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The conformal anomaly in curved spacetime with antisymmetric torsion is reconsidered, taking into
account new important details. We formulate, for the first time, the covariant solution of the anomaly-
induced effective action. The covariant effective action includes local terms corresponding to total
derivatives in the conformal anomaly. The contribution of massless fermions to these terms is characterized
by multiplicative anomaly, coming from two different choices of doubling for the spinor operator. On the
other hand, the nonlocal part of anomaly-induced action is free of ambiguities and admits a low-energy
limit, similar to the effective potential in the metric-scalar theory.
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I. INTRODUCTION

General features of conformal and the induced action of
gravity corresponding to anomaly represent an interesting
and active subject of interest starting from the epoch
when anomaly was discovered [1–4] and anomaly-induced
effective action derived in two [5] and four (4D) [6,7]
spacetime dimensions. The reason for this special interest
is related to important applications to black hole physics
[8,9], cosmology [10–12] (see also [4,13–15] for review
and further references), effective approaches to quantum
gravity based on the anomaly-induced action in 4D [16–18]
and possible nonperturbative generalizations in the form of
a- and c-theorems (see, e.g., [19–21]).
From a more general perspective, the anomaly is

technically simple and elegant way for describing loop
corrections in the semiclassical approach. Usually, the trace
anomaly is associated with the UV limit because classical
conformal symmetry is typical only in a massless theory.
In other words, the anomaly-induced action is a direct
generalization of the renormalization group improved
classical action based on the minimal subtraction scheme
of renormalization. The generalization, in this case, means
that the constant rescaling of the metric (curved-space
equivalent of rescaling the momenta [22–24]) is replaced
by the local conformal transformation with the conformal

factor depending on the coordinates. On the other hand, the
anomaly-induced action can be adapted to describe the low-
energy (IR) limit of a massless theory. The first examples of
this sort can be found in [25,26], where the anomaly has
been used to obtain the one-loop effective potential of
scalar fields in curved spacetime.
Anomaly is directly related to the logarithmic divergen-

ces in the conformal massless theory [4,14]. This is true not
only for a purely metric background but also for the theory
with extra background fields, such as scalars, vector fields,
and torsion. One can prove that the divergences satisfy the
conformal Noether identity [23] and, for this reason, the
anomaly is composed by the following three types of
terms [3,27]:

(i) Topological term, such as the Gauss-Bonnet term in
4D or its analogs in higher even dimensions. The
conformal transformation of this term greatly sim-
plifies if supplemented by a specially chosen surface
terms. This fundamental feature is the main basis of
integrating anomaly, which was verified in 2D [5], in
4D [6,7] and in 6D [28]. The general proof for higher
dimensions is not known and remains a conjecture
[29]. Assuming this is correct, the topological term
is the main source of the nonlocal structures in the
anomaly-induced action.

(ii) Legitimate conformal terms (we will call them
C-terms), such as the square of the Weyl tensor in
4D; three possible conformal structures in 6D [30],
etc. The integration of these terms is relatively
simple assuming the aforementioned conjecture.
The result for the covariant induced action is
nonlocal.

(iii) The total derivative terms in the divergences provide
the same terms in the anomaly. These terms are
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known to be ambiguous [4] and this ambiguity
equivalent to adding a finite local covariant non-
conformal term to the classical action, as discussed
in [31,32] for dimensional and Pauli-Villars regula-
rizations. Strictly speaking, (i)- and (iii)-type terms
are not conformal invariant. However, those are
surface terms that satisfy the conformal Noether
identity. For this reason, we shall call them N-terms.

Verifying the generality of the described classification
may go in two different ways, namely either increasing the
dimension or trying to enrich space-time geometry. The
first approach is extremely difficult for practical realization
(see, e.g., [28]). At the same time, the second possibility
may be related to introducing torsion or nonmetricity of the
spacetime. The present work reports on the verification of
the scheme described above for the theory with torsion.
Namely, we explore the uniqueness of the topological term,
the possibility to construct covariant forms for anomaly-
induced action with torsion, and the ambiguities in the local
covariant terms, responsible for the total derivatives in the
anomaly.
The case of the anomaly with torsion has been explored

in several works [33,34], including for the different
realizations of conformal symmetry [35,36]. However,
the covariant (nonlocal and local) form of the anomaly-
induced effective action of gravity with torsion was never
formulated, and the first purpose of the present work is to
fill this gap. We shall see that the integration of all terms
of an anomaly in the theory with torsion can be done in a
very standard way, with one important addition. As we are
working with fermions, there is always a possibility to have
an ambiguity related to different ways of doubling the Dirac
operator. Previously, it was shown that, in case of massive
fermions, this ambiguity leads to the nonlocal multiplica-
tive anomaly [37], something one cannot consistently
achieve [38,39] using ζ-regularization [40] owing to the
presence of renormalization μ-dependence in the local
terms in the effective action. In what follows we show
that, in the theory with torsion, the multiplicative anomaly
is possible even in the massless case, i.e., in the local terms
coming from the integration of total derivative terms in
the trace anomaly. Since these terms are not renormalized,
this new version of multiplicative anomaly avoids the
μ-dependence and the arguments of [38,39].
The paper is organized as follows. In Sec. II we briefly

review the notations for gravity with torsion and define the
actions of free matter fields with conformal symmetry.
Section III describes the calculation of one-loop divergen-
ces in the fermion case, generalizing the previous works on
the subject [33–36]. Since one of our main concerns is
ambiguity in the anomaly, we perform the calculation in
two different ways and meet the difference which leads to
the local multiplicative anomaly in the effective action. In
Sec. IV the anomaly is used to find the covariant (nonlocal
and local) solutions for the anomaly-induced vacuum

effective action. Section V describes the low-energy limit
in the effective action in the metric-torsion theory, con-
structed in analogy to the effective potential of a scalar
field [26]. Finally, in Sec. VI we draw our conclusions.

II. CONFORMAL FIELDS WITH TORSION

In what follows we shall give only a brief list of
necessary formulas about gravity with torsion and con-
formal matter fields. The path integrals over these fields
require renormalization of vacuum action and produce trace
(conformal) anomaly. A more detailed review can be found,
e.g., in [36,41]. In the last reference, the notations are the
same as here.
The affine connection without torsion is the Christoffel

symbol (Levi-Civita connection),

Γα
βγ ¼ fαβγg ¼ 1

2
gαλð∂βgλγ þ ∂γgλβ − ∂λgβγÞ: ð1Þ

The corresponding covariant derivative satisfies the met-
ricity condition ∇λgαβ ¼ 0 and is free of torsion, i.e.,
Γτ

αβ ¼ Γτ
βα. In what follows, we do not consider the

theories with nonmetricity but include nonzero torsion,
that is making geometry more extensive and, in particular,
links it to the spin of matter fields [41].
Torsion tensor is defined as the difference between the

two affine connections which are not assumed symmetric,

Tα
·βγ ¼ Γ̃α

βγ − Γ̃α
γβ: ð2Þ

It is useful to present torsion tensor as a sum of the
irreducible components [42] (see also [36]),

Tαβμ ¼
1

3
ðTβgαμ − TμgαβÞ −

1

6
εαβμνSν þ qαβμ; ð3Þ

namely the vector Tβ ¼ Tα
·βα, axial vector S

ν ¼ ϵαβμνTαβμ,
and the remaining tensor qα·βγ, satisfying the conditions
qα·βα ¼ 0 and ϵαβμνqαβμ ¼ 0.
One can derive the generalizations of the Riemann

tensor, Ricci tensor and scalar curvature for the connection
with torsion, e.g.,

R̃ ¼ R − 2∇αTα −
4

3
TαTα þ 1

2
qαβγqαβγ þ

1

24
SαSα: ð4Þ

Since our purpose is to consider the quantum theory of
matter fields, regarding both metric and torsion as external
fields, the parametrization of these background fields is
mostly irrelevant. Thus, in what follows, we shall use the
Riemannian version of the curvature tensors.
Since the interaction of torsion with the gauge fields is

forbidden by the gauge invariance [41], we shall assume
that gauge vectors decouple from torsion at the classical
level. The same symmetry protects the theory from these
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interactions at the quantum level [36,43]. Thus, we need to
consider only scalar and fermion fields, as described below.

A. Scalar field

The action of the real nonminimal scalar field ϕ in
curved spacetime with torsion has the form,

S0 ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p fgαβ∂αϕ∂βϕþ ξiPiϕ
2 −m2ϕ2g; ð5Þ

where the nonminimal parameters ξi correspond to the
structures,

P1 ¼ R; P2 ¼ ∇αTα; P3 ¼ TαTα;

P4 ¼ qαβτqαβτ; P5 ¼ SαSα; ð6Þ

repeating the ones of (4) but with arbitrary coefficients ξi.
It is known [36,42,43] that in the curved-space theory with
fermions, scalars and Yukawa coupling, arbitrary non-
minimal parameters ξ1 and ξ5, of the interaction of scalar
field(s) with R and Sα, are needed to provide renormaliz-
able semiclassical theory, as will be explained below. In this
article, we will mainly restrict the consideration by a purely
antisymmetric torsion. The reasons are that (i) this is the
most relevant part of the matter-torsion interaction, in
particular linking spin to geometry [41]; (ii) more general
cases are not expected to bring new details, concerning the
aforementioned aspects of the anomaly and also compared
to the previous analysis in [36]. Thus, we shall assume that
Tμ ¼ 0 and qαβτ ¼ 0, such that only the axial vector
component in (3) is present.
Action (5) is invariant under general coordinate trans-

formations. On top of that, the massless model with
ξ ¼ 1=6 is invariant under the transformation called local
conformal symmetry,

gμν ¼ e2σ ḡμν; Sα ¼ S̄α; ϕ ¼ e−σϕ̄; ð7Þ

where σ ¼ σðxÞ. Note that the value of ξ5 does not affect
conformal invariance. Also, if we include Tμ component,
there are three types of the conformal transformations with
torsion. This subject was discussed in detail in [35,43], and
we will not repeat it here.

B. Massless Dirac field

The interaction of Dirac spinor field with torsion is
described by the parity-preserving action,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄fiγμð∇μ − iηγ5Sμ − iη2TμÞ −mgψ ; ð8Þ

with the nonminimal parameters η and η2. It is important
that the minimal coupling of fermion with torsion corre-
spond to η ¼ 1=8 and η2 ¼ 0 [41]. This feature explains the

difference between interaction of torsion with Sμ and Tμ.
Starting from the minimal actions, there is no Tμ and qαβμ,
and the corresponding interactions never emerge in the
divergences. On the contrary, Sμ is always present in both
classical theory and in the divergences. As a result, one has
to renormalize the parameters η and also ξ5, in case the
theory includes Yukawa interactions between scalars and
fermions. Thus, one cannot have a renormalizable theory
based on the minimal coupling to the external torsion.
In the massless case, the theory (8) possesses three

different symmetries. One of those is the usual Abelian
gauge symmetry related to Tμ. In fact, one can trade η2Tμ

by eAμ and, in the part of the gauge symmetry, reduce the
problem to the usual gauge field. Since we are interested in
the Tμ ¼ 0 case, the corresponding transformation will not
be considered. Another symmetry is

ψ̄ → ψ̄eiηαγ
5

; ψ → eiηαγ
5

ψ ; Sμ → Sμ þ ∂μα; ð9Þ

where α ¼ αðxÞ is a scalar transformation parameter.
Finally, there is a conformal transformation of the spinor
field, supplementing the one of (7),

gμν ¼ e2σ ḡμν; Sα ¼ S̄α; ψ̄ ¼ ψ̄e−
3
2
σ; ψ ¼ ψe−

3
2
σ:

ð10Þ

Let us mention that the values of torsion nonminimal
parameters, η and ξ5, do not affect the conformal invariance.
The rest of this work is devoted to the anomaly in the

local conformal symmetry (7), (10) in the vacuum part of
the one-loop effective action Γð1Þðg; SÞ.
According to the general proof [23], if the classical

actions of quantum matter fields have local conformal
symmetry (7) and (10), the divergent part Γð1Þ

divðg; SÞ satisfies
the corresponding Noether identity,

−
2ffiffiffiffiffiffi−gp gαβ

δΓð1Þ
divðg; SÞ
δgαβ

¼ Φðg; SÞ: ð11Þ

Here Φðg; SÞ is a covariant finite expression, that is also
local owing to the Weinberg’s theorem. We note that
Eq. (11) does not include the variational derivative with
respect to Sμ because, according to (7), its conformal
weight is zero.
The possible vacuum divergences obey the mentioned

symmetries. The Riemannian terms include the square of
the Weyl tensor in 4D,

C2 ¼ RαβμνRαβμν − 2RαβRαβ þ 1

3
R2; ð12Þ

the integrand of the Gauss-Bonnet topological term,

E4 ¼ RαβμνRαβμν − 4RαβRαβ þ R2; ð13Þ
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and the surface term□R. The important difference between
these terms is that, in 4D, the integral of C2 is invariant,

Z
d4x

ffiffiffiffiffiffi
−g

p
C2 ¼

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
C̄2: ð14Þ

We shall call the actions satisfying this condition C-terms.
On the contrary, the integrals

R
d4x

ffiffiffiffiffiffi−gp
E4 andR

d4x
ffiffiffiffiffiffi−gp

□R do not possess this property and, strictly
speaking, are not conformal invariant. At the same time,
both terms satisfy the conformal Noether identity. All such
actions, that are not really conformal, but obey the rule,

−
2ffiffiffiffiffiffi−gp gαβ

δSðg; S
δgαβ

¼ 0; ð15Þ

will be called N -terms.
Besides the mentioned metric-dependent integrals, there

are torsion-dependent C- and N -terms. In the first g roup,
there are two new candidates [44],

S4 ¼ ðS2Þ2 ¼ ðSμSμÞ2 and S2μν ¼ gμαgνβSμνSαβ; ð16Þ

where Sμν ¼ ∇μSν −∇νSμ. One can ask the following
questions: (i) Whether there are torsion-dependent analogs
of (or alternatives to) the Riemannian topological term E4?
(ii) Are there torsion-dependent N -terms, including total
derivatives, similar to □R, and (iii) Whether the renorm-
alization of these torsion-dependent N -terms has ambigu-
ities (see [4,31]) which are present in the cases of □R
and, also, for a nonzero background scalar field, in the
□ϕ2-term [26,32]. We shall address these questions by
making direct calculations of divergences, anomaly and
anomaly-induced action of gravity with torsion.

III. DERIVATION OF ONE-LOOP DIVERGENCES

For the sake of generality, we perform calculations for
massive versions of scalar and spinor fields and for an
arbitrary ξ1. We can set masses to zero and ξ1 ¼ 1=6 at
the end.
Let us start by quoting the known result for the scalar

field [36],

Γð1Þ
div;scal ¼ −

μn−4

ε

Z
dnx

ffiffiffiffiffiffi
−g

p

×

�
1

120
C2 −

1

360
E4 þ

1

180
□Rþ 1

6
□Pþ 1

2
P2

�
;

ð17Þ

where

P ¼
�
1

6
− ξ1

�
R − ξ5S2 þm2: ð18Þ

In the massless limit and assuming ξ1 ¼ 1=6, we meet
the first C-term from (16) and the N -terms i.e., E4, □R,
and □S2.
Consider the fermion contribution. In this part, we go

into the detail of the calculation, regardless they can be
partially found in [36]. Our purpose is to evaluate
−iTr ln Ĥ, where

Ĥ ¼ iγμð∇μ − iηγ5SμÞ −m: ð19Þ

In order to perform this calculation, we have to multiply (19)
by a conjugate operator, such that the product belongs to the
standard class of minimal operators F̂ ¼ □̂þ 2ĥα∇α þ Π̂,
admitting application of the Schwinger-DeWitt technique
[45,46]. It seems that there should be many possible choices
for such a conjugate operator, but there are two constraints.
First of all, the contribution of the conjugate operator should
be calculable. And, on the other hand, we have to respect the
chiral symmetry (9), as otherwise the result may be wrong.
The lastmeans the structure γμð∇μ − iηγ5SμÞ has to be part of
the conjugate operator or, alternatively, the conjugate oper-
ator must be Sμ-independent. In what follows, we consider
both these options and explore the difference.

A. First calculation of fermion contributions

As a first option, consider the conjugate operator of
the form,

Ĥ1 ¼ iγνð∇ν − iηγ5SνÞ þm: ð20Þ
It is known that the change of the sign of the mass
does not change the result (see, e.g., [47]), such that
Tr ln Ĥ ¼ Tr ln Ĥ1 and we can use the relations,

−iTr ln Ĥ ¼ −
i
2
Tr lnðĤĤ1Þ

¼ −
i
2
Tr lnð□̂þ 2ĥα1∇α þ Π̂1Þ: ð21Þ

After some algebra, we get

ĥα1 ¼
i
2
γ5ðγλγα − γαγλÞSλ;

Π̂1 ¼ m2 −
1

4
Rþ S2 − iγ5ð∇αSαÞ −

i
2
γ5γαγβSαβ: ð22Þ

In these and subsequent formulas we made a rescaling of
the external torsion field ηSμ → Sμ, making formulas more
compact.
The elements of the Schwinger-DeWitt technique are

P̂1 ¼ Π̂1 þ
1̂

6
R −∇αĥ

α
1 − ĥ1αĥ

α
1

¼ m2 −
1

12
R − 2S2 − iγ5ð∇αSαÞ ð23Þ
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and

Ŝ1;αβ ¼ ½∇β;∇α�þ∇βĥ1α−∇αĥ1βþ ĥ1βĥ1α− ĥ1αĥ1β

¼ −
1

4
Rαβλτγ

λγτ−S2ðγαγβ−γβγαÞ−2SλðSαγβ−SβγαÞγλ

þ i
2
γ5½ð∇βSλÞðγλγα−γαγλÞ−ð∇αSλÞðγλγβ−γβγλÞ�:

ð24Þ

The general expression for the one-loop divergences
is [45]

Γð1Þ
div ¼ −

μn−4

ε

Z
dnx

ffiffiffiffiffiffi
−g

p
tr
�

1̂

180
ðR2

μναβ − R2
αβ þ□RÞ

þ 1

2
P̂2 þ 1

12
Ŝ2
μν þ

1

6
□P̂

�
; ð25Þ

where the trace and sign correspond to bosonic fields and for
the fermions the sign should be inverted. In the present case,
P̂ and Ŝμν are defined by (23) and (24). The calculation is
pretty much standard, but we quote simple relation for (16),

1

2
S2μν ¼ ð∇μSνÞ2 − ð∇μSμÞ2 þ RμνSμSν

þ 2∇νðSν∇μSμ − Sμ∇μSνÞ; ð26Þ

which proves useful, also, for integrating anomaly. Here
ð∇μSνÞ2 ¼ ð∇μSνÞð∇μSνÞ.
Finally, for the divergences we obtain the expression

(with recovered η),

Γð1Þ
div;fer;1 ¼ −

μn−4

ε

Z
dnx

ffiffiffiffiffiffi
−g

p �
m2

3
Rþ 8m2η2S2 − 2m4

þ 1

20
C2 −

11

360
E4 þ

1

30
□R−

2

3
η2S2μν þ

4

3
η2□S2

−
4

3
η2∇βðSα∇αSβ − Sβ∇αSαÞ

�
: ð27Þ

There are several remarkable aspects in this formula. In the
massless theory and in the limit n → 4, the integrand is
conformal invariant, that is, composed by the C-type and
N -type invariants [36]. In the expression for divergences,
one can identify two torsion-dependent total derivatives.
On top of this, there is also the surface conformal term
− 1

3
η∇βBβ in the integrand, that depends on the vector field,

Bν ¼ Rν
·μτλε

τλαμSα ¼ Cν
·μτλε

τλαμSα: ð28Þ

This term is not included in (27) because Bν can be shown
to vanish as a result of the first Bianchi identity for a
Riemann and Weyl tensors.

B. Second calculation of fermion contribution

The second scheme of doubling the fermion operator
(19) uses the torsion-independent conjugate operator,

Ĥ2 ¼ iγν∇ν þm: ð29Þ
In this case, one has to use the formula (21) for the torsion-
independent terms, which are certainly the same as in (27).
However, for the Sμ-dependent terms, Tr ln Ĥ2 is irrel-
evant, and we have to use the modified rule,

−iTr ln Ĥ ¼ −iTr lnðĤĤ2Þ ¼ −iTr lnð□̂þ 2ĥα2∇α þ Π̂2Þ:
ð30Þ

The elements of the operator, in this case, are

ĥα2 ¼
i
2
γ5γλγαSλ;

Π̂2 ¼ m2 −
1

4
Rþmγ5γλSλ: ð31Þ

The elements of Schwinger-DeWitt technique are also
different,

P̂2 ¼ m2 −
1

12
R −

1

2
S2 þmγ5γαSα

−
i
2
γ5ð∇αSαÞ þ

i
4
γ5γαγβSαβ; ð32Þ

Ŝ2;αβ ¼ −
1

4
Rαβλτγ

λγτ −
1

4
S2ðγαγβ − γβγαÞ

−
1

2
SλγλðSβγα − SαγβÞ

þ i
2
γ5γλ½γαð∇βSλÞ − γβð∇αSλÞ�: ð33Þ

Let us write only the Sμ-dependent divergences, which
are obtained via (30) and (25),

Γð1Þ
div;fer;2 ¼ −

μn−4

ε

Z
dnx

ffiffiffiffiffiffi
−g

p �
8m2η2S2 −

2

3
η2S2μν

þ 2

3
η2□S2 þ 2

3
η2∇βðSβ∇αSα − Sα∇αSβÞ

�
:

ð34Þ

Compared to (27), the nonsurface terms are the same.
However, the total derivative, N -terms, have different
coefficients. This result represents the new kind of multi-
plicative anomaly, being qualitatively different from the
previously known examples (starting from [37]) concerning
the nonlocal part of the one-loop effective action. In these
examples the multiplicative anomaly shows up only for the
massive fields, and on the other hand, it cannot be compen-
sated by the change of renormalization condition because the
last concerns only the local terms. In the present case, the
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difference cannot be compensated by the change of renorm-
alization conditions for the irrelevant surface integrals
because such change given only finite differences. As we
will see in the next section, the finite difference shows up in
the local terms which are not total derivatives.

C. Action of torsion and UV logarithmic corrections

One of the important outputs of the one-loop calculations
for scalars and fermions is that, in the semiclassical
conformal theory with antisymmetric torsion, the classical
action of torsion has the form [36,44],

Stors ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−a1S4 −

a2
4
S2μν þ b1∇βðSα∇αSβ

− Sβ∇αSαÞ þ b2□S2
�
; ð35Þ

where a1;2 > 0 and b1;2 are arbitrary parameters. The
positiveness of a1 and a2 provides the tree-level potential
of Sμ bounded from below (as will be discussed in the next
sections) and the positiveness of energy for propagating
torsion [48] (see also [36]).
It may look natural to set a2 ¼ 1 [48], that can be

provided by rescaling Sμ and η. However, it is sometimes
useful to keep a2 arbitrary, as we shall see in what follows.
From the viewpoint of conformal symmetry, a1;2-structures
represent C-terms and the values of those parameters can be
defined only from the measurements, which in the case of
a2 can be traded to the measurement of ηSμ. At the same
time, the coefficients of the N -terms b1;2 do not affect
equations of motion and are artificial parameters that
cannot be measured. Still, these terms are necessary for
renormalizability of a semiclassical theory.
Let us evaluate loop corrections to the vacuum action

(35). As a first step in this direction, we can recover the
leading one-loop logarithms in the most relevant C-terms.
Using the standard considerations [46] (see also [14] for
more details), we arrive at the one-loop corrected torsion
sector of the theory,

Γð1Þ
tors ¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p �
S2
�
a1 þ

β1
2
ln

�
□

μ2

��
S2

þ 1

4
Sμν

�
a2 þ

β2
2
ln

�
□

μ2

��
Sμν

�
; ð36Þ

From (17) and (27) [see also subsequent Eq. (34)], we can
easily get

β1 ¼ −
1

2ð4πÞ2
XNs

i¼1

ξ25;i;

β2 ¼
8

3ð4πÞ2
XNf

k¼1

η2k: ð37Þ

Here ξ5;i and ηk are nonminimal parameters for different
species of scalar and spinor fields. According to the
analysis of renormalization in interacting theories [43],
these parameters may be different for different fields.
Independent on this, the signs of the beta functions show
that the sign of β1 indicated the asymptotic freedom in the
parameter a1 and the sign of β2 is positive, as it is typical for
the Abelian vector models. It is worth mentioning that these
signs correspond to the fermion and scalar contributions
only, while the contribution of the proper field Sμ was not
taken into account.
The integration of anomaly is, to a great extent, an

elegant and useful way to work with formula (36) by
constructing a local version of renormalization group.
After deriving the covariant form of anomaly-induced
action, we use the duality of the UV and IR limits in the
massless theory and construct the low-energy alternative
to (36).

IV. INTEGRATION OF ANOMALY
WITH TORSION

Since the torsion field does not transform in (7), the
derivation of anomaly has no novelties compared to the
purely metric case [6,7] (see, e.g., [14] for detailed
introduction). On top of that, in [35] one can find even
more general consideration, with the torsion trace Tμ

included. Thus, we shall simply write down the expression
for the anomaly,

hTμ
μi ¼ −

�
wC2 þ bE4 þ c□R − β1S4 −

1

4
β2S2μν

þ γ1∇βðSα∇αSβ − Sβ∇αSαÞ þ γ2□S2
�
: ð38Þ

The one-loop β-functions w, b and c do not depend on
the presence of torsion and are given by the expressions
[14,49],

0
B@

w

b

c

1
CA ¼ 1

360ð4πÞ2

0
B@

3Ns þ 18Nf þ 36Nv

−Ns − 11Nf − 62Nv

2Ns þ 12Nf − 36Nv

1
CA; ð39Þ

where Ns, Nf and Nv are the numbers of scalar, spinor and
gauge vector fields.
The beta functions β1;2 are written in (37). Finally, the

two functions γ1;2 in (38) are ambiguous, as we have seen
from the fermionic divergences (27) and (34). For these two
schemes of calculation we meet, respectively,

γð1Þ1 ¼ −
4

3ð4πÞ2
XNf

k¼1

η2k; γð2Þ1 ¼ 2

3ð4πÞ2
XNf

k¼1

η2k; ð40Þ
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γð1Þ2 ¼ 4

3ð4πÞ2
XNf

k¼1

η2k −
1

6ð4πÞ2
XNs

i¼1

ξ5;k;

γð2Þ2 ¼ 2

3ð4πÞ2
XNf

k¼1

η2k −
1

6ð4πÞ2
XNs

i¼1

ξ5;k: ð41Þ

Let us note that the scalar contributions to γ2 in (41),
coming from (17), also have ambiguity; however one has to
perform Pauli-Villars analysis to see this. The required
procedure would be a mere repetition of the one described
in [26,32] for background scalars; hence we skip this part.
In the rest of this section, we describe the solution of the

equation,

−
2ffiffiffiffiffiffi−gp gμν

δΓind

δgμν
¼ −

1ffiffiffiffiffiffi
−ḡ

p e−4σ
δΓind

δσ

				 ¼ hTμ
μi: ð42Þ

The first equation here is an identity which uses σ, i.e., the
conformal factor of the metric defined in (7). Also, j means
the procedure of replacing ðḡμν; SμÞ → ðgμν; SμÞ and σ → 0.
The 4D solution for a purely gravitational case was

found in [6,7]. The generalization for a theory with torsion
has been found [34,35] but only in the noncovariant
formulation as a functional of ḡμν, S̄μ and σ. In what
follows, we shall construct the most informative, covariant
(nonlocal and local) solutions following the general scheme
working for an arbitrary even dimension [28]. Thus, we
need just to give a practical realization of this scheme for
the theory with torsion.
The conformal invariants in (38) can be denoted in a

common way as

Y ¼ Yðg; SÞ ¼ wC2 − β1S4 −
1

4
β2S2μν: ð43Þ

The unique topological term E4 has the remarkable
conformal property,

ffiffiffiffiffiffi
−g

p �
E4 −

2

3
□R

�
¼

ffiffiffiffiffiffi
−g

p �
Ē4 −

2

3
□̄ R̄þ4Δ̄4σ

�
; ð44Þ

where Δ4 ¼ □
2 þ 2Rμν∇μ∇ν − 2

3
R□þ 1

3
ð∇μRÞ∇μ, which

obeys
ffiffiffiffiffiffi−gp Δ4 ¼

ffiffiffiffiffiffi
−ḡ

p
Δ̄4 [50,51].

These notations and features do not depend on the
presence of torsion, and therefore, we can directly write
down the nonlocal part of the solution of (42),

Γind;nonloc ¼
b
8

Z
x

Z
y

�
E4−

2

3
□R

�
x
Gðx;yÞ

�
E4−

2

3
□R

�
y

þ 1

4

Z
x

Z
y
YðxÞGðx;yÞ

�
E4−

2

3
□R

�
y
; ð45Þ

where we used the notation
R
x ≡

R
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp

and the
Green function of the Paneitz operator,

ð ffiffiffiffiffiffi
−g

p
Δ4ÞxGðx; yÞ ¼ δðx; yÞ: ð46Þ

Let us find a solution for the total derivative terms. For
the □R the result is well-known,

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

Z
x
R2 ¼ 12□R; ð47Þ

and for the □S2 the answer can be easily found by direct
calculation,

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

Z
x
RS2 ¼ 6□S2: ð48Þ

Thus, the remaining problem is to integrate the γ1 term
in (38). Let us use the hypothesis that, as in all previously
known cases, the solution for the total derivative should
be a local covariant action. Then we have the following
candidate terms:

Γind;local ¼
Z
x
fα1ð∇μSμÞ2 þ α2ð∇μSνÞ2 þ α3RS2g; ð49Þ

where the last one is already worked out in (48). We can
rewrite the rhs of this formula using □S2 ¼ 2∇νðSμ∇νSμÞ.
It is easy to note that in (49) the dimensionally possible
term RμνSμSν is missing. The reason is that the linear
combination (26) gives conformal invariant functionalR
x S

2
μν, and therefore, including the mentioned term would

be senseless. The application of the conformal operator to
the remaining two terms gives

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

Z
x
ð∇μSμÞ2 ¼ 4∇νðSν∇μSμÞ;

−
2ffiffiffiffiffiffi−gp gμν

δ

δgμν

Z
x
ð∇νSμÞ2 ¼ 2∇ν½Sν∇μSμ − Sμ∇νSμ

− Sμ∇μSν�: ð50Þ
Using (50) together with the modified version of (48),

replacing the result into the linear combination of (49) and
comparing to (38), we arrive at the solution for α1;2;3,

α1 ¼ 0; α2 ¼
1

2
γ1; α3 ¼

1

12
ðγ1 − 2γ2Þ: ð51Þ

Taking into account relations (47) and (44), the local part of
the covariant induced action has the form,

Γind;loc ¼ −
3cþ 2b

36

Z
x
R2

þ
Z
x

�
γ1
2
ð∇μSνÞ2 þ

γ1 − 2γ2
12

RS2
�
: ð52Þ

Just to complete the story, we mention that this expression
may be modified by using the relations (12) and (13) in
the purely metric part and (26) in the torsion-metric part.
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This means, one can use the replacement R2 → 1
3
R2
μν or

R2 → 1
3
R2
μναβ in (52) and use (26) to make similar trades in

the S-dependent terms.
It is worth mentioning another detail concerning fermion

contributions. The local torsion-dependent terms (52)
violate not only conformal (7) but also chiral symmetry (9).
This symmetry breaking does not occur in the fermionic
nonlocal part (45).
All in all, the general covariant solution for the anomaly-

induced action is the sum of the nonlocal (45) and local (52)
parts,

Γind ¼ Scðg; SÞ þ Γind;nonloc þ Γind;loc; ð53Þ

where Scðg; SÞ is an arbitrary conformal invariant func-
tional which plays the role of integration constant for our
main equation (42). The uncertain elements in this expres-
sion are this unknown functional and the ambiguous
γ-functions in the local part Γind;nonloc in (52). Similarly
to the ambiguity in the R2-term, these torsion-dependent
local terms may be modified by adding the local non-
conformal terms to the classical action of vacuum (35).
These classical terms are not subject of renormalization and
represent a new type of arbitrariness in the action, equiv-
alent to the local multiplicative anomaly.
As usual, we can rewrite the nonlocal part of (53) in the

symmetric form and get the induced action in the local
covariant form with two auxiliary fields φ and ψ [52] (see
also [53]),

Γind ¼ Scðg; SÞ þ Γind;loc þ
Z
x

�
1

2
φΔ4φ −

1

2
ψΔ4ψ

þ
ffiffiffiffiffiffi
−b

p

2
φ

�
E4 −

2

3
□Rþ 1

b
Y

�
þ 1

2
ffiffiffiffiffiffi
−b

p ψY

�
;

ð54Þ

where the local part and Y are given by (52) and (43),
respectively.
The forms (53) and (54) are equivalent to the non-

covariant form derived in [34]. Each of this forms has its
own advantages, in particular (54) is more suitable for
physical applications [9,13]. On another hand, the nonlocal
form (53) is more explicit and, also, was recently shown to
admit the description of the IR limit [25,26]. We shall apply
this approach to the induced action with torsion (53) in the
next section.

V. ANOMALY-INDUCED EFFECTIVE
ACTION IN THE IR

In the recent works [54,55] it was shown that dynamical
torsion may be used to construct phenomenologically
successful models of dark matter (DM). On the other hand,
there is a general statement that the consistency of quantum

field theory of the propagating torsion requires a large
torsion mass [48,56], something that can be in contra-
diction to the DM applications. In this respect, it looks
interesting to explore the possibility of dynamical sym-
metry breaking in the torsion sector. In scalar field theory,
this is one of the ways have a large mass in the IR and, at the
same time, leave some space for the applications in the high
energy physics, including to the early Universe.
In the scalar case, the analysis of symmetry breaking in

initially massless theory requires the effective potential
[57], that can be also derived in curved spacetime [14,44].
We shall follow [26], where the scalar potential was
obtained in the IR limit of the anomaly-induced action,
i.e., the scalar analog of (53). We shall concentrate only on
the nonlocal part of this action because the local part is
ambiguous.
Let us define the meaning of the low-energy (IR) limit in

the massless conformal theory, with ξ1 ¼ 1=6. The main
assumption is that torsion terms in (43) dominate over the
square of the Weyl tensor. This may be a reasonable
approximation in the early Universe because Weyl tensor
vanishes for the homogeneous and isotropic metric and
shows up only because of the metric perturbations. On the
other hand, one can assume that torsion plays an important
role in the formation of DM and hence should be a strong
field [55]. Thus,

jS4j ≫ jC2
μναβ jand jS2μνj ≫ jC2

μναβj: ð55Þ

As usual in general relativity, the IR limit implies a weak
gravitational field. The weak gravity can be described by a
small metric perturbation hμν ¼ gμν − ημν, that means, e.g.,
j□Rj ≫ jR2

…:j for all curvature tensors (e.g., Weyl, Ricci
tensors, and R).
In this approximation, the Green function (46) reduces to

G¼Δ−1
4 ¼

�
□

2þ 2Rμν∇μ∇ν−
2

3
R□þ 1

3
R;μ∇μ

�
−1

≈
1

□2
:

ð56Þ

Thus, the nonlocal, torsion-dependent part of the effective
action (45) boils down to

ΓIR
ind;nonloc ¼

1

6

Z
x

Z
y

�
β1S4 þ

1

4
β2S2μν

�
x

�
1

□
2

�
x;y
ð□RÞy

¼ 1

6

Z
x

Z
y

�
β1S4 þ

1

4
β2S2μν

�
x

�
1

□

�
x;y
RðyÞ: ð57Þ

On top of this expression, the IR limit of the induced
effective action includes OðR2

…Þ-terms, but those were
discussed in [26], and we can refer the interested reader to
this work.
In the presence of torsion, the terms S4□−1R and

S2μν□−1R have the same global scaling as the respective
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classical terms S4 and S2μν; i.e., they are invariant under the
transformation (7) with σ → λ ¼ const. Indeed, this is the
usual feature of the nonlocal induced action, independent
on extra fields and even spacetime dimension [28], but it is
quite remarkable that this feature holds in the IR limit, just
as in the scalar case [26].
The next step is to derive the low-energy effective action

of torsion from (57). To this end, we separate the conformal
factor of the metric and use the analogy with the renorm-
alization group-based derivation of effective action [44,58].
At one loop, it is sufficient to account only for the linear in
σ terms. Thus, we consider

gμν ¼ ḡμνe2σ;
ffiffiffiffiffiffi
−g

p
S4¼ ffiffiffiffiffiffi

−ḡ
p

S̄4;
ffiffiffiffiffiffi
−g

p
S2μν¼

ffiffiffiffiffiffi
−ḡ

p
S̄2μν;

□−1 ¼ e2σ□̄−1; R¼ e−2σ½R̄−6□̄σ�; ð58Þ

where □̄ ¼ ḡμν∇̄μ∇̄ν ¼ 1ffiffiffiffi
−ḡ

p ∂μ
ffiffiffiffiffiffi
−ḡ

p
ḡμν∂ν. In this frame-

work, (57) becomes

ΓIR
ind;nonloc ¼ −

Z
x

�
β1S̄4 þ

1

4
β2S̄2μν

�
x
σðxÞ: ð59Þ

This result demonstrates, as we expected, that the anomaly-
induced action is a local version of the renormalization
group corrected classical action (35), that means the
substitution,

a1 → a1 − β1σðxÞ; a2 → a2 − β2σðxÞ: ð60Þ

Compared to the usual curved-space renormalization group
[14,23], the constant scaling parameter λ is traded for the
coordinate-dependent conformal factor of the metric σ; i.e.,
we arrive at the local form of renormalization group in
curved space [13].
At this point, one can use (60) to recover the low-energy

effective action. This requires identification of the scale
parameter σ, and we have several choices because of the
scaling rules,

S2 ¼ S̄2e−2σ; S4 ¼ S̄4e−4σ; S2μν ¼ S̄2μνe−4σ: ð61Þ

For example, choosing the first option, we arrive at the
identification σ → − 1

2
ln S2

μ2
. Then, the improvement (60) of

the action (35) gives, in the torsion-dependent sector,

Γtors ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ��
a1 þ

β1
2
ln

�
S2

μ2

��
S4

þ 1

4

�
a2 þ

β2
2
ln

�
S2

μ2

��
S2μν þ � � �

�
; ð62Þ

where we omitted surface terms. An obvious observation
here is that (62) is not just an integral of the effective potential

since there is a kinetic termS2μν. Thus, the result can be seen as
a form of the one-loop effective action in the IR limit.
The effective potential part of (62) has the form,

Veff ¼
�
a1 þ

β1
2
ln

�
S2

μ2

��
S4; ð63Þ

together with the negative β1-function (37) shows that the
one-loop potential always becomes unstable for large
values of S2, where the quantum corrections start to
dominate over the classical coefficient a1. The coefficients
η for fermions are experimentally bounded by very small
values, at least for electrons (one can use [36] as a starting
point for further references on the subject). Thus, according
to (37), the strong effect of the negative β1 may be expected
only for extremely large values of S2. Anyway, at the one-
loop level the effective potential is unbounded from below.
This feature does not mean that the theory, in general, is

badly defined at the quantum level because the second and
higher loop contributions may restore the positive definite-
ness of the potential. On the other hand, assuming the
change of sign of β1 at higher loops, we can rewrite the
effective potential part of (62) in terms of the dimensionless
parameter z ¼ S2=μ2,

Veff ¼ μ4vðzÞ ¼ a1μ4½z2ð1þ β̃ ln zÞ�; β̃ ¼ β1
2a1

: ð64Þ

The qualitative profile of the function vðzÞ for β1 > 0 is
shown in Fig. 1. However, since the real sign of the beta
function is negative, the implementation of the dynamical
symmetry breaking in this theory requires further inves-
tigation and, especially, higher loops contributions to the
potential.

VI. CONCLUSIONS AND DISCUSSIONS

We calculated the vacuum divergences and formulated, for
the first time, the covariant version of the anomaly-induced

FIG. 1. Plot of vðzÞ demonstrating the possibility of dynamical
symmetry breaking for a positive β1.

ANOMALY-INDUCED VACUUM EFFECTIVE ACTION WITH … PHYS. REV. D 106, 045004 (2022)

045004-9



effective action in curved spacetime with torsion. The
output can be presented in the covariant nonlocal form (53)
or in the local form with auxiliary scalars (54). The main
novelty is the detection of the multiplicative anomaly in the
total derivative part of the divergences, i.e., (27) vs (34) and
the corresponding ambiguity in the local part of the induced
effective action. The ambiguity cannot be removed by the
change of renormalization condition and represents a new
feature of massless fermionic determinants that does not
take place without torsion.
Multiplicative anomaly appears in the finite local part of

induced effective action, as shown in expression (52). All
the terms in this action are ambiguous. The coefficient c
may be modified by adding the finite

R
x R

2 term to the
classical action or, equivalently, by the choice of the
divergent Weyl-squared counterterm [31]. On the other
hand, the ambiguity in the torsion-dependent terms can be
compensated by adding the local nonconformal terms
similar to those in (52), to the classical action (35).
Another new result of our work is the covariant expres-

sion for the low-energy limit of the anomaly-induced
effective action (62). This part may be eventually useful
for describing dynamical symmetry breaking in torsion

theories but, independent on that, we have an interesting
analogy with the scalar effective potential in the axial
vector model. On the other hand, the low-energy effective
action (62) by itself may serve as an evidence of breaking
local conformal symmetry by quantum corrections. In this
sense, it is an analog of the effective potential of a scalar
field ϕ in the conformal theory, where the ϕ4 lnðϕ=μÞ-term
breaks the symmetry of the classical ϕ4-type potential. It
looks remarkable that we can obtain this low-energy
breaking with torsion from the anomaly-induced effective
action (53).
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