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There exists a unique class of local higher spin gravities with propagating massless fields in 4d—chiral
higher spin gravity. Originally, it was formulated in the light-cone gauge. We construct a covariant form of
this theory as a free differential algebra up to the next-to-leading order, i.e., at the level of equations of
motion. It also contains the recently discovered covariant forms of the higher spin extensions of self-dual
Yang-Mills and self-dual gravity, as well as self-dual Yang-Mills and self-dual gravity themselves.
From the mathematical viewpoint the result is equivalent to taking the minimal model (in the sense of
L∞-algebras) of the jet-space extension of the BV-BRST formulation of chiral higher spin gravity, thereby,
containing also information about (presymplectic AKSZ) action, counterterms, anomalies, etc.
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I. INTRODUCTION

Higher spin gravities (HSGRA) are defined to be the
smallest possible extensions of gravity with massless fields
of arbitrary spin. While there are good reasons to expect
higher spin states to play an important role in general, e.g.,
string theory, the masslessness should imitate the high
energy behavior and, for that reason, HSGRA can be
interesting probes of the quantum gravity problems since
some of the issues can become visible already at the
classical level. Indeed, it is quite challenging to construct
HSGRA due to massless higher spin fields facing numer-
ous issues. As a result, all concrete HSGRAs available at
the moment are quite peculiar: topological models in 3d
with (partially) massless and conformal fields [1–7]; 4d
conformal HSGRA [8–10] that is a higher spin extension of
Weyl gravity; chiral HSGRA [11–15] and its truncations
[16,17].1 In this paper we covariantize the interactions of
chiral HSGRA.
Chiral HSGRA is easy to describe due to its simplicity—

interactions stop at the cubic level in the action. It is built
from the standard cubic interactions, even though the
formulation available before the present paper is in the
light-cone gauge. It is advantageous that the light-cone

gauge and the spinor-helicity formalism are closely related
[23–27]. As is well known [28,29], the Lorentz invariance
fixes cubic amplitudes Vλ1;λ2;λ3 and for any triplet of
helicities λ1 þ λ2 þ λ3 > 0 there is a unique vertex and
the corresponding amplitude:

Vλ1;λ2;λ3 jon shell ∼ ½12�λ1þλ2−λ3 ½23�λ2þλ3−λ1 ½13�λ1þλ3−λ2 : ð1:1Þ

Chiral theory can be defined as a unique combination of
vertices [11–13] that (i) contains at least one nontrivial self-
interaction of a higher spin state with itself, (ii) leads to a
Lorentz-invariant theory, and (iii) does not require higher
order contact vertices. These assumptions imply that the
spectrum of the theory has to contain massless fields of all
spins s ¼ 0; 1; 2;…, i.e., helicities λ ∈ ð−∞;þ∞Þ and all
coupling constants are uniquely fixed to be

VChiral¼
X

λ1;λ2;λ3

Cλ1;λ2;λ3Vλ1;λ2;λ3 ; Cλ1;λ2;λ3 ¼
κðlpÞλ1þλ2þλ3−1

Γðλ1þλ2þλ3Þ
:

ð1:2Þ

Here, lp is a constant of dimension length, e.g., Planck
length, and κ is an arbitrary dimensionless constant. In
principle, there exists the ϕ3 vertex, i.e., λi ¼ 0, but it is not
present in chiral theory. We also see that the Γ function
restricts the range of summation to λ1 þ λ2 þ λ3 > 0.
All such vertices are present. For example, one has the
half of the usual þ2;þ2;−2 Einstein-Hilbert vertex
and, provided the Yang-Mills groups are turned on, the
Yang-Mills interaction þ1;þ1;−1. Importantly, the higher
derivative corrections are also needed, e.g., the half of the
Goroff-Sagnotti counterterm [30], which is þ2;þ2;þ2.
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1There are also other interesting recent ideas, e.g., [18,19] and
[20–22].
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Such higher derivative terms originate from string theory as
well, e.g., [31].
It was shown that the tree-level amplitudes vanish on

shell [14,15]. At one-loop there are no UV divergences and
the one-loop amplitudes are proportional to the all helicity
plus amplitudes of QCD or self-dual Yang-Mills (SDYM)
at one loop [32]. They also have a higher spin kinematical
factor and a factor of the total number of degree of freedomP

λ 1. The latter is infinite and, as in any QFT with
infinitely many fields, see e.g., [33], has to be given a
prescription for. A great deal of vacuum one-loop results
[34–43] suggest that this has to be regularized to zero.
The power of the light-cone gauge is in that it excludes

unphysical degrees of freedom and evades ambiguities of
covariant (gauge) descriptions. However, many interesting
questions, e.g., nontrivial backgrounds, exact solutions,
higher order quantum corrections, are easier to tackle
within a covariant description. Until recently a subtlety
has been that chiral theory requires all vertices (1.1), some
of which cannot be written within the most common
covariant approach to higher spin fields [44], where a
massless spin-s field is represented by a symmetric rank-s
tensorΦμ1…μs. This puzzle has been resolved in [17], where
it was shown that the most basic problematic interactions of
higher spin fields—Yang-Mills and gravitational—can
easily be constructed by employing the covariant field
variables discovered first in twistor theory [45–48]. This
should not be surprising since chiral theory was shown to
admit a formulation similar to self-dual Yang-Mills and
self-dual gravity [16] and twistor techniques are most
natural for self-dual theories.
In the present paper we extend these results to chiral

theory and construct its minimal model or, equivalently, its
classical equations of motion as a free differential algebra
[49] to next-to-leading order (NLO). In other words, chiral
theory can be written as a sigma-model dΦ ¼ QðΦÞ, where
Φ are maps from ΠTM (the algebra of differential forms
on a manifold M) to another supermanifold N equipped
with a homological vector field Q, QQ ¼ 0. All essential
information about a given theory, e.g., action, anomalies,
etc., is encoded in its minimal model as the Q cohomology
[50,51]. Therefore, the results of the paper can be
used to investigate the quantum properties of chiral theory,
as well as to construct an action and look for classical
solutions.
The paper is organized as follows. After a brief intro-

duction in Sec. II into free differential algebras (FDAs) and
minimal models, we give in Sec. III a concise overview of
[17] where covariant actions for the higher spin extensions
of self-dual Yang-Mills and self-dual gravity were con-
structed. These results give important hints on how to
extend them to chiral theory, which these two classes are
contractions of [16]. To find the right gauge algebra (higher
spin algebra) is the first step and it was done in [52].
We then proceed in Sec. IV to the main part and construct

L∞-structure maps/interaction vertices. We also check that
some three-point amplitudes (1.2) are correctly reproduced.
The latter means that the FDA incorporates all the physi-
cally relevant information at NLO. There are still some
higher structure maps to be found that are required for the
complete covariantization of chiral theory. We leave this
problem to the future work.

II. MINIMAL MODELS

There is a very useful L∞ algebra, better say a Q
manifold, that can naturally be associated to any (gauge)
theory and encodes all relevant information about it, which
is called the minimal model. As is explained in [51,53–59],
one begins with the jet space BV-BRST formulation of a
given (gauge) theory. This way one gets a huge L∞ algebra
which has been quite useful in the analysis of numerous
problems in (quantum) field theories, see e.g., [55,56].
One can then consider various equivalent reductions
of this algebra that are quasi-isomorphic to it. An important
step is to take a usually much smaller equivalent L∞
algebra, called its minimal model. The minimal model is, in
some sense, the smallest possible L∞ algebra associated to
a given field theory. Nevertheless, modulo the usual
topological issues, it contains the full information about
invariants, conserved currents, actions, counterterms,
anomalies, etc., of the initial field theory [50,51].
Given a BRST complex that is non-negatively graded,

e.g., the minimal model, one can consider an associated
sigma model whose fields are coordinates on the above Q
manifold [57]:

dΦ ¼ QðΦÞ: ð2:1Þ

Here, Φ≡Φðx; dxÞ are maps ΠTM → N from the
exterior algebra of differential forms on a space-time
manifold M to a supermanifold N that is equipped with
a homological vector field Q, QQ ¼ 0. Equation (2.1) and
its natural gauge symmetries are equivalent to the initial
field theory,2 thereby providing its reformulation as a free
differential algebra.3

If ΦA are coordinates on N , then QQ ¼ 0 is equivalent
to (2.1) being formally consistent (that is dd ¼ 0 does not
lead to any algebraic constraints on the fields), which can
be rewritten as

Q2 ¼ 0 ⇔ QB ∂

∂ΦB Q
A ¼ 0: ð2:2Þ

2In general, the equations describe the parametrized version of
the initial gauge field theory [57].

3Sullivan introduced free differential algebras in [49] together
with minimal models in the case of differential graded Lie
algebras. FDAs were reintroduced into physics [60,61] in the
supergravity context and a bit later in the higher spin gravity
context in [62].
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The latter condition, when Taylor expanded in Φ, is
equivalent to the L∞ relations [63,64] that define an L∞
algebra. This shows that FDA, L∞ and Q manifolds are all
closely related. In many practical applications of minimal
models, e.g., gauge field theories including gravity,4

coordinates on the formal graded manifold N consist of
two subsets: degree one and degree zero. We denote the
coordinates and, then, the corresponding fields ω and C,
respectively. From the space-time point of view ω becomes
a one-form connection of some Lie algebra and zero-form
C becomes a matter field taking values in some represen-
tation ρ. The simplest system one can write,

dω ¼ 1

2
½ω;ω�; dC ¼ ρðωÞC; ð2:3Þ

consists of the flatness condition for ω and of the covariant
constancy equation on C. These two equations will
describe a background and the physical degrees of freedom
propagating on it. The most general nonlinear deformation
reads5

dω ¼ l2ðω;ωÞ þ l3ðω;ω; CÞ þ l4ðω;ω; C; CÞ þ…;

dC ¼ l2ðω; CÞ þ l3ðω; C; CÞ þ…: ð2:4Þ

This algebraic structure can also be identified as a Lie
algebroid. Here the initial data—Lie algebra and its module
—are encoded in the bilinear maps l2ðω;ωÞ and l2ðω; CÞ,
respectively. The higher spin algebra for chiral theory was
guessed in [52] based on its truncation to the self-dual
gravity sector. The module structure is easy to identify, see
below. The problem is to find the higher order vertices. In
the paper we determine l3ð•; •; •Þ.

III. HS-SDYM AND HS-SDGR

Since the full covariant form of chiral HSGRA is not
known and this is exactly the problem we address in the
paper, a good starting point is to extract some useful
information from the two contractions of chiral theory
[16,17], which can be understood as higher spin (HS)

extensions of SDYM and self-dual gravity (SDGR). We
begin by reviewing some necessary facts about free fields.
Impatient readers familiar with the formalism can skip
to Sec. IV.

A. Free fields

Free massless fields of any spin can be described by
equations proposed by Penrose [68]6

∇B
A0ΨBAð2s−1Þ ¼ 0; ∇A

B0ΨB0A0ð2s−1Þ ¼ 0: ð3:1Þ

The equations help to separate helicity eigenstates: one of
them describes the positive and another the negative
helicity states. Twistor theory is very handy in constructing
self-dual theories. It requires positive and negative helicity
states be described asymmetrically [47,48,69]

∇A
A0ΦA;A0ð2s−1Þ ¼0; δΦA;A0ð2s−1Þ ¼∇AA0

ξA
0ð2s−2Þ; ð3:2Þ

where ΦA1…A2s−1;A0
is a gauge potential. For s ¼ 1 it

coincides with the usual one Aμ ∼ΦA;A0
. For s ¼ 2 it

can be identified with a component of the spin connection.
A bit more geometrically one can [46] introduce a one-form
connection

ωA0ð2s−2Þ ¼ ΦB;A0ð2s−2Þ0B0
dxBB0 : ð3:3Þ

It can be decomposed into two irreducible spin tensors

ωA0ð2s−2Þ ≡ eBB0ΦB;A0ð2s−2ÞB0 þ eBA
0ΘB;A0ð2s−3Þ; ð3:4Þ

where eAA
0 ≡ eAA

0
μ dxμ is the vierbein one-form. With the

help of gauge transformations

δωA0ð2s−2Þ ¼ ∇ξA
0ð2s−2Þ þ eCA0

ηC;A
0ð2s−3Þ; ð3:5Þ

we get (3.2) forΦ and can eliminate Θ. Equations (3.1) and
(3.2) follow from a simple action [17,46]7

S ¼
Z

ΨA0ð2sÞ ∧ HA0A0 ∧ ∇ωA0ð2s−2Þ: ð3:6Þ

Here HA0B0 ≡ eCA
0 ∧ eCB

0
. For s ¼ 1 we have the action of

the free SDYM theory. By replacing ∇ω with F ¼ ∇ω −
1
2
½ω;ω� and promoting ω and Ψ to a Lie-algebra-valued

one-form we get the complete SDYM action [17].

4For some of the supergravities forms of higher degree need to
be introduced.

5It was first proposed in [62] to look for higher spin gravities in
the form of an FDA. However, it is important to constrain the
vertices by further conditions: (i) to restrict to a basis of
independent interaction vertices (otherwise one and the same
interaction can be present in infinitely many equivalent but
differently looking forms); (ii) to impose some form of locality
(otherwise any deformation can be completed with higher orders
[65], or, in the light-cone gauge, any function can serve as a
Hamiltonian unless we care about locality of the boost gener-
ators). All these issues are present [66,67] in [62]. Therefore,
unless (i) and (ii) are taken into account Q just gives the most
general ansatz for interactions consistent with symmetries rather
than any concrete theory. These issues are under control in the
present paper.

6We also introduce a compact notation for symmetric indices:
all indices in which some tensor is symmetric or to be sym-
metrized are denoted by the same letter. In addition a group of k
symmetric indices A1…Ak can be abbreviated as AðkÞ.

7This action also can be derived as the presymplectic AKSZ
action [70].
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1. Free equations of motion as free differential algebra

Let us start8 with the variational equations of motion,
which do not have an FDA form yet:

∇ΨA0ð2sÞ ∧ HA0A0 ¼ 0; HA0A0 ∧ ∇ωA0ð2s−2Þ ¼ 0: ð3:7Þ

Indeed, we need∇Ψ ¼ … and∇ω ¼ …. The equations are
equivalent to

∇ΨA0ð2sÞ ¼eBB0ΨB;A0ð2sÞB0
; ∇ωA0ð2s−2Þ ¼eBA

0
ωB;A0ð2s−3Þ;

ð3:8Þ

where we introduced a zero-form ΨA;A0ð2sþ1Þ and one-form
ωA;A0ð2s−3Þ. These fields are known to be relevant for free
higher spin fields since [71].9 Of course, we need to know
what the ∇ of these new fields is, which encourages one to
introduce other fields and so on. It is clear that the free
equations are as easy to write as (note that ∇2 ¼ 0)

∇ωAðiÞ;A0ðn−iÞ ¼ eBA
0
ωAðiÞB;A0ðn−i−1Þ; i ¼ 0;…; n − 1;

ð3:9aÞ

∇ωAðnÞ ¼ HBBCAðnÞBB; ð3:9bÞ

∇CAðnþkþ2Þ;A0ðkÞ ¼ eBB0CBAðnþkþ2Þ;B0A0ðkÞ; k ¼ 0; 1; 2;…;

ð3:9cÞ

∇ΨAðkÞ;A0ðnþkþ2Þ ¼ eBB0ΨBAðkÞ;A0ðnþkþ2ÞB0
; k ¼ 0; 1; 2;…;

ð3:9dÞ

where C and Ψ are zero forms and ω are one-forms. It is
convenient to introduce generating functions:

ωðy; ȳÞ ¼
X
n;m

1

n!m!
ωAðnÞ;A0ðmÞyA…yAȳA

0
…ȳA

0
; ð3:10Þ

idem. for C, where we pack both CAðkÞ;A0ðnþkþ2Þ and
ΨAðnþkþ2Þ;A0ðkÞ into a single generating function Cðy; ȳÞ.
On top of that Cðy; ȳÞ contains CAðkÞ;A0ðkÞ, which describe a
free massless scalar field. Note that the scalar field is
necessarily present in chiral theory. We can summarize the
free equations as (recall that ∇2 ¼ 0)

∇ω ¼ eBB
0
yB0∂BωþHBB

∂B∂BCðy; ȳ ¼ 0Þ;
∇C ¼ eBB

0
∂B∂B0C: ð3:11Þ

These equations form a boundary condition for the non-
linear theory.

B. Initial data for interactions

It can be useful to have a look at the two contractions of
chiral theory [16,17] in order to understand how inter-
actions can be introduced. Both HS-SDYM and HS-SDGR
[17] operate with holomorphic fields ωA0ð2s−2Þ and ΨA0ð2sÞ.
It is still useful to package them into generating functions
ωðȳÞ and ΨðȳÞ.

1. HS-SDYM

In order to construct Yang-Mills type interactions
of higher spin fields, we promote ω and Ψ to Lie-
algebra-valued fields, e.g., ωA0ðkÞ ≡ ωA0ðkÞ;aTa. It is con-
venient to realize Ta as matrices MatN for some N, e.g.,
ωðȳÞ≡ ωðȳÞij. We will omit the matrix indices and the
only trace they leave is that we cannot swap various ω and
Ψ factors, the order is important, e.g.,Ψ ∧ ω ≠ ω ∧ Ψ. The
action of HS-SDYM can be written as

S ¼
X
s¼1

1

ð2sÞ! tr
Z

ΨA0ð2sÞ ∧ HA0A0 ∧ FA0ð2s−2Þ; ð3:12Þ

where the curvature is FðȳÞ ¼ ∇ω − ω ∧ ω. Note that
indices contracted with ȳA

0
are symmetrized automatically:

ω ∧ ω ¼
X
n;m¼0

1

2n!m!
½ωA0ðnÞ;ωA0ðmÞ�ȳA0

1…ȳA
0
nþm: ð3:13Þ

The action is invariant under the Yang-Mills trans-
formations:

δω ¼ ∇ξ − ½ω; ξ�; δΨ ¼ ½Ψ; ξ�: ð3:14Þ

It is also invariant under the algebraic symmetries (thanks
to eBA

0 ∧ HA0A0 ≡ 0):

δωA0ðkÞ ¼ eCA
0
ηC;A

0ðk−1Þ; ð3:15Þ

which is vital for ω to have the right number of degrees of
freedom. See [17] for detail and [21] for the twistor
reformulation.
In principle, we canwrite down thevariational equations of

motion and try to represent them as an FDA. Two important
hints will play a role in what follows: (i) interactions
must contain (3.13), i.e., dωðȳÞ ¼ ωðȳÞ ∧ ωðȳÞ þ…;
(ii) ΨðȳÞ takes values in the module that is dual to that of
ω, which follows from the structure of the action.

8The content of this paragraph has a large overlap with original
paper [71]. Apart from the self-dual subtleties the material is
standard and can be found, e.g., in [72].

9Indeed, since [71] introduces fields to parametrize all on-shell
nontrivial derivatives of massless fields, any other covariant
formulation has to employ at least some of them. Note, however,
that the fields of (3.7) appeared first thanks to the twistor
approach [47,48,68,69].
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2. HS-SDGR

Higher spin extension of SDGR [73] is more peculiar
[17]. Let us start with its version on constant (nonzero)
curvature spacetimes. The flat-space version [52] is a
simple limit. To proceed we introduce a Poisson structure
on the space C½ȳ� of functions in ȳA

010:

ff; gg ¼ ∂
C0
f∂C0g ¼

X
n;m

1

ðn − 1Þ!ðm − 1Þ! fA0ðn−1ÞC
0

× gA0ðm−1ÞC0 ȳA
0
…ȳA

0
: ð3:16Þ

Since Poisson implies Lie, we can define a curvature as
usual

F ¼ dω −
1

2
fω;ωg; δω ¼ dξ − fω; ξg≡Dξ: ð3:17Þ

In particular, the Poisson bracket reproduces the standard
FAB ¼ dωAB þ ωA

C ∧ ωCB in the spin-two sector. The
action reads

S ¼ 1

2
hΨjF ∧ Fi ¼

X
n;m¼0

1

2ðnþmÞ!

×
Z

ΨA0ðnþmÞ ∧ FA0ðnÞ ∧ FA0ðmÞ: ð3:18Þ

It is again important that there is a generalization of the shift
symmetry that leaves the full action invariant [17]. To this
effect, one first needs to induce the module structure on Ψ,
which is a module dual to the Poisson algebra as a Lie
algebra:

hf; fξ; ggi ≔ hf ∘ ξ; gi: ð3:19Þ

That it is a module structure is manifested by

RfðΨÞ ≔ −Ψ ∘ f; ½Rf;Rg�ðΨÞ ¼ Rff;ggðΨÞ: ð3:20Þ

The structure of the action and of the gauge symmetries
gives a strong support to the idea thatΨ has to be in the dual
(coadjoint) representation of the higher spin symmetry. The
flat-space limit is easy to take: one just needs to drop the
fω;ωg term in the curvature, which is equivalent to taking
the commutative limit for ȳ. While we could discuss the
FDA formulation of this theory, an example of SDGR gives
enough information about the gauge algebra to attack the
main problem.

3. SDGR in flat space

It may be useful to recall the first few terms of the FDA
for self-dual gravity [75,76] in flat space [77]. The action
reads [52]

Z
ΨA0B0C0D0 ∧ dωA0B0 ∧ dωC0D0 : ð3:21Þ

The equations of motion are (FA0B0 ≡ dωA0B0
)

FðA0B0 ∧ FC0D0Þ ¼ 0; dΨA0B0C0D0 ∧ FA0B0 ¼ 0: ð3:22Þ

The first equation implies that there is no five-dimensional
representation of sl2 in the symmetric tensor product of two
FA0B0

. Therefore, FA0B0
can be represented as eBA

0 ∧ eBA
0
for

some field eAA
0
. Indeed, it is easy to see that

FA0A0 ∧ FA0A0 ¼ 0. Now, it is not surprising that the first
few equations in the FDA read

dωA0A0 ¼ eBA
0 ∧ eBA

0
; deAA

0 ¼ ωA
B ∧ eBA

0
;

dωAA ¼ ωA
C ∧ ωCA þHBBCAABB:

We note that the non-Abelian terms with ωA0A0
are missing

above as compared to the standard curvature of
soð3; 2Þ ∼ spð4Þ. However, we do not recognize the
curvature of the Poincare algebra either. As for Ψ, the
equation can be rewritten as

dΨA0B0C0D0 ∧ HA0B0 ¼ 0; ð3:23Þ

which is equivalent to

∇ΨA0A0A0A0 ¼ eBB0ΨB;A0A0A0A0B0
: ð3:24Þ

One can see that we employ exactly the same fields as for
the full gravity, but certain structures “Abelianize.” Half of
the Lorentz symmetry becomes global rather than origi-
nating from a local gauge symmetry.

IV. FDA FOR CHIRAL HIGHER SPIN GRAVITY

After the preliminary steps above we proceed to con-
structing the free differential algebra of chiral theory. First,
we summarize the known initial data and boundary con-
ditions for the L∞ structure maps.

A. Initial data

1. Coordinates/fields, on-shell jet

The coordinates on the Q manifold or, alternatively, the
fields of the minimal model are exactly the same as for the
free fields discussed in Sec. III.

10This algebra is also know as w1þ∞, see e.g., [74] for the latest
applications.
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h ¼ þs∶ ωAðkÞ;A0ð2s−2−kÞ; CAð2sþiÞ;A0ðiÞ;

k ¼ 0;…; 2s − 2; i ¼ 0; 1; 2;…; ð4:1aÞ

h ¼ −s∶ CAðiÞ;A0ð2sþiÞ; i ¼ 0; 1; 2;…; ð4:1bÞ

h ¼ 0∶ CAðiÞ;A0ðiÞ; i ¼ 0; 1; 2;…: ð4:1cÞ

As before, it is convenient to keep all components of ω and
C confined in generating functions ωðy; ȳÞ, Cðy; ȳÞ. Chiral
theory is known to admit Yang-Mills gaugings [15] that,
however, come in a very restricted Chan-Paton-like fashion.
To be precise, one can have UðNÞ, OðNÞ, and USpðNÞ
gaugings. Therefore, we assume that ω and C take values
in MatN .

11

2. General form

Given all the data above, we are looking for chiral theory
in the form

dω ¼ Vðω;ωÞ þ Vðω;ω; CÞ þ � � � ; ð4:2aÞ

dC ¼ Uðω; CÞ þ Uðω; C; CÞ þ � � � : ð4:2bÞ

Here, V and U are some L∞ structure maps to be
determined. It would be sufficient if the expansion stops
at the quartic terms. This can be justified on the basis of the
light-cone action of chiral theory: interactions stop at the
cubic level. One might argue that they have to stop then at
quadratic terms for equations. However, this does not have
to be the case since the light-cone gauge theory requires a
background, i.e., some specific ω0. Therefore, Vðω;ω; CÞ
is legit, as well as Vðω;ω; C; CÞ, while higher order terms
may not be necessary. One can also see that Vðω;ωÞ cannot
account for all of the interactions, e.g., ω does not contain
the scalar field at all.
An important subtlety is that covariantization of a given

theory (going from the light-cone gauge to a covariant
formulation) may require more terms in the perturbation
theory that are there only for the sake of covariance. Such
contact terms will not give any contribution to physical
amplitudes. Another subtlety is due to field redefinitions: it
is easy to perform a nonlinear field redefinition in the cubic
theory and generate spurious interactions. Alternatively,
when looking for Vs and Us one can find oneself in an
unfortunate field frame with such spurious interactions all
around. We check in Appendix C that certain cubic
amplitudes are reproduced correctly. Therefore, (4.2) con-
tains all the physically relevant information. Comparing the
chiral theory FDA to those of SDYM and SDGR [77] we

find that the former contains only the terms essential for
consistency, which fixes field redefinitions.

3. Boundary conditions

There are some boundary conditions for Vs and Us that
we learned from the free equations (3.11):

Vðe;ωÞ þ Vðω; eÞ ¼ eCC
0
∂CȳC0ω; ð4:3aÞ

Uðe; CÞ þ UðC; eÞ ¼ eCC
0
∂C∂C0C; ð4:3bÞ

Vðe; e; CÞ ¼ eCB0eCB
0
∂C∂CCðy; ȳ ¼ 0Þ: ð4:3cÞ

To summarize we are looking for a theory with the
spectrum of fields given in (4.1), in the form of FDA
(4.2) such that it reproduces the boundary conditions (4.3),
i.e., the free equations.

B. FDA

In what follows we will have to write down Ansätze for
L∞ maps. Given that we have packaged the coordinates
into generating functions ωðy; ȳÞ and Cðy; ȳÞ, the L∞-
structure maps can be represented by polydifferential
operators:

Vðf1;…; fnÞ ¼ Vðy; ∂1;…; ∂2Þfðy1Þ…fðynÞjyi¼0; ð4:4Þ

where fis are ωs or Cs and we have explicitly indicated
dependence on y, omitting ȳ which can be treated similarly.
With further details on the operator calculus collected in
Appendix C, we only note that (i) we abbreviate ȳA

0 ≡ pA0
0 ,

∂
ȳi
A0 ≡ pi

A0 , yA ≡ qA0 , ∂
yi
A ≡ qiA; (ii) contractions pij ≡ pi ·

pj ≡ −ϵABpA
i p

B
j ¼ pA

i pjA are done in such a way that
exp½p0 · pi�fðyiÞ ¼ fðyi þ yÞ; (iii) all operators are
Lorentz invariant in the most naive sense of having all
indices contracted either with ϵAB or ϵA0B0 ; (iv) we usually
omit explicit arguments yi in fs, drop jyi¼0 and sometimes
write down only the operator itself whenever it is clear what
the arguments are. Of course, all polydifferential operators
are assumed to be local, i.e., they map polynomials to
polynomials, which, after Taylor expansion means, the
operators contract a number of Lorentz indices on the
arguments.12 To give a couple of useful examples, the usual
commutative product on ȳ and the Moyal-Weyl star product
on y correspond to the following symbols:

11It was shown in [78–80] that this assumption allows one to
reduce a complicated Chevalley-Eilenberg cohomology problem
to a much simpler Hochschild one. In other words, it is important
to remember that usually higher spin algebras originate from
associative ones.

12Note that this locality is just a requirement for V to imply
some contraction of Lorentz indices (hidden by y) on the
arguments, which is a type of locality used in [62]. The locality
in the field theory sense is more subtle—one has to control the
number of derivatives in interactions. The interactions in the
present paper are local as in chiral theory, i.e., vertices contain a
finite number of derivatives provided the helicities of the fields at
a given vertex are fixed.
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exp ðȳð∂̄1 þ ∂̄2ÞÞ ¼ exp½p0 · p1 þ p0 · p2�
≡ exp½p01 þ p02�; ð4:5aÞ

exp ðyð∂1 þ ∂2Þ þ ∂1∂2Þ ¼ exp½q0 · q1 þ q0 · q2 þ q1 · q2�
≡ exp½q01 þ q02 þ q12�: ð4:5bÞ

We also would like to rewrite the boundary conditions (4.3)
in the operator language:

Vðe;ωÞ þ Vðω; eÞ ∼ p01q12ep02þq02ðeCC0
y1Cȳ

1
C0 Þ

× ωðy2; ȳ2Þjy1;2¼ȳ1;2¼0; ð4:6aÞ

Uðe; CÞ þ UðC; eÞ ∼ q12p12ep02þq02ðeCC0
y1Cȳ

1
C0 Þ

× Cðy2; ȳ2Þjy1;2¼ȳ1;2¼0; ð4:6bÞ

Vðe; e; CÞ ∼ q13q23p12eq03ðeBB0
y1Bȳ

1
B0 Þ

× ðeCC0
y2Cȳ

2
C0 ÞCðy3; ȳ3Þjy1;2;3¼ȳ1;2;3¼0; ð4:6cÞ

where the ∼ sign means that in the actual FDAwe only care
about reproducing these structures up to an overall coef-
ficient. The last boundary condition, if satisfied, ensures the
nontriviality of the full vertex. We will also give a rigorous
proof of this fact.

1. Higher spin algebra

The L∞ relations or the formal consistency of (4.2) at
order ω3 imply the Jacobi identity for Vð•; •Þ

VðVðω;ωÞ;ωÞ − Vðω;Vðω;ωÞÞ ¼ 0: ð4:7Þ

The presence of the matrix factors reduces the
Jacobi identity to a much simpler and more restrictive
associativity condition, i.e., Vða; bÞ must define an asso-
ciative product, where a; b ∈ C½y; ȳ�. Given the nonlinear
pieces of various (sub)theories there are not so many
associative algebras one can think of. In fact, the only
option [52] is to define13

Vðf; gÞ ¼ c exp ½q01 þ q02 þ q12� exp ½p01 þ p02�
× fðy1; ȳ1Þ ∧ gðy2; ȳ2Þjyi¼ȳi¼0 ≡ f ⋆ g; ð4:8Þ

with c as an undetermined prefactor. In words Vðf; gÞ≡
f ⋆ g is the commutative product on ȳ and the star product
on y. Therefore, as the higher spin algebra hs we take the
tensor product of the Weyl algebra in y and of the
commutative algebra of function in ȳ, hs ¼ A1 ⊗ C½ȳ�.
In addition we assume the matrix factor MatN. This choice

for Vðω;ωÞ is also consistent with the boundary conditions
in Eq. (4.6a):

Vðe;ωÞ þ Vðω; eÞ ¼ 2ceBB
0
ȳ0B∂Bω; ð4:9Þ

which encourages us to set c ¼ 1
2
, so that

Vðf; gÞ ¼ 1

2
exp ½q01 þ q02 þ q12� exp ½p01 þ p02�: ð4:10Þ

2. Coadjoint module

Similarly, the formal consistency implies that Uð•; •Þ
defines a representation of the higher spin algebra:

UðVðω;ωÞ; CÞ − Uðω;Uðω; CÞÞ ¼ 0: ð4:11Þ

The actions of HS-SDYM and HS-SDGR strongly suggest
that Cð0; ȳÞ lives in the space dual to ωð0; ȳÞ. The action on
the dual space (dual to the commutative algebra of
functions in ȳ) can be defined via ȳA → α∂A0 , where α is
any number. In other words, the commutative algebra of
functions in ȳ acts on the dual space via differential
operators.14 In terms of symbols of operators we can write

ωðfÞ ¼ exp ½p02 þ αp12�ωðȳ1Þfðȳ2Þjȳi¼0: ð4:12Þ

With indices explicit we find

ωðfÞ ¼
X
i;n

αi

n!
ωB0ðiÞfA0ðnÞB0ðiÞȳA

0
…ȳA

0
: ð4:13Þ

It is plausible to extend the idea with the dual space to the
complete space Cðy; ȳÞ, as it is unclear how to induce the
module structure, otherwise. Now it is time to remember
about the matrix factors. We consider functionals based on
their ordering of ω and C:

Uðω; CÞ ¼ U1ðω; CÞ þ U2ðC;ωÞ: ð4:14Þ

The consistency condition splits into the following
equations:

U1ðVðω;ωÞ; CÞ − U1ðω;U1ðω; CÞÞ ¼ 0;

U2ðU1ðω; CÞ;ωÞ − U1ðω;U2ðC;ωÞÞ ¼ 0;

U2ðU2ðC;ωÞ;ωÞ þ U2ðC;Vðω;ωÞÞ ¼ 0: ð4:15Þ

In words, we have a right and a left actions of the higher
spin algebra on Cðy; ȳÞ. The actions must be compatible

13A very similar algebra in the same context, but in the light-
cone gauge, appeared even before [16].

14Since understanding that C lives in the dual module has been
important for the present paper and this idea is slightly different
from the folklore in the literature, we elaborate on it more in
Appendix B.
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with each other, which is the middle equation. Given that C should be in the dual module, the structure maps U1;2 are easy to
fix to be

U1ðω; CÞ ¼ þ 1

2
exp ½q01 þ q02 þ q12� exp ½p02 þ p12�ωðy1; ȳ1ÞCðy2; ȳ2Þjyi¼ȳi¼0

U2ðC;ωÞ ¼ −
1

2
exp ½q01 þ q02 þ q12� exp ½p01 − p12�Cðy1; ȳ1Þωðy2; ȳ2Þjyi¼ȳi¼0: ð4:16Þ

It is easy to check that boundary condition (4.6b) is
satisfied with coefficient 1.

3. Cubic vertex Vðω;ω;CÞ
As a next step we turn to the cocycle Vðω;ω; CÞ. It has a

right to be called a cocycle. Indeed, the bilinear structure
maps of any FDA (more generally, of any L∞ algebra)
define a graded Lie algebra. Let us pack them
into Q0, ðQ0Þ2 ¼ 0. Next we look for the first order
deformation Q1 of Q0. It is clear that Q1 must be in the
cohomology of Q0. The action of Q0 on Q1 is that of the
Chevalley-Eilenberg differential, according to which
Vðω;ω; CÞ is a two-cocycle with values in hs ⊗ hs: it
takes values in hs and C is in hs�. To find the equation for

Vðω;ω; CÞ we evaluate the ω3C terms after applying d to
(4.2), which leads to

VðVðω;ω; CÞ;ωÞ − Vðω;Vðω;ω; CÞÞ þ VðVðω;ωÞ;ω; CÞ
− Vðω;Vðω;ωÞ; CÞ þ Vðω;ω;Uðω; CÞÞ ¼ 0: ð4:17Þ

Like we did for Uðω; CÞ, we can split Vðω;ω; CÞ into three
vertices, with different ordering of ω and C:

Vðω;ω; CÞ ¼ V1ðω;ω; CÞ þ V2ðω; C;ωÞ þ V3ðC;ω;ωÞ:
ð4:18Þ

The consistency condition should now be evaluated for
each ordering of ω and C separately, which leads to

V1ðVðω;ωÞ;ω; CÞ − Vðω;V1ðω;ω; CÞÞ þ V1ðω;ω;U1ðω; CÞÞ − V1ðω;Vðω;ωÞ; CÞ ¼ 0;

VðV1ðω;ω; CÞ;ωÞ þ V1ðω;ω;U2ðC;ωÞÞ þ V2ðVðω;ωÞ; C;ωÞ − Vðω;V2ðω; C;ωÞÞ − V2ðω;U1ðω; CÞ;ωÞ ¼ 0;

VðV2ðω; C;ωÞ;ωÞ − V2ðω; C;Vðω;ωÞÞ − V2ðω;U2ðC;ωÞ;ωÞ − Vðω;V3ðC;ω;ωÞÞ þ V3ðU1ðω; CÞ;ω;ωÞ ¼ 0;

VðV3ðC;ω;ωÞ;ωÞ − V3ðC;ω;Vðω;ωÞÞ þ V3ðC;Vðω;ωÞ;ωÞ þ V3ðU2ðC;ωÞ;ω;ωÞ ¼ 0: ð4:19Þ
In Appendix D we rewrite the equations above in terms of symbols of operators. In Appendix E we find a nontrivial
solution. The idea is to look for regular vertices in the form of singular field redefinitions. In other words, if the cocycle is
formally trivial but the coboundary does not belong to the required functional class, the cocycle is nontrivial. The final result
can be written as

V1ðω;ω; CÞ∶ þ p12S
Z
Δ2

exp½ð1 − t1Þp01 þ ð1 − t2Þp02 þ t1p13 þ t2p23�; ð4:20aÞ

V2ðω; C;ωÞ∶ − p13S
Z
Δ2

exp½ð1 − t2Þp01 þ ð1 − t1Þp03 þ t2p12 − t1p23�þ

− p13S
Z
Δ2

exp½ð1 − t1Þp01 þ ð1 − t2Þp03 þ t1p12 − t2p23�; ð4:20bÞ

V3ðC;ω;ωÞ∶ þ p23S
Z
Δ2

exp½ð1 − t2Þp02 þ ð1 − t1Þp03 − t2p12 − t1p13�: ð4:20cÞ

Here, Δn is an n-dimensional simplex t0 ¼ 0 ≤ t1 ≤
… ≤ tn ≤ 1. The nontriviality of the solution is proved
in Appendix E. There is an overall factor S

S ¼ exp½q01 þ q02 þ q03 þ q12 þ q13 þ q23� ð4:21Þ
that computes the star product over all y variables. In other
words, the vertex factorizes

V1ðaðyÞ ⊗ āðȳÞ; bðyÞ ⊗ b̄ðȳÞ; cðyÞ ⊗ c̄ðȳÞÞ
¼ a ⋆ b ⋆ c ⊗ v1ðā; b̄; c̄Þ; ð4:22Þ

and similarly for the other vertices.
Remark.—As it was pointed out in [81–83], constructing

FDAs of higher spin gravities calls for an extension of the
deformation quantization of Poisson manifolds to Poisson
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orbifolds, which is an open problem. Nevertheless, the
traces of Kontsevich and of Shoikhet-Tsygan-Kontsevich
formality are sometimes visible [84]. The key point in the
proof of the formality theorems is to find the right
configuration space and the right closed form on it, so
that the proof amounts to a simple application of the Stokes
theorem. As we show in Appendix E, one can find a closed
two-form Ω, dΩ ¼ 0, on Δ3 such that its integral over the
four boundaries of the simplex reduces to the four terms in
the equation for V1 and similarly for other vertices. In this
regard let us note that the integral form is not unique. It
arises as an integral over the configuration space of ordered
points on a circle. With the help of translation invariance
one can (gauge) fix the times of different points and also
use the reflection symmetry of the circle. Altogether there
are six different forms.
Remark.—The cubic vertex has an interesting property:

if we remove for a moment the matrix factors MatN , make y
commutative (by taking the ℏ ¼ 0 limit after introducing ℏ
into the Moyal-Weyl star product) and bring ωs and C to
the same ωωC ordering, we get zero:

V1ðω;ω; CÞ þ V2ðω; C;ωÞ þ V3ðC;ω;ωÞjℏ¼0;N¼1 ≡ 0:

ð4:23Þ

This does not have to be the case. However, erasing matrix
factors together with the commutative limit in ymust give a
trivial vertex. Indeed, there is no such truncation of chiral
theory. Therefore, the vertices we found enjoy some kind of
minimality, giving zero whenever they should.
Remark.—It can be shown that V1;2;3 ≠ 0. In all the cases

considered before C takes values in the (twisted-)adjoint

representation of a higher spin algebra. This allows one to
set V2;3 ¼ 0 and choose V1ða; b; cÞ ¼ ϕða; bÞ ⋆ c, where
ϕða; bÞ is a certain Hochschild two-cocycle that deforms
the higher spin algebra. Indeed, assuming V2;3 ¼ 0 we find

VðV1ða; b; cÞ; dÞ þ V1ða; b;U2ðc; dÞÞ ¼ 0: ð4:24Þ

Here, U2ðc; dÞ ¼ −c ⋆ d and Vða; bÞ ¼ a ⋆ b in the
previously studied cases. Therefore, setting c ¼ 1
leads to V1ða; b; dÞ ¼ V1ða; b; 1Þ ⋆ d. Moreover,
ϕða; bÞ ¼ V1ða; b; 1Þ turns out to be a Hochschild two-
cocycle. For chiral theory this cannot be true. Indeed, it is
easy to see that while in the second term of (4.24) d has all
of its indices contracted with c, the same indices are free in
the first term, i.e., (4.24) cannot be satisfied. Therefore, we
have to look for a solution with all V1;2;3 ≠ 0, as we did.

4. Cubic vertex Uðω;C;CÞ
The previously found vertex Vðω;ω; CÞ serves as a

source for Uðω; C; CÞ. As before, we split it according to
different orderings:

Uðω; C; CÞ ¼ U1ðω; C; CÞ þ U2ðC;ω; CÞ þ U3ðC;C;ωÞ:
ð4:25Þ

There are six equations that can be obtained as various
ω2C2 terms after applying d to (4.2). We rewrite them in
terms of symbols of operators in Appendix D and solve in
Appendix E. The final form of the solution reads15

U1ðω; C; CÞ∶ þ p01S
Z
Δ2

exp½ð1 − t2Þp02 þ t2p03 þ ð1 − t1Þp12 þ t1p13�; ð4:26aÞ

U2ðC;ω; CÞ∶ − p02S
Z
Δ2

exp½t2p01 þ ð1 − t2Þp03 − t1p12 þ ð1 − t1Þp23�þ

− p02S
Z
Δ2

exp½t1p01 þ ð1 − t1Þp03 − t2p12 þ ð1 − t2Þp23�; ð4:26bÞ

U3ðC;C;ωÞ∶ þ p03S
Z
Δ2

exp½ð1 − t1Þp01 þ t1p02 þ ðt2 − 1Þp13 − t2p23�; ð4:26cÞ

where S is the star product over ys (4.21).

C. Summary and discussion

The main result of this paper are the boxed formulas
above that define vertices Vðω;ωÞ, Uðω; CÞ, Vðω;ω; CÞ,
Uðω; C; CÞ. Altogether they satisfy the L∞ relations up to
order OðC2Þ. These vertices determine both the free
equations and the essential interactions of chiral theory.

15A resemblance to some of the formulas in the literature [62]
is striking, of course. However, as different from [62], all vertices
in the present paper are local and do not contain infinite
(divergent) sums over different representations of the same
interactions [66,67]. Therefore, we are constructing an actual
theory rather than the most general Ansatz for interactions
compatible with symmetries.
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By essential we mean those that contribute to the cubic
amplitude and which fully determine chiral theory. Let us
recall that one can switch on very few higher-spin inter-
actions and it is the consistency of the theory that will
enforce the unique completion [11–13]. However, the
covariantization may require more contact vertices, which
is an interesting problem for the future.
In chiral theory there is one-dimensional coupling

constant, lP, which is needed to compensate for higher
powers of momenta in the vertices. The power of momenta
equals the sum of the helicities, λ1 þ λ2 þ λ3, of the fields
that meet at the vertex. Given that the action of SDGR (with
cosmological constant) contains dωA0B0 þ ωA0

C0 ∧ ωC0B0
, it

makes sense to assign mass dimension 1 to all ωA0ð2s−2Þ and,
hence, mass dimension zero to all ΨA0ð2sÞ. Similarly, eAA

0

has dimension one. All ωA0ð2s−2−kÞ;AðkÞ are expressed as
derivatives of ωA0ð2s−2Þ. It is then tempting to extend this to
the whole ω and C. To recover lP we need to introduce it
into eAA

0
, e.g., eAA

0
μ ∼ l−1P σAA

0
μ in Cartesian coordinates.

The dimensionless coupling κ simply counts the orders
of ω and C in the perturbative expansion. In the light-cone
gauge the expansion stops at the cubic terms. This does not
have to be the case after covariantization. Let us compare
the general structure of interactions in the light-cone
gauge and in the FDA expanded over Minkowski vacuum
ω0 ¼ e. We will be sketchy here. It is convenient to pack
all positive helicity fields into Φ and all negative
helicity fields plus scalar into Ψ. The action reads (very
schematically)

L ¼ Ψ□Φþ cþþþΦΦΦþ cþþ−ΦΦΨþ cþ−−ΦΨΨ;

ð4:27Þ

where we drop the helicity labels and omit the detailed
structure of interactions. The equations of motion would be

□Φ ¼ cþþ−ΦΦþ cþ−−ΦΨ;

□Ψ ¼ cþþþΦΦþ cþþ−ΦΨþ cþ−−ΨΨ: ð4:28Þ

This should be compared with (D≡ d − ω0 is the back-
ground covariant derivative in the appropriate representa-
tions of the higher spin algebra)

Dω ¼ Vðω;ωÞ þ Vðω0;ω; CÞ þ Vðω0;ω0; C; CÞ; ð4:29aÞ

DC ¼ Uðω; CÞ þ Uðω0; C; CÞ; ð4:29bÞ

where we indicated all terms that can potentially contribute
to the cubic amplitude. We recall that ω carries positive
helicity and, hence, is a cousin of Φ, while C contains both
Ψ and descendants of ω. We show in Appendix A that
Vðω;ωÞ and Uðω; CÞ give the correct amplitudes. There is a

unique theory that has such amplitudes, which is a con-
sistency check.
Another valuable consistency check is to restrict inter-

actions to the spin-two and to the spin-one sectors to
reproduce the recently obtained FDAs of SDYM and
SDGR [77]. To be precise, the restriction has to give
FDAs that are quasi-isomorphic to those of SDYM and
SDGR. Luckily, this exercise directly leads to the inter-
actions of [77]. The latter were found in the most minimal
form, i.e., we have not introduced any nonlinear terms into
the FDA beyond what is necessary, which fixes all field
redefinitions. It is encouraging that the FDA of chiral
theory is also minimal in this sense.
By the same token the higher spin extensions of SDYM

and SDGR [17], which were previously discovered as
contractions of chiral theory in [16], must be consistent
contractions of the present FDA as well. We note that in the
latter two cases the FDA of this paper should provide a
complete solution of the problem. Indeed, the actions of
these two theories are schematically

L ¼ Ψ□ΦþΦΦΨ; ð4:30Þ

which is much simpler than the structure of interactions of
chiral theory. Therefore, it is tempting to argue that we have
determined all interaction vertices in these theories since
this is the case for SDYM and SDGR.
A very interesting observation made in [16] is that the

coupling constants of chiral theory determine a certain
(kinematic) algebra in the light-cone gauge and the product
in this algebra is a remnant of the star product. This
statement covers all vertices. For the FDA at hand, it is the
ΦΦΨ vertex where the star-product structure is manifest.
The other vertices correspond to the Chevalley-Eilenberg
cocycles of the higher spin algebra. Nevertheless, accord-
ing to [16], what survives of these vertices in the light-cone
gauge is the same star product. It would be interesting to
clarify this statement.

V. CONCLUSIONS

The main result of this paper is the covariant form that
incorporates some essential interactions of chiral theory
which was previously known in the light-cone gauge only.
By essential we mean those interactions that, if present,
unambiguously fix the theory. Technically, the result is the
minimal model of chiral theory—a free differential algebra
consistent to order OðC2Þ.
The FDA of the present paper contains FDAs of SDYM,

SDGR [77], and of the higher spin extensions thereof [17].
For these four cases the FDA should be complete. For
chiral theory certain higher order vertices may still be
required for formal consistency and covariantization. One
can also look for supersymmetric extensions that would
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combine SDYM and SDGR and higher spin extensions
thereof [85] as well as for the full supersymmetric chiral
theory [86,87].
Even though we found a covariant form for the essential

interactions of chiral theory, there might still be an obstruc-
tion to getting the complete theory in a manifestly Lorentz
invariant form if some of the interactions cannot be written
with the help of the new field variables (ωA0ð2s−2Þ andΨA0ð2sÞ
as compared to the oldΦμ1…μs). InAppendixAwe also show
that the most problematic Vþ−− amplitudes can be repro-
duced. Independently of that, a simple extension of the
cohomological arguments along the lines of [80] indicates
that there are no obstructions to the FDA of this paper.
Therefore, the complete chiral theory can be written in a
manifestly Lorentz invariant form as an FDA.
As is well understood [51,57,58], the minimal model of a

(gauge) field theory contains all the essential information
about the theory (local BRST cohomology), e.g., actions/
counterterms, anomalies, conserved charges, deformations,
etc. It is a very encouraging statement given that the
differential Q can be extracted from classical field equa-
tions rewritten as a free differential algebra. Therefore, the
results of this paper should help to address the problems
where having a covariant form of the theory is an
advantage, i.e., all of them. Chiral theory was shown to
be one-loop finite in the light-cone gauge [14,15,32], but
extending these results to higher loop orders should be
simpler within a covariant approach. It would also be
interesting to look for exact solutions where generalizations
of Ward/Penrose/ADHM [88–90] constructions to chiral
theory together with its twistor formulation should be of
great help.
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APPENDIX A: CUBIC AMPLITUDE

A useful check for a given interaction is to compute the
amplitude. The amplitudes of chiral HSGRA are known up
to one-loop [14,15,32]. We do not have to go that far and
should just check if the cubic amplitude is nontrivial. Let us
first construct the plane wave solutions. We recall that the
free equations in Minkowski space read

dω ¼ eBB
0
ȳB0∂BωþHBB

∂B∂BCðy; ȳ ¼ 0Þ;
dC ¼ eBB

0
∂B∂B0C; ðA1Þ

where Ψð0; ȳÞ ¼ Cð0; ȳÞ describes negative helicity and
ωð0; ȳÞ describes positive helicity16:

ΨA0ð2sÞ ¼ a−skA
0
…kA

0
exp ½�xAA

0
kAkA0 �; ðA2Þ

ωA0ð2s−2Þ ¼ aþs
1

ðqC0
kC0 Þ2s−1 e

BB0
kBqB0qA

0
…qA

0

× exp ½�xAA
0
kAkA0 �: ðA3Þ

Here aλ is a normalization factor. Equation (A1) is
solved by

ωðxjy; ȳÞ ¼ eBB
0 kBq0B
q̄ k̄þȳ q̄

expð�xAA
0
kAk0A þ ykÞ;

Cðxjy; ȳÞ ¼ 1

2
expð�xAA

0
kAk0A þ ykþ ȳ k̄Þ:

Laplace transform allows us to rewrite the solution for
ωðxjy; ȳÞ as

ωðxj; y; ȳÞ ¼ eBB
0
kBq0B

Z
∞

0

dω expð�xAA
0
kAk0A þ yk

− ðq̄ k̄þȳ q̄ÞωÞ:

In order to compute cubic amplitudes we can isolate the
equation for ωA0ð2s−2Þ and ΨA0ð2sÞ:

Dω ¼ Vðω;ωÞjy¼0; DC ¼ Uðω; CÞjy¼0: ðA4Þ

Let us have a look at the first term Vðω;ωÞ contracted with
ΨA0ð2s1−2ÞHA0A0 to get an on-shell cubic vertex:

1

l!

Z
ΨA0ð2s1ÞH

A0A0
ωBðlÞ;A0ðnÞ ∧ ωBðlÞ;A

0ðmÞ: ðA5Þ

Here we assume lþ n ¼ 2s2 − 2, mþ l ¼ 2s3 − 2 and, of
course, mþ n ¼ 2s1 − 2. The coefficient in front of the
action originates from the star product. Plugging in the on-
shell plane-wave values for Ψ and ω we find

V−s1;þs2;þs3 ∼
1

Γ½−s1 þ s2 þ s3�
½12�−s1þs2−s3

× ½23�s2þs3þs1 ½13�−s1þs3−s2 ; ðA6Þ

which, up to normalization of each of the plane-waves, is
the right structure for chiral theory. It corresponds to ΨΦΦ
vertex of sketch (4.27). The presence of the simplest self-
interaction V−s;þs;þs leads unambiguously to the chiral

16Note that we use the Moyal-Weyl star product without i.
Therefore, the fields need to obey less natural reality conditions.
This is not an obstacle to compute the amplitude. In particular, the
plane wave exponents are taken without i (for appropriate x).
What matters is the helicity structure.
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theory class since it requires all other spins (at least even)
together with all other possible interactions that enter with
weight 1=Γ½λ1 þ λ2 þ λ3�.
Similarly, we can extract the amplitudes corresponding

toΦΦΦ andΦΦΨ vertices from Uðω; CÞ. Note that sinceC
contains both positive and negative (as well as zero)
helicities, we get an access to two types of vertices. The
final amplitude is

Vþs1;λ2;þs3 ∼
1

Γ½s1 þ λ2 þ s3�
½12�s1þλ2−s3

× ½23�−s1þλ2þs3 ½13�s1−λ2þs3 :

Let us also comment on the possibility to reproduce
Vþs1;−s2;−s3 amplitudes, s1 − s2 − s3 > 0. From the stan-
dard covariant approach vantage point, where the dynami-
cal variables are Φμ1…μs , these vertices are the most
problematic ones [44]. They cannot be written at all as
local expressions. Fortunately, it is easy to write down the
candidate on-shell cubic vertices in terms of the new
variables, where the dynamical fields are ωA0ð2s−2Þ and
ΨA0ð2sÞ. For example, any of the following two expressions

ωA0ðs1−2ÞΨAðkÞB;A0ðmÞ;B0ΨAðkÞ
A0ðnÞĥ

BB0
;

ωA0ðs1−2ÞΨAðkÞB;A0ðmÞΨAðkÞ
A0ðnÞB0 ĥBB

0
;

leads to the correct amplitude

½12�s1−s2þs3 ½13�s1þs2−s3 ½23�−s1−s2−s3 :

Therefore, all possible types of cubic vertices/amplitudes
present in chiral theory can be written in a manifestly
Lorentz invariant way. This eliminates the very last
obstruction and we can claim that chiral theory admits a
manifestly Lorentz invariant formulation.

APPENDIX B: COADJOINT VS TWISTED
ADJOINT

Let us make a historical remark on representations of
higher spin symmetries. It was known since [71] that the
FDA of free massless fields in (anti–)de Sitter space
contains the following subsystem:

∇C ¼ eAA
0 ðyAȳA0 − ∂A∂A0 ÞCðy; ȳÞ: ðB1Þ

It splits according to spin into an infinite set of (still
infinite) subsystems. For a given s > 0 the subsystem splits
further into one for helicity þs and another one for helicity
−s. The very first equations in these subsystems are
equivalent to [68]

∇B
A0
CBAð2s−1Þ ¼ 0; ∇A

B0CB0A0ð2s−1Þ ¼ 0: ðB2Þ

Operator PAA0 ¼ ðyAȳA0 − ∂A∂A0 Þ realizes the action of
ðAÞdS4 translations, which commute to a Lorentz trans-
formation. Since the equations are assumed to be derived
by linearizing a nonlinear theory, where the higher spin
symmetry is manifest, it is important to understand where
such PAA0 can come form. It originates from the twisted-
adjoint action [91]:

aðfÞ ¼ a ⋆ f − f ⋆ ã; ðB3Þ

where ã is an automorphism of the Weyl algebra that flips
the sign of ȳ, ãðȳÞ ¼ að−ȳÞ. In fact, the action arises as a
typical coadjoint action. Indeed, there is a nondegenerate
pairing between A1 and A⋆

1 : hajfi ¼ tr½a ⋆ f� ¼ tr½f ⋆ ã�,
where tr½a� ¼ aðȳ ¼ 0Þ. The canonical bimodule structure
of the higher spin algebra on itself (left/right actions)
induces the twisted-adjoint representation (B3) on the dual
module. What the results of the present paper show is that
the coadjoint interpretation seems to be correct even for
such a strange case as chiral theory, while the twisted-
adjoint interpretation is no longer valid.

APPENDIX C: OPERATOR CALCULUS

As was already sketched at the beginning of Sec. IV, we
work with polydifferential operators that are represented as
symbols. Let us illustrate all operations with ȳ and
∂
ȳi
A0 ≡ pi

A0 . The translation operator is exp ½ȳ · pi�fðȳiÞ ¼
fðȳi þ ȳÞ. Operators acting on n functions aiðȳÞ are
understood as functions of p0 ¼ ȳ, p1 ¼ ∂̄1; ...; pn ¼ ∂̄n:

Vða1;…; anÞ ¼ vðȳ; ∂̄1;…; ∂̄2Þa1ðȳ1Þ…anðȳnÞjȳi¼0: ðC1Þ

Therefore, the commutative product fðȳÞgðȳÞ and the
Moyal-Weyl star product fðyÞ ⋆ gðyÞ are represented by
the following symbols:

exp½p0 · p1 þ p0 · p2�≡ exp½p01 þ p02�; ðC2aÞ

exp½q0 · q1 þ q0 · q2 þ q1 · q2�≡ exp½q01 þ q02 þ q12�:
ðC2bÞ

Then we need the following identifications for symbols of
the following operators:
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a1 ⋆ Vða2;…; anþ1Þ → vðq0 þ q1; q2;…; qnþ1Þeþq0·q1 ;

Vða1;…; anÞ ⋆ anþ1 → vðq0 − qnþ1; q1;…; qnÞeþq0·qnþ1 ;

Vða1;…; ak ⋆ akþ1;…; anþ1Þ → vðq0;…; qk−1; qk þ qkþ1; qkþ2;…; qnþ1Þeþqk·qkþ1 ;

a1Vða2;…; anþ1Þ → vðp0; p2;…; pnþ1Þeþp0·p1 ;

Vða1;…; anÞanþ1 → vðp0; p1;…; pnÞeþp0·pnþ1 ;

Vða1;…; akakþ1;…; anþ1Þ → vðp0;…; pk−1; pk þ pkþ1; pkþ2;…; pnþ1Þ;
u1ða1; Vða2;…; anþ1ÞÞ → vðp0 þ p1; p2;…; pnþ1Þ;
u1ðVða1;…; anÞ; anþ1Þ → vð−pnþ1; p1;…; pnÞeþp0·pnþ1 ;

Vða1;…; u1ðak; akþ1Þ;…; anþ1Þ → vðp0;…; pk−1; pkþ1; pkþ2;…; pnþ1Þeþpk·pkþ1 ;

u2ða1; Vða2;…; anþ1ÞÞ → vð−p1; p2;…; pnþ1Þeþp0·p1 ;

u2ðVða1;…; anÞ; anþ1Þ → vðp0 þ pnþ1; p1;…; pnÞ;
Vða1;…; u2ðak; akþ1Þ;…; anþ1Þ → vðp0;…; pk−1; pk; pkþ2;…; pnþ1Þe−pk·pkþ1 ;

where we defined

u1ða; bÞ ¼ exp ½p02 þ p12�; u2ða; bÞ ¼ exp ½p01 − p12�: ðC3Þ

APPENDIX D: COCHAIN COMPLEX

For completeness let us rewrite the L∞ relations in terms of symbols of operators. We do so for the ȳ part only since the
dependence on y is captured by the star product and factorizes out. The lhs of the equations for V1;2;3 read

−ep01V1ðp0;p2;p3;p4Þ−V1ðp0;p1;p2þp3;p4ÞþV1ðp0;p1þp2;p3;p4Þþep34V1ðp0;p1;p2;p4Þ;
−ep01V2ðp0;p2;p3;p4Þþep04V1ðp0;p1;p2;p3Þ−e−p34V1ðp0;p1;p2;p3ÞþV2ðp0;p1þp2;p3;p4Þ−ep23V2ðp0;p1;p3;p4Þ;
−ep01V3ðp0;p2;p3;p4Þþep04V2ðp0;p1;p2;p3Þ−V2ðp0;p1;p2;p3þp4Þþe−p2·p3V2ðp0;p1;p2;p4Þþep12V3ðp0;p2;p3;p4Þ;
ep04V3ðp0;p1;p2;p3Þ−e−p12V3ðp0;p1;p3;p4Þ−V3ðp0;p1;p2;p3þp4ÞþV3ðp0;p1;p2þp3;p4Þ:

Similarly, for U1;2;3 we find

U1ðp0; p1 þ p2; p3; p4Þ −U1ðp0 þ p1; p2; p3; p4Þ − ep23U1ðp0; p1; p3; p4Þ þ ep04V1ð−p4; p1; p2; p3Þ;
e−p23U1ðp0; p1; p2; p4Þ −U2ðp0 þ p1; p2; p3; p4Þ − ep34U1ðp0; p1; p2; p4Þ þ ep12U2ðp0; p2; p3; p4Þ

þ ep04V2ð−p4; p1; p2; p3Þ;
e−p34U1ðp0; p1; p2; p3Þ −U1ðp0 þ p4; p1; p2; p3Þ −U3ðp0 þ p1; p2; p3; p4Þ þ ep12U3ðp0; p2; p3; p4Þ;

− e−p12U3ðp0; p1; p3; p4Þ þ e−p34U2ðp0; p1; p2; p3Þ − U2ðp0 þ p4; p1; p2; p3Þ þ ep23U3ðp0; p1; p3; p4Þ
− ep01V2ð−p1; p2; p3; p4Þ;
− e−p12U2ðp0; p1; p3; p4Þ þU2ðp0; p1; p2 þ p3; p4Þ − ep34U2ðp0; p1; p2; p4Þ − ep01V1ð−p1; p2; p3; p4Þ
þ ep04V3ð−p4; p1; p2; p3Þ;
− e−p23U3ðp0; p1; p2; p4Þ þU3ðp0; p1; p2; p3 þ p4Þ −U3ðp0 þ p4; p1; p2; p3Þ − ep01V3ð−p1; p2; p3; p4Þ:

When looking for nontrivial solutions, it is important to understand which ones are trivial. The latter are given by field
redefinitions that act as follows on V1;2;3
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δV1 ¼ ep01g1ðp0; p2; p3Þ − g1ðp0; p1 þ p2; p3Þ þ ep23g1ðp0; p1; p3Þ;
δV2 ¼ ep01g2ðp0; p2; p3Þ þ ep03g1ðp0; p1; p2Þ − e−p23g1ðp0; p1; p2Þ − ep12g2ðp0; p2; p3Þ;
δV3 ¼ ep03g2ðp0; p1; p2Þ þ e−p12g2ðp0; p1; p3Þ − g2ðp0; p1; p2 þ p3Þ;

and on U1;2;3

δU1 ¼ hðp0 þ p1; p2; p3Þ − ep12hðp0; p2; p3Þ þ ep03g1ð−p3; p1; p2Þ;
δU2 ¼ e−p12hðp0; p1; p3Þ − ep23hðp0; p1; p3Þ − ep01g1ð−p1; p2; p3Þ þ ep03g2ð−p3; p1; p2Þ;
δU3 ¼ e−p23hðp0; p1; p2Þ − hðp0 þ p3; p1; p2Þ − ep01g2ð−p1; p2; p3Þ;

It can easily be checked that the redefinitions lead to
solutions of the equations. The expressions above define a
particular realization of the Chevalley-Eilenberg complex,
but we do not extend the action of the differential to
cochains with more arguments. At the bottom level we find

δg1 ¼ ep12ξðp0; p2Þ − ep01ξðp0; p2Þ;
δg2 ¼ ep02ξðp0; p1Þ − e−p12ξðp0; p1Þ;
δh ¼ ep02ξð−p2; p1Þ − ep01ξð−p1; p2Þ;

which leads to redefinitions that yield vanishing vertices.

APPENDIX E: VERTICES

In order to find nontrivial cubic vertices we employ a
number of ideas, see also [62,84] that were used for
inspiration. First, Lorentz symmetry has to be preserved,
i.e., in practice, we cannot mix primed and unprimed
indices. The higher spin algebra is the tensor product of two
algebras, which via the Künneth theorem suggests to look
for the two-cocycle as a tensor product of two, one of them
being trivial. The free equations, in particular the boundary
condition for Vðe; e; CÞ, reveal that something interesting
should happen on the ȳ side. Therefore, for homogeneous
arguments aðy; ȳÞ ¼ aðyÞ ⊗ āðȳÞ, etc., we assume that all
vertices have the star product over the y-dependent factors:

V1ðaðyÞ ⊗ āðȳÞ; bðyÞ ⊗ b̄ðȳÞ; cðyÞ ⊗ c̄ðȳÞÞ
¼ a ⋆ b ⋆ c ⊗ v1ðā; b̄; c̄Þ: ðE1Þ

As a result, all terms in the cocycle equations have the same
overall factor for the y dependence and we can concentrate
on ȳ only. The cocycle conditions for the ȳ part are
collected in Appendix D.
Now, we need to solve the equations in Appendix D. It is

clear that the solution should contain some exp½pij� factors,
otherwise they cannot cancel the exp½pij� already present in
the cocycle condition. The boundary condition for
Vðω;ω; CÞ restrict the exponents a little bit. For example,
we cannot allow for expp03 in V1ðω;ω; CÞ. The crucial

step is to look for V and U as singular field redefinitions,
i.e., we look for g1;2 and h, see Appendix D. For any g1;2
and h, the vertices solve the cocycle equations. We just
need to make sure that (i) the vertices are regular, i.e.,
Taylor expandable in pij; and (ii) the redefinitions them-
selves, i.e., g1;2 and h, are irregular. Irregular field rede-
finitions are not allowed. Therefore, if (i) and (ii) are
satisfied, we have a nontrivial cocycle. Let us note that the
singularity of g1;2 and h must be essential and cannot be
removed with the help of “redefinitions for redefinitions”
with ξ. Looking for singular redefinitions is more economic
than looking for nontrivial vertices since they depend on
less arguments. Long story short, we arrived at the
following redefinitions:

g1 ¼
p01ep12

p02ðp01 − p12Þ
−

ep01p01

p02ðp01 − p12Þ
; ðE2aÞ

g2 ¼
ep02p02

p01ðp02 þ p12Þ
−

p02e−p12

p01ðp02 þ p12Þ
; ðE2bÞ

h ¼ ep01p01

p12ðp01 − p02Þ
−

ep02p02

p12ðp01 − p02Þ
: ðE2cÞ

The vertices, which we do not write here as fractions, have
a similar structure and their regularity is not obvious. It is
very important to take advantage of the Fierz/Schouten/
Plücker identities

ða · bÞðc · dÞ þ ðb · cÞða · dÞ − ða · cÞðb · dÞ ¼ 0; ðE3Þ

which are a consequence of the fact that any three vectors in
two dimensions are linearly dependent. Still, the regularity
is not manifest. One can prove it by showing that the
numerator and denominator have the same zeros.
A more convenient way to make the regularity manifest

to write the vertices as integrals over the 2d simplex, as in
the main text. The nontriviality of the cocycles is then less
obvious. A simple way to check if the cocycle is nontrivial
is to extract the boundary condition Vðe; e; CÞ since this
part cannot be redefined away. Therefore, once the
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boundary condition is satisfied we can be certain that the
cocycle is worthy. It would be interesting to compute the
Chevalley-Eilenberg cohomology following the techniques
of [80], which would give a rigorous answer regarding the
number of independent vertices within the covariant
approach.

Given the relation between the algebraic structures of
higher spin gravities and deformation quantization and
formality, it is also possible to recast the proof into the
familiar language of Stokes theorem. For example, to check
that the equation for V1 is satisfied we can construct a
closed two-form Ω1

Ω1 ¼ ðp12dt1 ∧ dt2 þ p23dt2 ∧ dt3 þ p13dt1 ∧ dt3ÞF1;

F1 ¼ exp ½ð1 − t1Þp01 þ ð1 − t2Þp02 þ ð1 − t3Þp03 þ t1p14 þ t2p24 þ t3p34�: ðE4Þ

With the help of Stokes theorem we get

0 ¼
Z
Δ3

dΩ1 ¼
Z
∂Δ3

Ω1: ðE5Þ

There are four boundaries that correspond to “collisions of points” on the circle: t1 ¼ 0, t1 ¼ t2, t2 ¼ t3 and t3 ¼ 1. It can be
seen that Ω1 at these boundaries reduces to exactly the four terms in the equation for V1. Similar arguments are true for the
rest of the equations. The closed two-form for the other equations are

Ω2 ¼ ðp12dt1 ∧ dt2 þ p24dt2 ∧ dt3 þ p14dt1 ∧ dt3ÞF2;−ðp14dt1 ∧ dt2 − p12dt2 ∧ dt3 þ p24dt1 ∧ dt3ÞF3;

F2 ¼ exp ½ð1 − t1Þp01 þ ð1 − t2Þp02 þ ð1 − t3Þp04 þ t1p13 þ t2p23 − t3p34�;
F3 ¼ exp ½ð1 − t2Þp01 þ ð1 − t3Þp02 þ ð1 − t1Þp04 þ t2p13 þ t3p23 − t1p34�; ðE6aÞ

for the second and for the third we need

Ω3 ¼ −ðp34dt1 ∧ dt2 þ p13dt2 ∧ dt3 þ p14dt1 ∧ dt3ÞF4;þðp14dt1 ∧ dt2 − p34dt2 ∧ dt3 þ p13dt1 ∧ dt3ÞF5;

F4 ¼ exp ½ð1 − t3Þp01 þ ð1 − t2Þp03 þ ð1 − t1Þp04 þ t3p12 − t2p23 − t1p24�;
F5 ¼ exp ½ð1 − t1Þp01 þ ð1 − t3Þp03 þ ð1 − t2Þp04 þ t1p12 − t3p23 − t2p24�: ðE6bÞ

Note that the second and third equations have more terms since they mix vertices with different orderings and for this reason
two exact forms are required. There is some mutual cancellation between them. For the last equation we have

Ω4 ¼ −ðp34dt1 ∧ dt2 þ p23dt2 ∧ dt3 þ p24dt1 ∧ dt3ÞF6;

F6 ¼ exp ½ð1 − t3Þp02 þ ð1 − t2Þp03 þ ð1 − t1Þp04 − t3p12 − t2p13 − t1p14�: ðE6cÞ

The two-forms can be understood as follows: the first term inΩ2 isΩ1 with the labels 3 and 4 swapped, whereas the second
term arises from cyclic permutation of the labels (1234 → 2341). Subsequently, Ω4 is the mirror image of Ω1, i.e.,
1234 → 4321, and Ω3 is the mirror image of Ω2. This can be understood from the different orderings of ω, ω, ω, C in the
equations.
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