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Onset of quantum chaos in disordered CFTs
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We study the Lyapunov exponent 1; in quantum field theories with spacetime-independent disorder
interactions. Generically A; can only be computed at isolated points in parameter space, and little is known
about the way in which chaos grows as we deform the theory away from weak coupling. In this paper, we
describe families of theories in which the disorder coupling is an exactly marginal deformation, allowing us
to follow 4; from weak to strong coupling. We find surprising behaviors in some cases, including a
discontinuous transition into chaos. We also derive self-consistency equations for the two- and four-point
functions for products of N nontrivial conformal field theories deformed by disorder at leading order in

1/N.
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I. INTRODUCTION

Disordered theories display an interesting range of
physical phenomena. Disorder appears in many experi-
mental setups, but it has also found theoretical applications.
An especially interesting disordered theory is the SYK
model [1,2]. The SYK model is defined as taking N free
fermions and deforming them by a random interaction:

N
H= Z Jil...iql//il-”l//iqv (L.1)
1

ifyig=

with J i, @ random variable drawn from a Gaussian

distribution with zero mean and variance <‘]121...iq> =

(g—1) NJ,,Z_, (with no sum over repeated indices).

In addition to the SYK model, there also exist more
general SYK-like models which display interesting behav-
iors and have been studied in detail. These are obtained by
taking N free fields W (which can be fermions, bosons, or
superfields in any dimension) and coupling them using the
spacetime-independent disorder interaction
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where J are random variables taken from a Gaussian
distribution with zero mean, and the disorder interaction
can be either a potential or a superpotential term. For
example, taking ¥ to be a free fermion in O+ 1d and
interpreting (1.2) as the Hamiltonian, one obtains the SYK
model. Similarly, taking ¥ tobe a 1 + 1d N' = (1, 1) free
chiral superfield and interpreting (1.2) as a superpotential,
one obtains the MSW model [3]. There are also general-
izations to A" = 1 and A/ = 2 in quantum mechanics [4],
1+ 1dN =(2,0)[5],1+1d N =(2,2) [6],and 2 + 1d
N =2 [7], among others.

The disorder allows for some exact computations in these
theories in the IR at leading orderin 1/N, assuming that they
flow to a scale-invariant fixed point [1,8,9]. In particular, one
can write down and solve a Schwinger-Dyson equation for
the two-point function, and solve it using a conformal ansatz.
In addition, the diagrams contributing to the four-point
function of the theory obey an iterative ladder structure,
and so they can be formally resummed, allowing for
computation of the full four-point function of the theory.
Higher-order correlators can also be computed [10].

In this paper we consider a more general construction.
Consider a conformal field theory (CFT) in d dimensions,
which contains a primary operator O of dimension A. We
will study N copies of this core CFT, deformed by a
disorder interaction:

(CFTY) + > " J; 1,0;,...0 (1.3)

iy...ig

iq’

where J i..i, are again Gaussian random variables with

2 )= T (g-1)

. | . . .
variance (J; ; v and the disordered interaction
ey
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term can be interpreted as a potential or a superpotential.
These theories can be studied in conformal perturbation
theory in J. We will call such theories disordered CFTs. As
an example, in this notation we refer to SYK-like models as
disordered free fields, since the core CFT is a free field
theory.

As discussed above, for disordered free fields there is a
simple structure to the diagrammatic contributions to the
two- and four-point functions at leading order in 1/N.
Surprisingly, we will be able to show that a similar structure
exists also for the computations of two- and four-point
functions in general disordered CFTs. For example, one can
still write down a Schwinger-Dyson equation for the exact
two-point function (see Fig. 6). In addition, the contribu-
tions to the four-point function still exhibit an iterative
ladder structure (see Fig. 8), which can be formally
resummed. We will write down explicitly the correspond-
ing equations from which the two- and four-point functions
can be extracted for general disordered CFTs.

Unfortunately, since interacting CFTs are much more
complicated than free theories, the corresponding equations
one must solve in order to find the exact two- and four-
point functions are much more complicated as well. In
particular, in order to solve the equations we must know all
n-point functions of the CFTs. These computations are thus
practically possible only in specific CFTs. In this paper we
will be able to use the equations to study disordered
generalized free fields and a disordered N = (2,2)
minimal model.

Although the generalized equations we will write down
for the two- and four-point functions for disordered CFTs
are complicated, they still allow us to study a new
phenomenon. It is common in the literature to make the
disorder deformation relevant, so that the theory flows to
some fixed point in the IR. One can also try to use a
disorder deformation that is classically marginal for dis-
ordered free fields, but these deformations are usually
marginally irrelevant (see, e.g., [11]). On the other hand,
around nontrivial CFTs there is the possibility that these
deformations are exactly marginal. In this paper we will
mainly focus on exactly marginal deformations, at least at
leading order in 1/N. In particular, this means that it is not
necessary to take J — oo in order to find a fixed point;
instead, the values of J should parametrize a line of
(disordered) fixed points.

The existence of a line of fixed points allows one to ask
questions about the J dependence of observables in the
theory, rather than just the large-J (or IR) behavior as in
disordered free fields. We will mostly by interested in the J
dependence of the chaos exponent A; (/). 4, can be read off
from the behavior of an out-of-time-ordered correlator
(OTOC) [2,12,13], which will be reviewed in detail in this
paper. Famously, this chaos exponent is bounded from
above A; <2x/p [14], with f the inverse temperature.
Since we will be working around scale-invariant theories,

will be the only scale in the problem and so we will set
f = 2z in the following, so that the bound reads 1; < 1.

Usually, computing the chaos exponent requires the
theory to be scale invariant, since this simplifies the
computation immensely. As a result, 4; is known mostly
for some isolated CFTs. However, the structure described
above allows us to compute the chaos exponent as a
function of the continuous disorder parameter J. We will
thus be able to follow 4; from J =0, where the theory
consists of a product of N decoupled CFTs, to J — oo,
where the theory usually coincides with some SYK-like
fixed point. We expect there to be very low chaos at J = 0
and large chaos at J = oo, and we would like to study how
chaos emerges in the theory. For some previous discussions
of quantum chaos at weak coupling which are similar to the
discussion here, see [6,8,15—18] and references therein, and
specifically [19,20] which discussed chaos on a line of
fixed points in a non-Lorentz-invariant theory.

The question of how chaos appears following a small
deformation of a nonchaotic theory is an extremely
complicated one, even in classical systems. Classically,
there are diverse types of behaviors that different systems
can display, leading to a large range of interesting physical
phenomena to study. Specifically, some interesting behav-
ior occurs when one deforms an integrable system away
from integrability. An important result in this context is the
KAM theorem, which discusses the breakdown of integra-
bility under a small deformation for nondegenerate inte-
grable systems with a finite number of degrees of freedom.
Schematically, the KAM theorem states that such systems,
which are slightly deformed away from integrability, still
retain a large part of their integrable structure. As a result, a
“large” deformation away from integrability is required in
order to find chaos. The fact that deformations away from
integrability retain some integrable structure seems to be
more robust than the range implied by the KAM theorem;
another example of this behavior beyond the scope of the
KAM theorem is the Fermi-Pasta-Ulam-Tsingou problem.

We will find that disordered quantum systems also
display different types of behaviors when deformed away
from a nonchaotic point. In particular, we will find two
types of behavior for the chaos exponent 4;, shown in
Fig. 1. Schematically, we find that disordered CFTs can
either have a continuous or a discontinuous transition into

p A
L |
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FIG. 1. The two types of behaviors we find for the dependence

of the chaos exponent A; on the exactly marginal disorder
deformation J: (a) continuous and (b) discontinuous.
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chaos. The discontinuous transition into chaos is an
extremely interesting result, and parallels the behavior
one might expect from systems that fall under the classes
described in KAM theory, but the analogy is very far from
being precise. The KAM theorem was an exciting break-
through in the study of the onset of classical chaos, and we
hope that a similar breakthrough may appear in the study of
the onset of quantum chaos.

The rest of this paper is organized as follows. In Sec. II,
we discuss generalities of disordered CFTs at large N. We
write down the self-consistency equations for the two- and
four-point functions, and discuss the computation of the
chaos exponent. In Sec. IIl we define the main classes of
theories we will be interested in, where the disorder
coupling J is exactly marginal. In Sec. IV we discuss
the first class of theories, the disordered generalized free
fields, and we compute the chaos exponent as a function of
J for them. In Sec. V we discuss the second class of
theories, the disordered A/ = 2 minimal models, and we
find the chaos exponent in the limit / — O for the simplest
minimal model. We discuss our results and some future
directions in Sec. VL.

A. Summary of results

We now summarize the main results of this paper. There

are two main results:

(1) First, we discuss the two- and four-point functions of
general disordered CFTs. For the two-point func-
tion, we write down a self-consistency equation for
the exact propagator (Fig. 6), which generalizes the
standard Schwinger-Dyson equations of disordered
free fields. We then show that the contributions to
the four-point function have an iterative ladder
structure (Fig. 8), again imitating the case for
disordered free fields. In both cases the structure
is much more complicated in a general CFT com-
pared to a free theory, but it allows for a perturbative
expansion in the disorder parameter J.

(2) Second, we discuss chaos in the case where the
disorder parameter J is an exactly marginal defor-
mation (at least at leading order in 1/N). We show
that the OTOC also obeys a ladder structure, which
allows for a computation of the chaos exponent 4, (/)
in the case where J is exactly marginal. We perform
this computation in two classes of examples:

(a) Disordered generalized free fields: we discuss
generalized free fermions in 0 + 1d (following
[21]) and SUSY generalized free chiral super-
fields in 1+ 1d. In both cases J is exactly
marginal at leading order in 1/N. We find that
in this class of models there is a discontinuous
transition into chaos as in Fig. 1(b), so that the
chaos exponent vanishes for couplings J < J.
for some finite critical coupling J.., before rising
as we raise J above J.. See Fig. 11 for the

explicit result for the 0 4 1d case and Fig. 12 for
the 1 4 1d case. Specifically, the chaos exponent
read off from the ladder structure appears to be
negative for J < J,, but as we explain this just
signals a breakdown of some assumptions which
are usually made in the computation of the chaos
exponent, and should be interpreted as having
Ap =0 for J < J..

(b) Disordered SUSY minimal models: we discuss
N copies of the A, ; N =(2,2) minimal
models coupled by disorder. The computation
of A, (J) is difficult in general, and so we focus
on the particularly simple case of ¢ = 3, where
the theory has central charge ¢ =1 and so it
reduces to that of a free compact boson. This
allows us to compute all possible correlators of
the relevant chiral superfields, and to compute
the leading contribution to the chaos exponent at
small J. We find that there is a smooth transition
into chaos in this case, as in Fig. 1(a).

This paper is just a first step in the study of the onset of
quantum chaos in disordered systems, and many open
questions remain. In particular, we conjecture a continuity
relation around Eq. (2.37), which relates the chaos exponent
of disordered CFTs obtained via the retarded kernel in the
limit J — 0 to an exponent in a specific limit of a single core
CFT. If this is a general result, then it would suffice to study a
simple limit of a single copy of the core CFT in order to find
whether the transition into chaos is continuous or discon-
tinuous for the disordered CFTs. It would be very interesting
to either prove this result or find a counterexample. Some
additional particularly interesting open questions are dis-
cussed in the conclusions in Sec. VI. The results of this
article are summarized in the companion Letter [22].

II. DISORDER AROUND A NONTRIVIAL CFT

In disordered free field theories defined in Eq. (1.2), the
random interactions impose a specific structure on the
perturbative expansion of some observables. This allows
for a resummation of Feynman diagrams, and in some cases
allows for an exact computation of some observables in the
theory at large N. In particular,

(i) One can write down a Schwinger-Dyson equation

for the two-point function of two W¥’s (which are the
free fields at J = 0). In the conformal limit J — oo,
this can be solved exactly.

(i) In addition, the contributions to the four-point
function of W’s obey an iterative ladder structure,
which can be resummed in principle.

(iii) Finally, the out-of-time-ordered four-point function
(the OTOC) also has an iterative ladder structure,
which can be used to extract the chaos exponent of
the theory even without an explicit resummation.

In this section we extend this analysis to disordered
CFTs, i.e., we consider nontrivial (non-free) CFTs which
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are deformed by a random interaction as in Eq. (1.3).
Specifically, assume we have a core CFT with some
operator O of dimension Ap. Consider a product of N
such CFTs, and deform this theory by the interaction

N
Z Jil_”,'qoil...oiq,
i1#i- . Fi,

(2.1)

where the indices {i, ...iy } denote the different CFTs, and
Jii i, is again a Gaussian random variable with zero mean

=1 21(\/%]1)!. We take the indices to be
different from each other in order to avoid short-distance
singularities. The interaction (2.1) can be a potential term or
a superpotential term (in the latter case, all Feynman
diagrams that appear in the following should be understood
as supergraphs).

Since the core CFT is no longer a free theory, we cannot
use the self-consistency equations for the two- and four-
point functions discussed above. However, we will show
that in the more general case (2.1), it is still possible to
perform some exact computations in these theories.
Specifically, we will show that it is still possible to write
down a Schwinger-Dyson (SD) equation for the two-point
function, and that the four-point function and the OTOC
still obey an iterative ladder structure, which allows one to
extract the chaos exponent. We will eventually be interested
only in deformations which are exactly marginal, but the
self-consistency equations we write will be general. We
comment that, in general, further counterterms are required
to renormalize the theory, but we will assume that these
either average to zero or are not required for the specific
correlators we will study (indeed we will see that this is the
case for the models discussed in this paper, at least to the
order in J we will work in).

For concreteness, in this section we will assume that the
operators O are real, but the generalization to complex
operators is immediate. Similarly, a generalization is
immediately possible for chiral superfields O; where we
interpret (2.1) as a superpotential, where the diagrams that
appear in the following should be wunderstood as
supergraphs.

We begin this section by reviewing how the two- and
four-point functions are computed in the standard case of
the SYK model. We will then extend this analysis to general
disordered CFTs, i.e., a product of N nontrivial CFTs
deformed by the disorder interaction (2.1).

and variance (J %,...iq>

A. Review of disordered free fields (the SYK model)

We quickly review the computation of the chaos exponent
in the SYK model (1.1) [1,8,9]. In the notation described
above, the SYK model consists of a core CFT which is a
0+ 1d free fermion. We start by writing the Schwinger-
Dyson (SD) equations for the two-point functions, followed
by the iterative kernel structure for the four-point function.

We then discuss the OTOC and the retarded kernel, from
which we extract the chaos exponent. This review will later
allow us to highlight the similarities and differences between
the diagrammatic expansions for disordered free fields and
for general disordered CFTs which we will derive later on.

We start by writing down the SD equations for the two-
point function. Consider the computation of the two-point
function of two fermions G(t, 1) = (y;(#;)w;(t,)), where
the expectation value (-) also averages over couplings. It
turns out that the diagrams contributing to the two-point
functions at leading order in 1/N obey a simple SD
equation:

G - 1
V) =G ==

X(7) = J2G(z)1!, (2.2)
where G is the free fermion propagator, and the second
equation defines the self-energy X. This SD equation is
shown diagrammatically in Fig. 2.

Assuming a conformal theory at J — oo, one can guess a
conformal ansatz for the two-point function of the form

G(r) = b Sf;"z(:) .

(2.3)

Plugging this into the SD equations (2.2), one finds the
solution [8]

(1 —2A)tanzA

b1J? =
2w

A=1/q. (2.4)

We thus have the exact two-point function at leading order
in 1/N.
We now move on to the four-point function

N

Z (wi(t)wi(t)w(t3)y(ts))-

i,j=1

(2.5)

We will be interested in computing the connected contri-
bution of this four-point function, i.e., we will remove the
contribution that is disconnected in the 12 channel.

W = (yi(t)wi(t)y;(t3)y(4)) con- (2.6)

-6

= —2— + —2—3—2— 4 —2—F—2—3—2— + ...

FIG. 2. The SD equations for disordered free fields, e.g., in the
SYK model. Red lines correspond to the full two-point function
G, while “—2—" corresponds to the two-point function of the core
CFT (here a free theory).
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W=:+E+ZM+

FIG. 3. The iterative ladder structure for the four-point function
of disordered free fields. Red lines denote full propagators G, and
black dots denote insertions of the disordered interaction. There
are ¢ —2 red lines running between each pair of interaction

insertions.
K= C) Fy=

FIG. 4. The kernel K and initial contribution F for the four-
point function for disordered free fields. Red lines again denote
full propagators G.

It turns out that contributions to this four-point function
follow an iterative ladder structure, see Fig. 3.

Schematically, the ladder structure allows one to write
the full four-point function as a geometric series and
formally resum it

(2.7)

where K and F; are defined diagrammatically in Fig. 4. In
particular, the spectrum of the theory can be read off from
the kernel K by solving the eigenvalue equation K = 1.

|

pit o =+it

FIG. 5. The time contour for the OTOC. Red dots denote all
possible positions of operators in the contributions from the
double commutator.

The eigenfunctions are constrained by conformal symmetry
to be two-point functions of operators of dimension /. The
eignvalues of K for the SYK model can be computed
exactly and were found to be

oy v y(-A-h/2)
R T e T R
where
w(A) = 2i cos(zA)T(1 - 24). (2.9)

To compute the chaos exponent for the theory, we study
the double commutator, defined as’

Wg(t1,t2) = ([wi(B/2).w;(B/2 + its)][w:(0), w,(it))]),

= lim((w;(e) = wi(=€)(Wi(B/2 + &) —wi(B/2 = &)y (it )w; (B/2 + 1)) .

The argument of the operators in the correlator is the
Euclidean time. In the second line the operator ordering is
assumed to be in increasing Euclidean time. In a chaotic
theory, the double commutator is expected to grow ex-
ponentially at large times:

Wg(t1, 1) ~exp (%L(h + fz))f(h - b)), (2.11)

for some function f. 4; is the chaos exponent of the theory.

Schematically, the appearance of the chaos exponent is
due to the out-of-time-ordered (OTO) insertions of oper-
ators in the double commutator. Therefore, by studying the
large-time behavior of W(z;,1,) we can find the chaos
exponent 4; . In terms of path integrals, we can account for
the different Lorentzian orderings by choosing the complex
time contour as in Fig. 5. Each insertion of an operator is
done at one of the red dots in the figure. As we keep the
Euclidean time ordering (as necessary for convergence), the
result is a combination of analytically continued Euclidean

(2.10)

[
four-point functions W. As a result, at leading order in 1/N
W has a similar iterative ladder structure to W, and we can
write down a similar integral equation for Wg:
WR :FO,R+KRWR, (212)

where Fr and Ky are specific analytic continuations of
Fy, K. At large times, we assume that the Fp term is
negligible, and so Wy obeys the equation
WR :KRWR (213)

which is just an eigenvalue equation for K. We thus find
that the exponentially growing solution for W must be an
eigenfunction of the retarded kernel Ky with eigenvalue 1.

This allows us to find the chaos exponent 1; by guessing
solutions of the form (2.11) and finding their eigenvalue

“We will use the terms double commutator and OTOC
interchangeably.
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kg(A;) under Kg. The largest A, for which kg(4;) =1 is
the chaos exponent.

As was the case for the four-point function, the eigen-
functions are constrained by conformal invariance. An
eigenfunction of the form

exp(A(t; +1)/2)

W(t), 1) = 2.14
(h1:12) (2cosh (1, —1,))28+ (2.14)
has eigenvalue
(3 -2A)I(2A
kp(d) = O~ 2ATCA+D) (2.15)

T(1+ 20 (2—2A+ )

In particular, the largest A for which kx(1) = 1is 1, =1,
1.e., SYK has maximal chaos.

B. Two-point function

We now extend the analysis of the SYK model by writing a
SD equation for the two-point function for a general
disordered CFT, as defined around Eq. (2.1). Starting with
a product of N identical core CFT's and adding the deforma-
tion (2.1), we would like to compute G(x) = (O;(x)0;(0))
at leading orderin 1/N 2 This inevitably includes all n-point
functions of O at a single core CFT, which we denote without
indices: (O(x)...O(x,)). However, it turns out that there is
still an organizing principle for these contributions. We find
that G obeys a generalized SD equation which appears in
Fig. 6 (see also Fig. 7).

In order to derive the SD equations, we follows the
standard G — X formulation of SYK, see, for example,
Ref. [23], and we will focus on 0 + 1d for concreteness (the
generalization to higher dimensions in immediate). Instead
of a free theory, we assume some action Sy|y;] for the core
theory, for some degrees of freedom y;. The partition
function for this theory is*

(Z), = / Dy:DGDX exp <—Zi:sow
= % / ded? N <G - Z%O,@,)

JAN
+ drd” G(z, T’)q).

p (2.16)

Each operator O; is a local operator of the ith theory, and
therefore some function of the y;s inside the path integral.

3In this section we will assume that O is a real field; for
complex fields the generahzatron is straightforward.

‘At leadmg order in 1/N it does not matter whether the
disorder is annealed or quenched, so we have assumed it is
annealed. In the case where it is quenched the same results can be
obtained using the replica trick.

e

G=—2—+ () +Q +D/

)3

FIG. 6. The SD equations. We have emphasized the G
insertions using red lines to distinguish them from the two-point
function of the undeformed CFT. Black dots denote insertions of
the deformation (2.1), and n, denotes the subtracted n-point
function defined below.

_25_ —_— _2_
\ /1 \ / —2— )
s = E S S -
\\// _1 Y \ /
LN - e Dy
2 — 2___
FIG. 7. The subtracted n-point functions. Dashed lines are

connected to the would-be external positions (see Fig. 6), and the
numerical factors indicate symmetry factors. The overall factor
for the n correlator is in general 5 where m = 5 — 1, while the
blue numbers inside the bracket correspond to the number of
different permutations allowed when connecting the legs in a
given diagram. The symmetry factors here are for real O, but
similar expressions exist also for complex fields.

In the free theory, S is quadratic in O and so the integral
can be calculated. In our case this is not possible. Instead,
we define generating functional

Al3] = / Dxexp( _Sol] + / ded?sO(0)O(z ))
(2.17)

which generates the even n-point functions of the unde-
formed CFT. The effective action for G, X is therefore

_S[G.3] :g (210g(A[Z] )+ / ded? <J7:G<T,T')q —2G>> .
(2.18)

Since N appears as an overall factor in the action, at leading
order in 1/N the fields X, G can be evaluated using the
saddle point approximation. Varying with respect to G
gives the familiar equation ¥ = J?°GY~!. Varying with
respect to X gives

. olog(A[Z]) _0A/oz
G(r,7)=2 3 =2 Yo

(2.19)
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The combination of these two equations for G, X should be
considered as the generalization of the SD Eq. (2.2) to
general disordered CFTs.

We can rewrite these equations in a form which is more
convenient for computations. A[X] can be expanded as a
power series in X. We can thus expand the rhs of (2.19) in
powers of X, where each order includes a dependence on
correlation functions of the core CFT. Let us compute the first
two orders explicitly. Atleading order in Z, expanding (2.17)
and plugging it into (2.19) gives the expected undeformed
two-point function at order J°, G(z,7') = (O(z)O()). At
order J? (or equivalently, order ¥) we find

G(r,7)|p = /d11d1'22<11,‘[2)

S (0EROF)0E)0())

— (0(0)O())(O(21)O(2)))-

The first contribution comes from the numeratorin (2.19) and
the second from the denominator. Overall we find a con-
tribution from the four-point function of the undeformed
theory, plus an additional subtraction. We call the second line
of (2.20) the “subtracted four-point function,” and denote it
by 4,. In general, the contribution at order X"~! will include
the (2n)-point function, with some additional subtractions
involving products of (2m)-point functions with m < n. We
call the full combination the “subtracted 2n-point function,”
and denote it (2n) ;. The explicit form for the subtracted two-,
four-, and six-point functions are drawn diagrammatically in
Fig. 7. In general ng will include the n-point function with
subtractions, times an overall factor of m Overall,
we thus find that the SD equations can be written as a sum
over contributions from the (2n) -point functions, as shown
in Fig. 6.

It is also useful to understand the subtracted correlators
in terms of standard (local) perturbation theory. When
computing correlation functions in QFT, standard subtrac-
tions appear due to the appropriate normalization:

(2.20)

[ DgpOeS
= Dges

The denominator subtracts disconnected bubble diagrams
from the final result. The result is a sum only over
“connected” diagrams. This is the same mechanism that
requires the subtractions of (2.19). As in standard pertur-
bation theory, this can be used to systematically produce
the subtracted correlators. The idea is to write the full n-
point function in terms of only fully connected pieces, and
then subtract the contributions which lead to disconnected
diagrams when plugged into the diagrams in Fig. B. This
algorithm is described in detail in Appendix B 1.

A simple consistency check of these equations is that
they reproduce the expected equations for disordered free

(0) (2.21)

fields. We explain how this happens in Appendix B 3. We
also emphasize that while a general solution of the
equations requires knowing all n-point functions of the
core CFT, perturbation theory in J to order J” requires only
knowing the (2m)-point functions for m < n + 1, and so
calculations are possible in perturbation theory in J.

C. Four-point function

We now discuss the case of the four-point function. In
particular, since we are interested in chaos, we will be
considering the connected contribution to the four-point
function

1
C — WZ<OI'OZ‘O]'O]'>COH, (222)

ij

where we have suppressed positions. As reviewed in
Sec. II A, for disordered free fields one finds a kernel
structure. This means that the four-point function obeys

& F
C=) K'Fy= 1 OK. (2.23)
n=0 -

It turns out that this is also true around a nontrivial CFT. In
this case, K and F are given diagrammatically in Fig. 8.
Here, the correlation functions of the undeformed CFT
require slightly different subtractions, and so we have named
them 7). The idea is the same: r/, is defined by cutting the
n-point function in every possible way and subtracting the
contributions that give disconnected pieces. Explicitly,
the first few examples are shown in Fig. 9.

) )
— N, N Ny

K= /45<«0))+/65<«®) -|-/(ss) + ...
z
G O

Fo= Sul + > + S+ ..
0 NG 7N /( )\
X
FIG. 8. The kernel K and initial diagram F, for general

disordered CFTs. Red lines denote full propagators G, and black
dots denote insertions of the disorder interaction, with ¢ — 2 red
propagators between each pair.

N, ’ N ’

1 1
NS SN 1 1
Ay = 4 — N
AN PN ! !
[} 1

1 3 3 1

I 6"§ RS 6 P s\4/’ | ~ 4_/ 1\=: N 4_/ n\I.)

= — N — —
S, TS -, i . i
L s? s > /' s\\ I ) % ~ !4 4,/ ~N Y

FIG. 9. Examples of correlation functions n). Dashed lines
correspond to external points, while solid lines are connected via
>’s in Fig. 8.
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We now prove the existence of a kernel structure for the
four point using the G — X formalism. Calculation of the
four-point function amounts to calculating the two-point
function of the field G. Following [23] we expand G and X to
leading order: £ =X, + |G, |q740 and G =G, + \G*|27qu,
where G, is the saddle point solution. The leading correction
to the four point is then given by the two-point function of the
g field. The latter is given at this order by the quadratic piece
in the effective action for g. The result is that the contribution
has an iterative ladder structure

C:<G(1,2)G(3,4)>—G*(1,2)G*(3,4):IIjOK, (2.24)
where
0%log(A[Z])
Fo(1,2:3.4)=——2""=
o123 4) =5 %
0’log(A[Z]) 4
K(1,2:3,4)=—4J%(g—1)—="2.G97%(3,4). (2.2
(1,2;3,4) J*(q )52120234 GI"(3.4). (2.25)
|
A[Z]
4621;& = <0(71)O(T2)0<T3)0(T4)>

Computations are again more conveniently done after
expanding the result in X. First we rewrite the second
derivative of log[A] in a simpler form:

Plog(A[Z]) 4 PAE] 4 0A[Z]0A[3]
0X1,0%5,  A0Z,0%y A2 0%, 0%qy

(2.26)

The second term in this equation is just the square of the
two-point function discussed above in (2.19), and is
responsible for subtracting diagrams that separate the
diagram “vertically” (in the sense of Fig. 8) between points
1,2 and 3,4. Expanding (2.26) in X, we again find that we
can write Fj and K as a sum over the contributions of new
subtracted n-point functions which we denote by nl,
see Fig. 8.

Explicitly, expanding the first term in (2.26) in orders in
% one finds

+ [ drsdeg 3 (000 O Oles) O(e)) 55 )

= ({O(21)O(7,)O(73)O(14)) / dfsd%%((')(fs)o(fe»z(fs, Te)) + o

The first line gives the leading-order contribution, which is
just the four-point function. Together with the subtraction
0A[Z] GA[S]

from the expansion of o5 o term, we find the subtracted
12 34

4/ that appears in Fig. 9. The next two lines consist of the
six-point contribution, together with a subtraction. Again,
combined with the subtraction from the expansion of
9A[X] 0A[%]
0%, 0%34°
in orders of X, one can get the exact factors for each
diagram at higher orders as well. We give another pre-
scription for finding n} in Appendix B 2. Putting these
results together, one finds the series expansion of Fy and K
which appears in Fig. 8.

Once again, it is simple to check that one reproduces the
kernel in Fig. 4 assuming that the undeformed CFT is a free
theory. In particular, each n-point function amounts to
having n Z insertions connecting the 1,2 points to the 3,4
|

we find the correlator 6 in Fig. 9. By expanding

N

(2.27)

points, and resumming these insertions leads to full
propagators G connecting the external points, as expected.
We also emphasize again that computing F, and K to a
specific order in perturbation theory in J requires knowing
only a finite number of correlators in the core CFT.

D. The double commutator

In the previous section we found that even for a general
CFT deformed by the disorder interaction (2.1), the four-
point function still has a kernel structure. In this section we
show that the double commutator also has a similar
structure. As in the SYK model, the double commutator
can be used to measure the chaos exponent, which we will
discuss in the next section.

Following the calculation for the SYK model in
Sec. IT A, we would like to compute the double commutator:

Wilt.02) = =3 3 ([0:(/2), 0,(8/2 + i1:)][0,(0), O,(iny)]),
N

i,j=1

(2.28)
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We have again suppressed the spatial coordinates, keeping
only the (real and imaginary) time coordinate. By (...) we
mean the Euclidean time-ordered thermal trace, where by
“time-ordering” we mean operator insertions at increasing
real (Euclidean) times. The subscript J is meant to emphasize
that this is a correlator in the deformed theory (2.1).

Note that (2.28) is just a combination of analytically
continued Euclidean (connected) four-point functions on
the cylinder. In O+ 1d and 1+ 1d, the latter is an
analytically continued flat-space correlator (2.22). For this
reason, we will focus for the rest of the paper on 0 + 1d and
1 4 1d theories. In the previous section we saw that (2.22)
has a kernel structure. By the same logic, Wy also has the
same kernel structure diagrammatics, but with the analyti-
|

/ dzs. . / d22 (AO(0)AO(B/2)O(25)O(24)...
C C

where the z; are the complex time coordinates along the
curve C. z3, z4 are connected to the next rung and so we do
not integrate over them in this (single-rung) expression.
Note that the correlator is the (analytically continued) (2n)
correlator described in the last section. The contour integral
C (see Fig. 5) is composed of a horizontal Euclidean region
between 0 and g, and two vertical “rails” that connect to
z=1t; and z = B/2 + it, [3]. As a first step we would like
to show that the zs, ..., z5, integrals over the rails cancel,
and we are left only with the original Euclidean integral for
Z5, ..., Z0,- Indeed, assume that several or all of the
integration variables are on the rails and assume that z;* =
it;, £ € is the corresponding coordinate with the largest
imaginary time #;. The z; integral along the rail between z;.
|

f 1y
Wg(t1, 1) :FOR(I1712)+A dt3A dtyKg(ty, 1y, 13, 1) Wg(13, 14).

cally continued (Euclidean) time contour C shown in Fig. 5.
This curve has an increasing Euclidean time (as required by
convergence) from O to 3, but is deformed to go through the
points ir and /2 + it over Euclidean time of 2¢. These two
deformations from the Euclidean integration contour will
be called the two “left/right rails,” respectively. Following
the SYK diagrammatics, we call each multiplication of the
analytically continued version of K from (2.23) a “rung.”
Following [3,8,12], we can now show by induction how the
complex time integrals simplify into “retarded” diagrams in
the limit € — 0.

We start with a one-rung first ladder. Denoting AO(z) =
O(z + €) — O(z — €) for brevity, a (2n); (n > 2) correlator
contributes

O(ZZn—l)O(ZZn»Is : Z(ZS’ Z6) R Z(ZZn—lv Z2n)’ (229)

[

to z; has the same Euclidean order and so both the 2n-point
function and its corresponding X(zy, z4.1) Will not change,
and the integral will cancel between the two directions on
the rail. Therefore we can reduce the contour integral for
Z5,...,2, back to the Euclidean time axis drs...d7,,
between 0 and f.

Now we can take the limit € — 0 also for the external
legs just like in [3].” In order for the limits not to vanish we
need z3 and z,4 to be on different rails.® We can continue this
analysis inductively and get the same result for every rung
of the ladder, and in addition we find that the Lorentzian
time must increase along the rail. The result is that the
double commutator satisfies the ladder equation

(2.30)

Here, F is the initial contribution, which has a perturbative expansion in J (just like F, discussed above):

For(ti 1) = ZJMF(S’;)(O 0,11, 1)

F(()R>(tl,t2,t3714

712)

/ dr< (ity A0<ﬁ+lt2)(9(it3)(’)<§+it4> ilj(’)(r,»)>/,

Z(TZn 1= Tzn)

N

(2.31)

The retarded kernel K can also be expanded (again, just like K above):

>In [3], the limit was taken after plugging in explicit expressions for the correlators. Here we will work more generally and show that a

similar simplification occurs.

®In general, we need to allow z3, z4 to be both in either rail, since in general the (2n)’-point correlation function does not factorize (as
n [3]). We will choose 3,4 to be at the same rail as 1,2, respectively, and account for the other contribution by “3 <> 4.7
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Kg(ty,1y) = Z JZHZKE:) (0,0,11,1)
n=0

n) 2n B . ﬂ . . ﬁ . 2n
KR ([1,l2,t3,l4) = HA dTi<AO(lf1)AO<§+lt2>0(1l3)0<§+lt4> HO(T1)>
i=1 i=1

‘2(712)---2(72;1—1 - Tzn> ) G?rj(3’4)~

In the expression above, the thermal two-point function for
a scalar operator of dimension A between points from
different rails is

1
G,a(1,2) = :
1 ,A( ) (4 cosh(t”;x”) COSh(llzj;xlz))A

(2.33)

Because each of the terms in Fg, Ky include commutators,
the space time events 3,4 are supported in the (Lorentzian)
past of 1,2, respectively. Note that there is an implicit
dependence on the J inside %(z) (see Sec. II B).

To summarize, we have found that diagrammatically, the
expression for the double commutator is similar to that of
the four-point function in Fig. 8, and includes a ladder
structure. The difference is that on the two rails, the
integrals are Lorentzian, and one should modify the
propagators and correlators using a specific analytic con-
tinuation. In addition, for the double commutator the region
of integrations is the past of points 1,2.

E. Chaos

1. Generalities

We would like to study the chaos exponent 4; , which can
be read off of the OTOC Wy at large #;, t,. As explained in
Sec. II A, in the conformal limit of SYK 4; can be found by
solving for the eigenvalues k(1) of the retarded kernel K
using an ansatz for the eigenfunctions, and finding values
of A for which the eigenvalue is one, kz(1) = 1. For our
disordered CFTs, we so far only assumed that the defor-
mation (2.1) is renormalizable. To study chaos in a similar
fashion, we focus in this paper on cases where the
deformation (2.1) is exactly marginal (in the sense that
the averaged correlators are conformal for any value of J).
In fact, in most cases discussed in this paper the coupled
theory is conformal for any realization of J; oy and the

disordered theory is an ensemble average of CFTs (para-
metrized by J). Since the theory remains conformal at every
J, and since in addition we saw that the OTOC has a ladder
structure even for general disordered CFTs, we can thus
follow the same logic as in Sec. Il A to find the chaos
exponent of the theory A,(J) as a function of J for
disordered CFTs. We now explain the method to compute
A (J) in these theories. For the rest of the section we will

!/
S

(2.32)

|
focus on 1+ 1d theories for concreteness, since most
examples discussed in this paper will be in 1 + 1d.

The ansatz for the eigenfunctions W(¢y, 1,) of K, at large
times #, t, > 1 in the limit where F; is subdominant is

eXP(—h%’;(ll +1) +hTJ'(x1 +x,))

W(l,2) = - =,
( ) (2 cosh(’lz;hz))A—h(zCosh(flz“'z‘xlz))A—h

(2.34)

As explained in [3], space normalizability of W requires in
general h = —%—I— ip.h= —%— ip for real A, p. For the
kernels presented in [3], as well as the kernels we will find
for our explicit examples in Secs. [V and V, it is possible to
show that the minimal solution satisfying kp =1 has
p =0. We will therefore proceed under the assumption
that p = 0. Setting h = h = —%, the eigenvalues are

d*xyd*x, K- W
kR(/LJ):f X3 ‘;4 R

G
= /d2x3d2x4KR(1,2,3,4)

X e%(73+t4—71 ~13)

=3 / dxydtdx,di, K4 (1,2,3,4)
n=0

GZr.A+§(3» 4)
X _—
Glr,A+%(1’ 2)

lttta=ti=t)

(2.35)

By conformal invariance, the integral is independent of the
1,2 coordinates. Note that assuming #;, f, > 1 in the ansatz
(2.34) is equivalent to shifting the integration domain of 73,
t, to start from —oo [and not O as in (2.30)]. As a result, the
integral over the events 3,4 is exactly over the past of the
events 1,2, respectively. As in SYK, the chaos exponent is
the largest value of 4, such that kg(1,.J) = 1.

"The 1 + 1 dimensional examples we will give below will all be
supersymmetric. In this case one can consider different kernels K »
by taking different operators on the various external legs. In
practice, in previous studies the dominant contribution to the
chaos exponent always comes from the bosonic kernel, i.e., with
the bottom components appearing on external legs. We will assume
this is the case here as well, and focus on the bosonic kernel. We
have checked explicitly for some of the examples to be discussed in
the paper that indeed the bosonic kernel gives the most dominant
contribution.
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In general, this equation is extremely complicated, and
we will only solve it exactly in this paper for the case of
disordered generalized free fields. For a more general CFT,
one can instead hope to solve it in perturbation theory in J,
which we discuss next.

2. Chaos at J — 07

In this section we will discuss the behavior of 4; (/) close
to J = 0. We start by discussing chaos at J = 0, and then
discuss chaos at small finite J.

First we consider the strict limit of J = 0, where the N
CFTs decouple and the kernel vanishes. At J = 0, the late-
time behavior of the double commutator W5 defined in
(2.28) is given by

. . 1 .
i Wt )l,0 = lim 2 ((0(8/2), 0(p/2 + ity)]

x [0(0), O(iny)])

= GeR(H (0 +0)/2).  (2.36)
The first equality is a result of the decoupling at J = 0, and
the second equality is a definition: the large #,, t, behavior
of the undeformed retarded four-point function is con-

trolled by an exponent which we denote 22.8
Despite its name, ! is not the chaos exponent of a single
undeformed CFT. The reason is that in (2.36) we take 7, ,
to be larger then the scrambling time of the undeformed
theory. Instead, (2.36) simply studies the eventual decay of
|

the double commutator, a decay that is required by unitarity
(see [25] for a recent discussion). As a result, even if a
single undeformed CFT is chaotic, we expect this exponent
to be nonpositive: 19 < 0. Nevertheless, in this section we
will try to motivate physically (and later verify in the
examples below) why A;(J) is a continuous function at
J =0, in the following sense: for every J > 0 one can
calculate 1;(J) by solving the eigenvalue equation
kg(4,J) =1 in (2.35), and in the limit J — 0" this
coincides with the result for the decoupled theory, i.e.,

A(J > 0F) =29, (2.37)

We stress that this is not a direct outcome of standard
conformal perturbation theory, since even the leading order
of the kernel appears in infinitely many diagrams in the
four-point W, and therefore might lead to nontrivial late-
time behavior. Our argument does not rule out further
discontinuities in 4, (J) for J > 0, although in known
examples no such discontinuities were found.

Moving on the nonzero J, the chaos exponent 1, (/) is
given by solving the eigenvalue equation k(1) = 1 with kg
as in (2.35). We would like to study the exponent at small
nonzero J by solving the eigenvalue equation kr = 1 in this
limit. As the operator K can be expressed in orders of J,
one can compute its eigenvalues kz (1) in orders of J. As a
first step, we assume the equation kp = 1 can be solved in
orders of J, and focus on the leading term in (2.35):

ke(d ) = / s Py (AO(it ) AO(B/2 + ity)Oits)O(B/2 + ity),

Girai(3.4) (/1
exp

G197 \2

_ Pexp(=5(t + 1)) Jur dus [15, dug [ dvs [, dvy

S+t —1 = f2)> - Glraa(g-2)(3.4) + 0(J*)

4 Glr,ﬂ/Z(l ’ 2) uii—%

Here we changed variables to

X313
9

uy; =e vy = e HTh,

Uy = —eXh, vy = —e T, (2.39)

In these variables the conformal ratios are

8As shown in [3], in 1+ 1d this behavior is equivalent to
the Regge behavior of the four-point function. We suspect the
discussion of this section is parallel to previous studies of the
Regge trajectory in weak coupling [24].

S Or(z.2) + O(*). (2.38)
LEY
|
_ M12M34’ 7= 11127)34' (2'40)
Ujgls) Vi4VU32

Gr, is the retarded normalized four point of the undeformed
CFTat J =0,

{02+ 1), 0(B/2 + it)][Oiry). (i)
Grlr-2) = Gral1.20Gra(3.4)

= lim OQ++ -G, -G . +G _

(2.41)

with the normalized four point G o = G(uje,

v1eFE uye e v et usg, vy, uy, v,). Similar expressions
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can be written at any order of J, where at order J** each
integral will now include n — 1 Euclidean flat space inte-
grations. Note that at this order in J, only the four-point
function contributes to the eigenvalue.

Importantly, we find that as J — Ot, the eigenvalue
(2.38) vanishes since it is proportional to J. As a result, the
only way to have kp =1 as J approaches zero (at this
order) is for A to also approach a value at which the integral
diverges like 1/J2. Thus the chaos exponent in the limit
A (J — 07) is found by looking for values of A for which
the integral in (2.38) diverges.

How can the integral (2.38) acquire divergences as a
function of A? The only short-distance singularities that may
appear are when x3, x4 approach x, x,, respectively, but such
a divergence will appear independently of 2. Furthermore,
the integral itself should converge for large enough values of
A. The only possible range for a divergence is thus the
combined limit of |us], |uy| = oo (or |v3|, |vy| = o0, or
both), corresponding to taking the two points to be very
farin the past. As explained near (2.36), in this limit we expect
the retarded four-point function to behave exponentially due
to the chaotic properties of the original (undeformed) CFT.
The rest of the integrand in (2.38) is exponentially decaying in
this limit as exp(4 (3 +14)) (13, #; approach —oo).
Combining this with (2.36), the total exponent of the
integrand is A9 — 1. We therefore expect the integral to
diverge exactly for A < 19, although a more rigorous argu-
ment will require a more careful analysis of the integral. If
indeed the integral diverges only for A < 17, the result is that
at least to leading order, the solution to k| 2 = lin the limit
J = 0T is A9, In other words, 1, (J = 07) = 29, and the
continuity relation (2.37) is obeyed.

What do we expect to get at higher orders of J?
Consistency requires that higher-order contributions to
kg also remain finite for A > 19. Indeed, we can argue
on physical grounds that the integrals appearing at higher
orders diverge only for A < 9. To this end, we ask how the
higher order integrals can diverge. Higher order contribu-
tions to kp are similar to (2.38), only with extra Euclidean
insertions (together with a finite Euclidean integral). After
taking care of all the normal Euclidean short-distance
singularities we again expect an exponential behavior as
we send the points 3,4 to the past together. It is reasonable
to assume the late-time behavior of a single copy of the core
CFT is controlled by a single exponent, the same one that
controlled the double-commutator late-time behavior
(2.36). We are therefore assuming, in accordance with
(2.36) that the double commutator together with the other
Euclidean insertions satisfies

°Other pairings of the x;-s will not develop short distance
singularities due to the Euclidean separation (they are on different
rails).

lim ([0(/2), O(B/2 + it,)]

x [0(0), O(i1,)]O(zy)...0(z,)])
= et +0)2. £ (1)), (2.42)

for some functions f,(z;). As a result, we expect higher
order integrals to diverge only for 1 < 1%, and our pertur-
bative expansion of the retarded kernel was justified. The
result is that the full kernel k(4) diverges as 4 — 10 at
finite J, and as we take J — 0" the solution to the full
eigenvalue equation would approach A, (J — 0) — 29.
We will explicitly show that the assumption (2.42) is
justified for all examples discussed in this paper.

3. A toy model

In order to illustrate these points, we now provide a simple
example of computing the chaos exponent at J — 0 for a
simple toy model which has many similarities to the explicit
theories we will consider in this paper.

Consider a normalized retarded four-point function of
the form Gg(y.¥) = (x7)~*, where y is the usual con-
formal cross-ratio. This function satisfies (2.36). One can
think of it as the four-point function of a generalized free
field, or as the leading term of some more general four-
point function in the limit y, y — 0.' Since we expect the
divergence in 4 to come from the region y,y — 0, this
should be enough to study chaos.

Substituting Gp in (2.38) together with u; = v, =1,u, =
v, =0 gives

ke(2.0) Jz(/md /Od ! >2
s = Z Z
* 4 \Ji TP e P R A 2y — 1|

7 (F(%‘?‘)rz(l#—b)?

0
A\ re+ih

(2.43)

The integrals z3, z4 converge as long as =2 < Y < 1. As a
function of A, the integral diverges for 1 < A9 and as a
result kg has a double pole at 4 = A9 . For a more general Gy
we expect a similar behavior only at small enough y, y << 1.
Nevertheless we do not expect higher orders in y, y to add
further singularities for 2 > 4%. In other words, we expect
the general behavior

L)+ oW,

D) =y

(2.44)

where the ellipses denote an analytic function of 1 with no
further singularities for 1 > A9. For this general behavior
we can now find the chaos exponent at leading order in J by

%As we are discussing the retarded four-point, this is actually
the y,jy — 0 limit in the “second sheet,” see [3].
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solving kg(4;,J) =1 using (2.44). The result is indeed

For consistency, we must now check contributions from
higher n-point functions as well. We assume that these also
contribute at most a double pole at 4 = /1%, due to the same
logic described above Eq. (2.42). Under these assumptions,
we can resum the series and find for the eigenvalue (2.35)

J2
kg (2. J) :mf(ﬂyﬂ)-

(2.45)
For some f(1,J?) an analytic function in 4, J? (for 2 > 19).
In this form it is evident that the solution to kg(4;,J) =1
asJ = 0 is 4, = 1% 4+ O(J). Note that the zeroth order in
J requires knowledge of all of the correlators of the
undeformed CFT, but higher orders in 4; can be found
using finitely many correlators. Specifically, the first order
correction depends only on the undeformed four-point
function (2.38).

While this example only represents a toy model, we will
see below that the specific theories we consider match
exactly this behavior.

4. Summary

To summarize, whenever J is exactly marginal, we
would like to solve the eigenvalue equations kg(4,J) =1
at weak coupling in perturbation theory in J. The leading
order is controlled by the largest value of A for which the
integral (2.35) diverges. For consistency, higher-order
integrals must not diverge for higher values of 4, and we
motivated why this would be the case for physical models
(and we will check that this is the case explicitly for the
models in this paper). It is then possible to find the chaos
exponent 4; (J) in perturbation theory in J.

In particular, in the limit J — 0", we argued that the
divergences in the integrals are determined by the exponent
/12 of the core CFT, see Eq. (2.36). As a result, 4, (J)
calculated via the kernel and extrapolated to J = 0 should
coincide with the late-time behavior of the undeformed
CFT. In other words, the chaos exponent obeys a “con-
tinuity relation” (2.37), 4, (J =01) = /1‘2. If this is true, it
allows us to compute 4; (/) at small J by performing a
simple calculation in a single copy of our core CFT. We will
check explicitly in the examples in this paper that the
continuity relation is satisfied.

An important comment is in order. As mentioned above,
29 does not describe any chaotic behavior. Specifically, it is
always nonpositive (/12 < 0) from unitarity [25]. Consider a
case where it is strictly negative, 19 < 0. According to the
continuity conjecture (2.37), at small enough coupling
A (J) will be negative as well, 4; (J) < 0. This result must
be explained, since a negative chaos exponent seems
unphysical. Indeed, we do not expect 4; <0 to be

consistent, since in our analysis we neglected terms which
are not exponentially growing at large times, but may grow
larger than the contribution of the negative chaos exponent.
However, if one finds 4; < 0 using the method above, then
at the very least it is clear that there are no solutions to the
eigenvalue equation with 4; > 0, since otherwise they
would have appeared. As a result, our interpretation of
the case 4; < 0 is that there is no chaos, and instead the
physically sensible solution is A; = 0. In other words, the
physical chaos exponent is given by max (0, 4; ). As a result,
if 1, <0 for small J, then we expect a discontinuous
transition into chaos as in Fig. 1(b). On the other hand, if
/12 =0, then the continuity relation (2.37) leads us to
expect A, (J) ~ J? + O(J*) and a continuous transition into
chaos, see Fig. 1(a). In particular, assuming the continuity
relation is a general result for disordered CFTs, it allows us
to distinguish between continuous and discontinuous tran-
sitions into chaos by examining the late-time behavior of a
single core CFT.

III. DISORDER AND CONFORMAL MANIFOLDS

In this section we introduce examples where a disordered
interaction is exactly marginal (at least at leading order in
1/N). We will discuss two main classes of models:
generalized free fields and the 1 4+ 1d A = (2, 2) minimal
models. We will also discuss some relations between these
two models. In the next sections we will study these models
more carefully.

An interesting point is that in the SUSY theories
discussed below we expect the theory to be conformal
for every realization of the couplings J; i) and not just
after the average over couplings. Thus these theories are
similar to recent discussions of averaging over CFTs, see,
e.g., [26,27]. Note that this is not enough in order for the
averaged correlators for the operators O; in (2.1) to still be
conformal—it is crucial that in addition, the dimension of
the operators O, is independent of J. Indeed this will be the
case since (0; will be chiral superfields and so their
dimension will be protected.

A. Disordered generalized free fields

We will discuss two main examples of disorder around
generalized free fields (GFFs). One is the cSYK line of fixed
points in quantum mechanics [21], and another is the 1 + 1d
N = (2,2) version of this line of fixed points. The RG flows
for these theories are schematically shown in Fig. 10. In the
figure, we have assumed that disordered GFFs at large J
reach the same fixed point as the corresponding disordered
free fields at large J. Intuitively, this is because the disorder
interaction “dominates” at large J, and so the original core
CFT playsnorole. Indeed, [21] found evidence for this result,
and we will provide additional evidence here for both the QM
model and the 1 4 1d model.
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FIG. 10. Schematic RG flows for disordered GFFs. Red denotes
scale invariant theories. The disorder deformation is exactly
marginal, leading to a line of fixed points that ends at the same
point obtained by deforming free fields by the same interaction.

1. The ¢SYK model

Gross and Rosenhaus [21] considered a QM theory
of N generalized free fermions coupled via an SYK-like
interaction:

S = 8o+ Ssyx (3.1)
with
1 sgn(z; — 7
So = _AZ/dTIdTQZi(TI)(Iiz_QZA)Zi(Tﬁ’
i=1 |Tl _12|
T
Ssyk :a' Z /dTJi]iz...iq)(ilZiz Xy (3-2)

Iseenslyg=

Here, J; ; are Gaussian random variables with variance

<J121‘..iq> = 121(\;{;,1)!. Choosing A = 1/g, the deformation
becomes classically marginal, and it is argued in [21] that
itis exactly marginal at leading order in 1/N. Following [21]
we will call this theory cSYK (“conformal SYK”).

Let us review the computation of the disorder averaged
two- and four-point functions in this theory, as a function of
the exactly marginal parameter J. For small J, we find the
propagator of a GFF:

1 signt

Guy =~
uv 2 ‘T|2A

(3.3)
For large J, the interaction term dominates and we expect to

find the same propagator as in the SYK model. For general
J, the solution to the SD equations takes the form

b(J)signt

G(r) = EE (3.4)

where b solves the equation'’

llEquation (3.5) fixes a minus sign that is missing from
Eq. (3.12) of [21].

bt 1
1-2b Py(l-Ay(a)
w(A) =2icos(zA)I'(1 —2A).

(3.5)

As a consistency check, as J — 0 the solution approaches
b =1/2 which is the GFF solution, and as J — oo
the solution approaches the SYK solution (see Fig. 10),
given by

- 1
P ) = T sy
w(A) =2icos(zA)(1 —2A).

(3.6)

Next we discuss the four-point function. The kernel for
the SYK model Kqyg is a product of propagators (see
Fig. 4):

Ksyk (71,725 73, 74) & J2G(713)G(724) G (734)472. (3.7)
The only effect of considering cSYK is that the propagators

change by an overall factor (3.4), and so it is no surprise
that the kernel K gy is the same as Kqyk up to an overall

factor:
K b(J q
cSYK — [ ( ) ) (38)
KSYK b(] e OO)
Thus the eigenvalues of the cSYK kernel are
b(J) \* b(J) \*
k h)=|=——"—) ksyk, =—| =—"—
esyk(h) <b(] N oo)) SYK <b(J = o)
p(A) y(-A-3
x(qg—1) . (3.9)
w(1-4) y(a-%)

2. 1+1d N =2 disordered GFFs

We now describe a 1 + 1d SUSY version of the Gross-
Rosenhaus model. In other words, we will discuss 1 + 1d
N = 2 GFFs deformed by an SYK-like interaction.'” The
main reason this model is interesting is that one can show
that it has a conformal manifold even at finite N. We will
show this by taking a limit of the minimal models in
Sec. III C.

The SUSY GFFs we will study are defined similarly to a
standard (non-SUSY) GFF. We consider a complex super-
field ® whose two-point function takes the form

1
Glx1, %) = ovsy

P (10

“The 1 + 1d N = 2 SYK model obtained by deforming free
fields by an SYK-like interaction was discussed in [6].
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and so we identify it as having dimension A (see
Appendix A for our 1+ 1d A/ =2 SUSY conventions).
In addition, we take any n-point function of ®@’s to reduce
to the product of two-point functions obtained using all
possible Wick contractions. In this way we have defined
a CFT.

Now we can take N such GFFs ®;, and deform them by
an SYK-like superpotential

W: 'Zjil”-tiil"'(Diq' (311)
I

The J,»l“_,-q’s are random couplings with variance pro-

portional to J2. We will call this model the disordered
N =2 GFFs.

We claim that we have a line of fixed points parametrized
by J, in a similar manner to the cSYK model from the
previous subsection. However, as we will show in III C, the
conformal manifold exists even for finite N, and so this
model is a better example of conformal manifolds resulting
from disorder.

We can thus repeat the analysis of section III A 1 in order
to find the two- and four-point functions of the disordered
GFFs. First we solve the SD equation. As a reminder, for free
chiral multiplets (GFFs with A = 0), this model is just the
1+ 1d N =2 SYK model, and the SD equations read [6]

DIDIG(13)+Jz/dzszzezG(IZ)G‘l‘lBZ)

= (61 = 05)(01 — 63)5((13))5((13)). (3.12)
In this case, J is not an exactly marginal operator, and this
equation is solved by neglecting the kinetic term in the IR and
solving the rest of the equation using a conformal ansatz.
Since our theory is conformal for all J, we should be able to
solve the analogous equation without neglecting the kinetic
term. For GFFs of dimension A, the only change we must
make is to change the kinetic term to

ID,[>24G(13). (3.13)

where A = 1/q. Here, |D;|>7?2 denotes the inverse of the
GFF propagator (3.10).
As usual, we guess a scale-invariant solution of the form

b(J)

GU2) =Ty iana

(3.14)

for some constant b(J). Plugging this into the equation, we
find that (by definition) the kinetic term contributes a delta
function, which we can move to the rhs. The equation
becomes

J? / d*z2,d?0,G(12)G471(32)

= (1=b)(0, = 05)(0, — 6;)5((13))5((13)).  (3.15)

We now proceed as in [6]. We find that for any J, there is
a solution of the form (3.14) where b is a solution to the
equation

b1 1
—=—. 3.16
1—-b 47%J? ( )
As a consistency check, at / = 0 we find b = 1, while at
J — oo we reproduce the solution from [6], see Fig. 10. We
have thus found that the exact two-point function for the
disordered GFFs at any J is identical to the one for the usual

free fields, up to an overall factor of b(}}(:Jio) (as was the case

for the cSYK model in Sec. III A 1).

We can now compute the four-point function and the
OTOC. Following the same logic as above, it is immediate
to see that the kernel that appears in the four-point function
is also given by the kernel of the 1+ 1d N =2 SYK

b(i(zjio ))q. Explicitly, the
eigenvalues of the bosonic part of the kernel (i.e., the kernel
for a four-point function whose external operators are all

bottom components of our superfields) are given by

model, up to an overall factor of (

b(J)

)qu—stK(h,fz), (3.17)

where the eigenvalues for the bosonic part of the kernel for
1+ 1d N =2 SYK were found in [6]:

kN:QSYK(h’ il)
I2(-=A) T(=h+A)(h+A)

=A(1-A) 2(A) T(1=h=AT(1+h=A)

(3.18)

B. Disordered A = (2,2) minimal models

1. General q

In this section we introduce a 1+ 1d N' = (2,2) con-
formal manifold. We will start with a UV description of this
manifold in terms of a deformation of N free fields, but
ultimately we will have to study this model in conformal
perturbation theory around a specific point on the manifold
itself where the theory consists of N decoupled minimal
models. We will be interested in computing the chaos
exponent as we vary the theory away from this special point,
and specifically we will be interested in the way in which
chaos appears.

UV description.—The UV description of our theory
includes N chiral superfields ®; and a superpotential
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(3.19)

W= chD? + Z Tig.oiiy @iy P,

where for now we focus on fixed realizations of the
couplings Ji,...i,l’ and we are not averaging over them.
Using the Leigh-Strassler argument [28] one can show that
there is a conformal manifold M, in the space of
couplings. We can count the number of exactly marginal
operators by using the generating function of the chiral ring
[29] (see [30] for a recent discussion). The generating
function of the chiral ring for this theory is

—1272/q
P(t) = Trt/r = P(1) = (ﬁ) . (3.20)

Here, J is the generator of the R-symmetry, and the trace is
over all chiral primaries. Explicitly, the coefficient of " is
the number of chiral primaries with R-charge r. In
particular, the coefficient of 2 is dim M., or the number
of exactly marginal operators in the theory (since chiral
operators have dimension A = %in 1 + 1d V' = 2 SCFTs).
Then in the large-N limit

1
dim M, = — N7 4 O(N7). (3.21)
q:

We thus find a huge conformal manifold in the large-N
limit of this theory. In fact, a direct computation shows that
in the large-N limit, “most” classically marginal operators
become exactly marginal, in the sense that

#CM —#EM _ q!
O(1/N771),
#cM N2 (1/N75)

(3.22)

where #CM denotes the number of classically marginal
operators and #EM = dim M_ denotes the number of
exactly marginal operators.

We thus expect the theory to have a large conformal
manifold at large N. However, from the UV point of view
the conformal manifold is strongly coupled, and so the
Lagrangian (3.19) is not useful for computations. Instead,
we next consider conformal perturbation theory around a
specific point on this conformal manifold.

IR description.—Next, we move on to the IR description.
This involves two steps. First, we flow to the IR CFT
defined by setting J; ; =0 in (3.19). This describes N
decoupled copies of a CFT defined by the superpotential

W = 1. (3.23)

This theory is known to flow to the N = (2,2)A,,_; minimal
model [31]. Itincludes a chiral multiplet ®® with dimension

A = 1/q, and its central charge is ¢ = 3(1 —2/¢g) [29]. It
has no continuous global (non-R) symmetries.
Next, we deform the N decoupled minimal models:

N

w=> ol + Y JR

i=1 i1#... Fly

LOR_OR. (3.24)

We emphasize the interpretation of this superpotential; we
have assumed that we first tune the first term to the CFT,
and then deform by the second term. We will call this model
the disordered V' =2 A,_; minimal model.

We can now argue that each deformation J3¥ ; is exactly
marginal. First, since Agr = 1 /q, the deformatlon is

classically marginal. However, since the CFT at J® =0
has no continuous non-R global symmetries, every classi-
cally marginal operator is exactly marginal [32-34]."F We
thus learn that every realization of the model is conformal.
Clearly we end up on the same conformal manifold as
described in the UV description above.

2. Summary

We have thus found that the disordered A/ = 2 minimal
models defined in (3.24) describe a conformal manifold.
This model should be understood as deforming N copies of
the V' = (2,2)A,_; minimal model by a disorder super-
potential. This conformal manifold is the same as the one
expected to appear had we started in the UV from free fields
and deformed by a similar superpotential.

We emphasize that the disorder average is an average
over CFTs, i.e., we have a CFT at every realization of the
theory, as opposed to the disorder average in the standard
SYK model. This is similar to other recent examples where
averages were performed over CFTs; see, e.g., [26,27].

One can now perform computations in this model. We
will be interested in the two- and four-point functions of
®R_ In the following, we will focus on the IR description,
and we will suppress the “IR” indices for clarity. These
computations require performing conformal perturbation
theory around the CFT at J = 0, which is N copies of the
A,—; minimal model. This is difficult in general, and so in
the following we will focus on the particularly simple
example of this model with ¢ = 3, which we discuss next.

3. The case q=3

In this section we focus on the case ¢ =3 of the
conformal manifold defined in (3.24), which is a specifi-
cally simple case. Explicitly, the superpotential is

Bt is crucial for this argument that we sum over iy # ... # I
in (3.24) in order for every deformation to be a nonzero element
of the chiral ring.
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N

W= @+ > Jyddd
i=1 i#j#k

(3.25)

where we are still interpreting the theory as a deformation
of N copies of the A, minimal models at J/ = 0, but we have
suppressed the IR index in the second term. In particular, in
the following @ should be interpreted as a chiral superfield
in the A, minimal model with dimension A = 1/3.

We start by analyzing the model at J = 0. Consider a
single copy of the A, N/ = 2 minimal model, which has a
chiral superfield ® of dimension 1/3 and central charge
¢ = 1. As a result, this CFT should be dual to the free
compact boson at some special value of the radius R. We
discuss the details of this duality in Appendix C. We can
thus think of the model at J/ = 0 as being N copies of the
¢ = 1 compact boson at a specific value of the radius R.

In order to proceed, we must match the components of
the superfield @ with vertex operators in the ¢ = 1 theory.
This is done in Appendix C. Since we know the exact form
of any n-point function of vertex operators, we now
immediately have all n-point functions of the ®;’s at

= 0. For our purposes, it would be most useful to have
these in superspace, instead of in components. In
Appendix C we present a conjecture for the form of these
n-point functions in superspace (see our superspace con-
ventions in Appendix A), which has been checked explic-
itly for the case of the two-, four- and six-point functions.
This form is

(@(x))...@(x,)D(yy)... ¢

Z sign(o) j ;

where all @’s are taken from the same copy of the minimal
model (otherwise the correlator at J = 0 decouples). At
leading order in J we will only need the four-point function,
which is explicitly

2A
. (3.26)

- 1 2A
(POOD) = ‘m I1—xs?4 (327
where
(3.28)

and with A = 1/3.
As aresult, the subtracted four-point function 4, defined
in Sec. II B takes the form

2A

1 24

i (12)(34)

I —yxs

12)(34)

<q_)iq)i&)iq)i>s = ‘ < (3-29)

We can now use these results to study the disordered theory
using the analysis of Sec. II (in particular, we interpret the
diagrams in Sec. II as supergraphs). This will allow us to
study chaos for the g =3 disordered SUSY minimal
models in Sec. V.

C. Disordered GFFs as a limit of the
Ny-flavored minimal models

Above we described two models: the disordered N = 2
GFFs in Sec. III A 2 and the disordered N = 2 minimal
models in Sec. III B. We now discuss a generalization of the
disordered N = 2 minimal models, from which the GFFs
can be obtained using a specific limit. This will allow us to
show that there is a conformal manifold in the disordered
SUSY GFF theory for A = 1/¢ even at finite N and for
every realization of J; ;.

We build the model in a similar fashion to the disordered
N =2 minimal models from Sec. III B. We start with

N x Ny chiral superfields ®;,, with i=1,...,N and
a=1,...,N;. Adding a superpotential
W= ZZq:m, (3.30)

a=1 i=

we can flow to N x N copies of the A,_; minimal model.
Next, add an SYK-like interaction:

N/ N
2 ) ST DU DI AT

a=1 i=1 ap,..., ag iy #.. #i,

(3.31)

We can repeat the arguments in Sec. III B to learn that we
have a conformal manifold for each realization of the
7,-] __,»q’s. We think of this model as having N, “flavors” of

the original A/ = 2 disordered minimal models (a some-
what similar construction for SYIS was discussed in [35]).
We can thus average over the J; i, assuming they are

again random variables with a Gaussian distribution this
time with variance (J} ;)= (q—1)! 57l Nq (note the
dependence on N). As explained above, since the dimen-
sion of ®R is fixed by superconformal invariance, we
expect its correlators to have the conformal form even after
averaging.

We will now show that in the limit Ny — oo, the theory
reduces to that of the disordered GFFs (this is not
surprising; indeed, it is similar to how one can obtain
GFFs in higher dimensions by taking the large-N limit of
certain gauge theories). Define the operator

1

(3.32)
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Then the disorder interaction term in the superpotential
above can be written as

Z VISR SR O (3.33)

The normalization of J; i, is now the same as for the
standard disorder deformations discussed above,
Vi) = (g—1)!s5r. Then it is clear that we can
compute the exact two-point and four-point functions of
Y by using the methods in Sec. II. In particular, this
requires knowing the exact n-point functions of ¥, at the
CFT at J = 0. But at leading order in 1/Ny, these are
particularly simple, and they reduce to products of two-
point functions.

For example, consider the four-point function.
Suppressing positions of operators, this can be written as

o 1 - -
(VW9 Y)) = N2 Z (i@ @i Dig)
fab.cd

1 -
= F Z (5(lb5Cd + 5ad5bc)<q)iaq)ia>2
fab.cd

+ 5ahcd<¢ia®iaq)ia¢)ia>' (334)

Performing the sums, we find

_ _ - 1
(YY) = (D;,P)° +N_<q)iaq)iaq)iaq)ia>v (3.35)
;

where there is no sum over repeated indices. It is then clear
that the leading contribution to the four-point function
comes from the disconnected diagrams which connect W’s
using propagators, and that the connected four-point
function only contributes at subleading order in 1/N.
Similar arguments can be used to show that higher n-point
functions also reduce to products of propagators at leading
order in 1/Ny.

T T e
10 100 1000 10* 10°

—0.5t
(a)

We have thus found that at leading order in 1/N/, this
model behaves as if it were a theory of GFFs with
dimension A = 1/g. We can thus find its two- and four-
point functions using the results of III B. In particular, this
proves that there is a conformal manifold in the disordered
GFF theory (unlike in the cSYK model, for which there is
evidence of a conformal manifold only at leading order
in 1/N).

IV. CHAOS IN DISORDERED GENERALIZED
FREE FIELDS

A. The ¢SYK model

In Sec. IIT A 1, we discussed the cSYK model, in which
J? was an exactly marginal operator at leading order in
1/N. We can now compute the chaos exponent in this
theory as a function of J.

As discussed in IIT A 1, the two-point function of cSYK
is identical to that of SYK, up to an overall function b(J).
As a result, the kernel of cSYK is also proportional to that
of SYK, up to the proportionality factor (3.8). One can
repeat the same argument also for the retarded kernel. The
result is that the retarded kernel K for cSYK is identical to

the retarded kernel for SYK up to the same overall factor
(B(I;(—{lo))q' Using the result for the eigenvalues in SYK

(2.15), we find

b(J) \? T(3-2A)T(2A+2)
)) - (4.1)

ke(2) = ( (1+2AM(2-2A+4)

b(J - o0

We can now find the chaos exponent by looking for the
largest value of 4; such that kz(4;) = 1.

We start by plotting the result for the specific value ¢ = 4
in Fig. 11(a). Atlarge J the result goes to the maximal value
Ar =1, as expected. The behavior at small J is more
interesting. At small enough J, the solution to ki =1
becomes negative for A > 0, corresponding to the dashed
red line [in particular, at J = 0 we find A, (J = 0) = —2A].

Sl J=10000
0.5} — J=100
— J=10

A
: 04 05 — J=1
~0.5} — J=0

—1 _o,
(b)

FIG. 11. The chaos exponent for QM GFFs. (a) 4; as a function of J at A = 0.25. The dashed red line represents the solution to
k() = 1, but wherever the solution is negative we interpret 1; to be zero there, corresponding to the solid line. At large J the solutions
asymptote to 4; = 1. (b) 4; as a function of A for various values of J. The black line is ; = —2A and corresponds to J = 0. This is

negative for A > 0, leading to the discontinuous transition into

chaos.
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This is unphysical, as discussed in Sec. II E 4; in computing
A we assumed it was positive, and so this solution is not
self-consistent. However, we immediately learn that there
cannot be any solution with positive 4, in this region, since
our calculation would have found it. We thus conclude that
there is no chaos in this region, meaning that the correct
value is 4; = 0, corresponding to the solid red line. We thus
find a discontinuous transition into chaos, reminiscent of
KAM theory.

Finally, we plot the general form for the chaos exponent
for any ¢ in Fig. 11(b). Note that at large enough J, the
chaos exponent always asymptotes to 4; = 1 regardless of
g, as expected. More interestingly, note that at small J, 1,
asymptotes to —2A = —%. As discussed in Sec. IIE4, a

negative value for 4; should be interpreted as having zero
chaos in this region, 4; = 0, corresponding to the solid line.
In particular, for any ¢ < oo, we will find a discontinuous,
KAM-like, behavior. This is inline with the discussion of
Sec. I1 E 2: taking J — 0 at fixed 4, the eigenvalues (4.1)
vanishes, and so in order to find solutions to the eigenvalue
equation kr = 1 we must look for values of A for which kp
diverges at fixed small J. Indeed, one can check that kg
diverges as 1 = —2A.

As we will see in Sec. IV C, for this theory is also
A = —=2A. In other words, in this case the continuity
conjecture (2.37) holds.

B. The disordered 1+1d N =2 GFFs

We now compute the chaos exponent for the disordered
GFFs discussed in Sec. III A 2. This conformal manifold is
obtained by taking N decoupled 1 + 1d N = 2 GFFs, and
adding an SYK-like superpotential. The model is very
similar to the cSYK model described above, and we will
one again be able to compute the chaos exponent as a
function of the deformation parameter J.

As discussed in IIT A 2, the exact two-point function for
the GFFs is identical to the one for the usual AV = 2 SYK
model obtained by deforming free fields, up to an overall

factor of b{;(_” . Thus, following the same logic as in the
—
AL

0.6¢

0.4

0.2¢

n n " n " 1 J
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-02f  /
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previous subsection, the retarded kernel is also given by the
retarded kernel of the 1 + 1d A/ = 2 SYK model, up to an
overall factor. Explicitly, the eigenvalues of the bosonic
part of the retarded kernel are given by

b(J)

KR =32

k.£/=2SYK’ (42)

where the eigenvalues for the 1+ 1d N =2 SYK were
found in [6]:

I2(1-A) I(A—h)(A=h)
T(A+DEA-DT(1-h—-AT(1-h-A)

(4.3)

=2SYK _
k;ﬁ“ —

The chaos exponent is then found by finding solutions to
kg(h,h) = 1. The result for the chaos exponent appears in
Fig. 12. We have also checked explicitly that other
components of the kernel other than the bosonic one do
not contribute a larger chaos exponent.

Again, there are a couple of interesting features to notice.
First, at large enough J, the chaos exponent for any A
approaches the result in the 1 4- 1d SUSY version of the
SYK model discussed in [3,6], as expected. Second, for any
A > 0, for small enough J the chaos exponent becomes
negative. As a result, we again find a discontinuous
transition into chaos for any A > (. This can be seen
explicitly in Fig. 12(a), where we see that indeed the
solution to k(4;) =1 becomes negative below some
critical J (corresponding to the dashed line in the figure).
We have thus found that the disordered 1 + 1d SUSY GFFs
also display a discontinuous transition into chaos, similar to
the 0 4 1d case discussed above.

C. Checking the validity of the approximation

In defining the chaos exponent, we had to solve
Eq. (2.12):

AL

— J=10000
— J=100
— J=10
— J=1

— J=01
— J=0

(b)

FIG. 12. The chaos exponent for 1 4+ 1d SUSY GFFs. (a) The chaos exponent as a function of J at A = 0.25. The dashed line
represents the solution to k(4;) = 1, but wherever the solution is negative we interpret 4, to be zero there, corresponding to the solid
line. (b) The chaos exponent as a function of A for various values of J. Again, for small enough J, 4; is negative.
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WR :FO+KRWR- (44)
We assumed that Wy grows exponentially, which allowed
us to neglect the Fy term. Now we return to this assumption
and check it explicitly. We do this for the 0 4+ 1d GFFs, and
the result for the 1 4 1d version is similar. Fy, is given by a
product of propagators:

Fo = Gr(13)Gg(24), (4.5)
see Fig. 4. Using the explicit form of Gy for SYK (see,
e.g., [3])

2bcos A

Gr(t, 1) =0(t-1) 2 sinh% (—1)™

(4.6)

and using the fact that for GFFs Gy, is proportional to the one
for SYK, we find at large 3, t, that
Fy o eftta) (4.7)
Comparing to Eq. (2.11), we can read off the chaos exponent
predicted by F at J = 0:
A = 2A. (4.8)
However, we found above that neglecting F, the chaos
exponent 4; (J) isatleast A; (J/ = 0) = —2A, and so neglect-
ing F, above is justified.

_Kp-W fd2x3d293d2x4d294KR(x1,xz;x3,x4)W(x3,x4)

In particular, we have found that the chaos exponent
predicted by F'j matches with the limit of the chaos exponent
predicted by the kernel as J — 0. This means that we
have verified the continuity relation 29 = 1, (J — 0) [see
Eq. (2.37)] for these two examples.

V. CHAOS IN THE DISORDERED N =2 A,
MINIMAL MODELS

In this section we compute the chaos exponent for the
disordered SUSY minimal models with ¢ = 3. While the
calculation of the chaos exponent for the disordered GFFs
was possible for all J, it is much more complicated for the
disordered minimal models due to their nontrivial n-point
functions. We will thus only be able to compute the chaos
exponent at small J. In addition, we will only be able to do
this for the particularly simple case ¢ = 3, where we know
all n-point functions of the CFT, see Sec. III B 3.

A. Computing A; near J=0

We now compute the chaos exponent for small J for the
disordered N =2 A, minimal model. As discussed in
Sec. II E, at leading order in J this requires knowing only
the full four-point function of the undeformed CFT, given
in Eq. (3.27). We can then plug this into (the super-
symmetric version of) Eq. (2.35) and compute the eigen-
values of the kernel K at leading order in J.

We again focus on the bosonic eigenvalue kgt As
discussed in Sec. II E, k is given by computing

kgr(A,J , 5.1
R( ) w W(.X] } xz) ( )
where the eigenfunction W is the superspace generalization of (2.34):
W(l,2) = exp(= 5" (1) + 1) + 5" (31 + 1)) (5.2)
"7 (2cosh(12512) — if,0,)A7" (2 cosh(12512) +70,0,)4"
We can change variables to
uy = e h, vy = e BT,
0L = e T0;, 0= e 0,
04 = ex3;/393, 0y = e%zif}é& 5.3
3 3

and similarly

"We will assume that the bosonic eigenvalue will give the leading chaos exponent. Indeed this was the case in all previous examples

considered.
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— -1,
Uy = —erh
414
0y =ie 2
~ . 14 1y~
0 = —ie 7 O,

and find that at leading order in J this is given by

— —X4—1.
7}4—_6 4 4’

P hl?
0, =ie 7 0,

év —¢ = 14(94’ 5.4
4

kglp ==
" T2 W(,2)l,

J? 1 duszdv;d04dos duydv d9 doy
/ 3<3‘:>1 7 S 4gR()(s )(S)

o (5.5)

Here we have defined (34), = u3, — 260404 and (34), = v3, — 2050}. G is the retarded normalized four-point (2.41), and

Xs.Xs are given in Eq. (A6).

Instead of finding the value of Gy directly, we will first do the Grassman integral without analytically continuing in u, v,
and then analytically continue (as the two operations commute). Using (3.29), the superspace integral gives

K-Wp==
2 T2 WL D)l

where by (..

)(2(1 h) +ﬂ> —4(1-h)(1 —E))R,

J2 1 / du3d1j4du4dv4
(

Uzg) " (034)* 7"

2Ay
A =g PR 2(1 = h) + %
(| z (( )

i (5.6)

.)g We mean the same operation taken in Eq. (2.41), and y = 2" 3 = 2224 Focusing on the case h =

UjgUn3 V143"

h= (as explained above), we can simplify this expression to

K-W|p= J? 1 /du3dv4du4dv4

2W(L2) =0/ (usgvss)'*

Written in this way, the analytic continuation is straightforward,15

J? 1 A\ (2 A\ (sind)? /]13][24]\ /3
=—— | duxdvidusd 1+—= .
2 Wi 2>amo/ Haltadi (( *2)( - )|34|4H (|14|23|>

(sinZ)?[12

KR‘W‘JZ

(Il —x*?

2 1+/1 287 °
2 11—y

and we find

),

(5.7)

4).

Here we denoted |ij|* = (u; — u;)(v; — v;) for brevity. In
particular, the contribution of the subtracnon term
proportional to (1 — &)? vanishes. As a consistency check,
we have checked numerically that using this expression, the
eigenvalues (5.1) are indeed independent of the external
points 1,2.

As discussed in Sec. I E, the value of 1; closeto J = 0 is
found by looking for values of A for which the integral

shows that the largest value of 1 for which the integral

The analytic continuation can be done almost immediately
by showing that the integrand can be written in terms of products
of propagators between the points zy, z,, z3, 24, and replacing
these propagators with the relevant analytically continued propa-
gators, denoted by G, and Gy in [3].

L1 ,1+2 Y. (sinZ)2 /|14[23]\ */3
3 3) |34[7+(13]124))*3(|14][23])* 3 2 |34|4“ [13][24|
+3 <

(5.8)

diverges is A = 4; = 0, and a numerical computation of the
integral confirms this. We thus find that the chaos exponent
near J = 0is 4, (J — 0) = 0. The transition into chaos will
thus be continuous (assuming 4; grows with increasing J),
as in Fig. 1(a).

As discussed in Sec. I E, consistency of our perturbative
expansion requires that we check that contributions from
higher n)-point functions diverge at values of A which are at
most A, = 0.'® We will check this order-by-order in n. The
2n-point function appears in (C12):

"It must also be checked that the subleading correction is
positive, i.e., that the chaos exponent rises as we raise J. We will
not check this explicitly but instead assume this is the case.
Indeed this has been the case in all previous examples considered.
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(@(x1)...@(x, )@ (y1)...@(yn))

Z sign(o) ﬁ !

c€ES, i=1 <xi - y0(1)>

2A

(5.9)

The (2n)’, correlator is obtained from this correlator using
various subtractions of lower n-point functions with legs
contracted using X’s. First we explain why we can ignore
the subtractions when discussing the leading divergence at
order 2n. There are two types of subtractions in the four-
point functions: subtractions of disconnected diagrams
where the points x;, x, are disconnected from x;, x4,
and subtractions where x|, x, are connected to x3, x4 but
|

there are additional disconnected bubbles in the diagram. In
the former case, the diagrams vanish in the limit ¢ — 0, and
so we can ignore them. In the latter case, what we find is
that if we ignore the bubble diagrams, the remaining part
which connects x;, x, to x3, x4 is identical to some lower-
order (2n)’, correlator, and so the divergence from it already
appears at lower orders in n and we have taken it into
account.

It it thus enough to plug in the (2n)-point function (5.9)
into the diagram and compute at what values of A its
contribution diverges. The integral that appear in kj at
order J>"*2 is

n /de,.dzexidZyidléyi /du3du4d9§;dex dv3dv3d0id0; (Ad Ad, @3, T, @ (x;)D(y;))
i=1

(x; = i) <34>L*§

(5.10)

<34>11/,+§ (@3®,) - [T1) (@(x)D(y))

¢ being the bottom component of the superfield ®. In the integral we changed variables to the light-cone variables for the
points 3,4, and transformed the 2n integrals over x;, y; to flat space. As a result, both sides of the ratio on the RHS can be
calculated in flat space. We are interested in the behavior of the integrand at large |u;|, |v;|. Inside the Euclidean integrals,
the integrand factorizes between the u’s and the v’s, and so we deal with each separately. Explicitly, the relevant terms in the

ratio for the u integral are

<<A§751 Apy 3@, [1, ‘D(Zi)q)(wi))) - (34)8 <((3'4'1.>)u " Zi,j 5 >A

(D3 D,)

- s

In the first equality we have plugged in the n-point function
(5.9), and separated the contraction of 3 to 4 from the rest of
the contractions. The expressions “(...)” denote terms that
depend only on the Euclidean (super)-coordinates.

We are interested in the large us, u, limit of this integral
after performing the 0%, 64 integrals. As the integrals acts as
derivatives, we can consider each term separately. The

. . A-1-3
Grassman integrals of either the (34),  ? term or the first
term in the bracket multiply the bottom component of
|

V3V4

(<A¢1A¢2¢3®4 I, <1><zi>d><wi>>> _ <<34>v>A (

(@304)

wi)(z;4)
() - (...) A
34 = 20303 ’ t/z::l (3 —w; = zegéi)(zj — Uy — 291»93)) SCRLY

I
(5.11) by 1/u34 (up to multiplicative constant). On the other
hand, integrating one of the terms in the sum over i, j
multiplies the bottom component by a factor of 8,/ (u5 — w;)
from the 0% integral, and 6;/(z; — u,) from the 0} integral.
Note that the Euclidean Grassmann integrals will not change
the over power in u3, u,. Together we have a factor of
1/(usuy), which is subleading at large us, uy compare to
1/u34. The v integral is very similar:

() &~ () A
B4, Z (3w <z,‘-4>>
n ()

NS
= <34>u (<34>u = (1 — Zm7}3 — 265;,”)(1

+> (5.12)

)A

In terms of the overall power of v3, v, the argument from the u integrals is carried in the same way: the leading divergence
multiplies the bottom component by 1/v34. The overall result is that at large |u;|, |v;| the integral has the form
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N/du3du4 d?)gd’l}3 . 1 ’ (513)

1+4 1+4
Usy U3y

U34V34

which diverges for 4 < 0. We note that the argument is not
complete as we did not perform the Euclidean integrals, but
we expect it to work just like the leading four-point
integration (5.8).

We thus find that all the higher orders in ky also diverge
only for 4; <0, and so our perturbative expansion is
justified and indeed the chaos exponent at J =0 is
A (J = 0%) =0. The transition into chaos should thus
be continuous, as in Fig. 1(a).

B. Checking the validity of the approximation

Once again, we must now make sure that our approxi-
mation of neglecting F, in computing the chaos exponent is
consistent. The analysis is similar to the one done for the
disordered GFFs in Sec. IV C. In particular, we must read
off the chaos exponent coming only from F, at J =0,
denoted by 4.

There is a simple trick for computing the analytically
continued four-point function required for F. Since the
“usual” four-point function is a product of propagators [for
the bottom component, see Eq. (C5)], we just have to
replace each propagator with the corresponding analyti-
cally continued propagator. The result is that F, is given by

FO - Glr,A ( 12> Glr,A (34)GRA ( 14)GR,A (23>
Glr,A ( 1 3)Glr,A (24)

+ (3« 4).
(5.14)

Here G, 5 is the propagator between the different rails
defined in (2.33), and

1
(4 sinh(%25*12) s.inh(t‘fz”‘”))A '

Gra(1,2) = (5.15)

At large t; ~ t, = t, F,) behaves like ¢/, and so the chaos
exponent predicted by Fy is A9 = 0. Thus once again, the
chaos exponent predicted by F at J/ = 0 is identical to the
chaos exponent predicted by the kernel as we approach
J = 0 from above, /I(L) = A, (J — 0), and so once again the
chaos exponent is continuous at J =0 as discussed
around Eq. (2.37).

VI. CONCLUSIONS

In this paper we discussed disorder around general CFTs,
which allowed us to compute the chaos exponent 4; as a
function of a continuous parameter J in some specific
models. We started by writing down a set of self-consis-
tency equations for the two- and four-point functions (and
also the OTOC) for a general disordered CFT. We then
discussed models in which the disorder parameter J is

exactly marginal (at least at leading order in 1/N). In
principle, this allowed us to compute the chaos exponent
Ap(J) for any value of the disorder parameter J, and to
follow the theory from weak to strong chaos. We managed
to perform this analysis explicitly for disordered general-
ized free fields in O+ 1d and 1+ 1d. In addition, we
performed this analysis to leading order in J in the
disordered N = (2,2)A, minimal model. For the disor-
dered generalized free fields we found a discontinuous
transition into chaos, while for the disordered A, minimal
model we found a continuous transition.

As discussed above, in principle the computation (at
least at leading order in J) should be possible for all of the
A,_; minimal models, since their four-point functions are
known [36]. It would be interesting to see whether the
transitions to chaos in the general case would be continuous
or discontinuous. In particular, the case ¢ = 4 should be the
next simplest case after ¢ = 3, since it has central charge
¢ =3/2 and is the V' = (1, 1) free chiral superfield [36].
As a result, the computation should parallel the one done
above for g = 3, since we can map components of chiral
superfields to vertex operators or fermionic operators,
whose correlators are known. Naive dimensional analysis
seems to indicate that the chaos exponent is continuous in
this case, but the analysis should be done more carefully.

One can also extend this analysis to 2 + 1d. The Wess-
Zumino models defined in Eq. (3.24) have an immediate
generalization to 2 + 1d theories with AV = 2 SUSY. In this
case, only the ¢ = 3 case is a relevant deformation from the
UV free field theory. This model was studied in [7], but it
would be interesting to study the properties of the con-
formal manifold as well. This would be a much more
daunting task than the 1 4 1d theories discussed here, since
the 1 + 1d versions correspond to a disorder deformation of
very simple CFTs (the minimal models), while the 2 + 1d
versions correspond to complicated CFTs.

An interesting result that was argued for above is the
continuity relation (2.37). As a reminder, the chaos expo-
nent near J =0 can either be computed explicitly by
computing the OTOC at J = 0 (and the result is denoted
29), or computing 4, (J) from the eigenvalue equation for
the kernel Ky and taking the limit / — 0. Then we argued
that 29 = 1,(J — 0). In addition, we showed that this
relation is true in the explicit examples studied in this paper
in Secs. IVC and V B. It would be very interesting to
understand whether this is a general result for disordered
CFTs. If it is a general result, then in principle one could
find whether the transition into chaos is continuous or
discontinuous by performing a computation in a single
copy of one core CFT (since computing 19 requires
knowing only one copy of the core CFT). Then it would
be interesting to understand precisely what set of conditions
a core CFT is required to obey in order for the transition
into chaos to be continuous or discontinuous.
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Assuming this continuity condition on the chaos expo-
nent, there are now many additional examples where the
transition into chaos would be discontinuous—the idea
would be to consider a single core CFT, and find /1‘2 [see
(2.36)]. If the result is negative, then we expect a discon-
tinuous transition into chaos, assuming that a conformal
manifold can be constructed at leading order in 1/N as
above. In particular, we expect that the non-SUSY minimal
models will have a discontinuous transition using the
results of [37], and that the 2 4 1d Ising model will have
a discontinuous transition using the results of [38] if similar
conformal manifolds exist.

An additional result is that the perturbative expansion for
the chaos exponent was indeed consistent, which was
nontrivial as explained in Sec. I E 2. In particular, it is
crucial that the integrals coming from higher-order correc-
tions diverge at 1 which obeys 1 < 19. Relatedly, one must
show that Eq. (2.42) is obeyed. Indeed, once again we saw
explicitly that this is obeyed in the specific examples
discussed in this paper. It would be nice to prove this
behavior for a general CFT.

Our self-consistency equations for the two- and four-
point functions around a general disordered CFT can be
useful outside of the scope of this paper. It would be
interesting to see if there are additional core CFTs for
which these equations can be solved exactly apart from free
fields. This would be especially useful in cases where the
disorder deformation is not exactly marginal, since then
the equations would probably be solvable only in the limit
J — oo where conformal invariance may be restored, and
so perturbation theory in J will not be useful. It would also
be interesting to try to solve these equations in perturbation
theory to high orders in J in the case where the disorder is
exactly marginal. Finally, more general correlators can also
be computed for disordered free fields [10], and it would be
interesting to see if this is the case also for general
disordered CFTs.

It would be interesting to understand the dependence of
the chaos exponent on exactly marginal deformations also
from a holographic perspective. In particular, [39] studied a
symmetric orbifold of the N' = 2 SUSY minimal models of
the type reviewed in Sec. III. These theories have a much
smaller number of exactly marginal deformations, but far
along the conformal manifold the authors found evidence
for a (weakly curved) holographic dual. It would be
interesting to try to apply the methods discussed above
to these examples and study 4; as function of the exactly
marginal deformation. If the theory is indeed holographic
far away on the conformal manifold, 4; should reach its
maximal value 4; = 1. It would be interesting to show this
and to study small deviations away from maximal chaos.

Finally, it would be very interesting to compare our
results with classical expectations for the onset of chaos. As
discussed above, there are exact theorems which described
the chaotic behavior of some models as they are deformed

away from weak coupling, like the KAM theorem. There
are incredibly useful tools in studying classical chaos, and
hopefully a better understanding of the onset of quantum
chaos will lead to similar tools.

ACKNOWLEDGMENTS

The authors would like to thank N. Brukner, C. Choi,
R.R. Kalloor, B. Lian, J. Maldacena, O. Mamroud, M.
Mezei, V. Rosenhaus, D. Tong, and M. Watanabe for useful
conversations. We especially thank M. Rangamani and O.
Aharony for interesting discussions and for comments on a
draft of this paper. The work was supported in part by an
Israel Science Foundation center for excellence grant
(Grant No. 2289/18), by Grant No. 2018068 from the
United States-Israel Binational Science Foundation (BSF),
and by the Minerva foundation with funding from the
Federal German Ministry for Education and Research.

APPENDIX A: A =2 SUSY CONVENTIONS

Our conventions follow [6]. N/ = 2 superspace consists
of a set of holomorphic and antiholomorphic coordinates,
which we call

Z=1(20.0), Z=1(z0.0). (A1)
We also define superspace derivatives as
0 -0 _ =
D=—+0— D=—=+0— A2
00 + 0z’ 00 * 0 (A2)

Chiral superfields @ then obey D® = D® = 0. We will
denote antichiral superfields by ®. A SUSY Lagrangian
includes a Kahler potential and a superpotential and takes
the form

L= / 00D + i / oW (®) + i / dOW(®).
(A3)
Here we have defined d20 = d0d0 and d*0 = d0do.

In NV = 2 SCFTs, two-point functions of chiral operators
are fixed:

b

(®(Z,)0(2,)) = RO (A4)

where b is a constant, A is the dimension of ®, and

(12) = 215 — 26,6, — 6,0, — 6,0,,

<i 2> = 212 - 2(:9192 - élél - ézéz. (AS)
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There are two superconformal cross ratios:

Xs =

APPENDIX B: FINDING THE SUBTRACTED
n-POINT FUNCTIONS rn; AND n;

Above we described how to define the subtracted n-point
functions n, and n), which appear in the SD equations for
the two-point function and in the kernel for the four-point
function, respectively. In this Appendix, we perform an
explicit example of an accelerated algorithm for generating
these correlation functions. The algorithm is applied as
follows. At order n, consider the full CFT n-point function.
This can be decomposed in terms of connected n-point
functions of lower order. We plug this decomposition into
the corresponding diagram in the SD equations (kernel),
and remove contributions which lead to disconnected parts.
The remaining terms define n; (n}). We will do specific
examples in this Appendix and show that they match the
previous definition.

1. n; and the SD equations

We start by doing specific examples by finding 4,, 6,
using the accelerated algorithm.

Let us start by performing this analysis explicitly for the
four-point function 4,, whose contribution to the SD
equations corresponds to contracting two of the legs with

\ 7/ —2— I N
\4/ = 4. + 2 2+ 227<
7\ VAN —2— I /
(a)
X X X ¥ X
™\
<4> — C4C> + <2> + 2 2+ (2{
SN /N ——  J O 2
(b)
FIG. 13. The algorithm for finding 4,. An n corresponds to

a full n-point function, while an n, corresponds to a connected
n-point function.

N2 \ 7

—6— = —6.— F+| —4—+ permutations) +

/N /N ——

a X, see Fig. 6. We start by decomposing the full CFT four-
point function 4 into fully connected n-point functions, see
Fig. 13(a). Next, we plug this decomposition into the
contribution for the SD equations by contracting two of the
legs with a Z, see Fig. 13(b). It is clear that the second term
on the RHS in Fig. 13(b) has a disconnected component,
and so we must remove it. Then 4, is defined as taking the
full four-point function 13(a) and subtracting the term in the
decomposition which leads to a disconnected diagram,
which is indeed the result of 4, in Fig. 7.

Next we do the analysis for the six-point function. The
decomposition of the full six-point function into fully
connected n-point functions is given in Fig. 14. The
corresponding contribution to the SD equations is obtained
by contracting two pairs of external legs via a Z, see Fig. 6.
Performing this contraction on each term in Fig. 14, we find
that again some of the diagrams lead to disconnected
contributions. Subtracting these, we find 6, shown in
Fig. 7.

2. n, and the four-point function

A similar method can be applied in order to find n},. We
start by explicitly finding 4. The idea is the same as for the
SD equation. We start with the full CFT four-point function
4, and we decompose it into fully connected contributions
as in Fig. 13(a). We then plug this into the contribution of
the 4/ in the kernel in Fig. 8, see Fig. 15. We find again that
there are disconnected contributions (specifically, the
second diagram on the rhs), and they must be subtracted
from the contribution of the four-point function. Then 4/ is
defined as the full four point function, with the diagram
which leads to a disconnected contribution subtracted, as in
Fig. 9. A similar analysis for the six-point function leads to
the 6} defined in Fig. 9.

3. A consistency check: Disordered free fields

As a consistency check, let us compare our SD equations
in Fig. 6 to the standard result when expanding around a
free field CFT, as in the SYK model in Fig. 2. We will do
this up to order J°.

In the case where the core CFT is free, the n-point
functions reduce to all of the possible ways of contracting
the different legs using two-point functions, and the
subtracted n-point function corresponds to removing

—2_
—2— -+ permutations )
_2_

FIG. 14. Decomposing the six-point function.

> =>Q W+ QA

FIG. 15.

Decomposing the six-point function.
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contributions which lead to disconnected diagrams. Let us
see order by order that we recover the ‘“standard” SD
equation. At order J? this is obvious. At order J2, the four-
point function reduces to 3 possible contractions of the four
operators, but one is removed due to the subtraction in 4.
As a result, we find two identical diagrams of the form

—_2—Y —2—

The factor of 2 cancels with the factor of 1/2 in (2.20), and
so we find the correct contribution. Next consider order J°.
There are 15 ways of connecting the external legs of the
six-point function in pairs, but we subtract 7 of them in 6,.
We are thus left with 8 diagrams of the form

—2—=y —2—Y —2—

Once again, the factor of 8 cancels with the prefactor of 6,
and we are left with precisely the required contribution.

APPENDIX C: THE A, MINIMAL MODEL

1. Preliminaries

In this section we study the N =2 minimal model
corresponding to the superpotential W = X3, known as the
A, minimal model. This minimal model has central charge
¢ =1, and so it should correspond to the theory of a free
compact boson ¢ ~ ¢ + 2zR at some value of the com-
pactification radius R.

It is slightly subtle to find the precise ¢ = 1 theory which
the X* model maps to in the IR. The reason is that we are
interested only in correlation functions in the CFT, and
there are a handful of theories which differ only by
gaugings of some discrete symmetries, so that correlators
are invariant (assuming the operators are invariant under the
symmetry we are gauging). In particular, the bosonic ¢ = 1
theory has four values of the radius R where it has enhanced
N = (2,2) SUSY, which are R = v/3,1/3/2 and their T-
dual values (see, e.g., [40]). Indeed, the two theories at
R = \/§ , \/§ /2 are Z, orbifolds of each other, and so
correlation functions do not differ between them. It is thus
not important which value of R we choose for our purposes.

However, this is not the end of the story. Our SUSY
theory includes fermions, and so it requires a choice of spin
structure, while the standard bosonic ¢ = 1 theory does not.
Indeed, the theories at R = \/§ , \/§ /2 discussed above are
theories with A/ = (2,2) SUSY, but where (—1)¥ has been
gauged (as we will see later on). Instead, our SUSY theory
should correspond to a “fermionic” ¢ =1 theory, i.e., a
¢ =1 theory with a choice of spin structure.'” We will
assume that the fermions can be introduced by an “ungaug-
ing” procedure of (—1); i.e., we will assume that there is

""We thank D. Tong for discussions on this issue.

some Z, symmetry which upon gauging reintroduces the
fermions.

The bottom line is then that the theory with super-
potential W = X? flows to an orbifold of the standard
bosonic theory with R = 1/3/2. Since orbifolds do not
change correlators (as long as the operators are not charged
under the symmetry), we may proceed for now focusing on
the R = v/3/2 bosonic theory, and we will discuss explic-
itly the operators for which the orbifold is relevant.

Vertex operators for the theory with R = /3/2 take the
form

[ m [ m -
Vym = €Xp <z <ﬁ+ nR>¢ +1 <ﬁ_ nR>qb>, (C1)
with dimensions
1/m 2
h==(—+nR
2(2R+n ) ,
- 1 /m 2
h=-(——nR C2
2(2R ”> (€2)

In these conventions, the dimension is A = /& + & and the
spin is # = |h — h|. In particular, there exist four vertex
operators V. o, Vg 13 with dimensions (h, h) = (3/2,3/2),
which is appropriate for an N = (2,2) supersymmetric
theory where (—1)7 has been gauged.

We expect to find a chiral operator X'® of dimension
A = 1/3 in this CFT. Expanding X'® in components as

XR = o+ Oy + 0y +O0F, (C3)
we should be able to match each component with a vertex
operator in the IR. Indeed, the vertex operator V,; has
dimensions (h, ) = (1/6,1/6), and so we match ¢ <>
Voq (and @ < Vi _y). Next, we match F < V,_, and
F <> V,, since they all have (2/3,2/3)."

Next we must find the fermion y in terms of vertex
operators. As discussed above, the bosonic ¢ = 1 CFTwe are
considering has (—1)f gauged, and so we should not be able
to find y in it. Instead, we are assuming that there is some
ungauging procedure that allows us to reintroduce the
fermions. In practice, this allows us to reintroduce the
fermions and supercharges as vertex operators with non-
integer values of n, m. We have checked that this reintro-
duction is consistent, in the sense that acting with the
supercharges on the components of X'® give the expected

"®To see that F must have m = —2 and not m = 2, we use the
fact that Q%@ = F, and the fact that we know the supersymmetry
currents in terms of vertex operators [up to the subtlety of gauging
(=1)F discussed below] and the OPE of two vertex operators.
Specifically, computing the OPE of J?¢ and extracting the term
which is proportional to z72 gives F.

045007-26



ONSET OF QUANTUM CHAOS IN DISORDERED CFTs

PHYS. REV. D 106, 045007 (2022)

results. These changes in the spectrum of the theory lead to a
CFT which is not modular invariant, but this was expected
due to the dependence on the spin structure (see, e.g., [41]).

Now we can compute n-point functions of X'® in the
CFT. From now on we will ignore the IR superscript, and so
X is always understood to be the chiral operator of
dimension A = 1/3 in the CFT. Since we know how to
write the components of X in terms of vertex operators, we
now know how to compute and n-point function of them.
To warm up, let us compute the two-point function of X.
Superconformal invariance fixes

5 1

(XX) = W. (C4)

It is clear that the bottom component is precisely the ¢ two-

point function IZ\% Extracting the top component, we find

that the two-point function of F is %, which defines the

212

normalization of F.

2. Four-point function

Using the mapping of the components of X to vertex
operators in the ¢ =1 free boson, we can immediately
write down their four-point functions:

2A 2A
_ 213224
(P9ppe) = [1—x**  (C5)
212214223234 212234
o 8A 1 [sa
(FFFF) = (4A2)2| 213224 1™ _ 1=z
212214223434 212434
(Co)
_ 11281 1 |84 -
(FFpg) =487 —| | —| |72
234 212 214223
11281 1 |84
== | = ()
134 212
where A = 1/3. We have defined the conformal cross
ratios
212234 _ Z12%34
== y=—. (C8)
214232 214232

We can now write down the full superspace four-point
function of the chiral operator X. In superspace there is a
single superconformal ratio yg, which is given by

(12)(34)

(14)(32)° (C9)

Xs =

where

(12) =z - 29192 - 9191 - 6725’2 (C10)
and it is easy to find the four-point function of X in

superspace using the results for its components:

2A
(XXXX) = 11—z (C11)

1
) (12)(34)

We have checked that the components of this four-point
function match our expectations (including the fermionic
components).

3. Higher n-point functions

We now conjecture the general superspace form
for the correlation function of 2rn X’s of the form
(X(x1)...X(x,)X(1)...X(y,)), and provide some nontri-
vial consistency checks for it.

Our conjecture for the 2n-point function is

<X(x1)'"X(xn)X(yl)"'X(yn»

= %0 [T oy

This can be written in a more concise form as

2A
(C12)

Xis y(i(l))

| det C(x;, y;) [, (C13)

where C is a variant of the Cauchy matrix:

1 1 . 1
(1) (xryn) (S
1 1 . 1

C— (x2.31) (x2.72) (X2.Yn) ‘ (C14)

1 1 . 1
<Xn Y1 > (X,, sy2> ()C,, syn>

We now describe some consistency checks on this result.
First, it is symmetric under a permutation of the x’s and of
the y’s. Next, we have checked explicitly for n =1, 2, 3
(i.e., for the two-, four- and six-point functions) that this
result is correct by explicitly comparing to the expected
result using the different components of X. Next, it is easy
to check that at least the bottom component (with all
Grassmanian coordinates set to zero) takes the correct value
for any n. To see this, note that we expect the result to be

2A
z<] XijYij

(C15)

‘ [T (xi = vy)

This matches the bottom component of (C12) once we use
the Cauchy determinant formula:
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(X(x1)- X ()X (1) X))o
_ ; 1 [T7 xjivij
GEZSS gn Hx _ya(z) HZj(xi_yj), (C16)

where |, denotes taking the bottom component of the
expression. Finally, we can also check that the components
proportional to 80 match. To see this, we focus on the
holomorphic part of the 2n-point function, and calculate
(Fg"'F@"~!). This corresponds to computing

d
do. 0

X170

((XX)") - (C17)

We are using the fact that at this order, we only need to take
into account cases where 6, ,»0,, appear in the combination
Hx ,0,,, which will not be true with higher derivatives. In this

case we can use the general formula for the derivative of a

the same order. Using this formula, if we take —<4— 7 9 of the

holomorphic part of our 2n-point function and take the
bottom component, this is the same as computing

A det(C)ATr<C" %c). (C19)

Let us compute this. The elements of our matrix are of the
form

20,0,
C; = = — (C20)
/ <xi’yo’( )> Xi = Yo(i)
and so ﬁcmzo = 2m5 6j1- The inverse of the

Cauchy matrix is also known, it is

[T (xj = i) (X = i)

s Cil= )
determinant: T (= yi) (T srsn () = 210)) (T Tisagn (=i +30))
k#j ki
dd A =detAT A‘ldA C18
SpdetA = etATr 74 (C18)  Putting these together we find that dB d9 lp—o of the
holomorphic part of our 2n-point functlon is
We will not be able to use this formula to prove that this is
the correct form for any component, since there will be 2A det(C)AC] ; (C21)
various minus signs from the ordering of the ’s. But for (xi = yo—(i))2
this component there will be no sign problems, since we are
taking the derivative — d 5~ and éx],é’yl always appear in  Explicitly, this is equal to
X170
|
2A< H?<jxjiyij )A Z 1 yk)(xk _yl) 1 ) (sz)
Hi,j(xi - yj) ( yl)(stksn(xlk)(_ylk)) (x; = y1)2
Separating the terms which include i, j = 1 and the rest of the terms and setting A = 1/3 we find
d Ilcicj%ivi N (TIizs (er = vi) (e = 31) ) 2 1
3 (XX geg = 28 (o ) (Ll ()
de. o, [ (i = y)) [T Xy (X1 = 1)

Adding the antiholomorphic part of this correlator in the same way, we find exactly the expected result for (|F|*|¢"~!|?).
Since we only considered the holomorphic part, the same calculation also shows that we get the correct result

for (y?|p"!|?).
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