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We study the Lyapunov exponent λL in quantum field theories with spacetime-independent disorder
interactions. Generically λL can only be computed at isolated points in parameter space, and little is known
about the way in which chaos grows as we deform the theory away from weak coupling. In this paper, we
describe families of theories in which the disorder coupling is an exactly marginal deformation, allowing us
to follow λL from weak to strong coupling. We find surprising behaviors in some cases, including a
discontinuous transition into chaos. We also derive self-consistency equations for the two- and four-point
functions for products of N nontrivial conformal field theories deformed by disorder at leading order in
1=N.
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I. INTRODUCTION

Disordered theories display an interesting range of
physical phenomena. Disorder appears in many experi-
mental setups, but it has also found theoretical applications.
An especially interesting disordered theory is the SYK
model [1,2]. The SYK model is defined as taking N free
fermions and deforming them by a random interaction:

H ¼
XN

i1;…iq¼1

Ji1…iqψ i1…ψ iq ; ð1:1Þ

with Ji1…iq a random variable drawn from a Gaussian

distribution with zero mean and variance hJ2i1…iq
i ¼

ðq − 1Þ! J2

Nq−1 (with no sum over repeated indices).
In addition to the SYK model, there also exist more

general SYK-like models which display interesting behav-
iors and have been studied in detail. These are obtained by
taking N free fields Ψ (which can be fermions, bosons, or
superfields in any dimension) and coupling them using the
spacetime-independent disorder interaction1

X
i1…iq

Ji1…iqΨi1…Ψiq ; ð1:2Þ

where J are random variables taken from a Gaussian
distribution with zero mean, and the disorder interaction
can be either a potential or a superpotential term. For
example, taking Ψ to be a free fermion in 0þ 1d and
interpreting (1.2) as the Hamiltonian, one obtains the SYK
model. Similarly, taking Ψ to be a 1þ 1d N ¼ ð1; 1Þ free
chiral superfield and interpreting (1.2) as a superpotential,
one obtains the MSW model [3]. There are also general-
izations to N ¼ 1 and N ¼ 2 in quantum mechanics [4],
1þ 1d N ¼ ð2; 0Þ [5], 1þ 1d N ¼ ð2; 2Þ [6], and 2þ 1d
N ¼ 2 [7], among others.
The disorder allows for some exact computations in these

theories in the IR at leading order in 1=N, assuming that they
flow to a scale-invariant fixed point [1,8,9]. In particular, one
can write down and solve a Schwinger-Dyson equation for
the two-point function, and solve it using a conformal ansatz.
In addition, the diagrams contributing to the four-point
function of the theory obey an iterative ladder structure,
and so they can be formally resummed, allowing for
computation of the full four-point function of the theory.
Higher-order correlators can also be computed [10].
In this paper we consider a more general construction.

Consider a conformal field theory (CFT) in d dimensions,
which contains a primary operator O of dimension Δ. We
will study N copies of this core CFT, deformed by a
disorder interaction:

ðCFTNÞ þ
X
i1…iq

Ji1…iqOi1…Oiq ; ð1:3Þ

where Ji1…iq are again Gaussian random variables with

variance hJ2i1…iq
i ¼ J2ðq−1Þ!

Nq−1 , and the disordered interaction
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term can be interpreted as a potential or a superpotential.
These theories can be studied in conformal perturbation
theory in J. We will call such theories disordered CFTs. As
an example, in this notation we refer to SYK-like models as
disordered free fields, since the core CFT is a free field
theory.
As discussed above, for disordered free fields there is a

simple structure to the diagrammatic contributions to the
two- and four-point functions at leading order in 1=N.
Surprisingly, we will be able to show that a similar structure
exists also for the computations of two- and four-point
functions in general disordered CFTs. For example, one can
still write down a Schwinger-Dyson equation for the exact
two-point function (see Fig. 6). In addition, the contribu-
tions to the four-point function still exhibit an iterative
ladder structure (see Fig. 8), which can be formally
resummed. We will write down explicitly the correspond-
ing equations from which the two- and four-point functions
can be extracted for general disordered CFTs.
Unfortunately, since interacting CFTs are much more

complicated than free theories, the corresponding equations
one must solve in order to find the exact two- and four-
point functions are much more complicated as well. In
particular, in order to solve the equations we must know all
n-point functions of the CFTs. These computations are thus
practically possible only in specific CFTs. In this paper we
will be able to use the equations to study disordered
generalized free fields and a disordered N ¼ ð2; 2Þ
minimal model.
Although the generalized equations we will write down

for the two- and four-point functions for disordered CFTs
are complicated, they still allow us to study a new
phenomenon. It is common in the literature to make the
disorder deformation relevant, so that the theory flows to
some fixed point in the IR. One can also try to use a
disorder deformation that is classically marginal for dis-
ordered free fields, but these deformations are usually
marginally irrelevant (see, e.g., [11]). On the other hand,
around nontrivial CFTs there is the possibility that these
deformations are exactly marginal. In this paper we will
mainly focus on exactly marginal deformations, at least at
leading order in 1=N. In particular, this means that it is not
necessary to take J → ∞ in order to find a fixed point;
instead, the values of J should parametrize a line of
(disordered) fixed points.
The existence of a line of fixed points allows one to ask

questions about the J dependence of observables in the
theory, rather than just the large-J (or IR) behavior as in
disordered free fields. We will mostly by interested in the J
dependence of the chaos exponent λLðJÞ. λL can be read off
from the behavior of an out-of-time-ordered correlator
(OTOC) [2,12,13], which will be reviewed in detail in this
paper. Famously, this chaos exponent is bounded from
above λL ≤ 2π=β [14], with β the inverse temperature.
Since we will be working around scale-invariant theories, β

will be the only scale in the problem and so we will set
β ¼ 2π in the following, so that the bound reads λL ≤ 1.
Usually, computing the chaos exponent requires the

theory to be scale invariant, since this simplifies the
computation immensely. As a result, λL is known mostly
for some isolated CFTs. However, the structure described
above allows us to compute the chaos exponent as a
function of the continuous disorder parameter J. We will
thus be able to follow λL from J ¼ 0, where the theory
consists of a product of N decoupled CFTs, to J → ∞,
where the theory usually coincides with some SYK-like
fixed point. We expect there to be very low chaos at J ¼ 0
and large chaos at J ¼ ∞, and we would like to study how
chaos emerges in the theory. For some previous discussions
of quantum chaos at weak coupling which are similar to the
discussion here, see [6,8,15–18] and references therein, and
specifically [19,20] which discussed chaos on a line of
fixed points in a non-Lorentz-invariant theory.
The question of how chaos appears following a small

deformation of a nonchaotic theory is an extremely
complicated one, even in classical systems. Classically,
there are diverse types of behaviors that different systems
can display, leading to a large range of interesting physical
phenomena to study. Specifically, some interesting behav-
ior occurs when one deforms an integrable system away
from integrability. An important result in this context is the
KAM theorem, which discusses the breakdown of integra-
bility under a small deformation for nondegenerate inte-
grable systems with a finite number of degrees of freedom.
Schematically, the KAM theorem states that such systems,
which are slightly deformed away from integrability, still
retain a large part of their integrable structure. As a result, a
“large” deformation away from integrability is required in
order to find chaos. The fact that deformations away from
integrability retain some integrable structure seems to be
more robust than the range implied by the KAM theorem;
another example of this behavior beyond the scope of the
KAM theorem is the Fermi-Pasta-Ulam-Tsingou problem.
We will find that disordered quantum systems also

display different types of behaviors when deformed away
from a nonchaotic point. In particular, we will find two
types of behavior for the chaos exponent λL, shown in
Fig. 1. Schematically, we find that disordered CFTs can
either have a continuous or a discontinuous transition into

FIG. 1. The two types of behaviors we find for the dependence
of the chaos exponent λL on the exactly marginal disorder
deformation J: (a) continuous and (b) discontinuous.
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chaos. The discontinuous transition into chaos is an
extremely interesting result, and parallels the behavior
one might expect from systems that fall under the classes
described in KAM theory, but the analogy is very far from
being precise. The KAM theorem was an exciting break-
through in the study of the onset of classical chaos, and we
hope that a similar breakthrough may appear in the study of
the onset of quantum chaos.
The rest of this paper is organized as follows. In Sec. II,

we discuss generalities of disordered CFTs at large N. We
write down the self-consistency equations for the two- and
four-point functions, and discuss the computation of the
chaos exponent. In Sec. III we define the main classes of
theories we will be interested in, where the disorder
coupling J is exactly marginal. In Sec. IV we discuss
the first class of theories, the disordered generalized free
fields, and we compute the chaos exponent as a function of
J for them. In Sec. V we discuss the second class of
theories, the disordered N ¼ 2 minimal models, and we
find the chaos exponent in the limit J → 0 for the simplest
minimal model. We discuss our results and some future
directions in Sec. VI.

A. Summary of results

We now summarize the main results of this paper. There
are two main results:
(1) First, we discuss the two- and four-point functions of

general disordered CFTs. For the two-point func-
tion, we write down a self-consistency equation for
the exact propagator (Fig. 6), which generalizes the
standard Schwinger-Dyson equations of disordered
free fields. We then show that the contributions to
the four-point function have an iterative ladder
structure (Fig. 8), again imitating the case for
disordered free fields. In both cases the structure
is much more complicated in a general CFT com-
pared to a free theory, but it allows for a perturbative
expansion in the disorder parameter J.

(2) Second, we discuss chaos in the case where the
disorder parameter J is an exactly marginal defor-
mation (at least at leading order in 1=N). We show
that the OTOC also obeys a ladder structure, which
allows for a computation of the chaos exponent λLðJÞ
in the case where J is exactly marginal. We perform
this computation in two classes of examples:
(a) Disordered generalized free fields: we discuss

generalized free fermions in 0þ 1d (following
[21]) and SUSY generalized free chiral super-
fields in 1þ 1d. In both cases J is exactly
marginal at leading order in 1=N. We find that
in this class of models there is a discontinuous
transition into chaos as in Fig. 1(b), so that the
chaos exponent vanishes for couplings J < Jc
for some finite critical coupling Jc, before rising
as we raise J above Jc. See Fig. 11 for the

explicit result for the 0þ 1d case and Fig. 12 for
the 1þ 1d case. Specifically, the chaos exponent
read off from the ladder structure appears to be
negative for J < Jc, but as we explain this just
signals a breakdown of some assumptions which
are usually made in the computation of the chaos
exponent, and should be interpreted as having
λL ¼ 0 for J < Jc.

(b) Disordered SUSY minimal models: we discuss
N copies of the Aq−1 N ¼ ð2; 2Þ minimal
models coupled by disorder. The computation
of λLðJÞ is difficult in general, and so we focus
on the particularly simple case of q ¼ 3, where
the theory has central charge c ¼ 1 and so it
reduces to that of a free compact boson. This
allows us to compute all possible correlators of
the relevant chiral superfields, and to compute
the leading contribution to the chaos exponent at
small J. We find that there is a smooth transition
into chaos in this case, as in Fig. 1(a).

This paper is just a first step in the study of the onset of
quantum chaos in disordered systems, and many open
questions remain. In particular, we conjecture a continuity
relation around Eq. (2.37), which relates the chaos exponent
of disordered CFTs obtained via the retarded kernel in the
limit J → 0 to an exponent in a specific limit of a single core
CFT. If this is a general result, then it would suffice to study a
simple limit of a single copy of the core CFT in order to find
whether the transition into chaos is continuous or discon-
tinuous for the disordered CFTs. It would be very interesting
to either prove this result or find a counterexample. Some
additional particularly interesting open questions are dis-
cussed in the conclusions in Sec. VI. The results of this
article are summarized in the companion Letter [22].

II. DISORDER AROUND A NONTRIVIAL CFT

In disordered free field theories defined in Eq. (1.2), the
random interactions impose a specific structure on the
perturbative expansion of some observables. This allows
for a resummation of Feynman diagrams, and in some cases
allows for an exact computation of some observables in the
theory at large N. In particular,

(i) One can write down a Schwinger-Dyson equation
for the two-point function of two Ψ’s (which are the
free fields at J ¼ 0). In the conformal limit J → ∞,
this can be solved exactly.

(ii) In addition, the contributions to the four-point
function of Ψ’s obey an iterative ladder structure,
which can be resummed in principle.

(iii) Finally, the out-of-time-ordered four-point function
(the OTOC) also has an iterative ladder structure,
which can be used to extract the chaos exponent of
the theory even without an explicit resummation.

In this section we extend this analysis to disordered
CFTs, i.e., we consider nontrivial (non-free) CFTs which
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are deformed by a random interaction as in Eq. (1.3).
Specifically, assume we have a core CFT with some
operator O of dimension ΔO. Consider a product of N
such CFTs, and deform this theory by the interaction

XN
i1≠i2…≠iq

Ji1…iqOi1…Oiq ; ð2:1Þ

where the indices fi1;…iNg denote the different CFTs, and
Ji1…iq is again a Gaussian random variable with zero mean

and variance hJ2i1…iq
i ¼ J2ðq−1Þ!

Nq−1 . We take the indices to be
different from each other in order to avoid short-distance
singularities. The interaction (2.1) can be a potential term or
a superpotential term (in the latter case, all Feynman
diagrams that appear in the following should be understood
as supergraphs).
Since the core CFT is no longer a free theory, we cannot

use the self-consistency equations for the two- and four-
point functions discussed above. However, we will show
that in the more general case (2.1), it is still possible to
perform some exact computations in these theories.
Specifically, we will show that it is still possible to write
down a Schwinger-Dyson (SD) equation for the two-point
function, and that the four-point function and the OTOC
still obey an iterative ladder structure, which allows one to
extract the chaos exponent. We will eventually be interested
only in deformations which are exactly marginal, but the
self-consistency equations we write will be general. We
comment that, in general, further counterterms are required
to renormalize the theory, but we will assume that these
either average to zero or are not required for the specific
correlators we will study (indeed we will see that this is the
case for the models discussed in this paper, at least to the
order in J we will work in).
For concreteness, in this section we will assume that the

operators O are real, but the generalization to complex
operators is immediate. Similarly, a generalization is
immediately possible for chiral superfields Oi where we
interpret (2.1) as a superpotential, where the diagrams that
appear in the following should be understood as
supergraphs.
We begin this section by reviewing how the two- and

four-point functions are computed in the standard case of
the SYKmodel. Wewill then extend this analysis to general
disordered CFTs, i.e., a product of N nontrivial CFTs
deformed by the disorder interaction (2.1).

A. Review of disordered free fields (the SYK model)

We quickly review the computation of the chaos exponent
in the SYK model (1.1) [1,8,9]. In the notation described
above, the SYK model consists of a core CFT which is a
0þ 1d free fermion. We start by writing the Schwinger-
Dyson (SD) equations for the two-point functions, followed
by the iterative kernel structure for the four-point function.

We then discuss the OTOC and the retarded kernel, from
which we extract the chaos exponent. This review will later
allow us to highlight the similarities and differences between
the diagrammatic expansions for disordered free fields and
for general disordered CFTs which we will derive later on.
We start by writing down the SD equations for the two-

point function. Consider the computation of the two-point
function of two fermions Gðt1; t2Þ ¼ hψ iðt1Þψ iðt2Þi, where
the expectation value h·i also averages over couplings. It
turns out that the diagrams contributing to the two-point
functions at leading order in 1=N obey a simple SD
equation:

GðpÞ ¼ 1

G−1
0 ðpÞ − ΣðpÞ ;

ΣðτÞ ¼ J2GðτÞq−1; ð2:2Þ

where G0 is the free fermion propagator, and the second
equation defines the self-energy Σ. This SD equation is
shown diagrammatically in Fig. 2.
Assuming a conformal theory at J → ∞, one can guess a

conformal ansatz for the two-point function of the form

GðτÞ ¼ b
sgnðτÞ
jτj2Δ : ð2:3Þ

Plugging this into the SD equations (2.2), one finds the
solution [8]

Δ ¼ 1=q; bqJ2 ¼ ð1 − 2ΔÞ tan πΔ
2π

: ð2:4Þ

We thus have the exact two-point function at leading order
in 1=N.
We now move on to the four-point function

XN
i;j¼1

hψ iðt1Þψ iðt2Þψ jðt3Þψ jðt4Þi: ð2:5Þ

We will be interested in computing the connected contri-
bution of this four-point function, i.e., we will remove the
contribution that is disconnected in the 12 channel.

W ¼ hψ iðt1Þψ iðt2Þψ jðt3Þψ jðt4Þicon: ð2:6Þ

FIG. 2. The SD equations for disordered free fields, e.g., in the
SYK model. Red lines correspond to the full two-point function
G, while “−2−” corresponds to the two-point function of the core
CFT (here a free theory).
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It turns out that contributions to this four-point function
follow an iterative ladder structure, see Fig. 3.
Schematically, the ladder structure allows one to write

the full four-point function as a geometric series and
formally resum it

W ¼
X∞
n¼0

KnF0 ¼
F0

1 − K
; ð2:7Þ

where K and F0 are defined diagrammatically in Fig. 4. In
particular, the spectrum of the theory can be read off from
the kernel K by solving the eigenvalue equation K ¼ 1.

The eigenfunctions are constrained by conformal symmetry
to be two-point functions of operators of dimension h. The
eignvalues of K for the SYK model can be computed
exactly and were found to be

kðhÞ ¼ −ðq − 1Þ ψðΔÞ
ψð1 − ΔÞ

ψð1 − Δ − h=2Þ
ψðΔ − h=2Þ ; ð2:8Þ

where

ψðΔÞ ¼ 2i cosðπΔÞΓð1 − 2ΔÞ: ð2:9Þ

To compute the chaos exponent for the theory, we study
the double commutator, defined as2

WRðt1; t2Þ ¼ h½ψ iðβ=2Þ;ψ jðβ=2þ it2Þ�½ψ ið0Þ;ψ jðit1Þ�iJ
¼ lim

ε→0
hðψ iðεÞ − ψ ið−εÞÞðψ iðβ=2þ εÞ − ψ iðβ=2 − εÞÞψ jðit1Þψ jðβ=2þ it2ÞiJ: ð2:10Þ

The argument of the operators in the correlator is the
Euclidean time. In the second line the operator ordering is
assumed to be in increasing Euclidean time. In a chaotic
theory, the double commutator is expected to grow ex-
ponentially at large times:

WRðt1; t2Þ ∼ exp

�
λL
2
ðt1 þ t2Þ

�
fðt1 − t2Þ; ð2:11Þ

for some function f. λL is the chaos exponent of the theory.
Schematically, the appearance of the chaos exponent is

due to the out-of-time-ordered (OTO) insertions of oper-
ators in the double commutator. Therefore, by studying the
large-time behavior of Wðt1; t2Þ we can find the chaos
exponent λL. In terms of path integrals, we can account for
the different Lorentzian orderings by choosing the complex
time contour as in Fig. 5. Each insertion of an operator is
done at one of the red dots in the figure. As we keep the
Euclidean time ordering (as necessary for convergence), the
result is a combination of analytically continued Euclidean

four-point functionsW. As a result, at leading order in 1=N
WR has a similar iterative ladder structure toW, and we can
write down a similar integral equation for WR:

WR ¼ F0;R þ KRWR; ð2:12Þ

where F0;R and KR are specific analytic continuations of
F0; K. At large times, we assume that the F0;R term is
negligible, and so WR obeys the equation

WR ¼ KRWR ð2:13Þ

which is just an eigenvalue equation for KR. We thus find
that the exponentially growing solution for WR must be an
eigenfunction of the retarded kernel KR with eigenvalue 1.
This allows us to find the chaos exponent λL by guessing
solutions of the form (2.11) and finding their eigenvalue

FIG. 3. The iterative ladder structure for the four-point function
of disordered free fields. Red lines denote full propagators G, and
black dots denote insertions of the disordered interaction. There
are q − 2 red lines running between each pair of interaction
insertions.

FIG. 5. The time contour for the OTOC. Red dots denote all
possible positions of operators in the contributions from the
double commutator.

FIG. 4. The kernel K and initial contribution F0 for the four-
point function for disordered free fields. Red lines again denote
full propagators G.

2We will use the terms double commutator and OTOC
interchangeably.
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kRðλLÞ under KR. The largest λL for which kRðλLÞ ¼ 1 is
the chaos exponent.
As was the case for the four-point function, the eigen-

functions are constrained by conformal invariance. An
eigenfunction of the form

Wðt1; t2Þ ¼
expðλðt1 þ t2Þ=2Þ

ð2 cosh 1
2
ðt1 − t2ÞÞ2Δþλ

ð2:14Þ

has eigenvalue

kRðλÞ ¼
Γð3 − 2ΔÞΓð2Δþ λÞ

Γð1þ 2ΔÞΓð2 − 2Δþ λÞ : ð2:15Þ

In particular, the largest λ for which kRðλÞ ¼ 1 is λL ¼ 1,
i.e., SYK has maximal chaos.

B. Two-point function

Wenowextend the analysis of theSYKmodel bywriting a
SD equation for the two-point function for a general
disordered CFT, as defined around Eq. (2.1). Starting with
a product of N identical core CFTs and adding the deforma-
tion (2.1), we would like to compute GðxÞ ¼ hOiðxÞOið0Þi
at leading order in 1=N.3 This inevitably includes all n-point
functions ofO at a single core CFT,whichwe denotewithout
indices: hOðx1Þ…OðxnÞi. However, it turns out that there is
still an organizing principle for these contributions. We find
that G obeys a generalized SD equation which appears in
Fig. 6 (see also Fig. 7).
In order to derive the SD equations, we follows the

standard G − Σ formulation of SYK, see, for example,
Ref. [23], and we will focus on 0þ 1d for concreteness (the
generalization to higher dimensions in immediate). Instead
of a free theory, we assume some action S0½χi� for the core
theory, for some degrees of freedom χi. The partition
function for this theory is4

hZiJ ¼
Z

DχiDGDΣ exp
�
−
X
i

S0½χi�

−
i
2

Z
dτdτ0NΣ

�
G −

X 1

N
OiOi

�

þ J2N
2q

Z
dτdτ0Gðτ; τ0Þq

�
: ð2:16Þ

Each operator Oi is a local operator of the ith theory, and
therefore some function of the χis inside the path integral.

In the free theory, S0 is quadratic inO and so the integral
can be calculated. In our case this is not possible. Instead,
we define generating functional

A½Σ�≡
Z

Dχ exp

�
−S0½χ� þ

1

2

Z
dτdτ0ΣOðτÞOðτ0Þ

�
;

ð2:17Þ

which generates the even n-point functions of the unde-
formed CFT. The effective action for G, Σ is therefore

−S½G;Σ�¼N
2

�
2logðA½Σ�Þþ

Z
dτdτ0

�
J2

q
Gðτ;τ0Þq−ΣG

��
:

ð2:18Þ

SinceN appears as an overall factor in the action, at leading
order in 1=N the fields Σ, G can be evaluated using the
saddle point approximation. Varying with respect to G
gives the familiar equation Σ ¼ J2Gq−1. Varying with
respect to Σ gives

Gðτ; τ0Þ ¼ 2
∂ logðA½Σ�Þ

∂Σ
¼ 2

∂A=∂Σ
A

: ð2:19Þ

FIG. 6. The SD equations. We have emphasized the G
insertions using red lines to distinguish them from the two-point
function of the undeformed CFT. Black dots denote insertions of
the deformation (2.1), and ns denotes the subtracted n-point
function defined below.

FIG. 7. The subtracted n-point functions. Dashed lines are
connected to the would-be external positions (see Fig. 6), and the
numerical factors indicate symmetry factors. The overall factor
for the ns correlator is in general 1

2mm!
where m ¼ n

2
− 1, while the

blue numbers inside the bracket correspond to the number of
different permutations allowed when connecting the legs in a
given diagram. The symmetry factors here are for real O, but
similar expressions exist also for complex fields.

3In this section we will assume that O is a real field; for
complex fields the generalization is straightforward.

4At leading order in 1=N it does not matter whether the
disorder is annealed or quenched, so we have assumed it is
annealed. In the case where it is quenched the same results can be
obtained using the replica trick.
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The combination of these two equations for G, Σ should be
considered as the generalization of the SD Eq. (2.2) to
general disordered CFTs.
We can rewrite these equations in a form which is more

convenient for computations. A½Σ� can be expanded as a
power series in Σ. We can thus expand the rhs of (2.19) in
powers of Σ, where each order includes a dependence on
correlation functions of the coreCFT.Let us compute the first
two orders explicitly. At leading order inΣ, expanding (2.17)
and plugging it into (2.19) gives the expected undeformed
two-point function at order J0, Gðτ; τ0Þ ¼ hOðτÞOðτ0Þi. At
order J2 (or equivalently, order Σ) we find

Gðτ; τ0ÞjJ2 ¼
Z

dτ1dτ2Σðτ1; τ2Þ

·
1

2
ðhOðτÞOðτ0ÞOðτ1ÞOðτ2Þi

− hOðτÞOðτ0ÞihOðτ1ÞOðτ2ÞiÞ: ð2:20Þ
The first contribution comes from thenumerator in (2.19) and
the second from the denominator. Overall we find a con-
tribution from the four-point function of the undeformed
theory, plus an additional subtraction.We call the second line
of (2.20) the “subtracted four-point function,” and denote it
by 4s. In general, the contribution at order Σn−1 will include
the ð2nÞ-point function, with some additional subtractions
involving products of ð2mÞ-point functions withm < n. We
call the full combination the “subtracted 2n-point function,”
and denote it ð2nÞs. The explicit form for the subtracted two-,
four-, and six-point functions are drawn diagrammatically in
Fig. 7. In general ns will include the n-point function with
subtractions, times an overall factor of 1

2n=2−1ðn=2−1Þ!. Overall,
we thus find that the SD equations can be written as a sum
over contributions from the ð2nÞs-point functions, as shown
in Fig. 6.
It is also useful to understand the subtracted correlators

in terms of standard (local) perturbation theory. When
computing correlation functions in QFT, standard subtrac-
tions appear due to the appropriate normalization:

hOi ¼
R
DϕOeiSR
DϕeiS

: ð2:21Þ

The denominator subtracts disconnected bubble diagrams
from the final result. The result is a sum only over
“connected” diagrams. This is the same mechanism that
requires the subtractions of (2.19). As in standard pertur-
bation theory, this can be used to systematically produce
the subtracted correlators. The idea is to write the full n-
point function in terms of only fully connected pieces, and
then subtract the contributions which lead to disconnected
diagrams when plugged into the diagrams in Fig. B. This
algorithm is described in detail in Appendix B 1.
A simple consistency check of these equations is that

they reproduce the expected equations for disordered free

fields. We explain how this happens in Appendix B 3. We
also emphasize that while a general solution of the
equations requires knowing all n-point functions of the
core CFT, perturbation theory in J to order Jn requires only
knowing the ð2mÞ-point functions for m ≤ nþ 1, and so
calculations are possible in perturbation theory in J.

C. Four-point function

We now discuss the case of the four-point function. In
particular, since we are interested in chaos, we will be
considering the connected contribution to the four-point
function

C ¼ 1

N2

X
i;j

hOiOiOjOjicon; ð2:22Þ

where we have suppressed positions. As reviewed in
Sec. II A, for disordered free fields one finds a kernel
structure. This means that the four-point function obeys

C ¼
X∞
n¼0

KnF0 ¼
F0

1 − K
: ð2:23Þ

It turns out that this is also true around a nontrivial CFT. In
this case, K and F0 are given diagrammatically in Fig. 8.
Here, the correlation functions of the undeformed CFT
require slightly different subtractions, and sowe have named
them n0s. The idea is the same: n0s is defined by cutting the
n-point function in every possible way and subtracting the
contributions that give disconnected pieces. Explicitly,
the first few examples are shown in Fig. 9.

FIG. 8. The kernel K and initial diagram F0 for general
disordered CFTs. Red lines denote full propagators G, and black
dots denote insertions of the disorder interaction, with q − 2 red
propagators between each pair.

FIG. 9. Examples of correlation functions n0s. Dashed lines
correspond to external points, while solid lines are connected via
Σ’s in Fig. 8.
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We now prove the existence of a kernel structure for the
four point using the G − Σ formalism. Calculation of the
four-point function amounts to calculating the two-point
function of the fieldG. Following [23] we expandG andΣ to

leading order: Σ ¼ Σ� þ jG�j
q−2
2 σ and G ¼ G� þ jG�j

2−q
2 g,

whereG� is the saddle point solution. The leading correction
to the four point is then given by the two-point function of the
g field. The latter is given at this order by the quadratic piece
in the effective action for g. The result is that the contribution
has an iterative ladder structure

C¼hGð1;2ÞGð3;4Þi−G�ð1;2ÞG�ð3;4Þ¼
F0

1−K
; ð2:24Þ

where

F0ð1;2;3;4Þ¼
∂
2 logðA½Σ�Þ
∂Σ12∂Σ34

;

Kð1;2;3;4Þ¼−4J2ðq−1Þ∂
2 logðA½Σ�Þ
∂Σ12∂Σ34

·Gq−2
� ð3;4Þ: ð2:25Þ

Computations are again more conveniently done after
expanding the result in Σ. First we rewrite the second
derivative of log½A� in a simpler form:

4
∂
2 logðA½Σ�Þ
∂Σ12∂Σ34

¼ 4

A
∂
2A½Σ�

∂Σ12∂Σ34

−
4

A2

∂A½Σ�
∂Σ12

∂A½Σ�
∂Σ34

: ð2:26Þ

The second term in this equation is just the square of the
two-point function discussed above in (2.19), and is
responsible for subtracting diagrams that separate the
diagram “vertically” (in the sense of Fig. 8) between points
1,2 and 3,4. Expanding (2.26) in Σ, we again find that we
can write F0 and K as a sum over the contributions of new
subtracted n-point functions which we denote by n0s,
see Fig. 8.
Explicitly, expanding the first term in (2.26) in orders in

Σ one finds

4

δ2A½Σ�
δΣ12δΣ34

A
¼ hOðτ1ÞOðτ2ÞOðτ3ÞOðτ4Þi

þ
Z

dτ5dτ6
1

2
hOðτ1ÞOðτ2ÞOðτ3ÞOðτ4ÞOðτ5ÞOðτ6ÞiΣðτ5; τ6Þ

− hOðτ1ÞOðτ2ÞOðτ3ÞOðτ4Þi
Z

dτ5dτ6
1

2
hOðτ5ÞOðτ6ÞiΣðτ5; τ6Þi þ � � � ð2:27Þ

The first line gives the leading-order contribution, which is
just the four-point function. Together with the subtraction
from the expansion of ∂A½Σ�

∂Σ12

∂A½Σ�
∂Σ34

term, we find the subtracted
40s that appears in Fig. 9. The next two lines consist of the
six-point contribution, together with a subtraction. Again,
combined with the subtraction from the expansion of
∂A½Σ�
∂Σ12

∂A½Σ�
∂Σ34

, we find the correlator 60s in Fig. 9. By expanding
in orders of Σ, one can get the exact factors for each
diagram at higher orders as well. We give another pre-
scription for finding n0s in Appendix B 2. Putting these
results together, one finds the series expansion of F0 and K
which appears in Fig. 8.
Once again, it is simple to check that one reproduces the

kernel in Fig. 4 assuming that the undeformed CFT is a free
theory. In particular, each n-point function amounts to
having n Σ insertions connecting the 1,2 points to the 3,4

points, and resumming these insertions leads to full
propagators G connecting the external points, as expected.
We also emphasize again that computing F0 and K to a
specific order in perturbation theory in J requires knowing
only a finite number of correlators in the core CFT.

D. The double commutator

In the previous section we found that even for a general
CFT deformed by the disorder interaction (2.1), the four-
point function still has a kernel structure. In this section we
show that the double commutator also has a similar
structure. As in the SYK model, the double commutator
can be used to measure the chaos exponent, which we will
discuss in the next section.
Following the calculation for the SYK model in

Sec. II A, wewould like to compute the double commutator:

WRðt1; t2Þ ¼
1

N2

XN
i;j¼1

h½Oiðβ=2Þ; Ojðβ=2þ it2Þ�½Oið0Þ; Ojðit1Þ�iJ

¼ lim
ε→0

1

N2

XN
i;j¼1

hðOiðεÞ −Oið−εÞÞðOiðβ=2þ εÞ −Oiðβ=2 − εÞÞ ·Ojðit1ÞOjðβ=2þ it2ÞiJ: ð2:28Þ
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We have again suppressed the spatial coordinates, keeping
only the (real and imaginary) time coordinate. By h…i we
mean the Euclidean time-ordered thermal trace, where by
“time-ordering” we mean operator insertions at increasing
real (Euclidean) times. The subscript J ismeant to emphasize
that this is a correlator in the deformed theory (2.1).
Note that (2.28) is just a combination of analytically

continued Euclidean (connected) four-point functions on
the cylinder. In 0þ 1d and 1þ 1d, the latter is an
analytically continued flat-space correlator (2.22). For this
reason, we will focus for the rest of the paper on 0þ 1d and
1þ 1d theories. In the previous section we saw that (2.22)
has a kernel structure. By the same logic, WR also has the
same kernel structure diagrammatics, but with the analyti-

cally continued (Euclidean) time contour C shown in Fig. 5.
This curve has an increasing Euclidean time (as required by
convergence) from 0 to β, but is deformed to go through the
points it and β=2þ it over Euclidean time of 2ε. These two
deformations from the Euclidean integration contour will
be called the two “left/right rails,” respectively. Following
the SYK diagrammatics, we call each multiplication of the
analytically continued version of K from (2.23) a “rung.”
Following [3,8,12], we can now show by induction how the
complex time integrals simplify into “retarded” diagrams in
the limit ε → 0.
We start with a one-rung first ladder. Denoting ΔOðzÞ ¼

Oðzþ εÞ −Oðz − εÞ for brevity, a ð2nÞ0s (n ≥ 2) correlator
contributes

Z
C
dz5…

Z
C
dz2nhΔOð0ÞΔOðβ=2ÞOðz3ÞOðz4Þ…Oðz2n−1ÞOðz2nÞi0s · Σðz5; z6Þ ·… · Σðz2n−1; z2nÞ; ð2:29Þ

where the zi are the complex time coordinates along the
curve C. z3, z4 are connected to the next rung and so we do
not integrate over them in this (single-rung) expression.
Note that the correlator is the (analytically continued) ð2nÞ0s
correlator described in the last section. The contour integral
C (see Fig. 5) is composed of a horizontal Euclidean region
between 0 and β, and two vertical “rails” that connect to
z ¼ it1 and z ¼ β=2þ it2 [3]. As a first step we would like
to show that the z5;…; z2n integrals over the rails cancel,
and we are left only with the original Euclidean integral for
z5;…; z2n. Indeed, assume that several or all of the
integration variables are on the rails and assume that z�k ¼
itk � ε is the corresponding coordinate with the largest
imaginary time tk. The zk integral along the rail between z−k

to zþk has the same Euclidean order and so both the 2n-point
function and its corresponding Σðzk; zkþ1Þ will not change,
and the integral will cancel between the two directions on
the rail. Therefore we can reduce the contour integral for
z5;…; z2n back to the Euclidean time axis dτ5…dτ2n
between 0 and β.
Now we can take the limit ε → 0 also for the external

legs just like in [3].5 In order for the limits not to vanish we
need z3 and z4 to be on different rails.

6 We can continue this
analysis inductively and get the same result for every rung
of the ladder, and in addition we find that the Lorentzian
time must increase along the rail. The result is that the
double commutator satisfies the ladder equation

WRðt1; t2Þ ¼ F0Rðt1; t2Þ þ
Z

t1

0

dt3

Z
t2

0

dt4KRðt1; t2; t3; t4ÞWRðt3; t4Þ: ð2:30Þ

Here, F0R is the initial contribution, which has a perturbative expansion in J (just like F0 discussed above):

F0Rðt1; t2Þ ¼
X∞
n¼0

J2nFðnÞ
0R ð0; 0; t1; t2Þ

FðnÞ
0R ðt1; t2; t3; t4Þ ¼

Y2n
i¼1

Z
β

0

dτi

�
ΔOðit1ÞΔO

�
β

2
þ it2

�
Oðit3ÞO

�
β

2
þ it4

�Y2n
i¼1

OðτiÞ
�0

s

;

· Σðτ12Þ…Σðτ2n−1 − τ2nÞ: ð2:31Þ

The retarded kernel KR can also be expanded (again, just like K above):

5In [3], the limit was taken after plugging in explicit expressions for the correlators. Here we will work more generally and show that a
similar simplification occurs.

6In general, we need to allow z3, z4 to be both in either rail, since in general the ð2nÞ0s-point correlation function does not factorize (as
in [3]). We will choose 3,4 to be at the same rail as 1,2, respectively, and account for the other contribution by “3 ↔ 4.”
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KRðt1; t2Þ ¼
X∞
n¼0

J2nþ2KðnÞ
R ð0; 0; t1; t2Þ

KðnÞ
R ðt1; t2; t3; t4Þ ¼

Y2n
i¼1

Z
β

0

dτi

�
ΔOðit1ÞΔO

�
β

2
þ it2

�
Oðit3ÞO

�
β

2
þ it4

�Y2n
i¼1

OðτiÞ
�0

s

· Σðτ12Þ…Σðτ2n−1 − τ2nÞ · Gq−2
lr;Δð3; 4Þ: ð2:32Þ

In the expression above, the thermal two-point function for
a scalar operator of dimension Δ between points from
different rails is

Glr;Δð1; 2Þ ¼
1

ð4 coshðt12−x12
2

Þ coshðt12þx12
2

ÞÞΔ : ð2:33Þ

Because each of the terms in F0R; KR include commutators,
the space time events 3,4 are supported in the (Lorentzian)
past of 1,2, respectively. Note that there is an implicit
dependence on the J inside ΣðτÞ (see Sec. II B).
To summarize, we have found that diagrammatically, the

expression for the double commutator is similar to that of
the four-point function in Fig. 8, and includes a ladder
structure. The difference is that on the two rails, the
integrals are Lorentzian, and one should modify the
propagators and correlators using a specific analytic con-
tinuation. In addition, for the double commutator the region
of integrations is the past of points 1,2.

E. Chaos

1. Generalities

Wewould like to study the chaos exponent λL, which can
be read off of the OTOCWR at large t1, t2. As explained in
Sec. II A, in the conformal limit of SYK λL can be found by
solving for the eigenvalues kRðλÞ of the retarded kernel KR
using an ansatz for the eigenfunctions, and finding values
of λ for which the eigenvalue is one, kRðλÞ ¼ 1. For our
disordered CFTs, we so far only assumed that the defor-
mation (2.1) is renormalizable. To study chaos in a similar
fashion, we focus in this paper on cases where the
deformation (2.1) is exactly marginal (in the sense that
the averaged correlators are conformal for any value of J).
In fact, in most cases discussed in this paper the coupled
theory is conformal for any realization of Ji1…iq , and the
disordered theory is an ensemble average of CFTs (para-
metrized by J). Since the theory remains conformal at every
J, and since in addition we saw that the OTOC has a ladder
structure even for general disordered CFTs, we can thus
follow the same logic as in Sec. II A to find the chaos
exponent of the theory λLðJÞ as a function of J for
disordered CFTs. We now explain the method to compute
λLðJÞ in these theories. For the rest of the section we will

focus on 1þ 1d theories for concreteness, since most
examples discussed in this paper will be in 1þ 1d.
The ansatz for the eigenfunctionsWðt1; t2Þ ofKR at large

times t1, t2 ≫ 1 in the limit where F0 is subdominant is

Wð1; 2Þ ¼ expð− hþh̃
2
ðt1 þ t2Þ þ h−h̃

2
ðx1 þ x2ÞÞ

ð2 coshðt12−x12
2

ÞÞΔ−hð2 coshðt12þx12
2

ÞÞΔ−h̃ : ð2:34Þ

As explained in [3], space normalizability of W requires in
general h ¼ − λ

2
þ ip; h̃ ¼ − λ

2
− ip for real λ, p. For the

kernels presented in [3], as well as the kernels we will find
for our explicit examples in Secs. IVand V, it is possible to
show that the minimal solution satisfying kR ¼ 1 has
p ¼ 0. We will therefore proceed under the assumption
that p ¼ 0. Setting h ¼ h̃ ¼ − λ

2
, the eigenvalues are

kRðλ; JÞ ¼
R
d2x3d2x4KR ·W

W

¼
Z

d2x3d2x4KRð1; 2; 3; 4Þ
Glr;Δþλ

2
ð3; 4Þ

Glr;Δþλ
2
ð1; 2Þ

× e
λ
2
ðt3þt4−t1−t2Þ

¼
X∞
n¼0

J2þ2n

Z
dx3dt3dx4dt4K

ðnÞ
R ð1; 2; 3; 4Þ

×
Glr;Δþλ

2
ð3; 4Þ

Glr;Δþλ
2
ð1; 2Þ e

λ
2
ðt3þt4−t1−t2Þ: ð2:35Þ

By conformal invariance, the integral is independent of the
1,2 coordinates. Note that assuming t1, t2 ≫ 1 in the ansatz
(2.34) is equivalent to shifting the integration domain of t3,
t4 to start from −∞ [and not 0 as in (2.30)]. As a result, the
integral over the events 3,4 is exactly over the past of the
events 1,2, respectively. As in SYK, the chaos exponent is
the largest value of λL such that kRðλL; JÞ ¼ 1.7

7The 1þ 1 dimensional examples wewill give below will all be
supersymmetric. In this case one can consider different kernelsKR
by taking different operators on the various external legs. In
practice, in previous studies the dominant contribution to the
chaos exponent always comes from the bosonic kernel, i.e., with
the bottom components appearing on external legs.Wewill assume
this is the case here as well, and focus on the bosonic kernel. We
have checked explicitly for some of the examples to be discussed in
the paper that indeed the bosonic kernel gives the most dominant
contribution.
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In general, this equation is extremely complicated, and
we will only solve it exactly in this paper for the case of
disordered generalized free fields. For a more general CFT,
one can instead hope to solve it in perturbation theory in J,
which we discuss next.

2. Chaos at J → 0+

In this section wewill discuss the behavior of λLðJÞ close
to J ¼ 0. We start by discussing chaos at J ¼ 0, and then
discuss chaos at small finite J.
First we consider the strict limit of J ¼ 0, where the N

CFTs decouple and the kernel vanishes. At J ¼ 0, the late-
time behavior of the double commutator WR defined in
(2.28) is given by

lim
t1;t2→∞

WRðt1; t2ÞjJ¼0 ¼ lim
t1;t2→∞

1

N
h½Oðβ=2Þ; Oðβ=2þ it2Þ�

× ½Oð0Þ; Oðit1Þ�i

≡ 1

N
expðþλ0Lðt1 þ t2Þ=2Þ: ð2:36Þ

The first equality is a result of the decoupling at J ¼ 0, and
the second equality is a definition: the large t1, t2 behavior
of the undeformed retarded four-point function is con-
trolled by an exponent which we denote λ0L.

8

Despite its name, λ0L is not the chaos exponent of a single
undeformed CFT. The reason is that in (2.36) we take t1, t2
to be larger then the scrambling time of the undeformed
theory. Instead, (2.36) simply studies the eventual decay of

the double commutator, a decay that is required by unitarity
(see [25] for a recent discussion). As a result, even if a
single undeformed CFT is chaotic, we expect this exponent
to be nonpositive: λ0L ≤ 0. Nevertheless, in this section we
will try to motivate physically (and later verify in the
examples below) why λLðJÞ is a continuous function at
J ¼ 0, in the following sense: for every J > 0 one can
calculate λLðJÞ by solving the eigenvalue equation
kRðλ; JÞ ¼ 1 in (2.35), and in the limit J → 0þ this
coincides with the result for the decoupled theory, i.e.,

λLðJ → 0þÞ ¼ λ0L: ð2:37Þ

We stress that this is not a direct outcome of standard
conformal perturbation theory, since even the leading order
of the kernel appears in infinitely many diagrams in the
four-point W, and therefore might lead to nontrivial late-
time behavior. Our argument does not rule out further
discontinuities in λLðJÞ for J > 0, although in known
examples no such discontinuities were found.
Moving on the nonzero J, the chaos exponent λLðJÞ is

given by solving the eigenvalue equation kRðλÞ ¼ 1with kR
as in (2.35). We would like to study the exponent at small
nonzero J by solving the eigenvalue equation kR ¼ 1 in this
limit. As the operator KR can be expressed in orders of J,
one can compute its eigenvalues kRðλÞ in orders of J. As a
first step, we assume the equation kR ¼ 1 can be solved in
orders of J, and focus on the leading term in (2.35):

kRðλ; JÞ ¼ J2
Z

d2x3d2x4hΔOðit1ÞΔOðβ=2þ it2ÞOðit3ÞOðβ=2þ it4Þi0s

·
Glr;Δþλ

2
ð3; 4Þ

Glr;Δþλ
2
ð1; 2Þ exp

�
λ

2
ðt3 þ t4 − t1 − t2Þ

�
·Glr;2Δðq−2Þð3; 4Þ þOðJ4Þ

¼ J2

4

expð− λ
2
ðt1 þ t2ÞÞ

Glr;λ=2ð1; 2Þ

R
∞
u1
du3

R
u2
−∞ du4

u
2þλ

2

34

R
∞
v1
dv3

R
v2
−∞ dv4

v
2þλ

2

34

GRðχ; χ̄Þ þOðJ4Þ: ð2:38Þ

Here we changed variables to

u3 ¼ ex3−t3 ; v3 ¼ e−x3−t3 ;

u4 ¼ −ex4−t4 ; v4 ¼ −e−x4−t4 : ð2:39Þ

In these variables the conformal ratios are

χ ¼ u12u34
u14u32

; χ̄ ¼ v12v34
v14v32

: ð2:40Þ

GR is the retarded normalized four point of the undeformed
CFT at J ¼ 0,

GRðχ; χ̄Þ ¼
h½Oðβ=2þ it2Þ;Oðβ=2þ it4Þ�½Oðit1Þ;Oðit3Þ�is0

Glr;Δð1;2ÞGlr;Δð3;4Þ
¼ lim

ε1;ε1→0
Gþþ−Gþ− −G−þ þG−− ð2:41Þ

with the normalized four point G�1;�2
¼ Gðu1e�iε1 ;

v1e�iε1 ; u2e�iε2 ; v1e�iε2 ; u3; v3; u4; v4Þ. Similar expressions

8As shown in [3], in 1þ 1d this behavior is equivalent to
the Regge behavior of the four-point function. We suspect the
discussion of this section is parallel to previous studies of the
Regge trajectory in weak coupling [24].
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can be written at any order of J, where at order J2n each
integral will now include n − 1 Euclidean flat space inte-
grations. Note that at this order in J, only the four-point
function contributes to the eigenvalue.
Importantly, we find that as J → 0þ, the eigenvalue

(2.38) vanishes since it is proportional to J2. As a result, the
only way to have kR ¼ 1 as J approaches zero (at this
order) is for λ to also approach a value at which the integral
diverges like 1=J2. Thus the chaos exponent in the limit
λLðJ → 0þÞ is found by looking for values of λ for which
the integral in (2.38) diverges.
How can the integral (2.38) acquire divergences as a

function of λ? The only short-distance singularities that may
appear arewhen x3, x4 approach x1, x2, respectively, but such
a divergence will appear independently of λ.9 Furthermore,
the integral itself should converge for large enough values of
λ. The only possible range for a divergence is thus the
combined limit of ju3j; ju4j → ∞ (or jv3j; jv4j → ∞, or
both), corresponding to taking the two points to be very
far in the past.As explainednear (2.36), in this limitweexpect
the retarded four-point function to behave exponentially due
to the chaotic properties of the original (undeformed) CFT.
The rest of the integrand in (2.38) is exponentially decaying in
this limit as expðλ

2
ðt3 þ t4ÞÞ (t3, t4 approach −∞).

Combining this with (2.36), the total exponent of the
integrand is λ0L − λ. We therefore expect the integral to
diverge exactly for λ ≤ λ0L, although a more rigorous argu-
ment will require a more careful analysis of the integral. If
indeed the integral diverges only for λ ≤ λ0L, the result is that
at least to leading order, the solution to kRjJ2 ¼ 1 in the limit
J → 0þ is λ0L. In other words, λLðJ → 0þÞ ¼ λ0L, and the
continuity relation (2.37) is obeyed.
What do we expect to get at higher orders of J?

Consistency requires that higher-order contributions to
kR also remain finite for λ > λ0L. Indeed, we can argue
on physical grounds that the integrals appearing at higher
orders diverge only for λ ≤ λ0L. To this end, we ask how the
higher order integrals can diverge. Higher order contribu-
tions to kR are similar to (2.38), only with extra Euclidean
insertions (together with a finite Euclidean integral). After
taking care of all the normal Euclidean short-distance
singularities we again expect an exponential behavior as
we send the points 3,4 to the past together. It is reasonable
to assume the late-time behavior of a single copy of the core
CFT is controlled by a single exponent, the same one that
controlled the double-commutator late-time behavior
(2.36). We are therefore assuming, in accordance with
(2.36) that the double commutator together with the other
Euclidean insertions satisfies

lim
t1;t2→∞

h½Oðβ=2Þ; Oðβ=2þ it2Þ�

× ½Oð0Þ; Oðit1Þ�Oðτ1Þ…OðτnÞ�i
¼ eþλ0Lðt1þt2Þ=2 · fnðτiÞ; ð2:42Þ

for some functions fnðτiÞ. As a result, we expect higher
order integrals to diverge only for λ ≤ λ0L, and our pertur-
bative expansion of the retarded kernel was justified. The
result is that the full kernel kRðλÞ diverges as λ → λ0L at
finite J, and as we take J → 0þ the solution to the full
eigenvalue equation would approach λLðJ → 0þÞ → λ0L.
We will explicitly show that the assumption (2.42) is
justified for all examples discussed in this paper.

3. A toy model

In order to illustrate these points, we now provide a simple
example of computing the chaos exponent at J → 0þ for a
simple toy model which has many similarities to the explicit
theories we will consider in this paper.
Consider a normalized retarded four-point function of

the form GRðχ; χ̄Þ ¼ ðχχ̄Þ−λ0L , where χ is the usual con-
formal cross-ratio. This function satisfies (2.36). One can
think of it as the four-point function of a generalized free
field, or as the leading term of some more general four-
point function in the limit χ; χ̄ → 0.10 Since we expect the
divergence in λ to come from the region χ; χ̄ → 0, this
should be enough to study chaos.
Substituting GR in (2.38) together with u1¼ v1¼ 1;u2 ¼

v2¼ 0 gives

kRðλ;JÞ¼
J2

4

�Z
∞

1

dz3

Z
0

−∞
dz4

1

jz34j2þλ
2
þλ0L jz3j−λ0L jz4−1j−λ0

�
2

¼J2

4

�
Γðλ−λ0L

2
ÞΓ2ð1þλ0L

2
Þ

Γð2þλþλ0L
2
Þ

�2

: ð2:43Þ

The integrals z3, z4 converge as long as −2 < λ0L < λ. As a
function of λ, the integral diverges for λ < λ0L, and as a
result kR has a double pole at λ ¼ λ0L. For a more general GR
we expect a similar behavior only at small enough χ; χ̄ ≪ 1.
Nevertheless we do not expect higher orders in χ; χ̄ to add
further singularities for λ > λ0L. In other words, we expect
the general behavior

kRðλ; JÞ ¼
J2

ðλ − λ0LÞ2
ð…Þ þOðJ4Þ; ð2:44Þ

where the ellipses denote an analytic function of λ with no
further singularities for λ > λ0L. For this general behavior
we can now find the chaos exponent at leading order in J by

9Other pairings of the xi-s will not develop short distance
singularities due to the Euclidean separation (they are on different
rails).

10As we are discussing the retarded four-point, this is actually
the χ; χ̄ → 0 limit in the “second sheet,” see [3].
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solving kRðλL; JÞ ¼ 1 using (2.44). The result is indeed
λL ¼ λ0L þOðJÞ.
For consistency, we must now check contributions from

higher n-point functions as well. We assume that these also
contribute at most a double pole at λ ¼ λ0L, due to the same
logic described above Eq. (2.42). Under these assumptions,
we can resum the series and find for the eigenvalue (2.35)

kRðλ; JÞ ¼
J2

ðλ − λLÞ2
fðλ; J2Þ: ð2:45Þ

For some fðλ; J2Þ an analytic function in λ; J2 (for λ > λ0L).
In this form it is evident that the solution to kRðλL; JÞ ¼ 1

as J → 0þ is λL ¼ λ0L þOðJÞ. Note that the zeroth order in
J requires knowledge of all of the correlators of the
undeformed CFT, but higher orders in λL can be found
using finitely many correlators. Specifically, the first order
correction depends only on the undeformed four-point
function (2.38).
While this example only represents a toy model, we will

see below that the specific theories we consider match
exactly this behavior.

4. Summary

To summarize, whenever J is exactly marginal, we
would like to solve the eigenvalue equations kRðλ;JÞ¼ 1
at weak coupling in perturbation theory in J. The leading
order is controlled by the largest value of λ for which the
integral (2.35) diverges. For consistency, higher-order
integrals must not diverge for higher values of λ, and we
motivated why this would be the case for physical models
(and we will check that this is the case explicitly for the
models in this paper). It is then possible to find the chaos
exponent λLðJÞ in perturbation theory in J.
In particular, in the limit J → 0þ, we argued that the

divergences in the integrals are determined by the exponent
λ0L of the core CFT, see Eq. (2.36). As a result, λLðJÞ
calculated via the kernel and extrapolated to J ¼ 0 should
coincide with the late-time behavior of the undeformed
CFT. In other words, the chaos exponent obeys a “con-
tinuity relation” (2.37), λLðJ ¼ 0þÞ ¼ λ0L. If this is true, it
allows us to compute λLðJÞ at small J by performing a
simple calculation in a single copy of our core CFT. Wewill
check explicitly in the examples in this paper that the
continuity relation is satisfied.
An important comment is in order. As mentioned above,

λ0L does not describe any chaotic behavior. Specifically, it is
always nonpositive (λ0L ≤ 0) from unitarity [25]. Consider a
case where it is strictly negative, λ0L < 0. According to the
continuity conjecture (2.37), at small enough coupling
λLðJÞ will be negative as well, λLðJÞ < 0. This result must
be explained, since a negative chaos exponent seems
unphysical. Indeed, we do not expect λL < 0 to be

consistent, since in our analysis we neglected terms which
are not exponentially growing at large times, but may grow
larger than the contribution of the negative chaos exponent.
However, if one finds λL < 0 using the method above, then
at the very least it is clear that there are no solutions to the
eigenvalue equation with λL > 0, since otherwise they
would have appeared. As a result, our interpretation of
the case λL < 0 is that there is no chaos, and instead the
physically sensible solution is λL ¼ 0. In other words, the
physical chaos exponent is given by maxð0; λLÞ. As a result,
if λL < 0 for small J, then we expect a discontinuous
transition into chaos as in Fig. 1(b). On the other hand, if
λ0L ¼ 0, then the continuity relation (2.37) leads us to
expect λLðJÞ ∼ J2 þOðJ4Þ and a continuous transition into
chaos, see Fig. 1(a). In particular, assuming the continuity
relation is a general result for disordered CFTs, it allows us
to distinguish between continuous and discontinuous tran-
sitions into chaos by examining the late-time behavior of a
single core CFT.

III. DISORDER AND CONFORMAL MANIFOLDS

In this section we introduce examples where a disordered
interaction is exactly marginal (at least at leading order in
1=N). We will discuss two main classes of models:
generalized free fields and the 1þ 1d N ¼ ð2; 2Þ minimal
models. We will also discuss some relations between these
two models. In the next sections we will study these models
more carefully.
An interesting point is that in the SUSY theories

discussed below we expect the theory to be conformal
for every realization of the couplings Ji1…iq , and not just
after the average over couplings. Thus these theories are
similar to recent discussions of averaging over CFTs, see,
e.g., [26,27]. Note that this is not enough in order for the
averaged correlators for the operators Oi in (2.1) to still be
conformal—it is crucial that in addition, the dimension of
the operatorsOi is independent of J. Indeed this will be the
case since Oi will be chiral superfields and so their
dimension will be protected.

A. Disordered generalized free fields

We will discuss two main examples of disorder around
generalized free fields (GFFs). One is the cSYK line of fixed
points in quantummechanics [21], and another is the 1þ 1d
N ¼ ð2; 2Þ version of this line of fixed points. The RG flows
for these theories are schematically shown in Fig. 10. In the
figure, we have assumed that disordered GFFs at large J
reach the same fixed point as the corresponding disordered
free fields at large J. Intuitively, this is because the disorder
interaction “dominates” at large J, and so the original core
CFTplays no role. Indeed, [21] found evidence for this result,
andwewill provide additional evidence here for both theQM
model and the 1þ 1d model.
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1. The cSYK model

Gross and Rosenhaus [21] considered a QM theory
of N generalized free fermions coupled via an SYK-like
interaction:

S ¼ S0 þ SSYK ð3:1Þ

with

S0 ¼ −Δ
Xn
i¼1

Z
dτ1dτ2χiðτ1Þ

sgnðτ1 − τ2Þ
jτ1 − τ2j2−2Δ

χiðτ2Þ;

SSYK ¼ i
q
2

q!

Xn
i1;…;iq¼1

Z
dτJi1i2…iqχi1χi2 � � � χiq : ð3:2Þ

Here, Ji1…iq are Gaussian random variables with variance

hJ2i1…iq
i ¼ J2ðq−1Þ!

Nq−1 . Choosing Δ ¼ 1=q, the deformation

becomes classically marginal, and it is argued in [21] that
it is exactly marginal at leading order in 1=N. Following [21]
we will call this theory cSYK (“conformal SYK”).
Let us review the computation of the disorder averaged

two- and four-point functions in this theory, as a function of
the exactly marginal parameter J. For small J, we find the
propagator of a GFF:

GUV ¼ 1

2

signτ
jτj2Δ : ð3:3Þ

For large J, the interaction term dominates and we expect to
find the same propagator as in the SYK model. For general
J, the solution to the SD equations takes the form

GðτÞ ¼ b̄ðJÞsignτ
jτj2Δ ; ð3:4Þ

where b̄ solves the equation11

b̄q

1 − 2b̄
¼ −

1

J2ψð1 − ΔÞψðΔÞ ;

ψðΔÞ≡ 2i cosðπΔÞΓð1 − 2ΔÞ: ð3:5Þ

As a consistency check, as J → 0 the solution approaches
b̄ ¼ 1=2 which is the GFF solution, and as J → ∞
the solution approaches the SYK solution (see Fig. 10),
given by

b̄qðJ → ∞Þ ¼ −
1

J2ψð1 − ΔÞψðΔÞ ;

ψðΔÞ≡ 2i cosðπΔÞΓð1 − 2ΔÞ: ð3:6Þ

Next we discuss the four-point function. The kernel for
the SYK model KSYK is a product of propagators (see
Fig. 4):

KSYKðτ1; τ2; τ3; τ4Þ ∝ J2Gðτ13ÞGðτ24ÞGðτ34Þq−2: ð3:7Þ

The only effect of considering cSYK is that the propagators
change by an overall factor (3.4), and so it is no surprise
that the kernel KcSYK is the same as KSYK up to an overall
factor:

KcSYK

KSYK
¼

�
b̄ðJÞ

b̄ðJ → ∞Þ
�q

: ð3:8Þ

Thus the eigenvalues of the cSYK kernel are

kcSYKðhÞ ¼
�

b̄ðJÞ
b̄ðJ → ∞Þ

�q

kSYK ¼ −
�

b̄ðJÞ
b̄ðJ → ∞Þ

�q

× ðq − 1Þ ψðΔÞ
ψð1 − ΔÞ

ψð1 − Δ − h
2
Þ

ψðΔ − h
2
Þ : ð3:9Þ

2. 1+ 1d N = 2 disordered GFFs

We now describe a 1þ 1d SUSY version of the Gross-
Rosenhaus model. In other words, we will discuss 1þ 1d
N ¼ 2 GFFs deformed by an SYK-like interaction.12 The
main reason this model is interesting is that one can show
that it has a conformal manifold even at finite N. We will
show this by taking a limit of the minimal models in
Sec. III C.
The SUSY GFFs we will study are defined similarly to a

standard (non-SUSY) GFF. We consider a complex super-
field Φ whose two-point function takes the form

Gðx1; x2Þ ¼
1

jh12ij2Δ ; ð3:10Þ

FIG. 10. Schematic RG flows for disordered GFFs. Red denotes
scale invariant theories. The disorder deformation is exactly
marginal, leading to a line of fixed points that ends at the same
point obtained by deforming free fields by the same interaction.

11Equation (3.5) fixes a minus sign that is missing from
Eq. (3.12) of [21].

12The 1þ 1d N ¼ 2 SYK model obtained by deforming free
fields by an SYK-like interaction was discussed in [6].
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and so we identify it as having dimension Δ (see
Appendix A for our 1þ 1d N ¼ 2 SUSY conventions).
In addition, we take any n-point function of Φ’s to reduce
to the product of two-point functions obtained using all
possible Wick contractions. In this way we have defined
a CFT.
Now we can take N such GFFs Φi, and deform them by

an SYK-like superpotential

W ¼
X
i1…iq

Ji1…iqΦi1…Φiq : ð3:11Þ

The Ji1…iq ’s are random couplings with variance pro-

portional to J2. We will call this model the disordered
N ¼ 2 GFFs.
We claim that we have a line of fixed points parametrized

by J, in a similar manner to the cSYK model from the
previous subsection. However, as we will show in III C, the
conformal manifold exists even for finite N, and so this
model is a better example of conformal manifolds resulting
from disorder.
We can thus repeat the analysis of section III A 1 in order

to find the two- and four-point functions of the disordered
GFFs. First we solve the SD equation. As a reminder, for free
chiral multiplets (GFFs with Δ ¼ 0), this model is just the
1þ 1d N ¼ 2 SYK model, and the SD equations read [6]

D1D̄1Gð13Þ þ J2
Z

d2z2d2θ2Gð12ÞGq−1ð32Þ

¼ ðθ̃1 − θ̃3Þð ¯̃θ1 − ¯̃θ3Þδðh13iÞδðh13iÞ: ð3:12Þ

In this case, J is not an exactly marginal operator, and this
equation is solved by neglecting the kinetic term in the IR and
solving the rest of the equation using a conformal ansatz.
Since our theory is conformal for all J, we should be able to
solve the analogous equation without neglecting the kinetic
term. For GFFs of dimension Δ, the only change we must
make is to change the kinetic term to

jD1j2−2ΔGð13Þ; ð3:13Þ

where Δ ¼ 1=q. Here, jD1j2−2Δ denotes the inverse of the
GFF propagator (3.10).
As usual, we guess a scale-invariant solution of the form

Gð12Þ ¼ bðJÞ
ðh12ih1̄ 2̄iÞΔ ð3:14Þ

for some constant bðJÞ. Plugging this into the equation, we
find that (by definition) the kinetic term contributes a delta
function, which we can move to the rhs. The equation
becomes

J2
Z

d2z2d2θ2Gð12ÞGq−1ð32Þ

¼ ð1 − bÞðθ̃1 − θ̃3Þð ¯̃θ1 − ¯̃θ3Þδðh13iÞδðh13iÞ: ð3:15Þ

We now proceed as in [6]. We find that for any J, there is
a solution of the form (3.14) where b is a solution to the
equation

bq

1 − b
¼ 1

4π2J2
: ð3:16Þ

As a consistency check, at J ¼ 0 we find b ¼ 1, while at
J → ∞ we reproduce the solution from [6], see Fig. 10. We
have thus found that the exact two-point function for the
disordered GFFs at any J is identical to the one for the usual

free fields, up to an overall factor of bðJÞ
bðJ¼∞Þ (as was the case

for the cSYK model in Sec. III A 1).
We can now compute the four-point function and the

OTOC. Following the same logic as above, it is immediate
to see that the kernel that appears in the four-point function
is also given by the kernel of the 1þ 1d N ¼ 2 SYK

model, up to an overall factor of ð bðJÞ
bðJ¼∞ÞÞq. Explicitly, the

eigenvalues of the bosonic part of the kernel (i.e., the kernel
for a four-point function whose external operators are all
bottom components of our superfields) are given by

kGFFðh; h̃Þ ¼
�

bðJÞ
bðJ ¼ ∞Þ

�
q
kN¼2SYKðh; h̃Þ; ð3:17Þ

where the eigenvalues for the bosonic part of the kernel for
1þ 1d N ¼ 2 SYK were found in [6]:

kN¼2SYKðh;h̃Þ

¼Δð1−ΔÞΓ
2ð−ΔÞ
Γ2ðΔÞ

Γð−hþΔÞΓðh̃þΔÞ
Γð1−h−ΔÞΓð1þ h̃−ΔÞ : ð3:18Þ

B. Disordered N = ð2;2Þ minimal models

1. General q

In this section we introduce a 1þ 1d N ¼ ð2; 2Þ con-
formal manifold. We will start with a UV description of this
manifold in terms of a deformation of N free fields, but
ultimately we will have to study this model in conformal
perturbation theory around a specific point on the manifold
itself where the theory consists of N decoupled minimal
models. We will be interested in computing the chaos
exponent as we vary the theory away from this special point,
and specifically we will be interested in the way in which
chaos appears.

UV description.—The UV description of our theory
includes N chiral superfields Φi and a superpotential
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W ¼ g
XN
i¼1

Φq
i þ

X
i1;…;iq

Ji1…iqΦi1…Φiq ; ð3:19Þ

where for now we focus on fixed realizations of the
couplings Ji1…iq , and we are not averaging over them.
Using the Leigh-Strassler argument [28] one can show that
there is a conformal manifold Mc in the space of
couplings. We can count the number of exactly marginal
operators by using the generating function of the chiral ring
[29] (see [30] for a recent discussion). The generating
function of the chiral ring for this theory is

PðtÞ ¼ TrtJR ¼ PðtÞ ¼
�
1 − t2−2=q

1 − t2=q

�N

: ð3:20Þ

Here, JR is the generator of the R-symmetry, and the trace is
over all chiral primaries. Explicitly, the coefficient of tr is
the number of chiral primaries with R-charge r. In
particular, the coefficient of t2 is dimMc, or the number
of exactly marginal operators in the theory (since chiral
operators have dimension Δ ¼ r

2
in 1þ 1dN ¼ 2 SCFTs).

Then in the large-N limit

dimMc ¼
1

q!
Nq þOðNq−1Þ: ð3:21Þ

We thus find a huge conformal manifold in the large-N
limit of this theory. In fact, a direct computation shows that
in the large-N limit, “most” classically marginal operators
become exactly marginal, in the sense that

#CM − #EM
#CM

¼ q!
Nq−2 þOð1=Nq−1Þ; ð3:22Þ

where #CM denotes the number of classically marginal
operators and #EM ¼ dimMc denotes the number of
exactly marginal operators.
We thus expect the theory to have a large conformal

manifold at large N. However, from the UV point of view
the conformal manifold is strongly coupled, and so the
Lagrangian (3.19) is not useful for computations. Instead,
we next consider conformal perturbation theory around a
specific point on this conformal manifold.

IR description.—Next, we move on to the IR description.
This involves two steps. First, we flow to the IR CFT
defined by setting Ji1…iq ¼ 0 in (3.19). This describes N
decoupled copies of a CFT defined by the superpotential

W ¼ Φq: ð3:23Þ

This theory is known to flow to theN ¼ ð2; 2ÞAq−1 minimal
model [31]. It includes a chiral multipletΦIR with dimension

Δ ¼ 1=q, and its central charge is c ¼ 3ð1 − 2=qÞ [29]. It
has no continuous global (non-R) symmetries.
Next, we deform the N decoupled minimal models:

W ¼
XN
i¼1

Φq
i þ

X
i1≠…:≠iq

JIRi1…iq
ΦIR

i1
…ΦIR

iq
: ð3:24Þ

We emphasize the interpretation of this superpotential; we
have assumed that we first tune the first term to the CFT,
and then deform by the second term. Wewill call this model
the disordered N ¼ 2 Aq−1 minimal model.
We can now argue that each deformation JIRi1…iq

is exactly
marginal. First, since ΔΦIR

i
¼ 1=q, the deformation is

classically marginal. However, since the CFT at JIR ¼ 0
has no continuous non-R global symmetries, every classi-
cally marginal operator is exactly marginal [32–34].13 We
thus learn that every realization of the model is conformal.
Clearly we end up on the same conformal manifold as
described in the UV description above.

2. Summary

We have thus found that the disordered N ¼ 2 minimal
models defined in (3.24) describe a conformal manifold.
This model should be understood as deforming N copies of
the N ¼ ð2; 2ÞAq−1 minimal model by a disorder super-
potential. This conformal manifold is the same as the one
expected to appear had we started in the UV from free fields
and deformed by a similar superpotential.
We emphasize that the disorder average is an average

over CFTs, i.e., we have a CFT at every realization of the
theory, as opposed to the disorder average in the standard
SYK model. This is similar to other recent examples where
averages were performed over CFTs; see, e.g., [26,27].
One can now perform computations in this model. We

will be interested in the two- and four-point functions of
ΦIR

i . In the following, we will focus on the IR description,
and we will suppress the “IR” indices for clarity. These
computations require performing conformal perturbation
theory around the CFT at J ¼ 0, which is N copies of the
Aq−1 minimal model. This is difficult in general, and so in
the following we will focus on the particularly simple
example of this model with q ¼ 3, which we discuss next.

3. The case q = 3

In this section we focus on the case q ¼ 3 of the
conformal manifold defined in (3.24), which is a specifi-
cally simple case. Explicitly, the superpotential is

13It is crucial for this argument that we sum over i1 ≠ … ≠ iq
in (3.24) in order for every deformation to be a nonzero element
of the chiral ring.
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W ¼
XN
i¼1

Φ3
i þ

X
i≠j≠k

JijkΦiΦjΦk; ð3:25Þ

where we are still interpreting the theory as a deformation
ofN copies of the A2 minimal models at J ¼ 0, but we have
suppressed the IR index in the second term. In particular, in
the following Φ should be interpreted as a chiral superfield
in the A2 minimal model with dimension Δ ¼ 1=3.
We start by analyzing the model at J ¼ 0. Consider a

single copy of the A2 N ¼ 2 minimal model, which has a
chiral superfield Φ of dimension 1=3 and central charge
c ¼ 1. As a result, this CFT should be dual to the free
compact boson at some special value of the radius R. We
discuss the details of this duality in Appendix C. We can
thus think of the model at J ¼ 0 as being N copies of the
c ¼ 1 compact boson at a specific value of the radius R.
In order to proceed, we must match the components of

the superfield Φ with vertex operators in the c ¼ 1 theory.
This is done in Appendix C. Since we know the exact form
of any n-point function of vertex operators, we now
immediately have all n-point functions of the Φi’s at
J ¼ 0. For our purposes, it would be most useful to have
these in superspace, instead of in components. In
Appendix C we present a conjecture for the form of these
n-point functions in superspace (see our superspace con-
ventions in Appendix A), which has been checked explic-
itly for the case of the two-, four- and six-point functions.
This form is

hΦðx1Þ…ΦðxnÞΦ̄ðy1Þ…Φ̄ðynÞi

¼
����
X
σ∈Sn

signðσÞ
Yn
i¼1

1

hxi − yσðiÞi
����
2Δ
; ð3:26Þ

where all Φ’s are taken from the same copy of the minimal
model (otherwise the correlator at J ¼ 0 decouples). At
leading order in J wewill only need the four-point function,
which is explicitly

hΦ̄ΦΦ̄Φi ¼
���� 1

h12ih34i
����
2Δ
j1 − χSj2Δ; ð3:27Þ

where

χS ¼
h12ih34i
h14ih32i ; h12i ¼ z12 − 2θ̃1θ2 − θ1θ̃1 − θ2θ̃2;

ð3:28Þ

and with Δ ¼ 1=3.
As a result, the subtracted four-point function 4s defined

in Sec. II B takes the form

hΦ̄iΦiΦ̄iΦiis ¼
���� 1 − χS
h12ih34i

����
2Δ

−
���� 1

h12ih34i
����
2Δ
: ð3:29Þ

We can now use these results to study the disordered theory
using the analysis of Sec. II (in particular, we interpret the
diagrams in Sec. II as supergraphs). This will allow us to
study chaos for the q ¼ 3 disordered SUSY minimal
models in Sec. V.

C. Disordered GFFs as a limit of the
Nf -flavored minimal models

Above we described two models: the disordered N ¼ 2

GFFs in Sec. III A 2 and the disordered N ¼ 2 minimal
models in Sec. III B. We now discuss a generalization of the
disordered N ¼ 2 minimal models, from which the GFFs
can be obtained using a specific limit. This will allow us to
show that there is a conformal manifold in the disordered
SUSY GFF theory for Δ ¼ 1=q even at finite N and for
every realization of Ji1…iq .
We build the model in a similar fashion to the disordered

N ¼ 2 minimal models from Sec. III B. We start with
N × Nf chiral superfields Φi;a, with i ¼ 1;…; N and
a ¼ 1;…; Nf. Adding a superpotential

W ¼
XNf

a¼1

XN
i¼1

Φq
i;a; ð3:30Þ

we can flow to N × Nf copies of the Aq−1 minimal model.
Next, add an SYK-like interaction:

W ¼
XNf

a¼1

XN
i¼1

Φq
i;a þ

X
a1;…;aq

X
i1≠…≠iq

J̃i1…iqΦ
IR
i1;a1

…ΦIR
iq;aq

:

ð3:31Þ

We can repeat the arguments in Sec. III B to learn that we
have a conformal manifold for each realization of the
J̃i1…iq ’s. We think of this model as having Nf “flavors” of
the original N ¼ 2 disordered minimal models (a some-
what similar construction for SYK was discussed in [35]).
We can thus average over the J̃i1…iq assuming they are

again random variables with a Gaussian distribution, this
time with variance hJ̃2i1…iq

i ¼ ðq − 1Þ! J̃2

Nq−1Nq
f
(note the

dependence on Nf). As explained above, since the dimen-
sion of ΦIR is fixed by superconformal invariance, we
expect its correlators to have the conformal form even after
averaging.
We will now show that in the limit Nf → ∞, the theory

reduces to that of the disordered GFFs (this is not
surprising; indeed, it is similar to how one can obtain
GFFs in higher dimensions by taking the large-N limit of
certain gauge theories). Define the operator

Ψi ¼
1ffiffiffiffiffiffi
Nf

p X
a

Φi;a: ð3:32Þ
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Then the disorder interaction term in the superpotential
above can be written as

X
i1…iq

Ji1…iqΨi1…Ψiq : ð3:33Þ

The normalization of Ji1…iq is now the same as for the
standard disorder deformations discussed above,
hJ2i1…iq

i ¼ ðq − 1Þ! J2

Nq−1. Then it is clear that we can

compute the exact two-point and four-point functions of
Ψ by using the methods in Sec. II. In particular, this
requires knowing the exact n-point functions of Ψi at the
CFT at J ¼ 0. But at leading order in 1=Nf, these are
particularly simple, and they reduce to products of two-
point functions.
For example, consider the four-point function.

Suppressing positions of operators, this can be written as

hΨiΨ̄iΨiΨ̄ii ¼
1

N2
f

X
a;b;c;d

hΦiaΦ̄ibΦicΦ̄idi

¼ 1

N2
f

X
a;b;c;d

ðδabδcd þ δadδbcÞhΦiaΦ̄iai2

þ δabcdhΦiaΦiaΦiaΦiai: ð3:34Þ

Performing the sums, we find

hΨiΨ̄iΨiΨ̄ii ¼ hΦiaΦ̄iai2 þ
1

Nf
hΦiaΦiaΦiaΦiai; ð3:35Þ

where there is no sum over repeated indices. It is then clear
that the leading contribution to the four-point function
comes from the disconnected diagrams which connect Ψ’s
using propagators, and that the connected four-point
function only contributes at subleading order in 1=Nf.
Similar arguments can be used to show that higher n-point
functions also reduce to products of propagators at leading
order in 1=Nf.

We have thus found that at leading order in 1=Nf, this
model behaves as if it were a theory of GFFs with
dimension Δ ¼ 1=q. We can thus find its two- and four-
point functions using the results of III B. In particular, this
proves that there is a conformal manifold in the disordered
GFF theory (unlike in the cSYK model, for which there is
evidence of a conformal manifold only at leading order
in 1=N).

IV. CHAOS IN DISORDERED GENERALIZED
FREE FIELDS

A. The cSYK model

In Sec. III A 1, we discussed the cSYK model, in which
J2 was an exactly marginal operator at leading order in
1=N. We can now compute the chaos exponent in this
theory as a function of J.
As discussed in III A 1, the two-point function of cSYK

is identical to that of SYK, up to an overall function b̄ðJÞ.
As a result, the kernel of cSYK is also proportional to that
of SYK, up to the proportionality factor (3.8). One can
repeat the same argument also for the retarded kernel. The
result is that the retarded kernel KR for cSYK is identical to
the retarded kernel for SYK up to the same overall factor

ð b̄ðJÞ
b̄ðJ→∞ÞÞ

q
. Using the result for the eigenvalues in SYK

(2.15), we find

kRðλÞ ¼
�

b̄ðJÞ
b̄ðJ → ∞Þ

�q Γð3 − 2ΔÞΓð2Δþ λÞ
Γð1þ 2ΔÞΓð2 − 2Δþ λÞ : ð4:1Þ

We can now find the chaos exponent by looking for the
largest value of λL such that kRðλLÞ ¼ 1.
We start by plotting the result for the specific value q ¼ 4

in Fig. 11(a). At large J the result goes to the maximal value
λL ¼ 1, as expected. The behavior at small J is more
interesting. At small enough J, the solution to kR ¼ 1
becomes negative for Δ > 0, corresponding to the dashed
red line [in particular, at J ¼ 0 we find λLðJ ¼ 0Þ ¼ −2Δ].

1 10 100 1000 104 105 J

–0.5

0.5

1.0
L

(a)

0.1 0.2 0.3 0.4 0.5

–1.0

–0.5

0.5

1.0
L

J=10000

J=100

J=10

J=1

J=0

(b)

FIG. 11. The chaos exponent for QM GFFs. (a) λL as a function of J at Δ ¼ 0.25. The dashed red line represents the solution to
kðλLÞ ¼ 1, but wherever the solution is negative we interpret λL to be zero there, corresponding to the solid line. At large J the solutions
asymptote to λL ¼ 1. (b) λL as a function of Δ for various values of J. The black line is λL ¼ −2Δ and corresponds to J ¼ 0. This is
negative for Δ > 0, leading to the discontinuous transition into chaos.
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This is unphysical, as discussed in Sec. II E 4; in computing
λL we assumed it was positive, and so this solution is not
self-consistent. However, we immediately learn that there
cannot be any solution with positive λL in this region, since
our calculation would have found it. We thus conclude that
there is no chaos in this region, meaning that the correct
value is λL ¼ 0, corresponding to the solid red line. We thus
find a discontinuous transition into chaos, reminiscent of
KAM theory.
Finally, we plot the general form for the chaos exponent

for any q in Fig. 11(b). Note that at large enough J, the
chaos exponent always asymptotes to λL ¼ 1 regardless of
q, as expected. More interestingly, note that at small J, λL
asymptotes to −2Δ ¼ − 2

q. As discussed in Sec. II E 4, a
negative value for λL should be interpreted as having zero
chaos in this region, λL ¼ 0, corresponding to the solid line.
In particular, for any q < ∞, we will find a discontinuous,
KAM-like, behavior. This is inline with the discussion of
Sec. II E 2: taking J → 0 at fixed λ, the eigenvalues (4.1)
vanishes, and so in order to find solutions to the eigenvalue
equation kR ¼ 1 we must look for values of λ for which kR
diverges at fixed small J. Indeed, one can check that kR
diverges as λ ¼ −2Δ.
As we will see in Sec. IV C, for this theory is also

λ0L ¼ −2Δ. In other words, in this case the continuity
conjecture (2.37) holds.

B. The disordered 1 + 1d N = 2 GFFs

We now compute the chaos exponent for the disordered
GFFs discussed in Sec. III A 2. This conformal manifold is
obtained by taking N decoupled 1þ 1d N ¼ 2 GFFs, and
adding an SYK-like superpotential. The model is very
similar to the cSYK model described above, and we will
one again be able to compute the chaos exponent as a
function of the deformation parameter J.
As discussed in III A 2, the exact two-point function for

the GFFs is identical to the one for the usual N ¼ 2 SYK
model obtained by deforming free fields, up to an overall

factor of bðJÞ
bðJ¼∞Þ. Thus, following the same logic as in the

previous subsection, the retarded kernel is also given by the
retarded kernel of the 1þ 1d N ¼ 2 SYK model, up to an
overall factor. Explicitly, the eigenvalues of the bosonic
part of the retarded kernel are given by

kGFFR ðh; h̃Þ ¼ bðJÞ
bðJ ¼ ∞Þ k

N¼2SYK
R ; ð4:2Þ

where the eigenvalues for the 1þ 1d N ¼ 2 SYK were
found in [6]:

kN¼2SYK
R ¼−

Γ2ð1−ΔÞ
ΓðΔþ1ÞΓðΔ−1Þ

ΓðΔ−hÞΓðΔ− h̃Þ
Γð1−h−ΔÞΓð1− h̃−ΔÞ :

ð4:3Þ

The chaos exponent is then found by finding solutions to
kRðh; h̃Þ ¼ 1. The result for the chaos exponent appears in
Fig. 12. We have also checked explicitly that other
components of the kernel other than the bosonic one do
not contribute a larger chaos exponent.
Again, there are a couple of interesting features to notice.

First, at large enough J, the chaos exponent for any Δ
approaches the result in the 1þ 1d SUSY version of the
SYKmodel discussed in [3,6], as expected. Second, for any
Δ > 0, for small enough J the chaos exponent becomes
negative. As a result, we again find a discontinuous
transition into chaos for any Δ > 0. This can be seen
explicitly in Fig. 12(a), where we see that indeed the
solution to kðλLÞ ¼ 1 becomes negative below some
critical J (corresponding to the dashed line in the figure).
We have thus found that the disordered 1þ 1d SUSY GFFs
also display a discontinuous transition into chaos, similar to
the 0þ 1d case discussed above.

C. Checking the validity of the approximation

In defining the chaos exponent, we had to solve
Eq. (2.12):
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FIG. 12. The chaos exponent for 1þ 1d SUSY GFFs. (a) The chaos exponent as a function of J at Δ ¼ 0.25. The dashed line
represents the solution to kðλLÞ ¼ 1, but wherever the solution is negative we interpret λL to be zero there, corresponding to the solid
line. (b) The chaos exponent as a function of Δ for various values of J. Again, for small enough J, λL is negative.
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WR ¼ F0 þ KRWR: ð4:4Þ

We assumed that WR grows exponentially, which allowed
us to neglect the F0 term. Now we return to this assumption
and check it explicitly. We do this for the 0þ 1d GFFs, and
the result for the 1þ 1d version is similar. F0 is given by a
product of propagators:

F0 ¼ GRð13ÞGRð24Þ; ð4:5Þ

see Fig. 4. Using the explicit form of GR for SYK (see,
e.g., [3])

GRðt; t0Þ ¼ θðt − t0Þ 2b cos πΔ
ð2 sinh 1

2
ðt − t0ÞÞ2Δ ; ð4:6Þ

and using the fact that for GFFsGR is proportional to the one
for SYK, we find at large t3, t4 that

F0 ∝ eΔðt3þt4Þ: ð4:7Þ

Comparing to Eq. (2.11), we can read off the chaos exponent
predicted by F0 at J ¼ 0:

λ0L ¼ −2Δ: ð4:8Þ

However, we found above that neglecting F0, the chaos
exponent λLðJÞ is at least λLðJ ¼ 0Þ ¼ −2Δ, and so neglect-
ing F0 above is justified.

In particular, we have found that the chaos exponent
predicted byF0 matches with the limit of the chaos exponent
predicted by the kernel as J → 0. This means that we
have verified the continuity relation λ0L ¼ λLðJ → 0Þ [see
Eq. (2.37)] for these two examples.

V. CHAOS IN THE DISORDERED N = 2 A2
MINIMAL MODELS

In this section we compute the chaos exponent for the
disordered SUSY minimal models with q ¼ 3. While the
calculation of the chaos exponent for the disordered GFFs
was possible for all J, it is much more complicated for the
disordered minimal models due to their nontrivial n-point
functions. We will thus only be able to compute the chaos
exponent at small J. In addition, we will only be able to do
this for the particularly simple case q ¼ 3, where we know
all n-point functions of the CFT, see Sec. III B 3.

A. Computing λL near J = 0

We now compute the chaos exponent for small J for the
disordered N ¼ 2 A2 minimal model. As discussed in
Sec. II E, at leading order in J this requires knowing only
the full four-point function of the undeformed CFT, given
in Eq. (3.27). We can then plug this into (the super-
symmetric version of) Eq. (2.35) and compute the eigen-
values of the kernel KR at leading order in J.
We again focus on the bosonic eigenvalue kR.

14 As
discussed in Sec. II E, kR is given by computing

kRðλ; JÞ ¼
KR ·W
W

¼
R
d2x3d2θ3d2x4d2θ̃4KRðx1; x2; x3; x4ÞWðx3; x4Þ

Wðx1; x2Þ
; ð5:1Þ

where the eigenfunction W is the superspace generalization of (2.34):

Wð1; 2Þ ¼ expð− hþh̃
2
ðt1 þ t2Þ þ h−h̃

2
ðx1 þ x2ÞÞ

ð2 coshðt12−x12
2

Þ − iθ̃1θ2ÞΔ−hð2 coshðt12þx12
2

Þ þ ¯̃{θ1θ̄2ÞΔ−h̃
: ð5:2Þ

We can change variables to

u3 ¼ ex3−t3 ; v3 ¼ e−x3−t3 ;

θu3 ¼ e
x3−t3

2 θ3; θv3 ¼ e
−x3−t3

2 θ̄3;

θ̃u3 ¼ e
x3−t3

2 θ̃3; θ̃v3 ¼ e
−x3−t3

2
¯̃θ3; ð5:3Þ

and similarly

14We will assume that the bosonic eigenvalue will give the leading chaos exponent. Indeed this was the case in all previous examples
considered.
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u4 ¼ −ex4−t4 ; v4 ¼ −e−x4−t4 ;

θu4 ¼ ie
x4−t4

2 θ4; θv4 ¼ ie
−x4−t4

2 θ̄4;

θ̃u4 ¼ −ie
x4−t4

2 θ̃4; θ̃v4 ¼ e
−x4−t4

2
¯̃θ4; ð5:4Þ

and find that at leading order in J this is given by

kRjJ2 ¼
J2

2

1

Wð1; 2Þjθ1;2¼0

Z
du3dv3dθu3dθ

v
3

h34i1−hu

du4dv4dθ̃
u
4dθ̃

v
4

h34i1−h̃v

GRðχS; χ̄SÞ: ð5:5Þ

Here we have defined h34iu ¼ u34 − 2θu3 θ̃
u
4 and h34iv ¼ v34 − 2θv3θ̃

v
4. GR is the retarded normalized four-point (2.41), and

χS; χ̄S are given in Eq. (A6).
Instead of finding the value of GR directly, we will first do the Grassman integral without analytically continuing in u, v,

and then analytically continue (as the two operations commute). Using (3.29), the superspace integral gives

K ·WjJ2 ¼
J2

2

1

Wð1; 2Þjθ1;2¼0

Z
du3dv4du4dv4
ðu34Þ2−hðv34Þ2−h̃

·

�
j1 − χj2=3

�
2ð1 − hÞ þ 2Δχ

1 − χ

��
2ð1 − h̄Þ þ 2Δχ̄

1 − χ̄

�
− 4ð1 − hÞð1 − h̄Þ

�
R
; ð5:6Þ

where by ð…ÞR we mean the same operation taken in Eq. (2.41), and χ ¼ u12u34
u14u23

; χ̄ ¼ v12v34
v14v23

. Focusing on the case h ¼
h̄ ¼ − λ

2
(as explained above), we can simplify this expression to

K ·WjJ2 ¼
J2

2

1

Wð1; 2Þjθ1;2¼0

Z
du3dv4du4dv4
ðu34v34Þ1þλ

2

�
j1 − χj2=3

����2
�
1þ λ

2

�
þ 2Δχ
1 − χ

����
2

− 4

�
1þ λ

2

�
2
�

R
: ð5:7Þ

Written in this way, the analytic continuation is straightforward,15 and we find

KR ·WjJ2 ¼
J2

2

1

Wð1; 2Þjθ1;2¼0

Z
du3dv4du4dv4

��
1þ λ

2

��
2

3
þ λ

2

� ðsin π
3
Þ2

j34j4þλ

�j13jj24j
j14jj23j

�
2=3

:

þ 1

3

�
λ

2
þ 2

3

� ðsin π
3
Þ2j12j2

j34j2þλðj13jj24jÞ4=3ðj14jj23jÞ2=3 þ
1

3

�
1þ λ

2

� ðsin 2π
3
Þ2

j34j4þλ

�j14jj23j
j13jj24j

�
4=3

�

þ ð3 ↔ 4Þ: ð5:8Þ

Here we denoted jijj2 ¼ ðui − ujÞðvi − vjÞ for brevity. In
particular, the contribution of the “subtraction” term
proportional to ð1 − hÞ2 vanishes. As a consistency check,
we have checked numerically that using this expression, the
eigenvalues (5.1) are indeed independent of the external
points 1,2.
As discussed in Sec. II E, the value of λL close to J ¼ 0 is

found by looking for values of λ for which the integral
diverges in the limit juij; jvij → ∞. Dimensional analysis
shows that the largest value of λ for which the integral

diverges is λ ¼ λL ¼ 0, and a numerical computation of the
integral confirms this. We thus find that the chaos exponent
near J ¼ 0 is λLðJ → 0Þ ¼ 0. The transition into chaos will
thus be continuous (assuming λL grows with increasing J),
as in Fig. 1(a).
As discussed in Sec. II E, consistency of our perturbative

expansion requires that we check that contributions from
higher n0s-point functions diverge at values of λwhich are at
most λL ¼ 0.16 We will check this order-by-order in n. The
2n-point function appears in (C12):

15The analytic continuation can be done almost immediately
by showing that the integrand can be written in terms of products
of propagators between the points z1, z2, z3, z4, and replacing
these propagators with the relevant analytically continued propa-
gators, denoted by Glr and GR in [3].

16It must also be checked that the subleading correction is
positive, i.e., that the chaos exponent rises as we raise J. We will
not check this explicitly but instead assume this is the case.
Indeed this has been the case in all previous examples considered.
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hΦðx1Þ…ΦðxnÞΦ̄ðy1Þ…Φ̄ðynÞi

¼
����
X
σ∈Sn

signðσÞ
Yn
i¼1

1

hxi − yσðiÞi
����
2Δ
: ð5:9Þ

The ð2nÞ0s correlator is obtained from this correlator using
various subtractions of lower n-point functions with legs
contracted using Σ’s. First we explain why we can ignore
the subtractions when discussing the leading divergence at
order 2n. There are two types of subtractions in the four-
point functions: subtractions of disconnected diagrams
where the points x1, x2 are disconnected from x3, x4,
and subtractions where x1, x2 are connected to x3, x4 but

there are additional disconnected bubbles in the diagram. In
the former case, the diagrams vanish in the limit ϵ → 0, and
so we can ignore them. In the latter case, what we find is
that if we ignore the bubble diagrams, the remaining part
which connects x1, x2 to x3, x4 is identical to some lower-
order ð2nÞ0s correlator, and so the divergence from it already
appears at lower orders in n and we have taken it into
account.
It it thus enough to plug in the ð2nÞ-point function (5.9)

into the diagram and compute at what values of λ its
contribution diverges. The integral that appear in kR at
order J2nþ2 is

Yn
i¼1

Z
d2xid2θxid

2yid2θ̃yi
hxi − ȳii

Z
du3du4dθu3dθ

u
4

h34i1þλ
2

u

dv3dv3dθv3dθ
v
4

h34i1þλ
2

v

hΔϕ̄1Δϕ2Φ3Φ̄4

Q
n
i¼1 ΦðxiÞΦðyiÞi

hΦ3Φ̄4i ·
Q

n
i¼1 hΦðxiÞΦðyiÞi

; ð5:10Þ

ϕ being the bottom component of the superfield Φ. In the integral we changed variables to the light-cone variables for the
points 3,4, and transformed the 2n integrals over xi, yi to flat space. As a result, both sides of the ratio on the RHS can be
calculated in flat space. We are interested in the behavior of the integrand at large juij; jvij. Inside the Euclidean integrals,
the integrand factorizes between the u’s and the v’s, and so we deal with each separately. Explicitly, the relevant terms in the
ratio for the u integral are

�hΔϕ̄1Δϕ2Φ3Φ̄4

Q
n
i¼1ΦðziÞΦðwiÞi

hΦ3Φ̄4i
�

u
¼ h34iΔu

� ð...Þ
h34iu

þ
X

i;j

ð...Þ
h3wiihzj4i

�
Δ

¼ h34iΔu
� ð...Þ
u34 − 2θu3θ

u
4

þ
Xn
i;j¼1

ð...Þ
ðu3 − wi − 2θu3 θ̃iÞðzj − u4 − 2θjθ

u
4Þ

�Δ
: ð5:11Þ

In the first equality we have plugged in the n-point function
(5.9), and separated the contraction of 3 to 4 from the rest of
the contractions. The expressions “(...)” denote terms that
depend only on the Euclidean (super)-coordinates.
We are interested in the large u3, u4 limit of this integral

after performing the θu3; θ
u
4 integrals. As the integrals acts as

derivatives, we can consider each term separately. The

Grassman integrals of either the h34iΔ−1−λ
2

u term or the first
term in the bracket multiply the bottom component of

(5.11) by 1=u34 (up to multiplicative constant). On the other
hand, integrating one of the terms in the sum over i, j
multiplies the bottom component by a factor of θ̃i=ðu3 − wiÞ
from the θu3 integral, and θj=ðzj − u4Þ from the θu4 integral.
Note that the Euclidean Grassmann integrals will not change
the over power in u3, u4. Together we have a factor of
1=ðu3u4Þ, which is subleading at large u3, u4 compare to
1=u34. The v integral is very similar:

�hΔϕ̄1Δϕ2Φ3Φ̄4

Q
n
i¼1ΦðziÞΦðwiÞi

hΦ3Φ̄4i
�

v
¼

�h34iv
v3v4

�
Δ
�
v3v4

ð…Þ
h34iu

þ
Xn
i;j¼1

ð…Þ
¯h3wii ¯hzj4i

�Δ

¼ h34iΔu
� ð…Þ
h34iu

þ
Xn
i;j¼1

ð…Þ
ð1 − z̄mv3 − 2θv3

¯̃θmÞð1 − z̄jv4 − 2θ̄jθ
v
4Þ

�Δ
: ð5:12Þ

In terms of the overall power of v3, v4 the argument from the u integrals is carried in the same way: the leading divergence
multiplies the bottom component by 1=v34. The overall result is that at large juij; jvij the integral has the form
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∼
Z

du3du4

u
1þλ

2

34

dv3dv3

v
1þλ

2

34

·
1

u34v34
; ð5:13Þ

which diverges for λ ≤ 0. We note that the argument is not
complete as we did not perform the Euclidean integrals, but
we expect it to work just like the leading four-point
integration (5.8).
We thus find that all the higher orders in kR also diverge

only for λL ≤ 0, and so our perturbative expansion is
justified and indeed the chaos exponent at J ¼ 0 is
λLðJ → 0þÞ ¼ 0. The transition into chaos should thus
be continuous, as in Fig. 1(a).

B. Checking the validity of the approximation

Once again, we must now make sure that our approxi-
mation of neglecting F0 in computing the chaos exponent is
consistent. The analysis is similar to the one done for the
disordered GFFs in Sec. IV C. In particular, we must read
off the chaos exponent coming only from F0 at J ¼ 0,
denoted by λ0L.
There is a simple trick for computing the analytically

continued four-point function required for F0. Since the
“usual” four-point function is a product of propagators [for
the bottom component, see Eq. (C5)], we just have to
replace each propagator with the corresponding analyti-
cally continued propagator. The result is that F0 is given by

F0 ∝
Glr;Δð12ÞGlr;Δð34ÞGR;Δð14ÞGR;Δð23Þ

Glr;Δð13ÞGlr;Δð24Þ
þ ð3 ↔ 4Þ:

ð5:14Þ

Here Glr;Δ is the propagator between the different rails
defined in (2.33), and

GR;Δð1; 2Þ ¼
1

ð4 sinhðt12−x12
2

Þ sinhðt12þx12
2

ÞÞΔ : ð5:15Þ

At large t3 ≈ t4 ¼ t, F0 behaves like e0·t, and so the chaos
exponent predicted by F0 is λ0L ¼ 0. Thus once again, the
chaos exponent predicted by F0 at J ¼ 0 is identical to the
chaos exponent predicted by the kernel as we approach
J ¼ 0 from above, λ0L ¼ λLðJ → 0Þ, and so once again the
chaos exponent is continuous at J ¼ 0 as discussed
around Eq. (2.37).

VI. CONCLUSIONS

In this paper we discussed disorder around general CFTs,
which allowed us to compute the chaos exponent λL as a
function of a continuous parameter J in some specific
models. We started by writing down a set of self-consis-
tency equations for the two- and four-point functions (and
also the OTOC) for a general disordered CFT. We then
discussed models in which the disorder parameter J is

exactly marginal (at least at leading order in 1=N). In
principle, this allowed us to compute the chaos exponent
λLðJÞ for any value of the disorder parameter J, and to
follow the theory from weak to strong chaos. We managed
to perform this analysis explicitly for disordered general-
ized free fields in 0þ 1d and 1þ 1d. In addition, we
performed this analysis to leading order in J in the
disordered N ¼ ð2; 2ÞA2 minimal model. For the disor-
dered generalized free fields we found a discontinuous
transition into chaos, while for the disordered A2 minimal
model we found a continuous transition.
As discussed above, in principle the computation (at

least at leading order in J) should be possible for all of the
Aq−1 minimal models, since their four-point functions are
known [36]. It would be interesting to see whether the
transitions to chaos in the general case would be continuous
or discontinuous. In particular, the case q ¼ 4 should be the
next simplest case after q ¼ 3, since it has central charge
c ¼ 3=2 and is the N ¼ ð1; 1Þ free chiral superfield [36].
As a result, the computation should parallel the one done
above for q ¼ 3, since we can map components of chiral
superfields to vertex operators or fermionic operators,
whose correlators are known. Naive dimensional analysis
seems to indicate that the chaos exponent is continuous in
this case, but the analysis should be done more carefully.
One can also extend this analysis to 2þ 1d. The Wess-

Zumino models defined in Eq. (3.24) have an immediate
generalization to 2þ 1d theories withN ¼ 2 SUSY. In this
case, only the q ¼ 3 case is a relevant deformation from the
UV free field theory. This model was studied in [7], but it
would be interesting to study the properties of the con-
formal manifold as well. This would be a much more
daunting task than the 1þ 1d theories discussed here, since
the 1þ 1d versions correspond to a disorder deformation of
very simple CFTs (the minimal models), while the 2þ 1d
versions correspond to complicated CFTs.
An interesting result that was argued for above is the

continuity relation (2.37). As a reminder, the chaos expo-
nent near J ¼ 0 can either be computed explicitly by
computing the OTOC at J ¼ 0 (and the result is denoted
λ0L), or computing λLðJÞ from the eigenvalue equation for
the kernel KR and taking the limit J → 0. Then we argued
that λ0L ¼ λLðJ → 0Þ. In addition, we showed that this
relation is true in the explicit examples studied in this paper
in Secs. IV C and V B. It would be very interesting to
understand whether this is a general result for disordered
CFTs. If it is a general result, then in principle one could
find whether the transition into chaos is continuous or
discontinuous by performing a computation in a single
copy of one core CFT (since computing λ0L requires
knowing only one copy of the core CFT). Then it would
be interesting to understand precisely what set of conditions
a core CFT is required to obey in order for the transition
into chaos to be continuous or discontinuous.
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Assuming this continuity condition on the chaos expo-
nent, there are now many additional examples where the
transition into chaos would be discontinuous—the idea
would be to consider a single core CFT, and find λ0L [see
(2.36)]. If the result is negative, then we expect a discon-
tinuous transition into chaos, assuming that a conformal
manifold can be constructed at leading order in 1=N as
above. In particular, we expect that the non-SUSY minimal
models will have a discontinuous transition using the
results of [37], and that the 2þ 1d Ising model will have
a discontinuous transition using the results of [38] if similar
conformal manifolds exist.
An additional result is that the perturbative expansion for

the chaos exponent was indeed consistent, which was
nontrivial as explained in Sec. II E 2. In particular, it is
crucial that the integrals coming from higher-order correc-
tions diverge at λ which obeys λ ≤ λ0L. Relatedly, one must
show that Eq. (2.42) is obeyed. Indeed, once again we saw
explicitly that this is obeyed in the specific examples
discussed in this paper. It would be nice to prove this
behavior for a general CFT.
Our self-consistency equations for the two- and four-

point functions around a general disordered CFT can be
useful outside of the scope of this paper. It would be
interesting to see if there are additional core CFTs for
which these equations can be solved exactly apart from free
fields. This would be especially useful in cases where the
disorder deformation is not exactly marginal, since then
the equations would probably be solvable only in the limit
J → ∞ where conformal invariance may be restored, and
so perturbation theory in J will not be useful. It would also
be interesting to try to solve these equations in perturbation
theory to high orders in J in the case where the disorder is
exactly marginal. Finally, more general correlators can also
be computed for disordered free fields [10], and it would be
interesting to see if this is the case also for general
disordered CFTs.
It would be interesting to understand the dependence of

the chaos exponent on exactly marginal deformations also
from a holographic perspective. In particular, [39] studied a
symmetric orbifold of theN ¼ 2 SUSYminimal models of
the type reviewed in Sec. III. These theories have a much
smaller number of exactly marginal deformations, but far
along the conformal manifold the authors found evidence
for a (weakly curved) holographic dual. It would be
interesting to try to apply the methods discussed above
to these examples and study λL as function of the exactly
marginal deformation. If the theory is indeed holographic
far away on the conformal manifold, λL should reach its
maximal value λL ¼ 1. It would be interesting to show this
and to study small deviations away from maximal chaos.
Finally, it would be very interesting to compare our

results with classical expectations for the onset of chaos. As
discussed above, there are exact theorems which described
the chaotic behavior of some models as they are deformed

away from weak coupling, like the KAM theorem. There
are incredibly useful tools in studying classical chaos, and
hopefully a better understanding of the onset of quantum
chaos will lead to similar tools.
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APPENDIX A: N = 2 SUSY CONVENTIONS

Our conventions follow [6]. N ¼ 2 superspace consists
of a set of holomorphic and antiholomorphic coordinates,
which we call

Z ¼ ðz; θ; θ̃Þ; Z̄ ¼ ðz̄; θ̄; ¯̃θÞ: ðA1Þ

We also define superspace derivatives as

D ¼ ∂

∂θ
þ θ̃

∂

∂z
; D̄ ¼ ∂

∂θ̄
þ ¯̃θ

∂

∂z̄
: ðA2Þ

Chiral superfields Φ then obey DΦ ¼ D̄Φ ¼ 0. We will
denote antichiral superfields by Φ̄. A SUSY Lagrangian
includes a Kahler potential and a superpotential and takes
the form

L ¼
Z

d2θd2θ̃ΦΦ̄þ i
Z

d2θWðΦÞ þ i
Z

d2θ̃ W̄ðΦ̄Þ:

ðA3Þ

Here we have defined d2θ ¼ dθdθ̄ and d2θ̃ ¼ dθ̃d ¯̃θ.
InN ¼ 2 SCFTs, two-point functions of chiral operators

are fixed:

hΦ̄ðZ1ÞΦðZ2Þi ¼
b

h12iΔh1̄ 2̄iΔ ; ðA4Þ

where b is a constant, Δ is the dimension of Φ, and

h12i ¼ z12 − 2θ̃1θ2 − θ1θ̃1 − θ2θ̃2;

h1̄ 2̄i ¼ z̄12 − 2¯̃θ1θ̄2 − θ̄1
¯̃θ1 − θ̄2

¯̃θ2: ðA5Þ
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There are two superconformal cross ratios:

χS ¼
h12ih34i
h14ih32i ; χ̄S ¼

h1̄ 2̄ih3̄ 4̄i
h1̄ 4̄ih3̄ 2̄i : ðA6Þ

APPENDIX B: FINDING THE SUBTRACTED
n-POINT FUNCTIONS ns AND n0s

Above we described how to define the subtracted n-point
functions ns and n0s which appear in the SD equations for
the two-point function and in the kernel for the four-point
function, respectively. In this Appendix, we perform an
explicit example of an accelerated algorithm for generating
these correlation functions. The algorithm is applied as
follows. At order n, consider the full CFT n-point function.
This can be decomposed in terms of connected n-point
functions of lower order. We plug this decomposition into
the corresponding diagram in the SD equations (kernel),
and remove contributions which lead to disconnected parts.
The remaining terms define ns (n0s). We will do specific
examples in this Appendix and show that they match the
previous definition.

1. ns and the SD equations

We start by doing specific examples by finding 4s; 6s
using the accelerated algorithm.
Let us start by performing this analysis explicitly for the

four-point function 4s, whose contribution to the SD
equations corresponds to contracting two of the legs with

a Σ, see Fig. 6. We start by decomposing the full CFT four-
point function 4 into fully connected n-point functions, see
Fig. 13(a). Next, we plug this decomposition into the
contribution for the SD equations by contracting two of the
legs with a Σ, see Fig. 13(b). It is clear that the second term
on the RHS in Fig. 13(b) has a disconnected component,
and so we must remove it. Then 4s is defined as taking the
full four-point function 13(a) and subtracting the term in the
decomposition which leads to a disconnected diagram,
which is indeed the result of 4s in Fig. 7.
Next we do the analysis for the six-point function. The

decomposition of the full six-point function into fully
connected n-point functions is given in Fig. 14. The
corresponding contribution to the SD equations is obtained
by contracting two pairs of external legs via a Σ, see Fig. 6.
Performing this contraction on each term in Fig. 14, we find
that again some of the diagrams lead to disconnected
contributions. Subtracting these, we find 6s shown in
Fig. 7.

2. n0s and the four-point function

A similar method can be applied in order to find n0s. We
start by explicitly finding 40s. The idea is the same as for the
SD equation. We start with the full CFT four-point function
4, and we decompose it into fully connected contributions
as in Fig. 13(a). We then plug this into the contribution of
the 40s in the kernel in Fig. 8, see Fig. 15. We find again that
there are disconnected contributions (specifically, the
second diagram on the rhs), and they must be subtracted
from the contribution of the four-point function. Then 40s is
defined as the full four point function, with the diagram
which leads to a disconnected contribution subtracted, as in
Fig. 9. A similar analysis for the six-point function leads to
the 60s defined in Fig. 9.

3. A consistency check: Disordered free fields

As a consistency check, let us compare our SD equations
in Fig. 6 to the standard result when expanding around a
free field CFT, as in the SYK model in Fig. 2. We will do
this up to order J6.
In the case where the core CFT is free, the n-point

functions reduce to all of the possible ways of contracting
the different legs using two-point functions, and the
subtracted n-point function corresponds to removing

FIG. 13. The algorithm for finding 4s. An n corresponds to
a full n-point function, while an nc corresponds to a connected
n-point function.

FIG. 14. Decomposing the six-point function.

FIG. 15. Decomposing the six-point function.
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contributions which lead to disconnected diagrams. Let us
see order by order that we recover the “standard” SD
equation. At order J0 this is obvious. At order J2, the four-
point function reduces to 3 possible contractions of the four
operators, but one is removed due to the subtraction in 4s.
As a result, we find two identical diagrams of the form

The factor of 2 cancels with the factor of 1=2 in (2.20), and
so we find the correct contribution. Next consider order J6.
There are 15 ways of connecting the external legs of the
six-point function in pairs, but we subtract 7 of them in 6s.
We are thus left with 8 diagrams of the form

Once again, the factor of 8 cancels with the prefactor of 6s,
and we are left with precisely the required contribution.

APPENDIX C: THE A2 MINIMAL MODEL

1. Preliminaries

In this section we study the N ¼ 2 minimal model
corresponding to the superpotential W ¼ X3, known as the
A2 minimal model. This minimal model has central charge
c ¼ 1, and so it should correspond to the theory of a free
compact boson ϕ ∼ ϕþ 2πR at some value of the com-
pactification radius R.
It is slightly subtle to find the precise c ¼ 1 theory which

the X3 model maps to in the IR. The reason is that we are
interested only in correlation functions in the CFT, and
there are a handful of theories which differ only by
gaugings of some discrete symmetries, so that correlators
are invariant (assuming the operators are invariant under the
symmetry we are gauging). In particular, the bosonic c ¼ 1
theory has four values of the radius Rwhere it has enhanced
N ¼ ð2; 2Þ SUSY, which are R ¼ ffiffiffi

3
p

;
ffiffiffi
3

p
=2 and their T-

dual values (see, e.g., [40]). Indeed, the two theories at
R ¼ ffiffiffi

3
p

;
ffiffiffi
3

p
=2 are Z2 orbifolds of each other, and so

correlation functions do not differ between them. It is thus
not important which value of Rwe choose for our purposes.
However, this is not the end of the story. Our SUSY

theory includes fermions, and so it requires a choice of spin
structure, while the standard bosonic c ¼ 1 theory does not.
Indeed, the theories at R ¼ ffiffiffi

3
p

;
ffiffiffi
3

p
=2 discussed above are

theories with N ¼ ð2; 2Þ SUSY, but where ð−1ÞF has been
gauged (as we will see later on). Instead, our SUSY theory
should correspond to a “fermionic” c ¼ 1 theory, i.e., a
c ¼ 1 theory with a choice of spin structure.17 We will
assume that the fermions can be introduced by an “ungaug-
ing” procedure of ð−1ÞF; i.e., we will assume that there is

some Z2 symmetry which upon gauging reintroduces the
fermions.
The bottom line is then that the theory with super-

potential W ¼ X3 flows to an orbifold of the standard
bosonic theory with R ¼ ffiffiffi

3
p

=2. Since orbifolds do not
change correlators (as long as the operators are not charged
under the symmetry), we may proceed for now focusing on
the R ¼ ffiffiffi

3
p

=2 bosonic theory, and we will discuss explic-
itly the operators for which the orbifold is relevant.
Vertex operators for the theory with R ¼ ffiffiffi

3
p

=2 take the
form

Vn;m ¼ exp

�
i

�
m
2R

þ nR

�
ϕþ i

�
m
2R

− nR

�
ϕ̄

�
; ðC1Þ

with dimensions

h ¼ 1

2

�
m
2R

þ nR

�
2

;

h̄ ¼ 1

2

�
m
2R

− nR

�
2

: ðC2Þ

In these conventions, the dimension is Δ ¼ hþ h̄ and the
spin is l ¼ jh − h̄j. In particular, there exist four vertex
operatorsV�2;0; V0;�3 with dimensions ðh; h̄Þ ¼ ð3=2; 3=2Þ,
which is appropriate for an N ¼ ð2; 2Þ supersymmetric
theory where ð−1ÞF has been gauged.
We expect to find a chiral operator XIR of dimension

Δ ¼ 1=3 in this CFT. Expanding XIR in components as

XIR ¼ φþ θψ þ θ̄ ψ̄ þθθ̄F; ðC3Þ

we should be able to match each component with a vertex
operator in the IR. Indeed, the vertex operator V0;1 has
dimensions ðh; h̄Þ ¼ ð1=6; 1=6Þ, and so we match φ ↔
V0;1 (and φ̄ ↔ V0;−1). Next, we match F ↔ V0;−2 and
F̄ ↔ V0;2, since they all have ð2=3; 2=3Þ.18
Next we must find the fermion ψ in terms of vertex

operators. As discussed above, the bosonic c ¼ 1CFTwe are
considering has ð−1ÞF gauged, and sowe should not be able
to find ψ in it. Instead, we are assuming that there is some
ungauging procedure that allows us to reintroduce the
fermions. In practice, this allows us to reintroduce the
fermions and supercharges as vertex operators with non-
integer values of n, m. We have checked that this reintro-
duction is consistent, in the sense that acting with the
supercharges on the components of XIR give the expected

17We thank D. Tong for discussions on this issue.

18To see that F must have m ¼ −2 and not m ¼ 2, we use the
fact that Q2φ ¼ F, and the fact that we know the supersymmetry
currents in terms of vertex operators [up to the subtlety of gauging
ð−1ÞF discussed below] and the OPE of two vertex operators.
Specifically, computing the OPE of J2φ and extracting the term
which is proportional to z−2 gives F.
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results. These changes in the spectrum of the theory lead to a
CFT which is not modular invariant, but this was expected
due to the dependence on the spin structure (see, e.g., [41]).
Now we can compute n-point functions of XIR in the

CFT. From now on wewill ignore the IR superscript, and so
X is always understood to be the chiral operator of
dimension Δ ¼ 1=3 in the CFT. Since we know how to
write the components of X in terms of vertex operators, we
now know how to compute and n-point function of them.
To warm up, let us compute the two-point function of X.
Superconformal invariance fixes

hX̄Xi ¼ 1

jh12ij2Δ : ðC4Þ

It is clear that the bottom component is precisely the φ two-
point function 1

jzj2Δ. Extracting the top component, we find

that the two-point function of F is 4Δ2

jz12j2Δþ2, which defines the

normalization of F.

2. Four-point function

Using the mapping of the components of X to vertex
operators in the c ¼ 1 free boson, we can immediately
write down their four-point functions:

hφ̄φφ̄φi ¼
���� z13z24
z12z14z23z34

����
2Δ

¼
���� 1

z12z34

����
2Δ
j1 − χj2Δ ðC5Þ

hF̄FF̄Fi ¼ ð4Δ2Þ2
���� z13z24
z12z14z23z34

����
8Δ

¼
���� 1

z12z34

����
8Δ
j1 − χj8Δ

ðC6Þ

hF̄Fφ̄φi ¼ 4Δ2

���� 1

z34

����
2Δ
���� 1

z12

����
8Δ
���� z13z24z14z23

����
−4Δ

¼
���� 1

z34

����
2Δ
���� 1

z12

����
8Δ
j1 − χj−4Δ; ðC7Þ

where Δ ¼ 1=3. We have defined the conformal cross
ratios

χ ¼ z12z34
z14z32

; χ̄ ¼ z̄12z̄34
z̄14z̄32

: ðC8Þ

We can now write down the full superspace four-point
function of the chiral operator X. In superspace there is a
single superconformal ratio χS, which is given by

χS ¼
h12ih34i
h14ih32i ; ðC9Þ

where

h12i ¼ z12 − 2θ̃1θ2 − θ1θ̃1 − θ2θ̃2 ðC10Þ

and it is easy to find the four-point function of X in
superspace using the results for its components:

hX̄XX̄Xi ¼
���� 1

h12ih34i
����
2Δ
j1 − χSj2Δ: ðC11Þ

We have checked that the components of this four-point
function match our expectations (including the fermionic
components).

3. Higher n-point functions

We now conjecture the general superspace form
for the correlation function of 2n X’s of the form
hXðx1Þ…XðxnÞX̄ðy1Þ…X̄ðynÞi, and provide some nontri-
vial consistency checks for it.
Our conjecture for the 2n-point function is

hXðx1Þ…XðxnÞX̄ðy1Þ…X̄ðynÞi

¼
����
X

σ∈Sn
signðσÞ

Yn
i¼1

1

hxi; yσðiÞi
����
2Δ
: ðC12Þ

This can be written in a more concise form as

j detCðxi; yjÞj2Δ; ðC13Þ

where C is a variant of the Cauchy matrix:

C ¼

0
BBBBBB@

1
hx1;y1i

1
hx1;y2i � � � 1

hx1;yni
1

hx2;y1i
1

hx2;y2i � � � 1
hx2;yni

..

. ..
. . .

. ..
.

1
hxn;y1i

1
hxn;y2i � � � 1

hxn;yni

1
CCCCCCA
: ðC14Þ

We now describe some consistency checks on this result.
First, it is symmetric under a permutation of the x’s and of
the y’s. Next, we have checked explicitly for n ¼ 1, 2, 3
(i.e., for the two-, four- and six-point functions) that this
result is correct by explicitly comparing to the expected
result using the different components of X. Next, it is easy
to check that at least the bottom component (with all
Grassmanian coordinates set to zero) takes the correct value
for any n. To see this, note that we expect the result to be

����
Q

n
i<j xijyijQ

n
i;jðxi − yjÞ

����
2Δ
: ðC15Þ

This matches the bottom component of (C12) once we use
the Cauchy determinant formula:
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hXðx1Þ…XðxnÞX̄ðy1Þ…X̄ðynÞijb
¼

X
σ∈Sn

signðσÞ
Yn
i¼1

1

xi − yσðiÞ
¼

Q
n
i<j xjiyijQ

n
i;jðxi − yjÞ

; ðC16Þ

where jb denotes taking the bottom component of the
expression. Finally, we can also check that the components
proportional to θ̃θ match. To see this, we focus on the
holomorphic part of the 2n-point function, and calculate
hFφn−1F̄φ̄n−1i. This corresponds to computing

d

dθ̃x1θy1
hðXX̄Þnijb: ðC17Þ

We are using the fact that at this order, we only need to take
into account cases where θ̃x1 ; θy1 appear in the combination
θ̃x1θy1 , which will not be true with higher derivatives. In this
case we can use the general formula for the derivative of a
determinant:

d
dt

detA ¼ detATr

�
A−1 d

dt
A

�
: ðC18Þ

We will not be able to use this formula to prove that this is
the correct form for any component, since there will be
various minus signs from the ordering of the θ’s. But for
this component there will be no sign problems, since we are
taking the derivative d

dθ̃x1θy1
and θ̃x1 ; θy1 always appear in

the same order. Using this formula, if we take d
dθ̃x1θy1

of the

holomorphic part of our 2n-point function and take the
bottom component, this is the same as computing

Δ detðCÞΔTr
�
C−1 d

dt
C

�
: ðC19Þ

Let us compute this. The elements of our matrix are of the
form

Cij ¼
1

hxi; yσðiÞi
¼

1þ 2θ̃xiθyσðiÞ
xi−yσðiÞ

xi − yσðiÞ
ðC20Þ

and so d
dθ̃x1θy1

Cijjθ¼0 ¼ 2 1
ðx1−y1Þ2 δi1δj1. The inverse of the

Cauchy matrix is also known, it is

C−1
ij ¼

Q
n
k¼1 ðxj − ykÞðxk− yiÞ

ðxj − yiÞð
Q

1≤k≤n
k≠j

ðxj − xkÞÞð
Q

1≤k≤n
k≠i

ð−yiþ ykÞÞ
:

Putting these together we find that d
dθ̃x1

d
dθy1

jθ¼0 of the

holomorphic part of our 2n-point function is

2Δ detðCÞΔC−1
11

1

ðxi − yσðiÞÞ2
: ðC21Þ

Explicitly, this is equal to

2Δ
� Q

n
i<j xjiyijQ

i;jðxi − yjÞ
�Δ Q

n
k¼1ðx1 − ykÞðxk − y1Þ

ðx1 − y1Þð
Q

2≤k≤nðx1kÞð−y1kÞÞ
1

ðx1 − y1Þ2
: ðC22Þ

Separating the terms which include i, j ¼ 1 and the rest of the terms and setting Δ ¼ 1=3 we find

d

dθ̃x1θy1
hðXX̄Þnijhol;θ¼0 ¼ 2Δ

� Q
n
1<i<j xjiyijQ

i;j≠1ðxi − yjÞ
�Δ�Qn

k¼2ðx1 − ykÞðxk − y1ÞQ
n
k¼2 xk1y1k

�
2Δ 1

ðx1 − y1Þ4Δ
: ðC23Þ

Adding the antiholomorphic part of this correlator in the same way, we find exactly the expected result for hjFj2jφn−1j2i.
Since we only considered the holomorphic part, the same calculation also shows that we get the correct result
for hψ2jφn−1j2i.
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