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In this paper the influence of chiral chemical potential μ5 on the phenomenon of diquark condensation
and phase structure of dense quark matter altogether is contemplated in the framework of the effective
2-color and 2-flavor Nambu–Jona-Lasinio model. The nonzero values of baryon μB, isospin μI and chiral
isospin μI5 chemical potentials are also taken into account. We show that the duality relations between
diquark condensation, charged pion condensation, and chiral symmetry breaking phenomena, found in the
case of zero μ5, are also valid for any value of μ5 ≠ 0. In terms of dualities and the influence on the phase
diagram, chiral imbalance μ5 stands alone from other chemical potentials. Indeed, in comparison with other
chemical potentials, μ5 has two interesting features. (i) In the region of moderate values of μB, μI , and μI5 it
manifests itself as a universal catalyst, since it enhances just the phase that is realized in the system at
μ5 ¼ 0. (ii) In the second regime, when several other chemical potentials reach rather large values, one
could observe a rather complicated and rich phase structure, and chiral chemical potential μ5 can be a factor
that not so much catalyzes as triggers rather peculiar phases.
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I. INTRODUCTION

It is well known that quantum chromodynamics (QCD)
is the theory of hot and dense strongly interacting matter.
And the great interest are properties and phase diagram of
dense baryon (quark) matter, which may be realized in
heavy-ion collision experiments or inside compact stars
[1]. However, at the corresponding values of temperature
and baryon density, the QCD interaction constant is quite
large. Therefore, using the usual perturbation method, it is
impossible to obtain an adequate picture of the phenomena
of dense quark matter. In this case different effective low-
energy QCD-like models, among which are the well-
known Nambu–Jona-Lasinio (NJL) type models [2–4],
etc, can be used to describe the corresponding parts of the
QCD phase diagram. Alternatively, one can apply numeri-
cal lattice Monte Carlo simulation methods (see, e.g.,
Ref. [5]). But due to a notorious sign problem of the quark
determinant, the first-principle lattice approach in the
three-color QCD is limited by the systems with zero

baryon chemical potential μB, i.e., when baryon density
of the system is equal to zero.1

In contrast, in the QCD with an even flavor number Nf
(below we consider the two-flavor case, i.e., Nf ¼ 2) of
two-colored quarks the sign problem of the quark deter-
minant is absent at μB ≠ 0. Moreover, this theory shares
such an important aspect of real (Nc ¼ 3)-color QCD as
spontaneous chiral symmetry breaking at low temperatures.
Or the low-energy excitations in both theories consist of
color-singlet hadrons, etc., i.e., the 2-color QCD is a good
basis to test various ideas of the 3-color QCD at μB ≠ 0.
So a lot of investigations of the phase diagram of two-color
QCD have been carried out at μB ≠ 0 both using the lattice
approach and within the framework of some low-energy
effective models [6–21]. However, for the sake of clarity,
it should be noted that there are serious qualitative
differences between two- and three-color QCD. Namely,
in the first case baryons, including diquarks, are bosons,
while at Nc ¼ 3 all baryons are fermions. In addition, in
the massless case the flavor (chiral) symmetry of the
3-color QCD is SUðNfÞL × SUðNfÞR × Uð1Þ, whereas
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1Note that throughout the paper we deal only with quarks
belonging to the fundamental representation of the color SUðNcÞ
group. If they are in the adjoint representation of the SUðNc ¼ 3Þ,
then the sign problem is absent [6].
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in the 2-color massless QCD this flavor symmetry is
enhanced to SUð2NfÞ, and sometimes referred to as the
Pauli-Gursey symmetry [7]. Moreover, as it was recently
shown in Ref. [22], the Standard Model based on two-color
QCD can have quite different properties than atNc ¼ 3, etc.
Strictly speaking, all of the above refers to the descrip-

tion of the properties of hypothetical quark matter, which is
characterized by only one, baryonic, chemical potential μB.
However, dense baryonic matter, which can exist in neutron
stars or be even observed in heavy-ion collision experi-
ments, is characterized by at least one more property. It is
isospin asymmetry, i.e., when there are different densities
of u and d quarks in medium. And in this case there appears
an additional isospin chemical potential μI in the system
(see, e.g., the review [4]).
Moreover, in hot and magnetized quark matter chiral

asymmetry of the medium can also be observed. In the most
general case this phenomenon can be described by two
chemical potentials, chiral μ5 and chiral isospin μI5, and they
are thermodynamically conjugated to chiral n5 and chiral
isospin nI5 densities, respectively (a more detailed discus-
sion of these quantities is given in the next section). Chiral
density n5 ¼ nR − nL (here nR and nL are densities of all
right- and left-handed quarks, respectively) can be generated
dynamically at high temperatures, for example, in the
fireball after heavy ion collision, by virtue of the Adler-
Bell-Jackiw anomaly and quarks interacting with gauge
(gluon) field configurationswith nontrivial topology, named
sphalerons. In addition, in the presence of an external strong
magnetic fieldB, both chiral density n5 and chiral chemical
potential μ5 can be produced (even at rather low temper-
ature) in dense quark matter due to the so-called chiral
separation effect [23]. Then, it was shown that at B ≠ 0 the
presence of nonzero μ5 can lead to the so-called chiral
magnetic effect [24–26], i.e., when in the system ofmassless
fermions an electric current J ∼ μ5B appears. Moreover,
chiral asymmetry with μ5 ≠ 0 and chiral magnetic effect
play a significant role in different physical systems such as
quark-gluon plasma, chiral materials, etc. [27,28].
Usually, when we talk about chiral density n5 of the

whole system (consisting of u and d quarks) one implies
that chiral density nu5 of u quarks and chiral density nd5 of
d quarks are equal to each other (it is evident that
n5 ¼ nu5 þ nd5). Indeed, that is the case when one has
in mind the mechanism of generation of chiral imbalance at
high temperatures due to nontrivial topology of gauge field
configuration. In this case it is quite plausible that nu5 ¼
nd5 due to the fact that gluon field interacts with different
quark flavors in exactly the same way and does not feel the
difference between flavors. But another mechanism, the
chiral separation effect, is sensitive to the flavor of quarks
(as it was shown in Appendices A to the papers [29]). So in
dense quark matter (even at low temperatures) a strong
magnetic field separates u and d quarks in different ways.
As a result, we see that, e.g., in such astrophysical objects

as magnetars there might exist areas, in which the quantity
nI5 ≡ nu5 − nd5, called the chiral isospin density, is not
zero. As a result, in order to study properties of the system
in this case the isospin chemical potential μI5 should also be
introduced.
Thus, the phase structure of real dense quark (baryonic)

matter should be described, strictly speaking, in terms of
QCD with several chemical potentials. But in this case,
we still have no reliable first-principle computations for
finite-density QCD both in the three and two-color quark
approaches. The reason again lies in the sign problem of the
quark determinant, which arises in the lattice approach even
in the framework of the 2-color QCD when describing
dense quark matter with additional chemical potentials.2

And, therefore, in this case the properties of dense baryonic
medium, formed from both 3-color and hypothetical
2-color quarks, are most adequately described only within
the framework of low-energy effective models such as NJL
models, etc.
Recently, the properties of Nc ¼ 3 dense quark matter

with isospin asymmetry (μI ≠ 0) have been studied just in
the framework of various NJL-type models with two quark
flavors, where, in particular, it was noted that at μI > mπ

(here mπ is the pion mass) in such a medium a phase with
condensation of charged pions can be observed (for it we
use the notation charged PC phase) [30–36]. Furthermore,
if in addition the chiral asymmetry of quark matter is also
taken into account, i.e., μ5 ≠ 0 or μI5 ≠ 0, then the
possibility of appearance of the charged PC phenomenon
in the system is predicted with even greater reliability
[29,37–39]. Notice that in the last papers it was also shown
that at μI ≠ 0 and μI5 ≠ 0, as well as at μB ≠ 0, there is a
duality between the phenomena of spontaneous chiral
symmetry breaking (CSB) and condensation of charged
pions. It means that on the ðμB; μI; μI5Þ-phase diagram of
quark matter,3 obtained in the framework of these simplest
Nc ¼ 3 NJL models, (i) only nontrivial CSB and charged
PC phases are present, and (ii) these phases are arranged
symmetrically on the full phase portrait of quark matter (at
zero bare quark mass m0 the dual symmetry is exact, but if
m0 ≠ 0 it is an approximate one [29]). However, since only
the simplest, quark-antiquark, of all possible quark inter-
action channels was taken into account in the structure of
these Nc ¼ 3 NJL models, the results of Refs. [29,37–39]
can be trusted in the region of rather low values of baryon
densities, i.e., at μB < 1 GeV, where other phenomena
such as color superconductivity, etc are forbidden. And this
is despite the fact that the above mentioned dual sym-
metry (property) of quark matter at low baryon densities
is consistent with calculations, for example, of the

2For example, it is shown in Ref. [21] that the 2-color QCD
suffers from the sign problem if both μB and μI are present.

3Here and below we discuss the properties of dense quark
matter formed of u and d quark flavors only.
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(pseudo)-critical temperature of its crossover transition to
the quark gluon plasma phase, made in the lattice approach
(see, e.g., the discussion in Ref. [29]). At higher densities,
i.e., at μB > 1 GeV, in addition to the quark-antiquark, it is
necessary to take into account other, for example, diquark,
etc, interaction channels, which also participate in the
formation of the phase portrait of dense baryonic matter.
In the present paper, an attempt is performed to find out

how the phenomenon of condensation of diquark pairs,
which in the real 3-color case corresponds to color super-
conductivity (CSC) phenomenon, can affect the duality
between the CSB and charged PC phases. According to a
number of studies of CSC [40], this phase of dense quark
matter can be realized in the cores of neutron stars.Naturally,
in this case there is an isospin asymmetry (different densities
of u and d quarks) of quarkmatter.Moreover, it is also under
the influence of strong magnetic field, leading to chiral
asymmetry of quark medium (see, e.g., the discussion in
Ref. [29]). To simplify the consideration of the problem, in
our recent paper [41] the phase structure of the 2-color and
2-flavor massless NJL model was investigated in the mean-
field approximation at three nonzero chemical potentials,
μB ≠ 0, μI ≠ 0, and μI5 ≠ 0. It is well known that at low
energies this model is equivalent to the 2-color QCD (see,
e.g., Ref. [8]) with the same set of chemical potentials, and
its simplest particle excitations are σ and π mesons and
colorless diquark baryons with zero spin. So, in the ground
state of theNc ¼ 2 systemunder consideration there can be a
condensation of σ particles, and in this case the CSB phase is
realized. If π� are condensed—the charged PC phase is
observed. Finally, the condensation of baryonic colorless
diquarks leads to the phase of quarkmatterwith spontaneous
breaking of baryonic Uð1ÞB symmetry, and we call it the
baryonic superfluid (BSF) phase. It is shown inRef. [41] that
one more, diquark, channel of quark interactions does not
spoil at all the dual symmetry between CSB and charged PC
phenomena at large μB. Moreover, in this case there appear
two additional dual symmetries of the ðμB; μI; μI5Þ-phase
portrait of the model: between the BSF and CSB phases, as
well as between the BSF and charged PC phases.
We emphasize once again that in the paper [41] the chiral

asymmetry of 2-color quarkmatter was taken into account in
the formwhen only μI5 is not equal to zero. However, in real
systems the chiral asymmetry of the medium in the form
when μ5 ≠ 0 could play a key role [42–46]. And in all
scenarios where the chiral isospin μI5 imbalance occurs, as a
rule, the chiral μ5 imbalance is also nonzero. Furthermore, in
heavy-ion collisions due to large temperatures and nontrivial
gluon configurations chiral imbalance μ5 may appear.
Therefore, it would be interesting to clarify the situation
with the dual symmetries of the phase diagramof this system
in the most general case, when all four chemical potentials
are taken into account, i.e., at μB ≠ 0, μI ≠ 0, μI5 ≠ 0, and
μ5 ≠ 0. And clarify if chiral imbalance μ5 breaks the
dualities and how it fits in the duality picture. Moreover,

the purpose of the present paper is to investigate the
influence ofμ5 on the phenomenon of diquark condensation.
So the present paper is really a continuation of our previous
study [41] of the properties of the 2-color NJL model. And
this time we are just considering its phase structure taking
into account μ5 in addition to μB, μI , and μI5.
Let us also note that in the 2-color case one can study on

lattice as nonzero μB ≠ 0 as well as nonzero chiral
imbalance μ5 of quark matter. Hence it is of special interest
to compare lattice approach to 2-color quark matter with the
results obtained in effective model discussed here.
The main results and the structure of the paper are as

follows. In Sec. II the 2-color NJL model and its thermo-
dynamic potential are presented in the mean-field approxi-
mation. In Sec. III the thermodynamic potential is
calculated and it is shown that three dualities found in
the case μ5 ¼ 0 in Ref. [41] are also valid in the general
case at any μ5 ≠ 0. It turns out that the full ðμB; μI; μI5; μ5Þ-
phase diagram of the model is interconnected by the
dualities and possesses a very high (dual) symmetry.
Chiral μ5 is the only chemical potential that keeps the
dual symmetry intact but is not involved in it itself, it only
deforms the whole phase diagram. This deformation should
respect the high symmetry that puts rather tight constraints
on the possible influence of μ5 on the phase diagram.
In Sec. IV the phase diagram itself is studied numeri-

cally. Section IVA contains the discussion of the case when
besides μ5 ≠ 0, only one of the basic chemical potentials
μB, μI and μI5 is nonzero. Already in this case, one could
see two interesting features of chiral μ5 imbalance, its
chameleon nature and its property of being universal
catalyst. It is shown that it can catalyze every phenomena
in the system: the catalysis of CSB by μ5 was discussed in
detail in the literature before (see, e.g., in Refs. [46–48]),
but the catalysis/enhancement of charged PC and diquark
condensation by chiral μ5 imbalance is its new feature.
Chameleon nature signifies that chiral μ5 chemical potential
can take on a role of any other chemical potential and have
the same influence on the phase structure (being universal
catalyzer is one of manifestations of chameleon properties).
In particular, chiral chemical potential can take a role of
isospin one and in equal degree catalyze charged PC, or it
can mimic baryon one and catalyze diquark condensation.
These properties are implications of high symmetry of the
phase diagram that is caused by duality properties.
In Sec. IV B the regime of small or moderate values of the

basic chemical potentials μB, μI , and μI5 is discussed. One
should not treat this regime as only small values of these
chemical potentials and it covers quite a bit of the phase
diagram just excluding the regimewhen several, two or three,
chemical potentials μB, μI, and μI5 reach high values. In this
regime the phase diagram is very concise and elegant, each of
the basic chemical potential triplet supports only one specific
phenomenon (μI5 induces chiral symmetry breaking, μI—
charged PC and μB leads to diquark condensation), and the
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largest of the basic chemical potential settles the correspond-
ing phase. In this regime, μ5 does not break this correspon-
dence and does not play any role in determining the prevailed
phase, but its role is the same as in particular case discussed
above, i.e., in Sec. IVA, it is universal catalyzer which
enhances/catalyzes all the phenomena picked by other
chemical potentials on equal footing.
Section IV C contains the consideration of the regime

when several, two or three, basic chemical potentials reach
rather high values. In Sec. IV C 1 we study the case when
only two of chemical potentials μB, μI , and μI5 are large and
nonzero. In this case μ5 can cause nontrivial phases to
appear, and, depending on the conditions, as a chameleon it
could mimic various chemical potentials and trigger all the
possible phases. Section IV C 2 contains the discussion of
the most generic case when all basic chemical potentials are
nonzero. One could observe a rather complicated and rich
phase structure in this case and chiral μ5 chemical potential
is shown to trigger rather peculiar phases. For example,
diquark condensation by taking the role of baryon chemical
potential (at zero baryon chemical potential), which is
quite unusual. Or charged PC at μI ¼ 0 by mimicking the
property of isospin chemical potential, etc. Also the
transitory regime is considered, i.e., borderline region
between the discussed above regimes. In this case espe-
cially rich phase structure is observed and by changing
chemical potentials in a rather narrow range a series of first
order phase transitions between all the possible phases of
the system could be observed.

II. TWO-COLOR (3 + 1)-DIMENSIONAL NJL
MODEL AND ITS THERMODYNAMIC

POTENTIAL

In order to obtain an effective 4-quark Lagrangian
(which is usually called the NJL Lagrangian) that would
reproduce the basic low-energy properties of dense quark
matter with isospin and chiral asymmetries and formed by
u and d two-color quarks, it is necessary first to integrate
out the gluon fields in the generating functional of the
corresponding QCD theory. Then, replacing the nonper-
turbative gluon propagator by a δ-function, one arrives at an
effective local chiral four-quark interaction Lagrangian of
the form ðcolor currentÞ × ðcolor currentÞ of the NJL type
describing low-energy hadron physics. Finally, by perform-
ing a Fierz transformation of this interaction term and
taking into account only scalar and pseudoscalar ðq̄qÞ—as
well as scalar ðqqÞ-interaction channels, one obtains a four-
fermionic model given by the following Lagrangian (in
Minkowski space-time notation)4

L ¼ q̄½i∂̂ −m0�qþH½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2
þ ðq̄iγ5σ2τ2qcÞðqciγ5σ2τ2qÞ� þ qMγ0q; ð1Þ

where (here we use the notations μ ¼ μB=2, ν ¼ μI=2, and
ν5 ¼ μI5=2)

5

M ¼ μþ ντ3 þ ν5γ
5τ3 þ μ5γ

5: ð2Þ

In (1), the quark field q≡ qiα is a flavor and color doublet
as well as a four-component Dirac spinor, where i ¼ 1, 2 or
u, d; α ¼ 1, 2. (Latin and Greek indices refer to flavor and
color indices, respectively; spinor indices are omitted.)
Furthermore, we use the notations τ⃗≡ ðτ1; τ2; τ3Þ and σ2
for usual Pauli matrices acting in the two-dimensional
flavor and color spaces, respectively; ∂̂≡ γρ∂ρ; qc ¼ Cq̄T ,
qc ¼ qTC are charge-conjugated spinors, and C ¼ iγ2γ0 is
the charge conjugation matrix (the symbol T denotes the
transposition operation). The Lagrangian (1) is invariant
with respect to color SUð2Þc and baryon Uð1ÞB sym-
metries. Moreover, in the chiral limit, m0 ¼ 0, and at zero
values of all chemical potentials it has the same Pauli-
Gursey flavor SUð4Þ symmetry as the corresponding two-
color QCD.
The Lagrangian L of Eq. (1) contains baryon μB, isospin

μI , chiral isospin μI5, and chiral μ5 chemical potentials. In
other words, this model is able to describe the properties of
quark matter with nonzero baryon nB¼ðnuþndÞ=2≡n=2,
isospin nI¼ðnu−ndÞ=2, chiral isospin nI5¼ðnu5−nd5Þ=2,
and chiral n5 ¼ nR − nL densities which are the quantities,
thermodynamically conjugated to chemical potentials μB,
μI , μI5, and μ5, respectively. (Here we use the notations nf
and nfLðRÞ for density of quarks as well as density of left

(right)-handed quarks, qL=R ¼ 1∓γ5

2
q, with individual flavor

f ¼ u, d, respectively. Moreover, nf5 ¼ nfR − nfL and
nRðLÞ ¼ nuRðLÞ þ ndRðLÞ. It is also supposed throughout
the paper that quark fields in Eq. (1) have a baryon charge
equal to 1=2.) Below we need the expressions for the
chemical potentials μfLðRÞ, i.e., quantities which are
thermodynamically conjugated to the particle number
densities nfLðRÞ of left-handed (right-handed) f ¼ u, d
quarks, respectively,

μuL ¼ μþ νþ μ5 þ ν5; μuR ¼ μþ ν − μ5 − ν5;

μdL ¼ μ − νþ μ5 − ν5; μdR ¼ μ − ν − μ5 þ ν5: ð3Þ

The quantities (3) can be obtained from Eqs. (1) and (2).
They define Fermi energies for massless uLðRÞ and dLðRÞ

4The most general Fierz transformed four-fermion interaction
includes additional vector and axial-vector ðq̄qÞ as well as
pseudoscalar, vector and axial-vector-like ðqqÞ-interactions.
However, these terms are omitted here for simplicity.

5Do not be confused, but below for the values of μ, ν, and ν5
we will usually use the names baryon, isospin, and chiral isospin
chemical potentials, respectively.
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quarks. Note that at m0 ¼ 0 the Lagrangian (1) is no longer
invariant with respect to Pauli-Gursey SUð4Þ symmetry.
Due to the terms with chemical potentials, this symmetry is
reduced to the Abelian Uð1ÞB, Uð1ÞI3 and Uð1ÞAI3 groups,
where

Uð1ÞB∶ q→ expðiα=2Þq; Uð1ÞI3∶ q→ expðiατ3=2Þq;
Uð1ÞAI3∶ q→ expðiαγ5τ3=2Þq: ð4Þ

Moreover, the quantities nB, nI , and nI5 are the ground state
expectation values of the densities of conserved charges
corresponding to Uð1ÞB, Uð1ÞI3 and Uð1ÞAI3 symmetry
groups. So we have from (4) that nB ¼ hqγ0qi=2, nI ¼
hq̄γ0τ3qi=2 and nI5 ¼ hq̄γ0γ5τ3qi=2. However, the chiral
chemical potential μ5 does not correspond to a conserved
quantity of the model (1). It is usually introduced in order to
describe a system on the timescales when all chirality
changing processes are finished in the system, so it is in the
state of thermodynamical equilibrium with some fixed
value of the chiral density n5 [43,44]. The ground state
expectation values of nB, nI, nI5, and n5 can be found by
differentiating the thermodynamic potential (TDP) of the
system (1) with respect to the corresponding chemical
potentials. The goal of the present paper is the investigation
of the ground state properties (or phase structure) of the
NJL model (1) and its dependence on the chemical
potentials μB, μI , μI5, and μ5.
To find the TDP, we starting from a semibosonized

(linearized) version of the Lagrangian (1) that contains
auxiliary bosonic fields σðxÞ, π⃗ ¼ ðπ1ðxÞ; π2ðxÞ; π3ðxÞÞ,
ΔðxÞ and Δ�ðxÞ and has the following form

L̃ ¼ q̄½i∂̂ −m0 þMγ0 − σ − iγ5τ⃗ π⃗�q −
σ2 þ π⃗2 þ Δ�Δ

4H

−
Δ
2
½q̄iγ5σ2τ2qc� −

Δ�

2
½qciγ5σ2τ2q�; ð5Þ

where M is presented in Eq. (2). Clearly, the Lagrangians
(1) and (5) are equivalent, as can be seen by using the Euler-
Lagrange equations of motion for bosonic fields which take
the form

σðxÞ ¼ −2HðqqÞ;
ΔðxÞ ¼ −2H½qciγ5σ2τ2q� ¼ −2H½qTCiγ5σ2τ2q�;
π⃗ðxÞ ¼ −2Hðqiγ5τ⃗qÞ;

Δ�ðxÞ ¼ −2H½q̄iγ5σ2τ2qc� ¼ −2H½q̄iγ5σ2τ2Cq̄T �: ð6Þ

It is easy to see from Eq. (6) that σðxÞ and πaðxÞ
(a ¼ 1; 2; 3) are Hermitian, i.e., real, bosonic fields,
whereas Δ�ðxÞ and ΔðxÞ are Hermitian conjugated to
each other. Indeed, one can check that ðσðxÞÞ† ¼ σðxÞ,
ðπaðxÞÞ†¼πaðxÞ, ðΔðxÞÞ† ¼ Δ�ðxÞ and ðΔ�ðxÞÞ† ¼ ΔðxÞ,
where the superscript symbol † denotes the Hermitian
conjugation. Note that the composite bosonic field π3ðxÞ
can be identified with the physical π0ðxÞ-meson field,
whereas the physical π�ðxÞ-meson fields are the follow-
ing combinations of the composite fields, π�ðxÞ ¼
ðπ1ðxÞ ∓ iπ2ðxÞÞ=

ffiffiffi
2

p
. It is clear that the ground state

expectation values of all boson fields (6) are SUð2Þc
invariants, hence in this model the color symmetry cannot
be broken dynamically. If the ground state expectation
values hσðxÞi ≠ 0 or hπ0ðxÞi ≠ 0, then chiral symmetry
Uð1ÞAI3 of the model (1) is broken spontaneously. If in the
ground state we have hπ1;2ðxÞi ≠ 0, then isospin Uð1ÞI3 is
broken spontaneously. This phase of quark matter is called
the charged pion condensation (PC) phase. Finally, if
hΔðxÞi ≠ 0, then in the system spontaneous breaking of
the baryon Uð1ÞB symmetry occurs, and the baryon super-
fluid (BSF) phase is realized in the model.
Introducing the Nambu-Gorkov bispinor field Ψ, where

Ψ ¼
�

q

qc

�
; ΨT ¼ ðqT; q̄C−1Þ;

Ψ̄ ¼ ðq̄; qcÞ ¼ ðq; qTCÞ ¼ ΨT

�
0; C

C; 0

�
≡ΨTY; ð7Þ

one can bring the auxiliary Lagrangian (5) to the following
form

L̃ ¼ −
σ2 þ π⃗2 þ Δ�Δ

4H
þ 1

2
ΨTðYZÞΨ; ð8Þ

where matrix Y is defined in Eq. (7) and

Z ¼
�
Dþ; K

K�; D−

�
≡

�
i∂̂ −m0 þMγ0 − σ − iγ5τ⃗ π⃗; −iγ5σ2τ2Δ

−iγ5σ2τ2Δ�; i∂̂ −m0 − γ0M − σ − iγ5ðτ⃗ÞT π⃗

�
: ð9Þ

Notice that matrix elements of the 2 × 2 matrix Z, i.e., the
quantitiesD�, K, and K�, are the nontrivial operators in the
(3þ 1)-dimensional coordinate, four-dimensional spinor,
2-dimensional flavor and (Nc ¼ 2)-dimensional color
spaces. Then, in the one fermion-loop (or mean-field)

approximation, the effective action Seffðσ; π⃗;Δ;Δ�Þ of
the model (1)–(5) [this quantity is the generating functional
of one-particle irreducible Green functions of boson
fields (6)] is expressed by means of the path integral over
quark fields:
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expðiSeffðσ; π⃗;Δ;Δ�ÞÞ ¼ N0
Z

½dq̄�½dq� exp
�
i
Z

L̃d4x

�
;

ð10Þ

where N0 is a normalization constant and

Seffðσ; π⃗;Δ;Δ�Þ ¼ −
Z

d4x

�
σ2ðxÞ þ π⃗2ðxÞ þ jΔðxÞj2

4H

�
þ S̃eff : ð11Þ

The quark contribution to the effective action, i.e., the term
S̃eff in (11), is given by:

expðiS̃effÞ ¼ N0
Z

½dq̄�½dq� exp
�
i
2

Z
½ΨTðYZÞΨ�d4x

�
:

ð12Þ

Note that in Eqs. (10)–(12) we have used the expression (8)
for the auxiliary Lagrangian L̃. Since the integration
measure in Eq. (12) obeys the relation ½dq̄�½dq� ¼
½dqc�½dq� ¼ ½dΨ�, we have from it

expðiS̃effÞ ¼
Z

½dΨ� exp
�
i
2

Z
ΨTðYZÞΨd4x

�
¼ det1=2ðYZÞ ¼ det1=2ðZÞ; ð13Þ

where the last equality is valid due to the evident relation
detY ¼ 1. Then, using the Eqs. (11) and (13) one can obtain
the following expression for the effective action (11):

Seffðσ; π⃗;Δ;Δ�Þ ¼ −
Z

d4x

�
σ2ðxÞ þ π⃗2ðxÞ þ jΔðxÞj2

4H

�

−
i
2
ln detðZÞ: ð14Þ

Starting from Eq. (14), one can define in the mean-field
approximation the thermodynamic potential (TDP)
Ωðσ; π⃗;Δ;Δ�Þ of the model (1)–(5),

Seffjσ;π⃗;Δ;Δ�¼const ¼ −Ωðσ; π⃗;Δ;Δ�Þ
Z

d4x: ð15Þ

The ground state expectation values (mean values) of the
fields: hσðxÞi≡ σ; hπ⃗ðxÞi≡ π⃗; hΔðxÞi≡ Δ; hΔ�ðxÞi≡ Δ,
are the solutionsof thegapequations for theTDPΩ (below, in
our approach all ground state expectation values σ; π⃗;Δ;Δ�
do not depend on coordinates x):

∂Ω
∂πa

¼ 0;
∂Ω
∂σ

¼ 0;
∂Ω
∂Δ

¼ 0;
∂Ω
∂Δ� ¼ 0: ð16Þ

Since the matrix Z in Eq. (14) has an evident 2 × 2 block
structure [see in Eq. (9)], one can use there a general formula

det

�
A; B

C; D

�
¼ det½−CBþ CAC−1D�

¼ det½DA −DBD−1C�; ð17Þ

and find that (taking into account the relation τ2τ⃗τ2 ¼ −τ⃗T
and assuming that all bosonic fields do not depend on x)

detðZÞ≡ det

�
Dþ; K

K�; D−

�
¼ detð−K�K þ K�DþK�−1D−Þ
¼ det½Δ�Δþ ð−i∂̂ −m0 − fMγ0 − σ þ iγ5ðτ⃗ÞT π⃗Þ
× ði∂̂ −m0 − γ0M − σ − iγ5ðτ⃗ÞT π⃗Þ�; ð18Þ

where

fM ¼ μþ μ5γ
5 − ντ3 − ν5γ

5τ3: ð19Þ

Obviously, the quantity which is in the square brackets of
Eq. (18) is proportional to the unit operator in the Nc-color
space. (Below, in all numerical calculations we putNc ¼ 2.)
Hence,

detðZÞ ¼ detNc D≡ detNc

�
D11; D12

D21; D22

�
; ð20Þ

whereD is the 2 × 2matrix in the 2-dimensional flavor space
(its matrix elements Dkl are the nontrivial operators in the
4-dimensional spinor and in the (3þ 1)-dimensional coor-
dinate spaces). Using this expression for detðZÞ in Eq. (14)
when σ; π⃗;Δ;Δ� do not depend on coordinates x, and taking
into account the well-known technique for calculating
determinants of operators (see, for example, Eq. (A6) of
Appendix A from Ref. [41]), we find

Seffðσ; πa;Δ;Δ�Þjσ;π⃗;Δ;Δ�¼const

¼ −
σ2 þ π⃗2 þ jΔj2

4H

Z
d4x −

iNc

2
ln detD

¼ −
σ2 þ π⃗2 þ jΔj2

4H

Z
d4x

−
iNc

2

Z
d4p
ð2πÞ4 ln detDðpÞ

Z
d4x; ð21Þ

where the 2 × 2 matrix DðpÞ is the momentum space
representationof thematrixD ofEq. (20). Itsmatrix elements
DklðpÞ have the following form
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D11ðpÞ ¼ jΔj2 − p2 þ ðμþ μ5γ
5Þ½p̂γ0 − γ0p̂�

þ ðνþ ν5γ
5Þ½p̂γ0 þ γ0p̂� þ π⃗2 þM2

þ 2Mγ0ðμþ ν5γ
5Þ þ ðμþ μ5γ

5Þ2 − ðνþ ν5γ
5Þ2

þ 2iμγ0γ5π3 þ 2iν5γ0π3;

D22ðpÞ ¼ jΔj2 − p2 þ ðμþ μ5γ
5Þ½p̂γ0 − γ0p̂�

− ðνþ ν5γ
5Þ½p̂γ0 þ γ0p̂� þ π⃗2 þM2

þ 2Mγ0ðμ − ν5γ
5Þ þ ðμþ μ5γ

5Þ2 − ðνþ ν5γ
5Þ2

− 2iμγ0γ5π3 þ 2iν5γ0π3;

D12ðpÞ ¼ 2iμγ0γ5ðπ1 þ iπ2Þ þ 2νγ0γ5ðπ2 − iπ1Þ
¼ 2γ0γ5ðν − μÞ½π2 − iπ1�;

D21ðpÞ ¼ 2iμγ0γ5ðπ1 − iπ2Þ þ 2νγ0γ5ðiπ1 þ π2Þ
¼ 2γ0γ5ðνþ μÞ½π2 þ iπ1�; ð22Þ

where M ≡m0 þ σ, p2 ¼ pρpρ, p̂ ¼ γρpρ. Using in
Eq. (21) again the general relation (17), we have

detDðpÞ≡ det
�
D11ðpÞ; D12ðpÞ
D21ðpÞ; D22ðpÞ

�
¼ det½−D21ðpÞD12ðpÞ
þD21ðpÞD11ðpÞðD21ðpÞÞ−1D22ðpÞ�

≡ detLðpÞ: ð23Þ

Notice that the matrix LðpÞ, i.e., the expression in
square brackets of Eq. (23), is indeed a 4 × 4 matrix in
4-dimensional spinor space only, which is composed of
4 × 4 matrices DijðpÞ [see in Eq. (22)]. Now, taking into
account the definition (15) and using the Eqs. (21)–(23), it is
possible to obtain in the mean-field approximation the TDP
of the model,

ΩðM; π⃗;Δ;Δ�Þ ¼ ðM −m0Þ2 þ π⃗2 þ jΔj2
4H

þ iNc

2

Z
d4p
ð2πÞ4 ln detLðpÞ: ð24Þ

Since detLðpÞ ¼ λ1ðpÞλ2ðpÞλ3ðpÞλ4ðpÞ, where λiðpÞ
(i ¼ 1;…; 4) are four eigenvalues of the 4 × 4 matrix
LðpÞ, in the following, in order to find the TDP of the
model invarious cases,wewill first of all find the eigenvalues
of the matrix LðpÞ. Then, after integration in Eq. (24) over
p0, this TDP is used in some numerical calculations with
sharp three-momentum cutoff Λ ¼ 657 MeV (i.e., it is
assumed below that the integration over three-momentum
p⃗ occurs over the region jp⃗j < Λ) at H ¼ 7.23 GeV−2 and
m0 ¼ 5.4 MeV [14,15]. Moreover, we study also the phase

structure of the model in the chiral limit,m0 ¼ 0, at the same
values of Λ and H.
Note that at first glance, the TDP (24) looks like a

function of six variables (condensates), M, π⃗, Δ, and Δ�.
But due to a symmetry of the model, the number of
condensates that characterize the ground state of a system
may be reduced. Indeed, at m0 ¼ 0 and zero chemical
potentials the Lagrangian (1) is invariant under SUð4Þ ×
Uð1ÞB × SUð2Þc group. As a consequence of this sym-
metry, the TDP is a function of only one single variable
ðM2 þ jΔj2 þ π⃗2Þ. And this fact significantly simplifies the
analysis of the function (24) on the global minimum. If
nonzero chemical potentials are taken into consideration,
then in the chiral limit the symmetry of the Lagrangian (1)
reduces to Uð1ÞB ×Uð1ÞI3 ×Uð1ÞAI3 (plus color SUð2Þc,
which in our consideration is not violated at all). As a
result, we see that at m0 ¼ 0 and nonzero chemical
potentials the TDP of the model depends only on the
jΔj2, π21 þ π22 andM

2 þ π20 field combinations, correspond-
ingly. So without loss of generality of consideration, in the
chiral limit we can put π0 ¼ 0 and π2 ¼ 0. However, at
m0 ≠ 0 and at nonzero chemical potentials the symmetry of
the model Lagrangian reduces to UBð1Þ ×UI3ð1Þ, i.e., in
this case the TDP depends on jΔj,M; π0 and π21 þ π22. So in
this case without loss of generality we can also put π2 ¼ 0.
Moreover, at m0 ≠ 0, as it was argued in our previous
paper [41], it is possible to put π0 ¼ 0 as well. Hence,
below throughout the paper we suppose that the TDP (24)
is a function of only M; π1 and jΔj condensates. Others
are zero.

III. CALCULATION OF THE TDP (24)
AND ITS DUALITY PROPERTIES

A. The case of μ ≠ 0, ν ≠ 0, ν5 ≠ 0, but μ5 = 0

First, let us suppose that chiral chemical potential μ5 is
equal to zero. The rest of chemical potentials, i.e., μ, ν and
ν5, we will call the basic chemical potentials, since (i) they
correspond to the conserved charges of the model, and (ii) it
is they that largely determine the phase structure of the
model. In this case when μ ≠ 0, ν ≠ 0, and ν5 ≠ 0 the
matrix LðpÞ of Eqs. (23) and (24) has four different
eigenvalues λiðpÞ (they can be found with the help of
any program of analytical calculations),

λ1;2ðpÞ ¼ N1 � 4
ffiffiffiffiffiffi
K1

p
; λ3;4ðpÞ ¼ N2 � 4

ffiffiffiffiffiffi
K2

p
; ð25Þ

where

N2 ¼ N1 þ 16μνν5jp⃗j;
K2 ¼ K1 þ 8μνν5jp⃗jp4

0 − 8μνν5jp⃗jp2
0ðM2 þ π21 þ jΔj2

þ jp⃗j2 þ μ2 þ ν2 − ν25Þ; ð26Þ
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K1 ¼ ν25p
6
0 − p4

0½2ν25ðjΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − ν25Þ þ 4μνν5jp⃗j� þ p2
0fν65 þ 2ν45ðM2 − jΔj2 − π21

− ν2 − μ2 − jp⃗j2Þ þ 4μ2ν2ðM2 þ jp⃗j2Þ þ 4jp⃗jμνν5ðjΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − ν25Þ
þ ν25½ðjΔj2 þ π21 þ jp⃗j2 þ ν2 þ μ2Þ2 þ 2jp⃗j2M2 þM4 þ 2M2ðjΔj2 − ν2 þ π21 − μ2Þ�g; ð27Þ

N1 ¼ p4
0 − 2p2

0½jΔj2 þ π21 þM2 þ jp⃗j2 þ ν2 þ μ2 − 3ν25� þ ν45 − 2ν25½jΔj2 þ π21 þ jp⃗j2 þ ν2 þ μ2 −M2�
− 8μνν5jp⃗j þ ðjp⃗j2 þM2 þ π21 þ jΔj2 − μ2 − ν2Þ2 − 4ðμ2ν2 − π21ν

2 − jΔj2μ2Þ; ð28Þ

and the TDP (24) has the form

ΩðM;π1;jΔjÞ¼
ðM−m0Þ2þπ21þjΔj2

4H

þiNc

2

Z
d4p
ð2πÞ4flnðλ1ðpÞλ2ðpÞÞ

þ lnðλ3ðpÞλ4ðpÞÞg: ð29Þ

It is possible to show that the TDP (29) is an even with
respect to each of the three transformations, μ → −μ, ν →
−ν and ν5 → −ν5. Indeed, if, e.g., μ → −μ then, as it
follows from Eqs. (25)–(28), we have λ1ðpÞ ↔ λ3ðpÞ and
λ2ðpÞ ↔ λ4ðpÞ. Hence, when the sign of the chemical
potential μ changes, the TDP (29) itself remains invariant,
etc. It means that without loss of generality we can use
only the positive values of the basic chemical potentials.
More interesting is the fact that each of the eigenvalues
λiðpÞ (25) is invariant with respect to the so-called dual
transformation D1,

D1∶ μ ⟷ ν; π1 ⟷ jΔj: ð30Þ

As a result, at μ5 ¼ 0, and even at m0 ≠ 0, the whole TDP
(24) or (29) of the model is also invariant under the
transformation (30). Moreover, using any program of
analytical calculations, it is possible to establish that each
of the products λ1ðpÞλ2ðpÞ and λ3ðpÞλ4ðpÞ is invariant in
addition with respect to the following two dual discrete
transformations D2 and D3, where

D2∶ μ ⟷ ν5; M ⟷ jΔj;
D3∶ ν ⟷ ν5; M ⟷ π1: ð31Þ

This fact was proved in Ref. [41]. As a result, we see that at
m0 ¼ 0 the TDP (29) is invariant under the dual trans-
formations D2 and D3 (31) in addition to D1 (30). (Note
that at m0 ≠ 0 it is invariant only under the D1 (30)
transformation.)

B. The case of all nonzero chemical potentials

Now, let us consider the case when μ5 ≠ 0 is taken into
account in addition to the basic chemical potentials μ ≠ 0,
ν ≠ 0 and ν5 ≠ 0. It is possible to show that in this case the

matrix LðpÞ of Eqs. (23) and (24) has four different
eigenvalues eλiðpÞ,

eλ1;2ðpÞ ¼ λ1;2ðpÞjjp⃗j→jp⃗j−μ5 ;eλ3;4ðpÞ ¼ λ3;4ðpÞjjp⃗j→jp⃗jþμ5
; ð32Þ

where λiðpÞ are the eigenvalues (25) of the LðpÞ at μ5 ¼ 0.
Hence in the most general case we obtain the following
expression for the TDP (24)

ΩðM; π1; jΔjÞ ¼
ðM −m0Þ2 þ π21 þ jΔj2

4H

þ iNc

2

Z
d4p
ð2πÞ4 flnð

eλ1ðpÞeλ2ðpÞÞ
þ lnðeλ3ðpÞeλ4ðpÞÞg: ð33Þ

Due to the relations (32), it is clear that the chemical
potential μ5 does not spoil the dual symmetries inherent to
the TDP (29) in the case μ5 ¼ 0. So, at m0 ≠ 0 the TDP
(24) or (33) is invariant with respect to the dual D1 (30)
transformation, whereas in the chiral limit, m0 ¼ 0, it is
invariant with respect to the D2 and D3 (31) duality
transformations, in addition. It is one of the main results
of the paper.
It is clear directly from the relations (32) that if one of the

chemical potentials is equal to zero, then ΩðM; π1; jΔjÞ is
an even function with respect to each of the rest nonzero
chemical potentials. However, if all four chemical poten-
tials μ, ν, ν5, and μ5 are nonzero, then it is easily seen from
relations (32) and (25)–(28) that the TDP (33) is invariant
with respect to each of the following six transformations, in
each of them two chemical potentials change their sign
simultaneously: (i) fν → −ν; ν5 → −ν5g, (ii) fν → −ν;
μ5 → −μ5g, (iii) fν5 → −ν5; μ5 → −μ5g, (iv) fμ → −μ;
μ5 → −μ5g, (v) fμ → −μ; ν → −νg, and (vi) fμ → −μ;
ν5 → −ν5g. The invariance of the TDP (33) under the
transformations (i)–(vi) can help to simplify the analysis of
the phase portrait of the model. In particular, it is sufficient
to study the phase structure of the model only, e.g., in the
case when arbitrary three of the four chemical potentials
have positive signs, whereas the sign of the rest chemical
potential is not fixed. Then, applying to a phase diagram
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with this particular distribution of the chemical potential
signs one or several transformations (i)–(vi), it is possible to
find a phase portrait of the model at an arbitrary distribution
of chemical potential signs. Hence, in the following we will
study the phase diagram of the model only at μ ≥ 0, ν ≥ 0,
ν5 ≥ 0 and for arbitrary sign of μ5.
Note that in our previous article [41], where the chiral

asymmetry of the two-color dense quark system was
investigated in the form of only μI5 ≠ 0 but μ5 ¼ 0, it was
argued that in the chiral limit, m0 ¼ 0, for sufficiently low
values of the chemical potentials (say at μ; ν; ν5 < 1 GeV)
at the global minimum point (GMP) ðM; π1; jΔjÞ of the
TDP (29), there can be no more than one nonzero
coordinates, i.e., condensates or order parameters. (The
particular argument could be that in previous investigations
there have not been found (mixed) phases with several
nonzero condensates, e.g., in the three-color NJL model
[29] and in the two-color one [6,15].) Therefore, with such
a restriction on chemical potentials, in the chiral limit only
four different phases can be realized in the system. (I) If

GMP has the form ðM ≠ 0; π1 ¼ 0; jΔj ¼ 0Þ, then the
chiral symmetry breaking (CSB) phase appears in the
model. (II) If it has the form ðM ¼ 0; π1 ≠ 0; jΔj ¼ 0Þ,
the charged pion condensation (PC) phase is realized. (III)
When the GMP looks like ðM ¼ 0; π1 ¼ 0; jΔj ≠ 0Þ, it
corresponds to the baryon superfluid (BSF) or diquark
condensation phase. And finally, (IV) the GMP of the form
ðM ¼ 0; π1 ¼ 0; jΔj ¼ 0Þ corresponds to a symmetrical
phase with all zero condensates.
In a similar way, in the present paper we suppose that if,

in addition, the chemical potential μ5 is taken into account,
then the GMP of the TDP (33) has the same structure,
and only four above mentioned phases (I)-(IV) are allowed
to exist in the system. Thanks to this structure of the global
minimum point, we see that in the region of relatively
low values of the chemical potentials it is enough to
study not the whole TDP (33), but only its projections
on the condensate axis, F1ðMÞ≡ ΩðM; π1 ¼ 0; jΔj ¼ 0Þ,
F2ðπ1Þ≡ΩðM ¼ 0;π1; jΔj ¼ 0Þ and F3ðjΔjÞ≡ΩðM ¼ 0;
π1 ¼ 0; jΔjÞ, where

F1ðMÞ ¼ M2

4H
−
Nc

2

X
�

Z
d3p
ð2πÞ3

h			μþ ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j − μ5 − ν5Þ2

q 			þ			μ − ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j − μ5 þ ν5Þ2

q 			
þ
			μþ ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j þ μ5 þ ν5Þ2

q 			þ			μ − ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðjp⃗j þ μ5 − ν5Þ2

q 			i; ð34Þ

F2ðπ1Þ ¼
π21
4H

−
Nc

2

X
�

Z
d3p
ð2πÞ3

h			μþ ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π21 þ ðjp⃗j − μ5 − νÞ2

q 			þ			μ − ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π21 þ ðjp⃗j − μ5 þ νÞ2

q 			
þ
			μþ ν5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π21 þ ðjp⃗j þ μ5 þ νÞ2

q 			þ			μ − ν5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π21 þ ðjp⃗j þ μ5 − νÞ2

q 			i; ð35Þ

F3ðjΔjÞ ¼
jΔj2
4H

−
Nc

2

X
�

Z
d3p
ð2πÞ3

h			ν5 þ ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ ðjp⃗j − μ5 − μÞ2

q 			þ			ν5 − ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ ðjp⃗j − μ5 þ μÞ2

q 			
þ
			ν5 þ ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ ðjp⃗j þ μ5 þ μÞ2

q 			þ			ν5 − ν�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þ ðjp⃗j þ μ5 − μÞ2

q 			i: ð36Þ

(At μ5 ¼ 0 these projections have been obtained in
Appendix C of Ref. [41]. The contribution of the
μ5 ≠ 0 can be taken into account by the procedure (32).
Throughout the paper the integration over the three-
momentum p⃗ in Eqs. (34)–(36) occurs in the region
jp⃗j < Λ ¼ 657 MeV.) Then, comparing the smallest val-
ues of these functions, we can determine the GMP of the
initial TDP (33), and, therefore, the phase in which the
system is located in the chiral limit, m0 ¼ 0, at given
values of chemical potentials. The behavior of the GMP of
the model thermodynamic potential (33) vs chemical
potentials supplies us with the full ðμ; ν; ν5; μ5Þ-phase
portrait of the two-color NJL model (1). Indeed, it is no
more than a one-to-one correspondence between any point
ðμ; ν; ν5; μ5Þ of the four-dimensional space of chemical

potentials and possible model phases (CSB, charged PC,
BSF, and symmetric phase). However, it is clear that this
four-dimensional phase portrait (diagram) is quite bulky
and it is rather hard to imagine it as a whole. So in order to
obtain a more deep understanding of the phase diagram as
well as to get a greater visibility of it, it is very convenient
to consider different low-dimensional cross sections of this
general ðμ; μ5; ν; ν5Þ-phase portrait, defined by the con-
straints of the form ν ¼ const or μ5 ¼ const and
ν5 ¼ const, etc. In the next Sec. IV these different cross
sections of the most general phase portrait will be
presented. But before that, let us discuss the role and
influence of the dual symmetries D1 (30), D2 and D3 (31)
of the model TDP on the shape of its different phase
portraits (see also the relevant paper [41]).
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C. Dual symmetries of the TDP (33) and phase
portraits of the model at μ5 ≠ 0

As it is clear from the previous subsections, chiral
chemical potential μ5 ≠ 0 does not spoil symmetries of
the model TDP with respect to duality transformations (30)
and (31), observed first of all at μ5 ¼ 0.
Recall that by duality property (or symmetry, or relation,

etc) of any model, we understand any discrete symmetry of
its TDP with respect to transformations as order parameters
(in our case, condensates M, π1 and jΔj) and free external
parameters of the system (these may be chemical potentials,
coupling constants, etc.) The presence of the dual sym-
metry of the model TDP means that in its phase portrait
there is some symmetry between phases with respect to the
transformation of external parameters, which can greatly
simplify the construction of the full phase diagram of the
system. (The invariance of the TDP (33) with respect to
sign reversal for any two of the four chemical potentials is
the simplest example of the dual symmetry of the model
(1). Due to this kind of duality, it is enough to study the
phase structure of the model only, e.g., at μ ≥ 0, ν ≥ 0,
ν5 ≥ 0 and for arbitrary sign of μ5, etc.) Below, we
investigate the phase portrait of the model (1) in the
mean-field approximation in the presence of four nonzero
chemical potentials, μ, ν, ν5, and μ5 in the chiral limit,
putting a special attention to the role of μ5 in its formation.
In this case, the problem is greatly simplified due to the fact
that the model TDP (33) has three dual symmetries,D1 (30)
and D2, D3 (31).
Indeed, let us suppose that m0 ¼ 0 and that at the point

ðμ ¼ a; ν ¼ b; ν5 ¼ c; μ5 ¼ dÞ of the phase portrait the
GMPof the TDP (33) lies, e.g., at the point of the condensate
space of the form ðM ¼ A; π1 ¼ 0; jΔj ¼ 0Þ, i.e., in this case
the CSB phase is realized in the system. Then, according to
the symmetries D2 and D3 (31), the TDP has the same
meaning if we interchange the values of chemical potentials
and simultaneously appropriately transpose the values of the
condensates. As a result we see that, e.g., at μ ¼ c, ν ¼ b,
ν5 ¼ a, μ5 ¼ d and in the point ðM ¼ 0; π1 ¼ 0; jΔj ¼ AÞ
(it is the result of the action of theD2 dual transformation on
the TDP (33)) aswell as that at μ ¼ a, ν ¼ c, ν5 ¼ b, μ5 ¼ d
and in the point ðM ¼ 0; π1 ¼ A; jΔj ¼ 0Þ (it is the appli-
cation of the D3 dual transformation to the TDP) it has the
initial meaning.Moreover, it is evident that these new points
of the condensate space are nothing but the GMPs of the
TDP (33) after its D2 and D3 transformations (see a more
detailed discussion in Ref. [41]). Consequently, at the points
ðμ ¼ c; ν ¼ b; ν5 ¼ a; μ5 ¼ dÞ and ðμ ¼ a; ν ¼ c; ν5 ¼ b;
μ5 ¼ dÞ of the phase diagram of the model, which we call
dually D2 and dually D3 conjugated to the starting point
ðμ ¼ a; ν ¼ b; ν5 ¼ c; μ5 ¼ dÞ of the phase portrait, there
are BSF and charged PC phases that are respectively dually
D2 and duallyD3 conjugated to the initial CSB phase of the
model. Thus, knowing the phase of the model, which is
realized at some point of its phase portrait, we can predict

which phases are arranged at the dually conjugated points of
a phase diagram.Moreover, the order parameter of the initial
CSB phase of the point ðμ ¼ a; ν ¼ b; ν5 ¼ c; μ5 ¼ dÞ, i.e.,
the quantityM ¼ A, is equal to the order parameter jΔj ¼ A
of theD2-dually conjugated BSF phase of the point ðμ ¼ c;
ν ¼ b; ν5 ¼ a; μ5 ¼ dÞ of the model phase portrait, etc.
At m0 ¼ 0 each duality transformation Di (i ¼ 1; 2; 3

(30) and (31) of the TDP can also be applied to an arbitrary
phase portrait of the model as a whole. In particular, it is
clear that if we have a most general ðμ; ν; ν5; μ5Þ-phase
portrait, then the action, e.g., of the D3 on the TDP can be
understood as the following dual D3 transformation of the
model ðμ; ν; ν5; μ5Þ-phase portrait. Namely, it is necessary
to rename both the diagram axes and phases in such a way,
that ν ↔ ν5 and CSB ↔ charged PC. At the same time the
μ- and μ5-axes and BSF and symmetrical phases should not
change their names. It is evident that after such D3

transformation the full ðμ; ν; ν5; μ5Þ-phase diagram is
mapped to itself, i.e., the most general ðμ; ν; ν5; μ5Þ-phase
portrait of the model is self-D3-dual. In a similar way it is
possible to describe the action of other, D1 and D2, duality
transformations on the full ðμ; ν; ν5; μ5Þ-phase portrait of
the model, which is, of course, invariant, or self-dual, under
these mappings. But different cross sections of the full
ðμ; ν; ν5; μ5Þ-phase diagram, e.g., the ðμ; νÞ-phase portrait
at some fixed values of ν5 and μ5, are not invariant, in
general, under the action of dual transformations (see
below for some examples). Finally, note that under any
Di (i ¼ 1, 2, 3) transformation the symmetrical phase
remains intact, i.e., it does not change its position on the
phase diagram.
As a result, based on this mechanism of dual trans-

formations of different cross sections of the full phase
diagram of the two-color NJL model (1), it is possible,
having a well-known phase diagram of the model, to obtain
its phase portrait in a less studied range of values of
chemical potentials (see some examples from the Ref. [41],
as well as the following subsections of this paper). In
particular, using this approach, one can draw quite definite
conclusions about the effect of chiral asymmetry, i.e., μ5,
on the phase structure of the model (see below).

IV. PHASE DIAGRAM OF THE MODEL

A. Phase structure with μ5 ≠ 0 and either one
of μ, ν and ν5 is nonzero

Let us start the investigation of the phase structure of the
model from a particular and rather simple case when
besides nonzero chiral imbalance μ5 in quark matter in
addition either one of the basic chemical potentials, baryon
μB ≡ 2μ, isopsin μI ≡ 2ν or chiral isospin μI5 ≡ 2ν5
chemical potentials, is also nonzero.
First, suppose that only μ5 and ν5 chemical potentials are

nonzero (hence μ ¼ ν ¼ 0). Then, in the limiting case when
μ5 ¼ 0 and ν5 ¼ 0, chiral symmetry of the model (1) is
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broken spontaneously and there is a dynamical generation
of nonzero quark mass M in the system.
The quark matter with chiral μ5 imbalance has been

considered in Refs. [42,43,45,46]. And it was revealed that
if one increases chiral imbalance μ5, then the chiral
symmetry breaking phenomenon would consolidate, i.e.,
the CSB phenomenon would be enhanced and dynamical
quark mass M would increase.6 This is the so-called effect
of catalysis, or enhancement, of chiral symmetry breaking
by chiral imbalance that was observed also in three color
QCD, but valid and strictly speaking established for the
first time on lattice just in two color QCD (see in Ref. [46]).
Moreover, in Ref. [41] it was established that in another
limiting case, μ5 ¼ 0 and ν5 > 0, the CSB phase is also
realized at any value of ν5 (provided that it is inside the
scope of the validity of the model, ν5 < Λ) and catalysis
effect was also observed. Starting from the TDP (33) [or
comparing the least values of the projections Fi (34)–(36)],
it is possible to obtain the ðν5; μ5Þ-phase portrait of the
model at μ ¼ ν ¼ 0 [see in Fig. 1(a)].7 As it is clear from
the figure, in this case just the CSB phase occupies all the
physically accepted region of chemical potentials,
μ5; ν5 < Λ. Moreover, if one increases any type of chiral
imbalances, i.e., μ5 or ν5, then the CSB phenomenon would
be enhanced and dynamical quark mass M value would
increase. This could be called the effect of catalysis of

chiral symmetry breaking by chiral imbalance of any form,
either μ5 or ν5.
In order to support this statement, in Fig. 2(a) the

behavior of M as a function of μ5 at, e.g., ν5 ¼ 0.1 GeV
is shown for the two-color NJL model (1) at μ ¼ ν ¼ 0.
Since this function is an increasing one, we can conclude
that CSB is enhanced (or catalysed) by μ5 in this case. The
behavior of M vs μ5 at other fixed values of ν5 is similar.
Moreover, in this case, i.e., at μ ¼ ν ¼ 0, the order para-
meter M vs ν5 at different fixed μ5 values is also an incre-
asing function, and in particular at μ5 ¼ 0.1 GeV the plot
of this function coincides with a curve drawn in Fig. 2(a) in
which one should rename μ5 axis by ν5. (It follows from the
fact that at μ ¼ ν ¼ 0 the projection F1ðMÞ (34) is
symmetrical under the replacement μ5 ↔ ν5.) So increas-
ing at μ ¼ ν ¼ 0 either one of chiral imbalances, i.e.,
chemical potentials μ5 or ν5, or both of them simulta-
neously, the CSB phase only solidifies. In this case the
ðν5; μ5Þ-phase structure is not complicated, it is CSB phase
everywhere for all physically accepted values of μ5, ν5.
This effect could be explained with the following

qualitative arguments. The Fermi energies (3) of uL and
uR quarks in this case have a rather simple form μuL ¼
ν5 þ μ5 and μuR ¼ −ν5 − μ5. If ν5 ¼ 0 then μuL ¼ μ5,
μuR ¼ −μ5 and condensation of ūRuL is quite feasible
and this leads to chiral symmetry breaking. One could
note also that if μ5 is increased, the number of states at
Fermi spheres are getting larger and the value of the
condensate is increased. The same effect could be observed
in the μ5 ¼ 0 case and the effect is fully identical, μuL ¼ ν5
and μuR ¼ −ν5. The effect of CSB catalysis simultaneously
by both μ5 and ν5 is nicely described by these qualitative
reasoning as well.
Now if there is an isospin imbalance, ν ≠ 0, in the

system (together with chiral imbalance, μ5 ≠ 0, hence,
we suppose that other chemical potentials are zero,
μ ¼ ν5 ¼ 0), then the situation is drastically different.

(a) (b) (c)

FIG. 1. (a) ðν5; μ5Þ-phase diagram at ν ¼ μ ¼ 0 GeV. (b) ðν; μ5Þ-phase diagram at μ ¼ ν5 ¼ 0 GeV. (c) ðμ; μ5Þ-phase diagram at
ν5 ¼ ν ¼ 0 GeV. In these diagrams BSF means the baryon superfluid phase, PC—the charged pion condensation phase, CSB—the
chiral symmetry breaking, and SYM denotes the symmetrical phase of the model.

6In the chiral limit, the dynamical quark mass M is the order
parameter of the CSB phase.

7Note that all phase portraits of Fig. 1 as well as some of the
following diagrams are indeed the cross sections of the full phase
diagram of the model under the constraint that at least one of the
four chemical potentials is zero. In these cases it is enough to
consider the phase portrait only at positive values of chemical
potentials. It is a consequence of the fact that if one of the
chemical potentials is zero, then the TDP (33) is an even function
with respect to each of the remaining nonzero chemical poten-
tials. So in each phase diagram of Fig. 1 only the regions with
μ5 > 0 are prepared.
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In this case, to obtain the ðν; μ5Þ-phase portrait of the
massless two-color NJL model (1) [see in Fig. 1(b)], it is
enough to apply, without any numerical calculations, to the
phase diagram of Fig. 1(a) the dual D3 transformation. The
corresponding mechanism is described in Sec. III C, so we
should change in Fig. 1(a) ν5 → ν and CSB → charged PC.
As a result, we have a phase portrait of Fig. 1(b). (Recall
that the particular case of this diagram, when ν > 0 and
μ ¼ ν5 ¼ μ5 ¼ 0, was discussed in Ref. [41], where it was
established that at the points of the ν axis of the diagram the
charged PC phase is arranged at least for ν < Λ. It was
known that the order parameter of this phase, i.e., the
charged pion condensate π1, is increased if isospin density,
i.e., isospin chemical potential, grows. It turns out that the
pion condensate is also an increasing function vs μ5. It is an
extremely surprising feature that μ5 completely changed
gears and, once isospin density is nonzero, start to catalyze
charged pion condensation phenomenon instead of chiral
symmetry breaking one. It is a consequence of the fact that
in this case the condensate π1 is the D3 mapping of the
chiral condensate M of the CSB phase in Fig. 1(a). Hence,
for the charged PC phase of Fig. 1(b) the plot of its order
parameter π1 vs μ5 at, e.g., fixed ν ¼ 0.1 GeV can be
obtained from Fig. 2(a) by two simple replacements,
M → π1 and ν5 ¼ 0.1 GeV → ν ¼ 0.1 GeV, etc. So in
this particular case when μ5 ≠ 0, ν ≠ 0 but μ ¼ ν5 ¼ 0,
the chiral imbalance μ5 serves as a factor that catalyses (or
enhances) the spontaneous breaking of the isospin Uð1ÞI3
symmetry, which manifests itself (without μ5) even at
ν > 0, μ ¼ ν5 ¼ μ5 ¼ 0.
Now let us make a couple of comments on the chiral

limit and the current quark masses. Figures 1 have been
shown in the chiral limit, i.e., at zero current quark mass
m0. At the physical point, at physical value of the current
quark mass, the ðν5; μ5Þ-phase diagram of Fig. 1(a) would
be the same, whereas the ðν; μ5Þ-phase portrait of Fig. 1(b)
would slightly change. One can see that pion condensation
in Fig. 1(b) starts at infinitesimally small values of isospin
chemical potential ν in the chiral limit. In this case pion
mass is zero and isospin density becomes nonzero at

infinitesimally small values of isospin chemical potential.
In the physical point, i.e., at physical pion mass, isospin
density emerges at isospin chemical potential ν reaching the
value of half of the pion mass, so one would see a small
region of CSB phase at ν < mπ=2 and only at ν > mπ=2
charged PC phase sets in. So the μ5 catalysis of chiral
symmetry breaking will be switched to the catalysis of
charged PC phenomenon at ν ¼ mπ=2, so overall the
picture would stay the same.
Finally, if we are going to consider the phase structure

of the two-color NJL model (1) in the chiral limit and in
the case when μ- and μ5-chemical potentials are nonzero
but ν ¼ ν5 ¼ 0, it is sufficient to perform the D2-dual
transformation of the phase portrait of Fig. 1(a), or,
alternatively, the D1-dual transformation of the phase
portrait of Fig. 1(b). The results of these dual mappings
is the ðμ; μ5Þ-phase diagram of Fig. 1(c), in which for the
whole range of values of chemical potentials the baryon
superfluid phase is arranged. The order parameter jΔj of this
phase is also an increasing function vs μ5 and/or μ (it is clear
after dualD2 transformation of Fig. 2(a), i.e., replacing there
M → jΔj and the constraint ν5¼0.1GeV→μ¼0.1GeV).
Hence, in this region of chemical potentials the μ5 catalyses/
increases the BSF phase and spontaneous breaking of the
baryon Uð1ÞB symmetry. The fact that μ ≠ 0 leads to
diquark condensation is natural and well known, whereas
the same effect on phenomenon of diquark pairing by chiral
imbalance is rather curious. This catalysis effect could be
comprehended just by arguments of pairing on the Fermi
surface, with the following qualitative arguments.
One can see from Eq. (3) that the Fermi momenta of uL

and dL quarks in this case, i.e., at ν ¼ ν5 ¼ 0, are μuL ¼
μþ μ5 and μdL ¼ μþ μ5. As a result, it is clear that the
condensation of Cooper uLdL pairs and appearing of the
BSF phase is possible, in particular, both at μ ≠ 0, μ5 ¼ 0
and at μ ¼ 0, μ5 ≠ 0. But in the last case we have from
Eq. (3) that μuL ¼ μ5 and μuR ¼ −μ5, i.e., an equal
possibility for the condensation of the ūRuL pairs and
generation of the CSB phenomenon. However, if both
μ ≠ 0 and μ5 ≠ 0, then Fermi energies of uL and dL quarks

FIG. 2. The behaviors of condensates vs chemical potentials: (a)M as a function of μ5 at ν5 ¼ 0.1 GeV, μ ¼ ν ¼ 0 GeV. (b)M and π1
as a functions of μ at ν ¼ 0, ν5 ¼ 0.25 GeV and μ5 ¼ 0.5 GeV (c) Δ, π1 and M as a functions of μ at ν ¼ 0, ν5 ¼ 0.2 GeV and
μ5 ¼ 0.5 GeV. The notations are the same as in Fig. 1.
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are equal (see above), which favors the formation of uLdL
Cooper pairs, but μuL ¼ μþ μ5 and μuR ¼ μ − μ5. So there
is a mismatch in the Fermi surfaces of ūR and uL quarks
which obstructs the formation of the Cooper ūRuL pairs.
This allows us to say that, at μ ≠ 0 and μ5 ≠ 0, the
formation of the BSF phase is preferable to the generation
of the CSB phenomenon. Finally, we see that Fermi
energies of uL and dL quarks (recall, in this case they
are μþ μ5) are a growing vs μ5 quantities, hence the order
parameter jΔj of the BSF phase also increases with μ5, i.e.,
there is a catalysis of the BSF by chiral imbalance μ5.
So from the whole picture of the phase structure of

chirally imbalanced, μ5 ≠ 0, two-color quark matter that
has another additional chemical potential, one can infer the
following inherent characteristics of μ5. Chiral imbalance
μ5 enhances/catalyses any symmetry breaking phenomena
realized in the system when it is under the influence of only
this additional chemical potential. For example, if only
μ ≠ 0, then baryon Uð1ÞB symmetry is broken sponta-
neously (diquarks have a nonzero condensate jΔj) and μ5
enhances just this effect. If there is a nonzero isospin
imbalance in the system (only ν ≠ 0) and charged PC
phenomenon is observed in such a quark matter at μ5 ¼ 0,
then nonzero μ5 (together with nonzero ν) enhances just the
charged PC phenomenon as well as the spontaneous isospin
Uð1ÞI3 symmetry breaking. Finally, if two-color quark
matter is characterized by chiral isospin imbalance, only
ν5 ≠ 0, then at μ5 ¼ 0 the axial isospin (or chiral) Uð1ÞAI3
symmetry is broken spontaneously, CSB phase is realized
in the system and quarks acquire dynamically a nonzero
massM. And in this case the nonzero μ5 catalyses/enhances
just this effect. So one can say that chiral imbalance μ5 is a
universal catalyzer for every phenomena in two color quark
matter. But in this case it cannot trigger any phenomenon
itself, it only enhances the phenomenon picked by other
conditions of the medium.
Let us also stress that in its effect on the phase diagram

μ5 mimics other chemical potentials and in a way it is like
chameleon, which assumes the color of the environment, it
enhances the phenomena that are equally enhanced by
other chemical potentials. For example, in Fig. 1(c) if μ ≠ 0
when one goes along the μ axis as well as one goes along μ5
one (as long as even if small but μ ≠ 0) the diquark
condensate increases. So if only μ ≠ 0 even if has small
value then μ5 can take the role of μ and enhance diquark
condensate quite dramatically. The universal catalyzer
feature of chiral imbalance μ5 is a manifestation of, as
we will see below, chameleon property of μ5.
Although quite surprising and curious, this whole picture

is the direct consequence of the dual properties of the phase
diagram. At μ5 ¼ 0 the (μ,ν,ν5)-phase diagram of the two-
color NJL model (1) is highly symmetric due to the
dualities (see in Ref. [41]), and the expansion of this phase
diagram to nonzero values of chiral chemical potential is
also highly symmetric (see in Sec. III B) and possesses this

high dual symmetry as well. Now, for example, if one
imagines the full (μ,ν,ν5,μ5)-phase diagram as a cube
elongated to the μ5 direction, then one can pick three
facets of this phase diagram, namely (ν5 ¼ 0 and ν ¼ 0),
(ν ¼ 0 and μ ¼ 0) and (μ ¼ 0 and ν5 ¼ 0), these facets are
(μ,μ5), (ν5,μ5) and (ν,μ5) cross sections considered above in
Fig. 1. So due to preservation of dualities at μ5 ≠ 0, these
facets are dual to each other. If one knows the behavior of
the phase structure in one of them, then the others are
predetermined.
Let us now try to imagine that we have not performed any

calculations and try to anticipate the phase structure. In
principle, one could get a lot of hints that CSB is catalyzed
by chiral imbalance μ5 ≠ 0 and ν5 ≠ 0 in the whole plane
(ν5,μ5) of Fig. 1(a). First, one knows that it was shown
separately for each chiral chemical potential, and also it was
bolstered by qualitative pairing arguments. Second, these
arguments are easily generalized to the case of both
simultaneously nonzero μ5 and ν5. Then dualities dictate
that chiral imbalanceμ5 leads to the catalysis of charged pion
condensation at ν ≠ 0, see Fig. 1(b), and that it catalyzes
diquark condensation at μ ≠ 0, see Fig. 1(c). So if it is
obtained that chiral imbalance μ5 catalyzes some phenome-
non in some cross section of the full phase diagram, then the
other phenomena are catalyzed by μ5 in dually conjugated
cross sections. The feature of chiral imbalance μ5 of having
the chameleon property is a consequence of dual properties
of the full phase diagram of the model.

B. Chemical potential μ5 is a universal catalyzer

In this section let us separately consider the situation
when basic chemical potentials, μ, ν and ν5, (dually-
connected) reaches only rather moderate values. Let us
first commence with the situation when only two of them
are nonzero. Specifying the meaning of the moderate values
scenario one should say that in this case it works when at
least one of these chemical potentials is smaller than
0.2 GeV. Now let us, for instance, first consider the quark
matter with nonzero baryon density, μ ≠ 0, and isospin
imbalance, ν ≠ 0, and without chiral imbalances, i.e.,
μ5 ¼ ν5 ¼ 0. Recall that in the particular case when
there is only isospin imbalance in the system, i.e.,
μ ¼ μ5 ¼ ν5 ¼ 0, and ν ≠ 0, then the charged pion con-
densation is realized [see in Fig. 1(b)], and if μ ≠ 0 this
passes to a ribbon of charged PC phase at rather large ν at
(μ, ν)-phase diagram [see Fig. 3(a)]. But if the isospin
imbalance is not so large (ν smaller than 0.2 GeV), then at
baryon density corresponding to the value μ ¼ ν the phase
transition to BSF phase takes place and diquark condensa-
tion appears in the system, and at rather large μ > ν there is
a whole band of BSF phase [see Fig. 3(a)]. One could
behold that in this regime the largest chemical potential
defines the phase structure: if it is baryon chemical
potential then diquark condensation prevail, and if it is
isospin one then charged pion condensation takes over.
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Now, if one increases the value of chiral chemical
potential μ5, which was equal to zero in the discussion
above, then the (ν, μ)-phase diagram of Fig. 4(a) at μ5 ¼
0.4 GeV and ν5 ¼ 0 could be obtained by numerical
analysis, and one can note that in the discussed regime
the phases and the phase transition do not alter at all (see in
Fig. 4(a) the region of small values, <0.2 GeV, of μ or ν,
the other regions will be discussed later).
Now let us turn our sight to the other cross sections of the

full phase diagram containing chiral chemical potential μ5.
In particular, it is possible to consider how the ðν; μ5Þ-phase
diagram of Fig. 1(b), which is drawn under the condition
μ ¼ ν5 ¼ 0, changes when one increases μ up to 0.2 GeV
(ν5 is still equal to zero). Or, in other words, it is an
expansion of the cross section of fixed μ to nonzero values
of μ5. Numerical analysis shows that in this case the typical
ðν; μ5Þ-phase portrait of the model looks like the one of
Fig. 5(a), which is depicted for fixed μ ¼ 0.1 GeV. It
means that in these phase portraits at ν < μ the BSF phase
is arranged, but at ν > μ one can see the charged PC phase.

Interestingly enough that the transition line between the PC
and BSF phases is a straight line (it does not depend on the
value of μ5), and the phase in this case is entirely chosen by
the relation between values of μ and ν chemical potentials.
It is in full agreement with the fact that for moderate μ and ν
values the phase transitions at the ðν; μÞ-phase diagram of
Fig. 4(a) was not influenced a lot by chiral chemical
potential μ5. Bearing in mind that the section of μ5 ¼
0.4 GeV in Fig. 5(a) is the section μ¼0.1GeV in Fig. 4(a),
one could easily comprehend that the phase transition in
Fig. 5(a) is at ν ¼ μ and it shifts to larger values of ν if
quark number chemical potential μ is increased. Apart from
the fact that the transition line in Fig. 5(a) between the PC
and BSF phases is a straight line, let us elaborate more
on the effect of chiral μ5. As for μ5 ¼ 0 as well as for
μ5 ≠ 0 the same phase structure is observed, i.e., at ν < μ
(ν > μ) the BSF (the charged PC) phase is realized, but the
order parameters of these phases are growing functions vs
μ5, and the increase is quite dramatic as one can see in
Fig. 2(a). From all these one can conclude that for this set of

(a) (b) (c)

FIG. 3. ðμ; νÞ-phase diagrams at: (a) μ5 ¼ ν5 ¼ 0 GeV. (b) at μ5 ¼ 0 GeV, ν5 ¼ 0.2 GeV. (c) at μ5 ¼ 0 GeV, ν5 ¼ 0.4 GeV. The
notations are the same as in Fig. 1.

(a) (b) (c)

FIG. 4. Dually conjugated phase portraits: (a) ðν; μÞ-phase diagram at μ5 ¼ 0.4 GeV, ν5 ¼ 0 GeV. (b) ðν; ν5Þ-phase diagram at
μ5 ¼ 0.4 GeV, μ ¼ 0 GeV. It is a D2 mapping of Fig. 4(a). (c) ðν5; μÞ-phase diagram at μ5 ¼ 0.4 GeV, ν ¼ 0 GeV. It is a D3 mapping
of the diagram Fig. 4(a). The notations are from Fig. 1.
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chemical potentials the μ5 catalyzes (or enhances) the
phenomena observed at μ5 ¼ 0. This feature was already
noticed and discussed above in Sec. IVA for the particular
case of two nonzero chemical potentials (one of them is μ5).
Applying, for example, to the phase diagram of Fig. 5(a)

the dual D1 or dual D3 mappings, etc, one can obtain the
ðμ; μ5Þ-phase portrait at fixed ν5 ¼ 0 and ν ¼ 0.1 GeV [see
in Fig. 5(b)], or the ðν5; μ5Þ-phase portrait [see in Fig. 5(c)]
at μ ¼ 0.1 GeV, ν ¼ 0, respectively. Since under the dual
transformations the properties of the order parameters are
not changed, we can conclude that for these particular sets
of the basic chemical potentials μ, ν, and ν5 the order
parameter of each nonsymmetrical phase is indeed an
increasing function vs μ5, i.e., the chemical potential μ5
is a catalyst of the phase structure observed at μ5 ¼ 0.
Now let us turn our gaze to the phase structure of the

model in the case of three nonzero basic chemical poten-
tials μ, ν and ν5 (and first keep the value of chiral imbalance
μ5 equal to zero) in the regime of moderate values, talking
more specifically in this case at least two of them should be
smaller than 0.2 GeV. In this case the (μ, ν)-phase diagram
at ν5 ¼ 0.2 GeV is depicted in Fig. 3(b) and one can see
that if μ ¼ 0 then at ν < ν5 ¼ 0.2 GeV the system is in the
CSB phase as it should be since there is rather large chiral
imbalance ν5. Then, if the value of ν is increased and
reaches the value of ν ¼ ν5 ¼ 0.2 GeV, then the phase
transition to the charged PC phase takes place and at ν >
ν5 ¼ 0.2 GeV the charged pion condensation only solid-
ifies. Now let us take ν ¼ 0. As it clear from Fig. 3(b), at
μ < ν5 ¼ 0.2 GeV there is CSB phase due to the same
reasons. But at μ ¼ ν5 ¼ 0.2 GeV the phase transition to
BSF phase occurs, and diquark condensation is prevailing.
In the latter example, if one assume that ν ≠ 0 but less
than ν5 ¼ 0.2 GeV then nothing changes and the phase
transition occurs at exactly the same point μ¼ν5¼0.2GeV,
so one can conclude that if ν < μ; ν5 then it does not
influence much the phase structure at all. Now, if

ν > ν5 ¼ 0.2 GeV then one can see in Fig. 3(b) that at
increasing μ the charged PC phase continues to dominate
up to the value of μ ¼ ν, and ν5 does not play almost any
role here.
So, at μ5 ¼ 0 one can characterize the general picture (in

the case of moderate basic chemical potential values) in the
following manner. (i) Each basic chemical potential (i.e., μ,
ν, or ν5) is in one-to-one correspondence with one of CSB,
BSF, or charged PC phases, i.e., to a corresponding
condensation and symmetry breaking patterns. For exam-
ple, μ corresponds to BSF phase, ν—to charged PC, and
ν5—to CSB phase. (ii) The largest chemical potential sets
the corresponding phase that occupies the system. Hence, if
the triplet of chemical potentials μ, ν, and ν5 has moderate
values and μ5 ¼ 0, then to get the phase structure one could
find just the chemical potential with the highest value, and
it defines the phase that is realized in the system. The other
two do not play a significant role here. This picture unfolds
only in the regime of moderate values of basic chemical
potentials (recall, by this regime we mean here that at least
two from three basic chemical potentials have values
smaller than 0.2 GeV). Let us stress that we have chosen
the value ν5 ¼ 0.2 GeV in Fig. 3(b) on purpose (based on it
one can easily envisage, for example, the phase diagram at
ν5 ¼ 0.1 GeV), since it is a borderline value and one could
see that if μ5 is also small (in Fig. 3(b) μ5 ¼ 0), then this
picture holds even if values of μ and ν can reach almost
0.3 GeV, even slightly out of the scope that we called
moderate values. But if the values of μ, ν, and ν5 lies inside
the moderate regime, i.e., at least two of them are less than
0.2 GeV, then this concise and elegant picture unhesitantly
persists to any values of chiral chemical potential μ5, one
could see this in Fig. 5.
Now let us allow chiral chemical potential μ5 to be

nonzero in the case of three nonzero basic chemical
potentials μ, ν and ν5. This could be contemplated as
the expansion of the phase diagram portrayed in Fig. 3(b),

(a) (b) (c)

FIG. 5. Dually conjugated phase portraits: (a) ðν; μ5Þ-phase diagram at μ ¼ 0.1 GeV, ν5 ¼ 0 GeV. (b) ðμ; μ5Þ-phase diagram at
ν5 ¼ 0, ν ¼ 0.1 GeV. It is a D1 mapping of Fig. 5(a). (c) ðν5; μ5Þ-phase diagram at μ ¼ 0.1 GeV, ν ¼ 0 GeV. It is a D3 mapping of
Fig. 5(a). The notations are from Fig. 1.
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where μ5 is equal to zero, to nonzero values of μ5. In the
most concise way it could be formulated that in the regime
of moderate values discussed above the phases and phase
transitions stay at their places and just condensates are
enhanced, so chiral imbalance μ5 catalyses all three phases.
It could be demonstrated probably in the most convenient
way by making the value of the fourth chemical potential
nonzero, namely ν5 in Fig. 5(a) and increasing its value. If
ν5 is smaller than μ ¼ 0.1 GeV then at ν < 0.1 GeV the
BSF phase is intact and continues to occupy the whole
region of ν < 0.1 GeV and the whole phase diagram in
Fig. 5(a) is unchanged and chiral chemical potential μ5
catalyzes BSF and PC phases. But if the value of
ν5 > μ ¼ 0.1 GeV, then the whole region of ν < ν5 GeV
is occupied by CSB phase and chiral chemical potential μ5
starts to catalyze chiral condensation in the region
ν < ν5 GeV. And if ν > ν5 GeV it continues to catalyze
charged pion condensation phenomenon. Let us also note
here that the phase diagram presented in Fig. 5(a) (recall
that this figure is shown in the chiral limitm0 ¼ 0) does not
change in the physical point, when one takes physical
nonzero value of current quark mass, since the value of the
quark number chemical potential μ is already larger than
half of pion mass.
Concluding, let us reiterate the phase picture in the

regime of moderate and rather low values of basic chemical
potentials in a concise form. It can be characterized in the
following manner. Each basic chemical potential is in one-
to-one correspondence with one of the possible nontrivial
phases of the model (charged PC, BSF, or CSB), as well as
with its order parameter/condensate (isospin chemical
potential ν corresponds to the charged PC phase, quark
number chemical potential μ—to the BSF phase, etc) and
the largest chemical potential fully determines the phase
that occupies the system. Chiral chemical potential μ5 does
not influence the phase transition features, in other words
μ5 does not choose any phase but it catalyzes the phases,
enhancing their condensates, picked by basic chemical
potentials.

C. The ability of μ5 to trigger various phases

1. The case when two of μ, ν and ν5 have
rather large values

Now let us switch gears a little bit and turn our attention
to the regime when basic chemical potentials μ; ν; ν5 has
rather large values. It is reasonable to start with the situation
when only two of chemical potentials μ; ν; ν5 are nonzero
and have rather large values and the remaining chemical
potential is equal to zero.
So take a look at Fig. 3(a), where ðμ; νÞ-phase diagram at

μ5 ¼ 0 and ν5 ¼ 0 is depicted. It does not contain any
region with CSB phase. Then, with increasing μ5, when it
reaches the critical value μ5c ∈ 0.15 ÷ 0.2 GeV, on the
ðμ; νÞ-phase diagram, which is under the constraint ν5 ¼ 0,

the band of CSB phase suddenly appears along the straight
line μ ¼ ν, when these chemical potentials are larger than
0.2 GeV. The typical ðμ; νÞ-phase diagram at ν5 ¼ 0 and
μ5 ¼ 0.4 GeV is given in Fig. 4(a), which is obtained by
numeric calculation. And one can see in this figure that for
the values of μ ≈ ν the band of the CSB phase is realized.
This leads to curious consequences, for example, in the
dense quark matter with rather considerable isospin im-
balance when μ ≈ ν, if one has nonzero chiral imbalance μ5
then increasing the baryon density and keeping the ratio of
baryon and isospin chemical potentials the same, one could
not restore chiral symmetry even at very large baryon
density. As a rule (if there is no chiral imbalance), either
keeping isospin asymmetry nonzero or vanishing, chiral
symmetry gets restored at rather large values of baryon
chemical potential.
One can also recall that the same pattern was observed in

the case of nonzero ν5 at μ5 ¼ 0. For example, the ðμ; νÞ-
phase diagram at ν5 ¼ 0.4 GeV and μ5 ¼ 0 is presented in
Fig. 3(c). (It is also interesting to note that, like any ðμ; νÞ-
phase diagrams of the model at fixed values of ν5 and μ5,
the phase portraits in Fig. 3 are self-dual with respect to the
action of the duality-D1 transformation (30) on them, i.e.,
charged PC and BSF phases are located on the figures
mirror-symmetrically relative to the straight line μ ¼ ν.)
Comparing the diagrams of Figs. 4(a) and 3(c), one could
notice that the discussed above band of CSB phase does not
depend on which chiral chemical potential is nonzero, ν5 or
μ5. These CSB-bands coincide in the whole range of values
of μ5 and ν5. The presence of these bands can serve as an
additional indication of the tendency that chiral imbalance
promotes chiral symmetry breaking. But in this case the
promotion is qualitatively different from the one discussed
above, and the chiral imbalances genuinely generates chiral
symmetry breaking and not just enhance (or catalyze) the
CSB triggered by other factors.
This behavior, i.e., the generation of band-shaped domain

of CSB phase, can be easily qualitatively understood. As it
follows from Eq. (3), for nonzero values of ν5 in the region
μ ≈ ν and μ5 ¼ 0 the Fermi momenta of dL and dR quarks
are μdL ¼ μ − ν − ν5 ≈ −ν5 and μdR ¼ μ − νþ ν5 ≈þν5,
respectively. So the condensation of the d̄LdR pairs is
possible and chiral symmetry is broken down. For nonzero
μ5 and ν5 ¼ 0 the situation is similar, in this case the Fermi
momenta are μdL ≈ μ5 and μdR ≈ −μ5, and the condensation
of, for example, d̄RdL pairs is possible, and CSB phase is
realized as well. The larger μ5 or ν5, the stronger the effect
and it can be realized in the broader band when the
cancellation of μ and ν is less pronounced.
Now let us contemplate the different setup, namely the

ðν; ν5Þ-phase diagram and the way how it is affected by
chiral imbalance μ5 at μ ¼ 0. It is fairly easy to obtain this
phase diagram, applying the D2-duality mapping to the
corresponding ðμ; νÞ-phase diagram at the same value of μ5
and at ν5 ¼ 0. For example, the ðν; ν5Þ-phase diagram at
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μ5 ¼ 0.4 GeV and μ ¼ 0 is depicted in Fig. 4(b), where the
band of BSF phase appears around the line ν ¼ ν5 when
these chemical potentials are large enough, > 0.2 GeV.
The diagram of Fig. 4(b) is indeed aD2-duality mapping of
Fig. 4(a). Moreover, the BSF band suddenly appears on
these ðν; ν5Þ-phase diagrams with μ ¼ 0 even at smaller
values of μ5 > μ5c ∈ 0.15 ÷ 0.2 GeV. So in this case the
situation drastically changes and chiral imbalance μ5
generates diquark condensation instead of chiral symmetry
breaking. Exactly the same band form of the BSF phase can
be observed at the ðν; ν5Þ-phase diagram with μ5 ¼ 0 at
corresponding nonzero values of baryon (quark number)
chemical potential μ. One could easily envisage it by
applying the D2-duality mapping to Fig. 3(c) and one
can see that the behavior of these band-shaped regions, for
μ ≠ 0, μ5 ¼ 0 and μ ¼ 0, μ5 ≠ 0, are exactly the same. As
for the baryon density, μ ≠ 0, it is expected and natural to
induce diquark condensation, it is small wonder that at
some regime the chemical potential μ leads to diquark
condensation (it does even in the simplest case of only
μ ≠ 0) but the fact that chiral chemical potential μ5 is doing
the same job is surprising enough, even more surprising
that it does it in exactly the same way as baryon one. Now
let us reflect on the mechanism of emergence of the band-
shaped region of BSF phase in ðν; ν5Þ-diagrams of Fig. 4(b)
type. The Fermi energies in this case of ν ¼ ν5 are
μuR ≈ μ − μ5, μdR ≈ μ − μ5. Hence, if μ5 ¼ 0 and μ ≠ 0

then the creation of Copper pairs of the form uRdR is quite
possible, and their condensation leads to the appearance of
the band-shaped BSF phase along the line ν5 ≈ ν of the
ðν; ν5Þ-phase diagram at some fixed μ. But in the case of the
ðν; ν5Þ-phase diagram of Fig. 4(b) type, when μ ¼ 0 and
μ5 ≠ 0, one can witness that the creation of Copper pairs of
the form ūRd̄R is possible at ν5 ≈ ν, also leading to the strip
of the BSF phase in Fig. 4(b).
Now consider the influence of chiral chemical potential

μ5 on the dense quark matter with chiral isospin imbalance,
i.e., on the ðν5; μÞ-phase diagram. The particular diagram of
this kind is presented in Fig. 4(c) at ν ¼ 0 and
μ5 ¼ 0.4 GeV. And it is obtained (without any numerical
calculations) simply by the action, e.g., of the D3-dual
mapping on the diagram of Fig. 4(a). It is clearly seen that
in Fig. 4(c) the bandlike region of charged PC phase is
spawned at μ ≈ ν5, and this phase is D3-dually conjugated
to the bandlike CSB phase of Fig. 4(a). Also in this case
interestingly enough that this phase completely coincides
with the charged PC phase at the ðμ; ν5Þ-phase diagram at
μ5 ¼ 0 and ν ¼ 0.4 GeV, which is a D3-dual mapping of
the diagram in Fig. 3(c). So in μ ≈ ν5 environment chiral
imbalance μ5 fully takes a role of isospin ν one and causes
the charged PC to crop up. In this region of phase structure
the effects of chiral imbalance μ5 and isospin imbalance ν is
fully tantamount.
One can conclude that in the regime when values of basic

chemical potentials μ; ν; ν5 reach rather large values, the

influence of chiral imbalance μ5 can be rather different, than
just a universal catalyst for any pattern of symmetry breaking
in the system. To support this statement, above we have
considered in details the influence of μ5 on the phase
structure of the model for three particular sets of basic
chemical potentials, (i)ν5 ¼ 0butμ; ν > 0.2 GeV, (ii)μ ¼ 0
but ν; ν5 > 0.2 GeV, (iii) ν ¼ 0 but μ; ν5 > 0.2 GeV. It
turns out that at μ5 ¼ 0 as well as at a rather small vicinity of
the zero point, the system is in the symmetrical phase for each
set (i)-(iii) of chemical potentials (this conclusion is well
illustrated by Fig. 3(a) and its dual conjugations). However,
when μ5 > μ5c, the chiral imbalance μ5 induces some
symmetry breaking. In this case, depending on the con-
ditions, μ5 can assume either the role of baryon chemical
potential and generate the diquark condensation [for the set
(ii)], or isospin chemical potential and trigger chargedPC [for
the set (iii)], or chiral isospin chemical potential ν5 and be a
reason of CSB [for the set (i)]. One can say that the statement
that the chiral imbalance μ5 has a chameleon nature, i.e., it
can pretend to be either chemical potential depending on the
situation is supported once again. And here it does not just
catalyze the symmetry breaking and enhance the correspond-
ing condensate as in chiral symmetry breaking catalysis
observed when only μ5 ≠ 0 [46], but causes the symmetry
breaking to happen in the first place.
Let us reflect on the chiral imbalance μ5 in terms of

dualities and its ability to generate various phenomena.
Chiral chemical potential μ5 does not participate in the
duality transformations, it only keeps the dualities of (μ, ν,
ν5)-phase structure intact, i.e., ðμ; ν; ν5Þ-phase diagram at
μ5 ¼ 0 and its expansion to nonzero chiral chemical
potential μ5 is highly symmetric due to dualities. This
leads to the fact that one can shuffle the facets of the (μ, ν,
ν5)-phase diagram and due to this the influence of μ5 on
various phenomena would be the same, since these facets
are connected by duality transformations. So the influence
of μ5 on the (μ,ν,ν5)-phase structure is constrained by
dualities and the chameleon nature of chiral chemical
potential is inevitable and it is a consequence of dual
properties of the phase diagram. The universality of effect
of chiral chemical potential on various phenomena (the fact
that μ5 influence CSB, PC and BSF phases equally in
various conditions) is inevitable and it is a consequence of
dual properties of the phase diagram. For example, if one
knows that at μ5 > μ5c chiral imbalance generates chiral
symmetry breaking in dense quark matter with isospin
imbalance, μ ≈ ν, see Fig. 4(a), then one could use the
duality and find out that chiral imbalance can generate
diquark condensation (at ν5 ≈ ν) and charged PC (at
μ ≈ ν5), as it is clear from Figs. 4(b) and 4(c), respectively.

2. Dense quark matter with isospin and both chiral
imbalances: The case of nonzero μ, ν, ν5, and μ5
Now let us discuss the most generic situation when

besides nonzero chiral imbalance μ5 all three chemical
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potentials μ; ν; ν5 are nonzero. This kind of general
situation has been already considered in the regime of
small and moderate values of μ; ν; ν5 chemical potentials in
Sec. IV B. In this section, let us turn our attention to the
regime where these chemical potentials have rather large
values.
To begin with, we are going to investigate what happens

to the ðμ; νÞ-phase diagram at nonzero fixed values of ν5, if
one starts to increase the value of chiral chemical potential
μ5. In particular, the ðμ; νÞ-phase diagram in the cases with
only one chiral imbalance, i.e., at different nonzero values
of μ5 and zero ν5 ¼ 0 and at ν5 ≠ 0 and μ5 ¼ 0, has been
already deliberated in detail in Sec. IV C 1. So first of all let
us recall how the variation of chiral isospin ν5 chemical
potential value would be imprinted at the ðμ; νÞ-phase
diagram in the case μ5 ¼ 0. Several diagrams of this type
are shown in Fig. 3. As it is clear from it (see also in
Ref. [41]) and has been discussed above, if one increases ν5
the boot-shaped elongated regions of charged PC and BSF
phases at μ ≈ ν5 and ν ≈ ν5 are shifted to the larger values
of μ and ν, respectively. This effect, for example, leads to
the generation of charged PC phase at larger baryon
density, the similar effect in three color case led to the
generation of charged pion condensation in dense quark
matter with chiral imbalance [38].
Now let us return to the discussion of the influence of

chiral chemical potential μ5 and recall in the first place that
in the case of all four nonzero chemical potentials there is
no symmetry of the TDP (33) of the form μ → −μ or
μ5→−μ5 etc. and, for example, the cases μ5> 0 and μ5 < 0
has to be considered separately. So, recall that in the
most general case, one can consider various combinations,
μ > 0, ν > 0, and ν5 > 0 but the value of chiral imbalance
μ5 is of any sign, or μ > 0, ν > 0, and μ5 > 0 and the sign
of ν5 is not fixed or any other combination [see the remark
in the second paragraph below Eq. (33)].
Let us choose the former option, the one where basic

chemical potentials μ, ν, and ν5 are positive and μ5 can be

of both signs, and first take the case of negative values of
μ5. We would like to explore what effect chiral imbalance
μ5 leaves on the ðμ; νÞ diagram at fixed ν5 ≠ 0. For
example, to understand what would happen to Fig. 3(c)
if one increases the value of chiral imbalance jμ5j provided
that μ5 < 0, take a look at Fig. 6(b). There the influence of
the μ5 ¼ −0.3 GeV [instead of μ5 ¼ 0 as in Fig. 3(c)] on
the ðμ; νÞ-phase diagram at fixed ν5 ¼ 0.4 GeV is shown.
As a result, one can see that the bootlike charged PC and
BSF phases are shifted to the smaller values of ν and μ
respectively, i.e., along the direction that they are elongated
along. Let us note that it is a perpendicular direction to the
one they shift when one increases ν5.
And at some rather large jμ5j the charged PC and BSF

phases of ðμ; νÞ-phase diagram with some fixed ν5 transfix
the axes μ and ν, respectively [see Fig. 6(b)]. Hence, a rather
interesting picture unfolds, i.e., one could see that at large
enough values of chiral imbalances ν5 and negative μ5 the
diquark condensation takes place in the region of phase
diagram with rather small or zero baryon density, μ ¼ 0,
whereas charged pion condensation is favored in the region
of large baryon (quark number) density, μ ≠ 0, and small
isospin chemical potential ν.8 Especially interesting is the
feature of dense quark matter when at nonzero chiral
imbalances, ν5 > 0 and μ5 < 0, and zero isospin one,
ν ¼ 0, the baryon chemical potential μ is increased gradu-
ally [see, e.g., the movement along the line ν ¼ 0 in
Fig. 6(b)]. First, if μ is zero or small then CSB phase is
realized due to rather large chiral imbalance ν5, then at larger
values of μ the charged PC is triggered instead of diquark
condensation. Due to a D1-self-duality of the ðμ; νÞ-phase

(a) (b) (c)

FIG. 6. ðμ; νÞ-phase diagrams: (a) at ν5 ¼ 0.25 GeV, μ5 ¼ 0.5 GeV, (b) at ν5 ¼ 0.4 GeV, μ5 ¼ −0.3 GeV, (c) at ν5 ¼ 0.2 GeV,
μ5 ¼ 0.5 GeV. The notations are from Fig. 1.

8All this is in drastic contrast to the regular behavior at zero
chiral imbalances ν5 and μ5 [6–8,12–21], or if only one of them is
present, where BSF phase (charged PC phase) is generated when
there is nonzero μ (isospin imbalance ν), or if baryon chemical
potential μ (isospin chemical potential ν) has higher values than
the other ones [41].
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diagram of Fig. 6(b), a similar, but opposite, phenomenon
occurs when at zero baryon chemical potential μ ¼ 0 one
increases the isospin one. It is clear from Fig. 6(b) that at
moderate values of ν less than 0.2 GeV chiral symmetry
breaking predominates, due to chiral isospin imbalance
ν5 > 0, but at larger values of ν, instead of pion condensation
that is usually promoted by isospin chemical potential, the
diquark condensation develops in the system. The remark-
able feature is that even at exactly zero baryon chemical
potential μ ¼ 0 the diquark condensation is prevailing in
full swing.
Now let us consider the caseμ5 > 0. Thenwith increase of

the value of μ5 the bootlike charged PC and BSF phases of
the ðμ; νÞ-phase diagram (at some fixed ν5 andμ5) are shifted
to opposite direction (compared to the case μ5 < 0), i.e., to
the larger values of ν and μ, respectively. For example, in
Fig. 6(a) the ðμ; νÞ-phase diagram in the case ν5 ¼
0.25 GeV and μ5 ¼ 0.5 GeV is depicted. [The value of
ν5 ¼ 0.25 GeV, not ν5 ¼ 0.4 GeV as in Fig. 6(b), is taken
for a change, and if needed one can easily envision the ðμ; νÞ-
phase structure at ν5 ¼ 0.4 GeV and μ5 ¼ 0.5 GeV, where
the charged PC and BSF phases would be shifted to the
larger values of ν and μ, respectively, in comparisonwith the
ðμ; νÞ-phase diagram of Fig. 3(c) at ν5 ¼ 0.4 GeV and
μ5 ¼ 0, exactly in the same way as the phase structure
evolves at ν5 ¼ 0.25 GeV from Figs. 3(b)–6(a). We will
discuss the additional reasoning apart from diversity and
clarity for this choice below, now let us turn back to phase
structure of Fig. 6(a).] While these bootlike PC and BSF
phases are moved to larger values of ν and μ chemical
potentials, there a new bootlike region of BSF (charged PC)
phase appears from the small values of ν (μ), see Fig. 6(a). In
this case of μ5 > 0 one can see that the diquark condensation
could be triggered in the quark matter with zero baryon
chemical potential μ ¼ 0 as well.
Thus, the analysis of the phase diagrams in Fig. 6 allows

us to draw a very interesting conclusion that in both cases,
negative or positive values of μ5, even at zero baryon
density, μ ¼ 0, in quark matter with an increase of ν, a BSF
phase can arise, which is induced in the system only in the
presence of a rather large chiral asymmetry (large value of
jμ5j). From the diagrams in Fig. 6, a dually-D1 conjugate
conclusion also follows: if the isospin density in quark
matter is zero, ν ¼ 0, then with increasing of μ in it, in the
presence of a chiral asymmetry with a large value of jμ5j, a
charged PC phase is generated. These phenomena are quite
curious and they could not be observed in the system
without chiral imbalance, especially without chemical
potential μ5, since at μ5 ¼ 0 and at the same values of
the basic chemical potentials μ, ν, ν5, neither the BSF nor
the charged PC phase is present in the system (see Fig. 3
from Ref. [41]).
In part, the phase diagrams in Fig. 6 can also be

explained qualitatively at the level of Fermi energies
(chemical potentials) for massless left- and right-handed

quarks (3), by employing the pairing arguments. In the
region of, for example, charged PC phases of Fig. 6, where
μ ≈ ν5, we have from Eq. (3) that μuR ≈ ν − μ5 and
μdL ≈ −νþ μ5. So one can see that if ν ¼ 0 (or nonzero
but its value should not be close to the value of μ5), then
μ5 ≠ 0, both negative and positive, could generate charged
PC phase, as it happens in all diagrams of Fig. 6. In a
similar way, it is possible to explain qualitatively the
presence of the BSF phase in Fig. 6. In the region of ν ≈
ν5 and at rather large values of μ5 and at zero or nonzero
μ ≠ 0 (its value should not just be close to the value of μ5),
the Fermi energies (or chemical potentials) of right-handed
u and d quarks (3) are μuR ≈ μdR ≈ μ − μ5. Then at μ5 < 0

[as in Fig. 6(b)] there is a possibility of creation of Copper
pairs (even at μ ¼ 0) of the form uRdR, and their con-
densation leads to emergence of BSF phase in this case. But
at μ ¼ 0 and μ5 > 0 [as in Figs. 6(a) and 6(c)] we have
negative values of μuR and μdR . It means that in this case
there appears Fermi seas (with equal Fermi surfaces) for
corresponding antiparticles, i.e., for ūR and d̄R. The
excitations around these Fermi surfaces can form Cooper
ūRd̄R pairs, and their condensation leads also to the
formation of the BSF phase.
Let us now elaborate on the choice of the value of

ν5 ¼ 0.25 GeV in Fig. 6(a) (instead of ν5 ¼ 0.4 GeV). The
pattern of the phase structure that we have talked about
above was inherent only in the regime of rather large values
of chiral isospin imbalance ν5, to be more precise larger
than around 0.2 GeV, otherwise the bootlike regions would
not emerge and separate from the ν and μ axis. (The regime
of values smaller than 0.2 GeV has been discussed in
Sec. IV B.) One can see in Fig. 3(b) that these phases
just start to appear at ν5 ¼ 0.2 GeV. So the value of
ν5 ¼ 0.25 GeV was chosen in order to show that the
discussed regime works in full fledged mode already at
these values. Let us now consider the transitionary regime
between moderate values of ν5 < 0.2 GeV and rather large
ones ν5 > 0.2 GeV and see how the (μ, ν)-phase diagram
depicted in Fig. 3(b) alters, if the chiral imbalance μ5 is
increased. Now let us consider the transitory region around
ν5 ¼ 0.2 GeV. Although at ν5 ¼ 0.2 GeV and μ5 ¼ 0 the
regime of moderate values still worked, see Fig. 3(b), when
one increases μ5 to rather large values, the rather simple
picture breaks down and one can see in Fig. 6(c), where the
(μ, ν)-phase diagram at μ5 ¼ 0.5 GeV and ν5 ¼ 0.2 GeV is
depicted, that in this case the phase structure is quite rich
and complicated. Indeed, there the new regions of charged
PC and BSF phases at around μ ≈ 0.2–0.25 GeV and
ν ≈ 0.2–0.25 GeV appear, as in the case of regime of large
ν5. At still larger μ and ν values the more expected BSF and
charged PC phases emerge, as in the case of moderate
values ν5. One can see that it is true that in this case the
phase diagram is quite involved and rich, and, for example,
a lot of first order phase transitions can happen in not so
wide range of chemical potentials. If in the case of small or
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zero values of isospin imbalance, the baryon density, or μ, is
increased from small values, first CSB phase takes place,
then, if baryon density is increased, charged pion con-
densation is triggered in the system. Comparing Fig. 6(c)
with a similar phase diagram of Fig. 3(b) with the same
fixed ν5 ¼ 0.2 GeV but μ5 ¼ 0, we see that this effect is
just due to a nonzero and large value of μ5. Moreover, one
could note that in this case the generated value of the
charged pion condensate π1 is rather large, see in Fig. 2(c).
And then, at still larger values of baryon density, diquark
condensation, or BSF phase, is generated [Fig. 2(c)] as in
the regime of zero or small μ5 and the value of diquark
condensate is very considerable. So two first order phase
transitions happens in the range of baryon chemical
potential μ from zero, or even around 0.2 GeV, to
0.3 GeV. By a D1-self-duality of the (μ, ν)-phase diagram
of Fig. 6(c), it is clear that at zero or small values of μ the
isospin chemical potential ν is able to generate the BSF
phase at nonzero values of μ5. Moreover, applying to the
diagrams of Fig. 6 the D2- and D3-dual transformations, it
is possible to obtain the ðν; ν5Þ- and ðμ; ν5Þ-phase diagrams
of the model at the same fixed values of μ5.
Concluding this section, we would like to note one more

interesting property of chiral imbalances in two-color quark
matter. Suppose that it is somehow possible to obtain in the
system nonzero values of the chiral density of both types
and, moreover, to change the values of the corresponding
chemical potentials, ν5 and μ5. Then practically for arbi-
trary fixed values of μ and ν it is possible to get both BSF
and charged PC phases, selecting for each of these
phenomena the corresponding values of ν5 and μ5. The
variation of values of ν5 and μ5 leads to the shifting of the
BSF and PC phases in perpendicular directions. (For
example, if one increases ν5 value, BSF phase occupies
the region of larger values of isospin imbalance ν at the
same μ and if one increases μ5 BSF phase shifts to the
larger baryon density μ region with the same value of ν.)
So the BSF phase, i.e., diquark condensation, to be more
precise its place in the phase diagram of dense quark matter
with isospin asymmetry, could be controlled by values of
chiral imbalances ν5 and μ5. And it tells us that diquark
condensation phenomenon could be greatly influenced by
chiral imbalance of the medium.
Let us summarize in a way and reiterate the following

points. In the regime when basic chemical potentials have
small or moderate values, chiral chemical potential μ5 could
only catalyze the phases triggered by basic triple of
chemical potentials μ, ν and ν5, it is a universal catalyst.
But in the regime when basic chemical potentials are rather
large, considered in this section, chiral chemical potential
μ5 can entail rather peculiar symmetry breaking patterns on
its own. For example, at μ5 ≠ 0 (i) one can note that
charged PC can emerge in the system even with zero
isospin chemical potential, (ii) the diquark condensation
can be realized in quark matter with isospin asymmetry,
ν ≠ 0, but zero baryon density, μ ¼ 0 (see in Fig. 6).

So, the chiral imbalance μ5 in various conditions could
mimic all chemical potentials possible in the system. For
example, in quark matter with zero baryon chemical
potential μ5 can take a role of μ and generate BSF phase
in the system. In this sense the feature of chiral imbalance
μ5 of having the chameleon property manifests itself in this
case as well.

V. SUMMARY AND CONCLUSIONS

In this paper the influence of chiral imbalance μ5 on such
phenomena of two-color quark matter as chiral symmetry
breaking, diquark and charged pion condensations has been
scrutinized in the framework of two-color effective NJL
model in the mean-field approximation. The influence of
other, quark number (or baryon) μ, isospin ν and chiral
isospin ν5, chemical potentials has been investigated in our
previous article [41]. While the effect of μ, ν and ν5 on
phase structure, though different, could be grouped
together, the influence of μ5 is rather peculiar and stands
alone from them. The main results of the paper are the
following:

(i) It was shown in the mean-field approximation that at
μ5 ≠ 0 the thermodynamic potential (33) of the
model has the same three dual symmetries D1

(30), D2 and D3 (31), found in the case of
μ5 ¼ 0. These dualities lead to some fundamental
discrete symmetries of the full ðμ; ν; ν5; μ5Þ-phase
diagram of the model, which we also call dual
symmetries.

(ii) Since the duality transformations D1, D2, and D3 do
not involve μ5, chiral μ5 stands alone from other
chemical potentials, baryon, isospin, and chiral
isospin chemical potentials, as we call them basic
ones, in the sense that at fixed μ5 all other chemical
potentials are intermingled together by dualities and
amalgamated in some ðμ; ν; ν5Þ cross section of the
full phase diagram of the model. Due to this fact the
full ðμ; ν; ν5; μ5Þ-phase diagram could be envisaged
as a foliation of the ðμ; ν; ν5Þ-phase portraits
along the axis of chiral imbalance μ5. And each
μ5 ≠ 0-fixed cross section of the full phase diagram,
or its ðμ; ν; ν5Þ-phase portrait, is highly symmetric to
the same extent as at μ5 ¼ 0.

(iii) This fact entails the number of very interesting
implications for the phase structure. Due to it various
cross sections of ðμ; ν; ν5Þ-phase diagram are self-
dual (for example, each ðμ; νÞ-phase diagram of
Figs. 3 and 6 is a D1-self-dual). So it is very easy to
analyze it by performing numerical calculations of
one of its phase portraits, and then applying to it
different duality mappings [e.g., in Fig. 4 the middle
and right panels are, respectively, D2 and D3

conjugated to Fig. 4(a)]. If one varies the chiral
imbalance μ5, then the ðμ; ν; ν5Þ-phase diagram as a
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whole is distorted and transformed, but its property
of high symmetry remains intact.

(iv) The full ðμ; ν; ν5; μ5Þ-phase structure of the model
could be divided into two regimes. In the first one,
when basic chemical potentials μ; ν; ν5 have small or
moderate values <0.2 GeV, the picture is quite
frugal in details, but concise and elegant (see in
Sec. IV B). The phase diagram has the property that
each basic chemical potential is connected by one-
to-one correspondence to some phenomenon that it
generates, i.e., chiral isospin chemical potential ν5
generates CSB, isospin chemical potential ν leads to
charged PC phenomenon and μ entails BSF diquark
condensation phenomenon. The whole phase dia-
gram can be sketched in the few lines, the relation
between three chemical potentials μ; ν; ν5 fully
defines the phase structure and the largest chemical
potential triggers the corresponding phenomenon
and hence the corresponding symmetry breaking
pattern. While the relation between values of these
chemical potentials determine the phase settled in
the system, the increase of chiral chemical potential
μ5 does not meddle in this phase rivalry, it plays the
unique role of universal catalyzer, i.e., it catalyzes
any of these phases picked by basic chemical
potentials and drastically enhances the value of
the corresponding condensate.
So the chiral chemical potential μ5 stands alone

from the other chemical potentials not only in terms
of dual properties. Its influence on the phase dia-
gram in this regime is drastically different to other
(basic) chemical potentials. Chiral chemical poten-
tial assumes the property of the largest basic
chemical potential (that determines the phase) and
catalyzes the corresponding phenomenon even fur-
ther. So it could mimic the effect of other chemical
potentials. Especially clear, this is seen in the case
where there is only one chemical potential besides
μ5. In this scenario the phase diagram is very
symmetric and chiral chemical potential μ5 takes
a role of this chemical potential and, mimicking it,
catalyzes the corresponding phenomenon. This
property was called the chameleon one by analogy
with chameleon and its ability to assume the color of
the environment in which it is placed.

(v) In the second regime of rather large values of basic
chemical potentials μ; ν; ν5 (at least when two of
them are larger than 0.2 GeV), the phase diagram is
much more involved and has rich structure, espe-
cially if there are all three nonzero basic chemical
potentials, see, e.g., in Fig. 6. In this regime the
chiral imbalance μ5 is not just a universal catalyst for
any pattern of symmetry breaking in the system. It is
able to induce some dynamical symmetry breaking
on its own and trigger rather peculiar phases in the

system. For example, diquark condensation at zero
baryon chemical potential μ ¼ 0, which is rather
peculiar and could not occur without μ5.

In this case, as well depending on the situation,
chiral chemical potential μ5 can pretend to be any
basic chemical potential μ; ν; ν5. For example, μ5
can assume the role of baryon chemical potential μ
and generate the diquark condensation. Also μ5
can mimic either isospin chemical potential ν and
trigger charged PC, or chiral isospin chemical
potential ν5 and be a reason of chiral symmetry
breaking. And in this sense the statement that the
chiral imbalance has a chameleon nature is sup-
ported once again.

(vi) Chameleon nature of chiral imbalance is a rather
universal phenomenon and it can be observed in
both regimes, as for small and moderate values of
basic chemical potentials, as well as for rather large
ones. The unique role of μ5 as a universal catalyzer is
also one of manifestation of this effect. Chiral
imbalance μ5 can promote all phenomena happening
in two-color quark matter, this property is based on
the fact that at fixed μ5 the ðμ; ν; ν5Þ-phase diagram
of the two-color NJL model is highly symmetric
due to dualities (see in Sec. III). All these leads to the
fact that, using duality mappings, one can shuffle
the facets of the ðμ; ν; ν5Þ-phase diagram. So if μ5
promotes some phenomenon, it could promote
two others in the dually conjugated sectors of the
ðμ; ν; ν5Þ-phase diagram. So the influence of chiral
chemical potential μ5 on the phase structure is highly
constrained by dualities, its chameleon nature is
inevitable consequence of dual properties of the
phase diagram.

In the presence of only one nonzero chemical potential μ,
the results of our paper can be compared with lattice
approach to 2-color QCD (see, e.g., Ref. [10]). In this case,
two different approaches, NJL and lattice one, to 2-color
QCD with only μ ≠ 0 predict a qualitatively identical phase
structure of this model in the region of not very large values
of μ. Extrapolating this result to the case of 2-color QCD
with several chemical potentials, we can conclude that our
results quite adequately represent the phase structure of
massless 2-color QCD in the region of intermediate values
of basic, i.e., μ; ν; ν5, chemical potentials, say, lower than
Λ ≈ 0.65 GeV.
As for the interval of μ5 values, for which the properties

of the 2-color NJL model, obtained in our consideration,
can be extended (at least at a qualitative level) to the cases
of both two- and three-color QCD, we predict a more
narrow interval, namely jμ5j < 500 GeV (or even smaller).
The first reason is that the UV cutoff Λ, as it was shown in
Ref. [46], cuts effectively important degrees of freedom of
the system and can lead to the wrong result, if μ5 is near the
cutoff. The second one is that the predictions of any NJL
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model depend to a large extent on the regularization
scheme. For example, in our paper the sharp cutoff scheme
is used, for simplicity. And in this case the chiral con-
densate is enhanced by μ5 at rather small interval μ5 ≲
0.4 GeV [see in Fig. 2(a)]. However, there is a more
sophisticated, the so-called medium separation scheme,
regularization approach to NJL model. In the case with
single μ5, it supplies an increasing of chiral condensate over
a much larger range of μ5 [49]. And just the last result is in
agreement with first-principal lattice study of the 2-color
QCD with only μ5 ≠ 0 [47]. Due to technical difficulties
that arise in the case of several chemical potentials, the
medium separation regularization scheme was not used in
our present investigation. Nevertheless, we guess that the

phase diagram of the 2-color NJL model considered in our
paper, even within the framework of the simplest regulari-
zation scheme, shows all the elegance inherent in the phase
structure of a 2-color QCD with different densities and
clarifies the properties of the μ5 chiral imbalance. And its
effect on the phase structure, which may turn out to be
universal and inherent as well, or have some common
features, with the 3-color QCD.
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