linear configuration

a. T ≫ D ∼ L or T ≫ D ≫ L regimes

Here, we focus on the regime T ≫ D ∼ L or T ≫ D ≫
L for the linear configuration. We assume the trajectories of
two charged particles 1 and 2 as follows

Xμ
1P ¼ ½t;ϵPXðtÞ;0;0�T; Xμ

2QðtÞ¼ ½t;ϵQXðtÞþD;0;0�T;

ϵR ¼−ϵL ¼ 1; XðtÞ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

: ðE4Þ

The parameters L andD should beD > L ≥ 2XðtÞ to avoid
overlapping each trajectory of particles 1 and 2. First, we
focus on the regime T ≫ D ∼ L. The quantity Γc is
computed by Eq. (49) as
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Γc ¼
e2

2

I
C1

dxμ
I
C2

dyνhfÂI
μðxÞ; ÂI

νðyÞgi;

≈
e2

2

I
C1

dxμ
I
C2

dyνhfÂI
μðx0; 0Þ; ÂI

νðy0; 0Þgi;

¼ e2

2

I
C1

dxμ
I
C2

dyν
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þ
1

−ðx0 − y0 þ iϵÞ2
�
;

¼ e2

8π2

Z
T

0

dt

�
dXμ

1R

dt
−
dXμ

1L

dt

�Z
T

0

dt0
�
dX2Rμ

dt0
−
dX2Lμ

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�
;

¼ e2

8π2

Z
T

0

dt
Z

T

0

dt0
�
dX1R

dt
−
dX1L

dt

�
·

�
dX2R

dt0
−
dX2L

dt0

��
1

−ðt − t0 − iϵÞ2 þ
1

−ðt − t0 þ iϵÞ2
�
;

¼ 64e2

3π2
L2

T2
; ðE5Þ

where the dipole approximation was used in the second line because of the condition T ≫ L. The quantity Φ is evaluated
using the result of (D9) as

Φ ¼ −
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ
jX1P − X2Qj

�
1 −

v1P · v2Q
c2

þ 1

2c2

�
v22Q −

�
X1P − X2Q

jX1P − X2Qj
· v2Q

�
2
	
−
ðX1P − X2QÞ · a2Q

2c2

�
þ ð1 ↔ 2Þ;

¼ −
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ
jD − ðϵP − ϵQÞXðtÞj

�
1 − ϵPϵQ

v2ðtÞ
c2

− ϵQ
f−Dþ ðϵP − ϵQÞXðtÞgaðtÞ

2c2

�
þ ð1 ↔ 2Þ;

¼ −
e2

4πℏ

Z
dt

�
2

D

�
1 −

v2

c2

�
−
�
1þ v2

c2

��
1

jD − 2XðtÞj þ
1

jDþ 2XðtÞj
�
þ aðtÞ

2c2

�
D − 2XðtÞ
jD − 2XðtÞj −

Dþ 2XðtÞ
jDþ 2XðtÞj

��
;

¼ −
e2

4πℏ

Z
dt

�
2

D

�
1 −

v2

c2

�
−
�
1þ v2

c2

��
1

D − 2XðtÞ þ
1

Dþ 2XðtÞ
��

; ðE6Þ

where we have recovered the natural units c and ℏ to show the result of the 1=c expansion. Next, we consider the regime
T ≫ D ≫ L. In this regime, we obtain the Γc and Φ using (49) and (E6) as follows:

Γc ¼
e2

2

I
C1

dxμ
I
C2

dyνhfÂI
μðxÞ; ÂI

νðyÞgi;

¼ e2

2

I
C1

dxμ
I
C2

dyν
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þ jx − yj2 þ
1

−ðx0 − y0 þ iϵÞ2 þ jx − yj2
�
;

≈
e2

2

I
C1

dxμ
I
C2

dyν
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þD2
þ 1

−ðx0 − y0 þ iϵÞ2 þD2

�
;

¼ e2

8π2

Z
T

0

dt

�
dXμ

1R

dt
−
dXμ

1L

dt

�Z
T

0

dt0
�
dX2Rμ

dt0
−
dX2Lμ

dt0

��
1

−ðt − t0 − iϵÞ2 þD2
þ 1

−ðt − t0 þ iϵÞ2 þD2

�
;

¼ e2

8π2

Z
T

0

dt
Z

T

0

dt0
�
dX1R

dt
−
dX1L

dt

�
·

�
dX2R

dt0
−
dX2L

dt0

��
1

−ðt − t0 − iϵÞ2 þD2
þ 1

−ðt − t0 þ iϵÞ2 þD2

�
;

≈
64e2

3π2
L2

T2

�
1þ 4D2

T2
ln
�
D
T

��
; ðE7Þ

where the distance between the particles jx − yj was approximated asD because ofD ≫ L in the third line, and in the final
line we took the limit ϵ → 0 and the leading order of T=D ≪ 1 after the integration, and
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Φ ¼ −
e2

4πℏ

Z
dt

�
2

D

�
1 −

v2

c2

�
−
�
1þ v2

c2

��
1

D − 2XðtÞ þ
1

Dþ 2XðtÞ
��

;

≈ −
e2

4πℏ

Z
dt

�
2

D

�
1 −

v2

c2

�
−

2

D

�
1þ v2

c2

��
1þ 4X2ðtÞ

D2

��
;

≈ −
e2

4πℏ

Z
dt

�
−
4

D
v2

c2
−
8X3ðtÞ
D3

�
;

¼ 64e2

315πℏc

�
L
cT

�
2
�
6cT
D

þ
�
cT
D

�
3
�
; ðE8Þ

where we took the leading order of 4X2ðtÞ=D2 ∼
OðL2=D2Þ ≪ 1 in the second line, and neglected
OðL4=D4Þ in the last line. Therefore, we obtain the result
in the linear configuration in cT ≫ D ≫ L regime as

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ;

Γc ≈
64e2

3π2ℏc
L2

ðcTÞ2
�
1þ 4D2

ðcTÞ2 ln
�
D
cT

��
;

Φ ≈
64e2

315πℏc

�
L
cT

�
2
�
6cT
D

þ
�
cT
D

�
3
�
: ðE9Þ

b. D ≫ T ≫ L regime

Here, we focus on the regime D ≫ T ≫ L and calculate
the quantities Γc and Φ. We assume the following trajec-
tories of the two charged particles 1 and 2 as

Xμ
1PðtÞ¼ ½t;ϵPXðtÞ;0;0�T;

Xμ
2QðtÞ¼ ½t;ϵQXðt−DÞþD;0;0�T;

ϵR ¼−ϵL¼ 1; XðtÞ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ðE10Þ

where Xμ
2Q is defined inD ≤ t ≤ T þD. First, we calculate

the quantity Γc in this regime by using (49) as

Γc ¼
e2

2

I
C1

dxμ
I
C2

dyνhfÂI
μðxÞ; ÂI

νðyÞgi;

¼ e2

2

I
C1

dxμ
I
C2

dyν
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þ jx − yj2 þ
1

−ðx0 − y0 þ iϵÞ2 þ jx − yj2
�
;

≈
e2

2

I
C1

dxμ
I
C2

dyν
ημν
4π2

�
1

−ðx0 − y0 − iϵÞ2 þD2
þ 1

−ðx0 − y0 þ iϵÞ2 þD2

�
;

¼ e2

8π2

Z
T

0

dt

�
dXμ

1R

dt
−
dXμ

1L

dt

�Z
TþD

D
dt0

�
dX2Rμ

dt0
−
dX2Lμ

dt0

��
1

−ðt − t0 − iϵÞ2 þD2
þ 1

−ðt − t0 þ iϵÞ2 þD2

�
;

¼ e2

8π2

Z
T

0

dt
Z

TþD

D
dt0

�
dX1R

dt
−
dX1L

dt

�
·

�
dX2R

dt0
−
dX2L

dt0

��
1

−ðt − t0 − iϵÞ2 þD2
þ 1

−ðt − t0 þ iϵÞ2 þD2

�
;

≈
e2

8π2
4

D2

Z
T

0

dt
Z

TþD

D
dt0

dXðtÞ
dt

·
dXðt0 −DÞ

dt0

�
1þ ðt − t0 − iϵÞ2

D2
þ 1þ ðt − t0 þ iϵÞ2

D2

	
;

¼ e2

2π2D4

Z
T

0

dt
Z

TþD

D
dt0

dXðtÞ
dt

·
dXðt0 −DÞ

dt0
fðt − t0 − iϵÞ2 þ ðt − t0 þ iϵÞ2g;

¼ −
32e2

225π2
L2T2

D4
; ðE11Þ

where the distance between the particles jx − yj was approximated as D because of D ≫ L in the third line. We used the
geometric series expansion because of jðt − t0 � iϵÞj < T ≪ D in the third to last line, and in the final line, we took the limit
ϵ → 0 after the integration. We next calculate the quantity Φ using Eq. (54) in this regime. The quantity Φ is
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Φ ¼ e
4

�Z
S1

dσμνΔF
μν
2 ðxÞ þ

Z
S2

dσμνΔF
μν
1 ðxÞ

�
;

¼ e
4

Z
S2

dσμνΔF
μν
1 ðxÞ;

¼ e
2

Z
TþD

D
dt

Z
X2RðtÞþD

X2LðtÞþD
dxΔF01

1 ðt; x; 0; 0Þ;

¼ e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dxΔF01

1 ðt; xþD; 0; 0Þ; ðE12Þ

where the region S2 ¼ fD ≤ t ≤ T þD;X2LðtÞ þD ≤
x ≤ X2RðtÞ þD; y ¼ 0; z ¼ 0g, and the first term in the
first line vanishes because, in this configuration, particle 1
does not experience the retarded field of particle 2. We
changed the variable x → xþD in the final line. The
quantity Φ is decomposed into two terms Φ ¼ Φv þΦa,
which are given as follows [see Eqs. (C11) and (C12) in
Appendix C]

Φv ¼
e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dxΔF01

1;vðt; xþD; 0; 0Þ;

¼ e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
e
4π

ðt − t1PÞv1Pðt1PÞ − ðxþD − X1Pðt1PÞÞ
γ21P½t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ�3

�
; ðE13Þ

Φa ¼
e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dxΔF01

1;aðt; xþD; 0; 0Þ;

¼ e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP
e

4π½t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ�2

×

�
ðt − t1PÞ

�
a1Pðt1PÞ þ

ðxþD − X1Pðt1PÞÞa1Pðt1PÞ
t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ

v1Pðt1PÞ
�

−
ðxþD − X1Pðt1PÞÞ2a1Pðt1PÞ

ðt − t1PÞ − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ
��

;

¼ e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

� ðt − t1PÞ2 − ðxþD − X1Pðt1PÞÞ2
½t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ�3

�
a1Pðt1PÞ; ðE14Þ

where the retarded time t1p is approximated by neglecting OðL2=D2Þ as

t1P ¼ t − jx − X1Pðt1PÞj ¼ t −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþD − X1Pðt1PÞÞ2

q
≈ t −D; ðE15Þ

where ðx − X1Pðt1PÞÞ ∼OðLÞ. For D ≫ cT ≫ L, we can approximate Φv as

Φv ¼
e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
e
4π

ðt − t1PÞv1Pðt1PÞ − ðxþD − X1Pðt1PÞÞ
γ21P½t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ�3

;

≈
e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
v1Pðt −DÞ

D2
þ X1Pðt −DÞ

D3
−
xþD
D3

�
;

¼ e2

8π

Z
TþD

D
dtðX2RðtÞ − X2LðtÞÞ

�
v1Rðt −DÞ − v1Lðt −DÞ

D2
þ X1Rðt −DÞ − X1Lðt −DÞ

D3

�
;

¼ 16e2

315π

L2T
D3

: ðE16Þ

Moreover, in the second line of the above equation, we substituted the retarded condition (E15) into Eq. (E16) and
approximated the denominator as

γ21P½t − t1P − ðxþD − X1Pðt1PÞÞv1Pðt1PÞ� ≈ ð1 − v21Pðt −DÞÞ−1½D − ðxþD − X1Pðt −DÞÞv1Pðt −DÞ�;
¼ Dð1 − v21Pðt −DÞÞ−1½1 − ð1þ ðx − X1Pðt −DÞÞ=DÞv1Pðt −DÞ�;
≈D; ðE17Þ
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where v1P ∼OðL=TÞ, v21P ∼OðL2=T2Þ, and ðx − X1PÞ=D ∼
OðL=DÞ were neglected in the last line. However, the
quantity Φa is exactly equal to zero because of the retarded
time condition (E15). This result indicates that in the context
of Eq. (78), the electric field E1R;a

x ðE1L;a
x Þ is equal to zero

because the electromagnetic wave cannot propagate the
direction of the acceleration of the charged particle 1.
Therefore, we summarize the result in the linear configura-
tion in D ≫ cT ≫ L regime as follows

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; Γc ≈ −
32e2

225π2ℏc
L2ðcTÞ2

D4
;

Φ ≈
16e2

315πℏc
L2ðcTÞ
D3

: ðE18Þ

3. Computation of Γc and Φ
for parallel configuration

a. T ≫ L ≫ D or T ≫ D ≫ L regimes

Here, we focus on the regimes T ≫ L ≫ D or
T ≫ D ≫ L and calculate the quantities Γc and Φ.

We assume the following trajectories of the two charged
particles 1 and 2 as

Xμ
1PðtÞ ¼ ½t; ϵPXðtÞ;0;0�T; Xμ

2QðtÞ ¼ ½t; ϵQXðtÞ;D;0�T;

ϵR ¼ −ϵL ¼ 1; XðtÞ ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ðE19Þ

In these regimes, the approximate form of Γc is equal
to (E7). Neglecting OðD2=T2Þ in T ≫ L ≫ D, we obtain
the quantity Γc as

Γc ≈
64e2

3π2
L2

T2
; ðE20Þ

The quantity Φ up to Oð1=c2Þ obtained from (D9) is

Φ ¼ −
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQ
jX1P −X2Qj

�
1−

v1P · v2Q
c2

þ 1

2c2

�
v22Q −

�
X1P − X2Q

jX1P − X2Qj
· v2Q

�
2
	
−
ðX1P −X2QÞ · a2Q

2c2

�
þ ð1↔ 2Þ;

¼ −
e2

8πℏ

Z
dt

X
P;Q¼R;L

ϵPϵQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1P − X2QÞ2 þD2

q �
1−

v1Pv2Q
c2

þ 1

2c2

�
v22Q −

�
X1P − X2Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX1P − X2QÞ2 þD2
q v2Q

�
2
	
−
ðX1P − X2QÞa2Q

2c2

�
þ ð1 ↔ 2Þ;

¼ −
e2

4πℏ

Z
dt

�
2

D

�
1−

v2

2c2

�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4X2 þD2

p
�
1þ

�
1þ D2

2ð4X2 þD2Þ
�
v2

c2
þXa

c2

��
: ðE21Þ

For cT ≫ L ≫ D, the quantity Φ is approximated as

Φ ¼ −
e2

4πℏ

Z
dt

�
2

D

�
1 −

v2

2c2

�

−
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4X2 þD2
p

�
1þ

�
1þ D2

2ð4X2 þD2Þ
�
v2

c2
þ Xa

c2

��
;

≈ −
e2

4πℏ

Z
dt

2

D

�
1 −

v2

2c2

�
;

¼ −
e2

2πℏc
cT
D

�
1 −

64L2

105ðcTÞ2
�
; ðE22Þ

where we neglected OðD=LÞ in the second line. In the
regime cT ≫ D ≫ L, we obtain

Φ ¼ −
e2

4πℏ

Z
dt

�
2

D

�
1−

v2

2c2

�

−
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4X2 þD2
p

�
1þ

�
1þ D2

2ð4X2 þD2Þ
�
v2

c2
þXa

c2

��
;

≈−
e2

4πℏ

Z
dt

�
4X2

D3
−
4v2 þ 2Xa

c2D

�
;

¼ −
32e2

315πℏc
cTL2

D3

�
1−

6D2

ðcTÞ2
�
; ðE23Þ

where we used the Taylor expansion ð4X2þD2Þα≈D2αð1þ
4αX2=D2Þ in the first line and neglected OðL3=T3Þ in the
second line. Consequently, Γ1;Γ2;Γc, and Φ in the parallel
configuration are obtained as
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Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; Γc ≈
64e2

3π2ℏc
L2

ðcTÞ2 ;

Φ ≈ −
e2

2πℏc
cT
D

�
1 −

64L2

105ðcTÞ2
�
; ðE24Þ

for cT ≫ L ≫ D, and

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ;

Γc ≈
64e2

3π2ℏc
L2

ðcTÞ2
�
1þ 4D2

ðcTÞ2 ln
�
D
cT

��
;

Φ ≈ −
32e2

315πℏc
cTL2

D3

�
1 −

6D2

ðcTÞ2
�
; ðE25Þ

for cT ≫ D ≫ L, respectively.

b. D ≫ T ≫ L regime

Here, we consider the D ≫ T ≫ L regime and calculate
the quantities Γc and Φ. In this regime, the trajectories
of the two charged particles 1 and 2 are assumed as
follows

Xμ
1PðtÞ¼ ½t;ϵPXðtÞ;0;0�T; Xμ

2PðtÞ¼ ½t;ϵPXðt−DÞ;D;0�T;

ϵR ¼−ϵL ¼ 1; XðtÞ¼ 8L

�
1−

t
T

�
2
�
t
T

�
2

; ðE26Þ

where Xμ
2Q is defined in D ≤ t ≤ T þD. The quantity Γc is

equal to the Eq. (E11) because we can approximate the
difference of the distance of the two charged particles
jx − yj ≈D and use the geometric series expansion
because of jðt − t0 � iϵÞj=D < T=D ≪ 1 in this regime
[detailed derivation, see Eq. (E11)]. The quantity Φ is
obtained as

Φ ¼ e
4

�Z
S1

dσμνΔF
μν
2 ðxÞ þ

Z
S2

dσμνΔF
μν
1 ðxÞ

�
;

¼ e
4

Z
S2

dσμνΔF
μν
1 ðxÞ;

¼ e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dxΔF01

1 ðt; x; D; 0Þ; ðE27Þ

where we note that the region S2 ¼ fD ≤ t ≤ T þD;
X2LðtÞ ≤ x ≤ X2R; y ¼ D; z ¼ 0g; in this configuration
of interest, the first term in the first line vanishes
because the retarded field from particle 2 is causally
disconnected with particle 1. The retarded time t1p is
approximated as

t1P ¼ t − jx − X1Pðt1PÞj ¼ t −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − X1Pðt1PÞÞ2 þD2

q
≈ t −D −

ðx − X1Pðt −DÞÞ2
2D

; ðE28Þ

where ðx−X1Pðt1PÞÞ∼OðLÞ andOðL2=D2Þ was neglected.
We therefore obtain the quantity Φv and Φa as

Φv ¼
e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
e
4π

ðt − t1PÞv1Pðt1PÞ − ðx − X1Pðt1PÞÞ
γ21P½t − t1P − ðx − X1Pðt1PÞÞv1Pðt1PÞ�3

�
;

≈
e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
v1Pðt −DÞ

D2
−
x − X1Pðt −DÞ

D3

�
;

¼ e2

8π

Z
TþD

D
dtðX2RðtÞ − X2LðtÞÞ

�
v1Rðt −DÞ − v1Lðt −DÞ

D2
þ X1Rðt −DÞ − X1Lðt −DÞ

D3

�
;

¼ 16e2

315π

L2T
D3

; ðE29Þ

where in the second line of the above equation, the denominator was approximated in the same manner performed
in (E17), and
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Φa ¼
e
2

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP
e

4π½t − t1P − ðx − X1Pðt1PÞÞv1Pðt1PÞ�2

×

�
ðt − t1PÞ

�
a1Pðt1PÞ þ

ðx − X1Pðt1PÞÞa1Pðt1PÞ
t − t1P − ðx − X1Pðt1PÞÞv1Pðt1PÞ

v1Pðt1PÞ
�
−

ðx − X1Pðt1PÞÞ2a1Pðt1PÞ
ðt − t1PÞ − ðx − X1Pðt1PÞÞv1Pðt1PÞ

��
;

¼ e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

� ðt − t1PÞ2 − ðx − X1Pðt1PÞÞ2
½t − t1P − ðx − X1Pðt1PÞÞv1Pðt1PÞ�3

�
a1Pðt1PÞ;

¼ e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP

�
D2

½t − t1P − ðx − X1Pðt1PÞÞv1Pðt1PÞ�3
�
a1Pðt1PÞ;

≈
e2

8π

Z
TþD

D
dt

Z
X2RðtÞ

X2LðtÞ
dx

X
P¼R;L

ϵP
a1Pðt −DÞ

D
;

¼ e2

8π

Z
TþD

D
dtðX2RðtÞ − X2LðtÞÞ

�
a1Rðt −DÞ − a1Lðt −DÞ

D

�
;

¼ −
64e2

105π

L2

DT
; ðE30Þ

where we substituted the retarded time condition (E28) into
the second line of the above equation and neglected the
OðL2=D2Þ and v ∼OðL=TÞ in the third line of the
denominator. Consequently, the quantity Φ is

Φ ≈ −
64e2

105π

L2

DT

�
1 −

T2

12D2

�
≈ −

64e2

105π

L2

DT
; ðE31Þ

where we neglected the second term because of D ≫ T in
the last equality. Thus, Γ1;Γ2;Γc, and Φ in the parallel
configuration in the regime D ≫ cT ≫ L are

Γ1 ¼ Γ2 ≈
32e2

3π2ℏc
L2

ðcTÞ2 ; Γc ≈ −
32e2

225π2ℏc
L2ðcTÞ2

D4
;

Φ ≈ −
64e2

105πℏc
L2

DðcTÞ : ðE32Þ
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