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This work continues the investigation of radiation phenomena from emitter-field interactions, extending
our earlier study [J.-T. Hsiang and B. L. Hu, Physics 1, 430 (2019).] of quantum radiation from a stationary
emitter’s internal degree of freedom, modeled by a harmonic oscillator, to the emittance of classical
radiation. By assuming that the emitter interacts with a quantum scalar field initially in a coherent state, we
show how a stochastic component of the internal dynamics of the emitter arises from the vacuum
fluctuations of the field, resulting in the emittance of quantum radiation, whose reaction induces quantum
dissipation in the internal dynamics. We also show how the deterministic mean field drives the internal
classical mean component to emit classical radiation and receive classical radiation reaction. Both
components are statistically distinct and fully decoupled. It is clearly seen that the effects of the vacuum
fluctuations of the field are matched with those of quantum radiation reaction, not with classical radiation
reaction, as the folklore goes. In contrast to the quantum component of the emitter’s internal dynamics,
which always equilibrates, the relaxation dynamics of the classical component largely depends on the late-
time behavior of the mean field. For the values of the parameters defining the coherent state of the field
much greater than unity, if the mean field remains periodic, then the internal dynamics of the emitter will
appear classical and periodic. If the mean field diminishes with time, then the classical component of the
emitter’s internal dynamics subsides but the quantum component will abide and dynamically equilibrate.
This also explains why quantum radiation from a stationary emitter is not observed, and a probe located far
away only sees classical radiation. Our analysis therefore paints a continuum landscape starting from
vacuum fluctuations in the quantum field to classical radiation and radiation reaction.
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I. INTRODUCTION

In an earlier paper [1] (Paper I), we considered several
fundamental issues related to the quantum vacuum [2]
in the context of emitter-field interactions [3–7] pertain-
ing to quantum radiative processes. We begin with
the vacuum fluctuations in a quantum field, examine
how they bring forth stochastic motion in the internal
degrees of freedom (idf) of an emitter, induce it to emit
quantum radiation and how the emitting of radiation
generates a reactive force on the emitter. All these are
quantum in nature. When the emitter-field system reaches

equilibrium, the energy flow drained by this reactive force
in the idf of the emitter is balanced by the power fed by
vacuum fluctuations of the field. Meanwhile, as shown in
Paper I, at places sufficiently far away from the emitter,
the outgoing energy of quantum radiation is compensated
by an incoming energy flux. A powerful relation which
one can use to check the energy flux balance in the
relevant processes is the fluctuation-dissipation relation
(FDR). Under equilibrium conditions, referring to the
quantum field alone, vacuum fluctuations are related to
quantum dissipation [8–14] by a fluctuation-dissipation
relation.1

*cosmology@gmail.com
†blhu@umd.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Note two sets of FDRs are involved. When we address the
vacuum fluctuations vs radiation reaction, we refer to the FDR of
the free environment field (in its initial state). However, when we
compare the FDR in linear response theory vs nonequilibrium
dynamics, it is the FDR of the system (in its final equilibrium
state). A more thorough discussion can be found in [15].
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A. Basic issues and prior treatments

1. Fluctuation dissipation relations

The FDR in the quantum field is easy to show, as has
been done in the 1990s [8–10]. It amounts to the relation
between the Hadamard function and the retarded Green
function. A greater challenge is to show whether and
how a FDR relation exists for the emitter in the context
of the emitter-field interaction, namely, between its
quantum fluctuations, and quantum dissipation in the
dynamics of the idf of the emitter [11–14]. This lesser
known process goes as follows: Under specific condi-
tions, as we shall explain in the main text, radiation of
a quantum nature is sent out from the emitter. The
reactive force from this quantum radiation engenders
quantum dissipation in the dynamics of the emitter’s
idf, and under equilibrium conditions, a quantum fluc-
tuation-dissipation relation (FDR) of the emitter can be
shown to exist reflecting the subtle balance between
the dissipated energy by the quantum self-force and
input energy from the surrounding quantum field
fluctuations.

2. Some conventional misconceptions

It is often said that vacuum fluctuations and classical
radiation reaction are two sides of the same coin, and
one can approach it from either side as they are related by
a fluctuation-dissipation relation. In Paper I we pointed
out the flaws in this view. To begin with, the former
entity is quantum while the latter classical. One cannot
connect them prima facie, a big divide exists between
these two levels of theoretical structure. A simple
observation is: there are situations where classical radi-
ation reaction can be zero, such as in a uniformly
accelerated charge, which emits classical radiation
[16], and yet vacuum fluctuations are always present.
There is indeed a relation between vacuum fluctuations
and quantum dissipation—one can call this quantum
radiation reaction, but not with classical radiation
reaction.

3. From vacuum fluctuations in the
field to quantum dissipation

in the emitter

These rather intricate quantum processes are not often
discussed, but can be understood in two stages: (a) fluc-
tuations in a quantum field induces a stochastic compo-
nent in the dynamics of the idf of an emitter. This motion
causes the emitter to give off quantum radiation. (b) the
backaction in the emittance of quantum radiation gen-
erates a reactive force on the emitter, which shows up as

quantum dissipation in the emitter’s idf. All these are at
the quantum level, not related to classical radiation and
radiation reaction. The primary purpose of Paper I was to
trace out the subtle relations between fluctuations in the
quantum field and quantum radiation from the emitter,
and how that is related to quantum dissipation. In fact we
considered a stationary emitter and show that there is a
delicate yet exact energy flux balance due to the corre-
lation between quantum radiation sent out from the
emitter and the vacuum fluctuations of the quantum field
at the position of a detector placed far away from the
emitter.

B. This work: Objective and procedures

1. How does this chain of quantum
events lead to classical radiation?

In this paper we follow this line of reasoning and set
forth to show how classical radiation and radiation
reaction appear from the quantum field by assuming that
the field is in a coherent state. The energy flux expres-
sions we shall derive have as the leading contribution a
classical term. This enables us to bring the above
quantum story starting from vacuum fluctuations all
the way to classical radiation while still keeping all the
quantum attributes intact, as described in Paper I. With
this, we can explicitly address all the issues we mentioned
above, from vacuum fluctuations to quantum dissipation
to quantum radiation to classical radiation and classical
radiation reaction. Attempts to connect quantum radiation
in the nature of Unruh effect [17,18], namely, thermal
radiance felt by a uniformly accelerated detector, with
classical (Lamor) radiation registered by a detector or
probe at some distance from this detector have been
made. For example, Landulfo, Fulling and Matsas [19]
found a relation between Unruh’s thermal radiance in,
and the Larmor radiation emitted by, a uniformly accel-
erated charge, the latter can be seen as entirely built
from zero-Rindler-energy modes, thus bridging the quan-
tum and the classical radiations. However, we are not
aware of attempts to connect vacuum fluctuations in a
quantum field with quantum dissipation in a detector/
charge to quantum and classical radiation from a detector/
charge.

2. Main features in our findings

We find that for a stationary emitter whose internal
degree of freedom is modeled by a harmonic oscillator and
is coupled to a massless scalar field initially prepared in a
coherent state, the dynamics of the field and the emitter’s
internal motion can both be decomposed into the corre-
sponding classical, mean component and the fluctuating,
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quantum component.2 Both components of the emitter’s
internal degree of freedom act like a driven damped
oscillator. The classical component is driven by the mean
field but damped by a classical reactive force from the
emission of classical radiation. In contrast, the quantum
component is steered by the vacuum fluctuations of the
field. Its motion engenders quantum radiation, and in return
a quantum dissipation is exerted on the quantum compo-
nent of the internal dynamics.
The classical deterministic motion of the emitter’s

internal degree of freedom in general dominates over
the quantum motion at late times if the coherent param-
eters, that is, the parameters defining the coherent state of
the field, e.g., fαg in (2.21), are mostly much greater than
unity, with the exception that the mean free field decays
with time. This happens when the mean field is not
periodic and has a wide, sufficiently smooth spectrum.
In the latter case, the internal dynamics of the emitter is
quantum mechanical at late times. These two cases are
different not only in their statistical nature, but also in their
ability to reach equilibration. Periodic driving due to
the classical mean component of the free field will in
general induce a periodic internal motion of the emitter, so
the internal dynamics will not have an equilibrium state.
On the other hand a diminishing mean field can allow

the quantum dynamics of the internal degree of freedom
to prevail at late times, and equilibrate. The activities
of the quantum component inside the emitter such as
quantum dissipation, or quantum radiation reaction,
are completely due to the vacuum fluctuations of the free
field.
The radiation given off by the emitter can likewise be

separated into a classical and a quantum component. In
general the classical radiation component either will not
settle down, or it just slackens off, depending on the
properties of the mean field at late times. Conversely, at
late times the energy flux from the quantum component of
the emitted radiation measured at a distance sufficiently far
away from the stationary emitter will be balanced out by
another incoming energy flow. This was a key discovery we
found in Paper I and earlier in [21]: This incoming flux
results from the correlation in the quantum components
between the distant radiation field, that is, the far-field
component, and the local free field around the emitter. The
exact amount of correlation to make this happen is enforced
by the fluctuation-dissipation relations associated with the
quantum components of the field and the internal dynamics
of the emitter. Such a balance in the energy exchange
between the emitter and the field is generically not available
for the classical mean components because they are
deterministic, there are no fluctuations, and thus no
FDRs. Therefore, quantum radiation is always present,
but for a stationary emitter its effect at spatial infinity is
completely canceled out. The probe located far away from a
stationary emitter thus only sees classical radiation. A more
detailed summary can be found in the last section.
Before we delve into the main development, we would

like to markdown essential points which our present work
accomplishes beyond previous work. To facilitate easier
comparison, we use a well-known monograph [22] to show
their common origin and, more significantly, important
points not made clear enough and new results not correctly
or fully presented before.

A. Common points of origin:
(i) Radiation field: Eq. (4.4.70) is equivalent to

Eq. (2.4) in our paper;
(ii) Langevin equation of motion: Eq. (4.5.12)

corresponds to Eq. (2.6) in our paper. In
particular, E0 and ERR in Eq. (4.5.12) are the
free field ϕ̂h and the nonlocal expression in our
Eq. (2.6) respectively. This is just the beginning
of our story.

B. What we can achieve which older treatments cannot:
The use of the harmonic oscillator model offers
many important advantages for what we want over a
two-level atom such as used in [22].

(B1) Our model can be solved exactly. We do not need to
invoke approximations like the perturbative, rotat-
ing-wave or Born-Markov approximations which
could curtail or destroy the generic behaviors.

2Quantum-classical interplay is a fundamental question with
multi-dimensional meanings, radiation phenomenon being one
important aspect of it, particle creation is another. They share the
same origin, namely, fluctuations in the quantum field. When the
field is strong enough (Euler-Heisenberg, Schwinger) or when it
is rapidly varying (Schrödinger, Zel’dovich) as in cosmology,
particle creation occurs. In the case of particle creation one would
be working with a field in the vacuum state, manifesting as
spontaneous production, or with an n-particle state, when there
are particles already present, manifesting as stimulated produc-
tion. One can also work with a thermal state for finite temperature
quantum fields. There, the quantum classical-interplay is simpler:
At high enough temperatures T, the leading terms in the energy
density would show ‘classical’ features like the Stefan-
Boltzmann T4 law (even though we know of the radiation’s
quantum origin). Or, for vacuum production, when the particles
have been created in abundance, the large number limit would
show classical features, not unlike the intensity of classical
electromagnetic radiation, under randomized phases. These are
familiar examples. Several useful criteria of quantum to classical
correspondence are invoked: large N, random phase, high
temperature. Taking into account the interaction between the
created particles and the time-dependent background field, the so-
called backreaction problem, is indeed more elaborate (e.g.,
regularization of the stress energy tensor) but these calculations
can be and have been done. Now, for the issues we raised about
the relation of quantum radiation and dissipation and classical
radiation and reaction, we find the use of coherent state is
physically the most direct and computationally feasible. The
quantum-classical interplay is of course a main theme of this
paper, our calculation serves to clarify the two separate levels of
relations, and their interconnections. Our next paper [20] will be
on squeezed states with applications to quantum radiation and
cosmological particle creation problems.
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(B2) We begin with the Green’s functions of the quantum
field. This offers a systematic development of the
formalism which produces rigorous results. This also
avoids the sometimes ad hoc or physically unjustified
assumptions in the perturbative treatments.

(B3) Our approach makes clear revelation of the subtle
correlations in the quantum radiation field, and the
source of correlation. In strong contrast, the classical
radiation field lacks such correlation. This enables us
to see why the quantum energy flow tends to
equilibrate, but the classical one cannot.

(B4) Our work is developed in a fully nonequilibrium
setting, as different from traditional linear response
treatments relying on the existence of equilibrium as
a precondition. A fully nonequilibrium treatment
allows us to clearly address how the system and the
radiation field, can or cannot approach equilibrium.

(B5) Our model applies equally well to strong system-
field coupling, a topic of immense current interest.

3. Organization

In Sec. II, while considering the dynamics of the emitter’s
internal degrees of freedom coupled to a scalar field in the
coherent state, we carefully separate the classical mean
component and the quantum fluctuating component in
the field and the internal dynamics. We highlight their
differences in terms of their deterministic versus stochastic
natures, and discuss their implications in approaching
dynamical equilibrium. In Sec. III, we study the late-time
behavior of the internal dynamics of its classical and
quantum components, and the condition that may lead to
stationarity in its correlation function. Then we examine in
Sec. IV how a late-time equilibrium state can or cannot be
reached from the aspect of the reduced dynamics of the
emitter’s internal motion driven by the quantum field in a
coherent state. In Sec. V,we switch over to the perspective of
the field, and investigate the radiation power that flows to
spatial infinity. In passing we reassert the significant role the
FDRsplays in keeping the quantumcomponents of radiation
power from a stationary emitter in balance, and the conse-
quence of their absence in the classical component. Finally,
in conclusion, we highlight the similarity and disparity
between the classical mean and the quantum fluctuating
dynamics in the emitter-field system, and discuss their
implications in late-time dynamics.

II. INTERNAL DYNAMICS OF THE EMITTER
WITH BACKACTION FROM A QUANTUM FIELD

We consider an emitter whose internal degree of freedom
(idf) QðtÞ is modeled by a quantum harmonic oscillator of
mass m and bare frequency ωB. Let QðtÞ be coupled to a
massless scalar field ϕðxÞ in Minkowski spacetime with
x ¼ ðx; tÞ. The total action of this emitter-field interacting
system takes the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−η

p �
−
1

2
ημν∂μϕðxÞ∂νϕðxÞ

�

þ
Z

d4x
ffiffiffiffiffiffi
−η

p
JðxÞϕðxÞ

þ
Z

dt
�
m
2

_Q2ðtÞ −mω2
B

2
Q2ðtÞ

�
; ð2:1Þ

with the scalar current JðxμÞ ¼ eQðtÞδð3Þðx − zÞ, the cou-
pling strength e, the spatial position of the emitter z, and the
metric tensor ημν ¼ diagð−1;þ1;þ1;þ1Þ. We suppose for
the moment that the external degree of freedom zμ of the
emitter is non-dynamical but prescribed. When we promote
the canonical variables in the action (2.1) to quantum
operators, we arrive at a simultaneous set of Heisenberg
equations

□ϕ̂ðxÞ ¼ −eQ̂ðtÞδð3Þðx − zÞ; ð2:2Þ

̈Q̂ðtÞ þ ω2
BQ̂ðtÞ ¼ e

m
ϕ̂ðz; tÞ: ð2:3Þ

Since they are linear equations, the corresponding operator
solutions to (2.2) can readily be found:

ϕ̂ðxÞ ¼ ϕ̂hðxÞ þ
Z

d4x0GðϕÞ
0;Rðx; x0ÞĴðx0Þ; ð2:4Þ

where ϕ̂hðxÞ is the homogeneous, in-field solution, satisfy-
ing the free-field wave equation □ϕ̂hðxÞ ¼ 0, and

GðϕÞ
0;Rðx; x0Þ is the retarded Green’s function of the free

field, obeying the inhomogeneous wave equation

□GðϕÞ
0;Rðx; x0Þ ¼ −

1

ð−ηÞ14 δ
ð4Þðx − x0Þ 1

ð−η0Þ14 : ð2:5Þ

It is important to mark the difference between ϕ̂ðxÞ and
ϕ̂hðxÞ, and their roles in the emitter-field dynamics. The
former contains an additional contribution of the radiation
field due to the internal dynamics of the emitter, conveyed
by the second term in (2.4).
Equation (2.4) allows us to rewrite (2.3) into

̈̂QðtÞþω2
BQ̂ðtÞ− e2

m

Z
t

0

dt0GðϕÞ
0;Rðz; t; z; t0ÞQ̂ðt0Þ ¼ e

m
ϕ̂hðz; tÞ:

ð2:6Þ

Its solution assumes the general form

Q̂ðtÞ ¼ Q̂hðtÞ þ Q̂inhðtÞ; with

Q̂inhðtÞ ¼ e
Z

t

0

dt0GðQÞ
R ðt − t0Þϕ̂hðz; t0Þ; ð2:7Þ
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where Q̂hðtÞ ¼ d1ðtÞQ̂ð0Þ þ d2ðtÞ _̂Qð0Þ is the homo-
geneous solution to (2.6) and depends on the initial
conditions of Q̂. Two fundamental solutions d1ðtÞ and
d2ðtÞ are tailored for the initial-value problem of (2.6), so
they are chosen to take on special values at the initial times
t ¼ 0 according to d1ð0Þ ¼ 1, _d1ð0Þ ¼ 0, d2ð0Þ ¼ 0, and
_d2ð0Þ ¼ 1. An overhead dot represents taking the derivative
with respect to t.
The inhomogeneous (particular) solution Q̂inhðtÞ is

caused by the free quantum field ϕ̂h. It rises from zero
once the emitter-field interaction is turned on. Since it does
not depend on the initial conditions of Q̂ðtÞ it has a statistics
different from the homogeneous part Q̂hðtÞ.

A. Retarded Green function

The retarded Green’s function GðQÞ
R ðτÞ ¼ d2ðτÞ=m of the

internal degree of freedom Q̂, on account of the interaction
with the field, satisfies

d2

dt2
GðQÞ

R ðt− sÞþω2
BG

ðQÞ
R ðt− sÞ

−
e2

m

Z
t

0

dt0GðϕÞ
0;Rðz; t;z; t0ÞGðQÞ

R ðt0− sÞ¼ δðt−sÞ: ð2:8Þ

When ϕ̂ is a massless scalar field, we may reduce the
equation of motion (2.6) to a local form. Since

GðϕÞ
0;Rðz; t; z; t0Þ ¼ iθðt − t0Þ½ϕ̂hðz; tÞ; ϕ̂hðz; t0Þ�

¼ −
1

2π
θðτÞδ0ðτÞ; ð2:9Þ

the backaction on Q̂ due to the inhomogeneous part of ϕ̂ is
given by

− e2
Z

t

0

dsGðϕÞ
0;Rðz; t; z; sÞQ̂ðsÞ

¼ e2

2π

�
−δð0ÞQ̂ðtÞ þ δðtÞQ̂ð0Þ þ

Z
t

0

dsδðt − sÞ _QðsÞ
�
:

ð2:10Þ

We note that the integral

e2

2π

Z
t

0

ds δðt − sÞ _QðsÞ ¼ e2

4π
_QðtÞ ¼ 2mγ _QðtÞ ð2:11Þ

gives the frictional force.
On the other hand, the general solution to (2.2) can also

be expressed in term of the out-field and the advanced
Green’s function

ϕ̂ðz; tÞ ¼ ϕ̂OUTðz; tÞ þ e
Z

∞

t
dsGðϕÞ

0;Aðz; t; z; sÞQ̂ðsÞ; ð2:12Þ

where GðϕÞ
0;Aðx; t; x0; t0Þ ¼ GðϕÞ

0;Aðx0; t0; x; tÞ. In the limit
x0 → x → z, we find

GðϕÞ
0;Aðz; t; z; t0Þ ¼

1

2π
θð−τÞδ0ðτÞ; ð2:13Þ

so the corresponding backreaction comes from

−e2
Z

∞

t
dsGðϕÞ

0;Aðz; t;z;sÞQ̂ðsÞ

¼ e2

2π

�
δð−∞ÞQ̂ð∞Þ−δð0ÞQ̂ðtÞ−

Z
∞

t
dsδðt− sÞ _QðsÞ

�
:

ð2:14Þ

For times not at the asymptotic past and future, we may
write (2.10) and (2.14) as

−e2
Z

t

0

dsGðϕÞ
0;Rðz; t;z; sÞQ̂ðsÞ ¼−

e2

2π
δð0ÞQ̂ðtÞþ2mγ _QðtÞ;

ð2:15Þ

−e2
Z

∞

t
dsGðϕÞ

0;Aðz; t;z;sÞQ̂ðsÞ¼−
e2

2π
δð0ÞQ̂ðtÞ−2mγ _QðtÞ;

ð2:16Þ

and find that the frictional force can be given by the
combination

2mγ _QðtÞ¼−e2
Z

t

0

ds
1

2
½GðϕÞ

0;Rðz;t;z;sÞ−GðϕÞ
0;Aðz;t;z;sÞ�Q̂ðsÞ:

ð2:17Þ

This provides an alternative perspective why this mysteri-
ous expression has been used to calculate the self-force on
the emitter due to the radiation [23].

B. Radiation reaction

Back to (2.10), the term proportional to δð0Þ will be
absorbed into ω2

B to form the physical frequency

ωR ¼ ωB −
e2

2π
δð0Þ; ð2:18Þ

such that (2.6) becomes

̈Q̂ðtÞ þ 2γ _̂QðtÞ þ ω2
RQ̂ðtÞ ¼ e

m
ϕ̂hðz; tÞ: ð2:19Þ

This form is convenient to work with, and in particular, the

Fourier transform of GðQÞ
R ðτÞ has a rather simple form
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G̃ðQÞ
R ðκÞ ¼

Z
∞

−∞
dτGðQÞ

R ðτÞeiκτ

¼ 1

mð−κ2 þ ω2
R − i2γκÞ : ð2:20Þ

From the derivation of (2.19), we see that the damping
emerges as the reaction force to the radiation sent out by the
emitter. Together with the fluctuating force eϕ̂hðz; tÞ, they
are consequence of the emitter-field interaction. Thus, the
damping term and the driving term will account for
the energy exchange between the emitter and the field.
The force eϕ̂hðz; tÞ associated with the free field pumps

energy to the emitter, while −2mγ _̂QðtÞ dissipates the
emitter’s energy in the form of radiation field. This relation
is what we shall focus on when examining the time
variation of the energy exchange between the emitter
and the surrounding field to see it comes to an exact
balance at late times.

C. Quantum field initially in a coherent state

An important feature of Q̂hðtÞ is that it exponentially
decays with time over the relaxation timescale γ−1 with
γ ¼ e2=8πm, due to the damping in (2.19). At late times
t ≫ γ−1, the second term in (2.7) survives and thus the late-
time dynamics of Q̂ is exclusively governed by the free
scalar field ϕ̂h. This has important implications which we
shall see later.
In the Heisenberg picture, we consider the case where the

initial state of the total system at t ¼ 0 is a direct product
state made up of an arbitrary, normalized oscillator state
ρ̂ðQÞ and the multimode coherent state3 of the field jfαgi,

ρ̂ð0Þ ¼ ρ̂ðQÞð0Þ ⊗ jfαgihfαgj; ð2:21Þ

where jfαgi is the shorthand notation for the multimode
coherent state, jfαgi ¼ jαk1i ⊗ jαk2i ⊗ � � � where αki ∈ C
and ki labels a particular field mode. The expectation value
h� � �i ¼ Trfρ̂ð0Þ � � �g will be defined with respect to this
initial state. The coherent state has distinct features among
the Gaussian states of the field. The field in this state has a
nonzero expectation value but minimal field fluctuations,
equal to its vacuum fluctuations. Hence the coherent state is
sometimes referred to as the “most classical” quantum state
and often treated so when issues of quantum-to-classical
correspondence are discussed. However, it is important to
remember that the nonequilibrium system under consid-
eration is inherently quantum, even if the field is assumed
to be in a coherent state, because once the interaction
begins, the state of the whole system will become highly

entangled, a feature totally absent in the corresponding
classical interacting systems.
Assume that ϕ̂h has a plane-wave expansion

ϕ̂hðx; tÞ ¼
Z

d3k

ð2πÞ32
1ffiffiffiffiffiffi
2ω

p ½âkeþik·xe−iωt þ â†ke
−ik·xeþiωt�;

ð2:22Þ

where ω ¼ jkj, and âk, â
†
k are the annihilation and creation

operators of each mode k. Its expectation value is given by

φhðxÞ¼Trfρ̂ð0Þϕ̂hðxÞg¼ hϕ̂hðxÞi

¼
Z

d3k

ð2πÞ32
1ffiffiffiffiffiffi
2ω

p ðαkeþik·x−iωtþα�ke
−ik·xþiωtÞ; ð2:23Þ

with αk ¼ hfαgjâkjfαgi. This looks like a classical, free
scalar field in plane-wave expansion, and the amplitude of
each mode is proportional to αk. In turn, taking the same
expectation value of (2.19) gives an equation of motion

Q̈ðtÞ þ 2γ _QðtÞ þ ω2
RQðtÞ ¼ e

m
φhðz; tÞ; ð2:24Þ

with QðtÞ ¼ Trfρ̂ð0ÞQ̂ðtÞg. The mean dynamics of Q̂ðtÞ is
mathematically identical to the dynamics of a damped
classical harmonic oscillator, driven by a deterministic
force eφhðz; tÞ, evaluated at the location of the emitter.
The deviation from the mean dynamics is then described by
q̂ ¼ Q̂ −Q, following a similar equation of motion

̈q̂ðtÞ þ 2γ _̂qðtÞ þ ω2
Rq̂ðtÞ ¼

e
m
½ϕ̂hðz; tÞ − φhðz; tÞ�: ð2:25Þ

obtained by subtracting (2.24) from (2.19). The operator q̂
has a vanishing expectation value hq̂ðtÞi ¼ 0, but as shown
later, it describes the quantum fluctuations of the internal
dynamics.
The rendition above may lead one to think that when

jαkj ≫ 1, apart from minute zero-point fluctuations, the
reduced mean dynamics of Q̂ driven by the quantum field
in the coherent state is more or less equivalent to the
reduced dynamics of a classical field φhðz; tÞ. This is not
entirely correct, especially when quantum field fluctuation
effects are involved. The first hint comes from the two-
point function of the field.
The two-point function of ϕ̂hðxÞ is given by

Trfρ̂ð0Þϕ̂hðxÞϕ̂hðx0Þg ¼ φhðxÞφhðx0Þ þ h0jϕ̂hðxÞϕ̂hðx0Þj0i:
ð2:26Þ

The second term on the right-hand side (2.26) is the
corresponding two-point function of ϕ̂hðxÞ in the vacuum
state. On the other hand, the form of φh in (2.23) may
suggest identifying the first term as the two-point function

3The essential properties of the coherent state are reviewed in
Appendix.
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of φhðxÞ. This is problematic conceptually. Since φhðxÞ is a
deterministic c-number field, it contains no random ele-
ments and hence it should not have the two-point corre-
lation function.

1. Deterministic vs stochastic variables

This may be a good place to clarify the differences
between deterministic and stochastic (random) variables.
Suppose FðtÞ is a deterministic variable of the physical
quantity we are interested in. We make a measurement of F
at time t, and another measurement at t0. If we repeat the
same set of measurements on another identically prepared
copy, and another again, we always get the same outcomes
at times t and t0. On the other hand, if F ðtÞ is a stochastic
variable, then repeated measurements will give different
sets of outcomes at t and t0 for each realization. The
correlation function of a stochastic variable then tells us
how the result at t0 is qualitatively correlated with the one at
t, or to infer what we might obtain at time t0, given the
measurement result at time t. For a deterministic variable,
there is no such uncertainty.
One may argue that since φhðxÞ contains fast oscillating

modes it inevitably introduces uncertainty, and one may
define its correlation function by an appropriate time
average

hφhðxÞφhðx0ÞiT ¼ lim
T→∞

1

2T

Z
T

−T
dsφðx0; tþ sÞφðx; t0 þ sÞ:

ð2:27Þ

Plugging in (2.23) gives

hφðxÞφðx0ÞiT ¼
X
k

fαkα�keþik·ðx−x0Þe−iωðt−t0Þ

þαkα
�
−ke

þik·ðxþx0Þe−iωðt−t0Þ þC:C:g: ð2:28Þ

where we also have used

lim
T→∞

1

2T

Z
T

−T
dseiðω−ω0Þs¼ lim

T→∞

sinðω−ω0ÞT
ðω−ω0ÞT ¼ δω;ω0 : ð2:29Þ

Here we assume the mode label k to be discrete for
convenience. The continuum limit of the mode sum is
understood as

X
k

¼
Z

d3k

ð2πÞ32
1ffiffiffiffiffiffi
2ω

p : ð2:30Þ

Since both ω ¼ jkj and ω0 ¼ jk0j are positive, the terms
proportional to the product αkαk0 and its complex conjugate
vanish. The two-point function obtained by taking the time
average turns out to be always stationary in time, which
ostensibly is different from the first term in (2.26). Thus this
argument fails.

Furthermore, for any c-number function ψðxÞ, one can
always compute

Trfρ̂ð0ÞψðxÞψðx0Þg ¼ ψðxÞψðx0Þ ð2:31Þ

in the same fashion as (2.26). However, we would not
regard this as a correlation function of ψ per se, in the sense
of the above discussions. These observations suggest that a
coherent state description and the classical formulation are
not exactly equivalent. We shall return to this point later.
For now let us proceed to study the late-time behavior of the
internal dynamics of the emitter when it is coupled to a
quantum field initially in a coherent state.

D. Internal dynamics of the emitter at late-times

Complementary to (2.7), the general solutions to (2.24)
and (2.25) take the forms

QðtÞ ¼ QhðtÞ þ e
Z

t

0

dt0GðQÞ
R ðt − t0Þφhðz; t0Þ; ð2:32Þ

q̂ðtÞ ¼ q̂hðtÞ þ e
Z

t

0

dt0 GðQÞ
R ðt − t0Þ½ϕ̂hðz; tÞ − φhðz; tÞ�:

ð2:33Þ

The homogeneous solutions QhðtÞ, q̂hðtÞ have similar
exponentially decaying behavior with increasing time, as
Q̂hðtÞ does. Then the two-point function hQ̂ðtÞQ̂ðtÞi of the
internal dynamics can be written as

hQ̂ðtÞQ̂ðt0Þi ¼ QðtÞQðt0Þ þ hq̂ðtÞq̂ðt0Þi: ð2:34Þ

In particular when t0 → t, we find the second moment of Q̂
has the form hQ̂2ðtÞi ¼ Q2ðtÞ þ hq̂2ðtÞi and thus hq̂2ðtÞi
gives the dispersion of Q̂, and q̂ðtÞ accounts for the non-
deterministic component of Q̂. If we use (2.7) to express
Q̂ðtÞ as Q̂hðtÞ þ Q̂inhðtÞ, then the two-point function (2.34)
can be alternatively written as

hQ̂ðtÞQ̂ðt0Þi¼hQ̂hðtÞQ̂hðt0ÞiþhQ̂inhðtÞQ̂hðt0Þi
þhQ̂hðtÞQ̂inhðt0ÞiþhQ̂inhðtÞQ̂inhðt0Þi: ð2:35Þ

Observe that Q̂hðtÞ and Q̂inhðt0Þ commute since Q̂ð0Þ and
ϕ̂hðxÞ are assumed to be statistically independent. We then
have, say, hQ̂hðtÞQ̂inhðt0Þi ¼ QhðtÞQinhðtÞ. It vanishes at
late times, as well as hQ̂hðtÞQ̂hðt0Þi, so in this limit the
remaining nonvanishing component of the two-point func-
tion (2.34) is

hQ̂ðtÞQ̂ðt0Þi ≃ hQ̂inhðtÞQ̂inhðt0Þi; ð2:36Þ

for t, t0 → ∞.
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III. LATE-TIME STATIONARITY OF THE
REDUCED DYNAMICS OF THE

EMITTER’S IDF

The behaviors of the Green’s functions of Q̂ play an
important role when we try to determine whether equili-
bration conditions of the Q̂ dynamics exist. We already

have worked out GðQÞ
R ðt − t0Þ, so now we focus on

GðQÞ
H ðt; t0Þ. We will show that in general GðQÞ

H ðt; t0Þ is not
translationally invariant in time due to the nonequilibrium
dynamics of Q̂, but at sufficiently late times, it can
gradually become a stationary function of time, that is,

GðQÞ
H ðt; t0Þ → GðQÞ

H ðt − t0Þ, under certain conditions.

A. Behavior of the Hadamard function

The Hadamard function GðQÞ
H ðt; t0Þ of Q̂ can be readily

written down with the help of Eq. (2.7),

GðQÞ
H ðt; t0Þ ¼ 1

2
hfQ̂ðtÞ; Q̂ðt0Þgi

¼ � � � þ e2
Z

t

0

ds
Z

t0

0

ds0GðQÞ
R ðt − sÞ

×GðQÞ
R ðt0 − s0ÞαGðϕÞ

0;Hðz; s; z; s0Þ: ð3:1Þ

The … represents terms that have negligible contributions
at late times. Using (2.26), we can in general write the

Hadamard function αGðϕÞ
0;Hðz; s; z0; s0Þ of the free scalar field

ϕ̂h in the coherent state as,

αGðϕÞ
0;Hðz; s; z0; s0Þ ¼ φhðz; sÞφhðz0; s0Þ þ VACGðϕÞ

0;Hðz; s; z0; s0Þ:
ð3:2Þ

Here the left superscript denotes the state of the field, and
when the field under consideration is a free field we add a 0
to the right subscript. The other super- and subscripts are
self-explanatory.
Thus Eq. (3.1) becomes

GðQÞ
H ðt; t0Þ ¼ � � � þ e2

Z
t

0

ds
Z

t0

0

ds0GðQÞ
R ðt − sÞ

×GðQÞ
R ðt0 − s0Þφhðz; sÞφhðz0; s0Þ

þ e2
Z

t

0

ds
Z

t0

0

ds0GðQÞ
R ðt − sÞ

×GðQÞ
R ðt0 − s0ÞVACGðϕÞ

0;Hðz; s; z; s0Þ: ð3:3Þ

The first term on the right-hand side of (3.3) is nothing but

QinhðtÞQinhðt0Þ, a deterministic component in GðQÞ
H ðt; t0Þ. It

is worth further investigation because it may turn out to be
the main contribution to the nonstationary behavior of

GðQÞ
H ðt; t0Þ at late times. Define

fðt;ωÞ ¼ m
Z

t

0

dsGðQÞ
R ðt − sÞe−iωs: ð3:4Þ

We obtain

QinhðtÞ ¼
e2

m2

Z
d3k

ð2πÞ32
1ffiffiffiffiffiffi
2ω

p

× ½αkeþik·zfðt;ωÞ þ α�ke
−ik·zf�ðt;ωÞ�; ð3:5Þ

so let us examine the late-time behavior of QinhðtÞ.
By (2.20), we find

fðt;ωÞ ¼ d̃2ðωÞe−iωtf1 − eiωtd1ðtÞ þ iωeiωtd2ðtÞg; ð3:6Þ

and f�ðt;ωÞ ¼ fðt;−ωÞ. Here d1ðtÞ and d2ðtÞ are homog-
enous solutions to (2.19), and satisfy the initial conditions

d1ð0Þ¼ 1; _d1ð0Þ¼ 0; d2ð0Þ¼ 0; _d2ð0Þ¼ 1: ð3:7Þ

In fact, d2ðtÞ can be shown to be related to the retarded

Green’s function GðQÞ
R ðtÞ of the internal degree of freedom

by GðQÞ
R ðtÞ ¼ θðtÞd2ðtÞ=m, where θðtÞ is the Heaviside step

function. For simplicity, we put the origin of the external
coordinate system at the location of the emitter, i.e., z ¼ 0,
and assume that the spacetime is homogeneous and
isotropic. Then we can reduce QinhðtÞ into

QinhðtÞ¼
8

ffiffiffi
π

p
γ

m

Z
∞

0

dωω
3
2½αωfðt;ωÞþα�ωf�ðt;ωÞ�; ð3:8Þ

Here we include φhðx; tÞ in (2.23) for comparison

φhðx; tÞ ¼
1ffiffiffi
π

p
r

Z
∞

0

dωω
1
2½αω sinωre−iωtþα�ω sinωreþiωt�;

ð3:9Þ

with r ¼ jxj.
The long-time behavior of QinhðtÞ depends sensitively

on the choice of αω in the expansion of φh. When, for
example, the coherent parameter αω is proportional to
δðω −ϖÞ, then the driving force in (2.24) becomes a
single-mode sinusoidal function of time with frequency
ϖ, then (2.24) describes a damped harmonic oscillator
driven by a sinusoidal force. It is well known that for t
greater than γ−1, QðtÞ ≃QinhðtÞ will oscillate at the fre-
quency ϖ and has an amplitude proportional to ϖ

3
2d̃2ðϖÞ.

Thus the exponentially decaying behavior of GðQÞ
R ðtÞ is not

in general sufficient to damp QinhðtÞ at large t even though
φhð0; tÞ is not an exponentially growing function of t.

B. Illustrative examples

In passing, it is interesting to mention a few more
examples before we delve into the general considerations.
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1. Suppose that φhð0; tÞ is a monochromatic light

φhð0; tÞ ¼
π

2
cos

�
2π

t
τ

�
; ð3:10Þ

with the amplitude A ¼ π=2, period τ ¼ 2 or angular
frequency ωD ¼ π. The inhomogeneous solution of the
displacement QðtÞ is given by

QinhðtÞ →
2e
m

AγωDjd̃2ðωDÞj2 sinωDt; ð3:11Þ

and

_QinhðtÞ →
2e
m

Aγω2
Djd̃2ðωDÞj2 cosωDt; ð3:12Þ

when t ≫ γ−1. Then the mechanical energy of the driven
damped oscillator at late times becomes

EMECH ¼ m
2

_Q2
inhðtÞ þ

mω2
R

2
Q2

inhðtÞ
¼ 16πA2γ3ω2

Djd̃2ðωDÞj4½ω2
D cosωDtþ ω2

R sinωDt�:
ð3:13Þ

We note that it will be a constant 16πA2γ3ω4
Djd̃2ðωDÞj4 at

late time when the driving frequency ωD matches the
physical frequency ωR, not the resonance frequency
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R − γ2

p
, where d̃2ðωÞ has a maximum. This does

not mean the motion reaches equilibrium, a stronger
constraint like the existence of the FDR or stationarity is
needed. Rather, it says that at late times, the energy pumped
into the oscillator happens to be equal to the dissipated
energy. This does not occur for a general periodic motion.
2. As a second example, consider a sawtooth wave

φhð0; tÞ ¼ i
A
π
½lnð1 − eþiωDtÞ − lnð1 − e−iωDtÞ�

¼ A −
2A
τ
ðt mod τÞ: ð3:14Þ

The corresponding QinhðtÞ is

QinhðtÞ¼
e
m

A
2πΩω3

D
f−2e−γt½ðπωDþ2γÞΩcosΩt

þðπγωDþγ2−Ω2ÞsinΩt�þ4γΩ

þ i2ωDΩ½lnð1−eþiωDtÞ− lnð1−e−iωDtÞ�g; ð3:15Þ

and

_QinhðtÞ ¼
e
m

A
πΩωD

fe−γt½ΩcosΩtþðγþ πωDÞ sinΩt�−Ωg

→ −
eA

πmωD
: ð3:16Þ

At late times QinhðtÞ also takes on a sawtooth shape, but
_QinhðtÞ approaches a constant. At first sight, it seems
strange that _QinhðtÞ takes on a negative constant value,
inconsistent with the periodic, sawtoothlike motion
described by QinhðtÞ. In truth, the consistency is preserved
because the force eφhð0; tÞ in (3.14) instantaneously brings
QinhðtÞ to þ eA

mω2
D
at t ¼ nτþ, and then the oscillator moves

at the constant speed _Qinhð∞Þ to − eA
mω2

D
at t ¼ ðnþ 1Þτ−.

Hence the periodic motion is realized this way. Obviously
the corresponding mechanical energy cannot be a constant
at late times.
3. Next, it would be interesting to examine the case that

φhð0; tÞ is a real periodic function of time gðtÞ, satisfying
gðtÞ ¼ gðtþ τÞ. The parameter τ is the period. One of the
previous examples is a special case, that gðtÞ is a trigono-
metric function. Let us first look into the frequency
spectrum of the periodic function gðtÞ. The Fourier trans-
form g̃ðωÞ is given by

g̃ðωÞ ¼
Z

∞

−∞
ds gðtÞeiωt ¼

X∞
n¼−∞

Z
τ

0

ds gðtþ nτÞeiωðtþnτÞ

¼ 2π

Z
τ

0

ds gðtÞeiωt
X∞
k¼−∞

δðωτ − 2kπÞ; ð3:17Þ

where we have assumed that the order of summation and
integration is exchangeable, and that the summation

δðtÞ ¼ 1

2π

X∞
n¼−∞

eint; ð3:18Þ

converges to the delta function. In fact the summation also
applies to

X∞
n¼−∞

eint ¼
X∞
n¼−∞

einðt−2kπÞ ¼ 2πδðt − 2kπÞ; ð3:19Þ

for k ∈ Z since ei2kπ ¼ 1. If we let

g̃τðωÞ ¼
Z

τ

0

dt gðtÞeiωt; ð3:20Þ

then we can write (3.17) as

g̃ðωÞ ¼ g̃τðωÞ
2π

τ

X∞
k¼−∞

δ

�
ω −

2kπ
τ

�
; ð3:21Þ

with g̃�τðωÞ ¼ g̃τð−ωÞ. Hence the spectrum is comblike,
with spikes located at ω ¼ kν, spacing ν ¼ 2π

τ , and has a
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height proportional to g̃τðωÞ 2πτ . If we carry out the inverse
Fourier transform to find gðtÞ, we obtain

gðtÞ ¼
Z

∞

−∞

dω
2π

g̃ðωÞe−iωt ¼
X∞
k¼−∞

gke−ikνt; ð3:22Þ

and

gk¼
1

τ
g̃τ

�
2kπ
τ

�
¼1

τ

Z
τ

0

dtgðtÞei2kπτ t; and g�k¼g−k: ð3:23Þ

Equation (3.22) is the Fourier series of the function gðtÞ
defined only with the finite time interval t ∈ ½0; τÞ, and
gk are the corresponding coefficients. Thus it implies that
a periodic function can be constructed by shifting this
function by τ an infinite number of times along the real t
axis in both directions. It also says that a periodic function
of period τ can always bewritten as a Fourier series over the
fundamental frequency ν with a suitable choice of the
expansion coefficients gk. Note that since gðtÞ is real, we
also have g̃�ðωÞ ¼ g̃ð−ωÞ.
Now suppose φhð0; tÞ is such a periodic function. Then

we can write QinhðtÞ as

QinhðtÞ ¼
X∞
k¼−∞

φk

Z
t

0

dsd2ðt− sÞe−ikνs ¼
X∞
k¼−∞

φkfðt;kνÞ;

ð3:24Þ

by (3.4) and (3.6), where φk is the corresponding Fourier
coefficient of φhð0; tÞ. In the limit t → ∞, we have
fðt; kνÞ ≃ d̃2ðkνÞe−ikνt, and hence

QinhðtÞ ¼
X∞
k¼−∞

φkd̃2ðkνÞe−ikνt: ð3:25Þ

Comparing with (3.22), we find that QinhðtÞ is also a
periodic function having the same period of φhð0; tÞ at late
times, if we identify φkd̃2ðkνÞ ¼ gk and have waited for a
sufficiently long time to let the contributions from the poles
in d̃2 drop off. This generalizes the result of the sinusoidal
drive case.
On the other hand, if the frequency spectrum of φhð0; tÞ

is not like a comb, then φh is not a periodic function of t.
We further assume that the spectrum is broad and is a
sufficiently continuous function of ω. Practically speaking,
in a typical preparation of the coherent state, since only a
finite amount of energy and finite spacetime extension
are involved, it is much harder to excite the extreme low-
and high-frequency modes. Thus, the occupation number,
proportional to jαkj2, is expected to fall off there, and αω is
expected to decrease rapidly in the low- and the high-
frequency ends of the frequency spectrum. Then φhð0; tÞ
should be sufficiently well defined by the integral expres-
sion (2.23). Hence we expect that QinhðtÞ is also well
behaved. Under this assumption, we observe from (3.8) and
(3.6) that in the limit t → ∞, the asymptotic analysis
implies that φhð0; tÞ at least falls off algebraically with t.
For example, suppose αω takes the form (See Fig. 1)

αω ¼ αffiffiffiffi
ω

p ; ð3:26Þ

and then (3.8) becomes

QinhðtÞ¼
8

ffiffiffi
π

p
γ

m
e−γt

�
α

�
−i

sinΩt
Ωϵ

−
ΩcosΩt− γ sinΩt

Ω
lnϵþ���

�
þC:C:

�
; ð3:27Þ

where � � � denotes the cutoff-independent terms, and ϵ−1 is
the frequency cutoff, representing the highest energy scale
in the coherent state preparation. Since

lim
t→∞

QinhðtÞ ¼ 0; ð3:28Þ

the cutoff virtually has no effect at late times. From (3.9),
the corresponding classical field φhðx; tÞ is given by

φhðx; tÞ ¼
1ffiffiffi
π

p
�

α

r2 − ðt − iϵÞ2 þ
α�

r2 − ðtþ iϵÞ2
�
: ð3:29Þ

It can be verified to satisfy the wave equation once we put
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Another example is

αω ¼ αffiffiffiffiffiffi
ω3

p : ð3:30Þ

We then have

QinhðtÞ ¼
8

ffiffiffi
π

p
γ

m

�
α

�
−i

1

ðΩ2 þ γ2Þtþ e−γtð� � �Þ
�
þ C:C:

�
:

ð3:31Þ

Here � � � represents contributions that are exponentially
small at late times as seen in Fig. 1, and again we reach the
conclusion as in (3.28). In this case, the classical field
φhðx; tÞ has the form
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φhðx; tÞ ¼
αffiffiffi
π

p
r

�
θðr > jtjÞ

�
π

2
− itanh−1

t
r

�

þ θðjtj − rÞ
�
−itanh−1

r
t

��
þ C:C: ð3:32Þ

It falls off in the large t limit.
Finally, we choose a more mundane example for φhð0; tÞ

given by a Lorentzian function

φhð0; tÞ ¼
A

1þ ðt=τÞ2 : ð3:33Þ

It yields

QinhðtÞ ¼
Aτ2

ω2
Rt

2
þ � � � ; for t ≫ γ−1; ð3:34Þ

which vanishes at late times. It may be worthwhile to take a
look at the critical case that φhð0; tÞ is a constant in time, we
obtain

φhð0; tÞ ¼ A;

⇒ QinhðtÞ ¼
A
ω2

�
1 − e−γt cosΩt −

γ

Ω
e−γt sinΩt

�
→

A
ω2

:

ð3:35Þ

Note that the frequency spectrum φhð0; tÞ ¼ A is already
proportional to δðωÞ=ω3

2. Thus we can classify this φhð0; tÞ
as a periodic function.

C. Three types of late time behavior

From the previous examples, we may categorize φhð0; tÞ
into the following three classes and their combinations:
(A) φhð0; tÞ is a periodic function, so QinhðtÞ re-

mains nonvanishing as t → ∞. This implies that

αGðϕÞ
0;Hð0; s; 0; s0Þ continues to be nonstationary ac-

cording to (3.3). Thus in this case, the equilibrium
state of the reduced internal dynamics of the emitter
is not likely to exist.

(B) φhð0; tÞ is well behaved by requiring its frequency
spectrum to be sufficiently smooth. Then φhð0; tÞ
and QinhðtÞ tend to zero as t → ∞. In this case
αGðϕÞ

0;Hð0; s; 0; s0Þ reduces to VACGðϕÞ
0;Hð0; s; 0; s0Þ at

late times, and thus it becomes stationary. We can
have an equilibrium state for the reduced Q̂ dynam-
ics in this case.

(C) φhð0; tÞ grows unbounded at late times. We do not
consider this case because it may not be physically
realizable.

IV. ENERGY EXCHANGE BETWEEN THE IDF
OF THE EMITTER AND THE FIELD

We have seen from (2.19) that two force operators

eϕ̂hð0; tÞ and −2mγ _̂QðtÞ account for the energy exchange
between the field and the emitter. The field’s quantum
noise force associated with the ubiquitous vacuum fluc-
tuations drives the emitter’s internal degree of freedom
into random motion, while the damping force in the
emitter’s internal degree of freedom disperses the energy
back to the field, and at late times, going in tandem with it.
This correlation can be appreciated once we note the
damping force depends on the state of the motion via
_̂QðtÞ, which in turns is governed by the noise force at late
times. However, at this stage, it is not clear whether the
existence of such correlations is sufficient reason for the
equilibration of the reduced dynamics of Q̂. This is what
we now shall focus on, in examining the role of corre-
lations in the energy exchange between the emitter and
the field.
The power pumped to the emitter by the noise force is

defined and given by
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FIG. 1. The temporal behavior of QinhðtÞ for two choices of αω. We have chosen the resonance frequency ωR ¼ 1, the damping
constant γ ¼ 0.2 and ϵ ¼ 0.001. In (a), the coherent parameter is given by (3.26), and in (b), the coherent parameter has the
form in (3.30).
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PξðtÞ ¼
e
2
hfϕ̂hð0; tÞ; _̂QðtÞgi

¼ eφhð0; tÞ _QðtÞ

þ e2
Z

t

0

ds
∂

∂t
GðQÞ

R ðt − sÞαGðϕÞ
0;Hð0; t; 0; sÞ; ð4:1Þ

since _̂QhðtÞ and ϕ̂hð0; tÞ are not correlated. With the help of
(3.2), the power of the noise force becomes

PξðtÞ ¼ eφhð0; tÞ _QðtÞ þ e2
Z

t

0

ds
∂

∂t
GðQÞ

R ðt − sÞ

× ½φhð0; tÞφsð0; sÞ þ VACGðϕÞ
0;Hð0; t; 0; sÞ�

¼ PξðtÞ þ P0
ξðtÞ; ð4:2Þ

where

PξðtÞ ¼ eφhð0; tÞ _QðtÞ

þ e2
Z

t

0

ds
∂

∂t
GðQÞ

R ðt − sÞφhð0; tÞφsð0; sÞ; ð4:3Þ

P0
ξðtÞ ¼ e2

Z
t

0

ds
∂

∂t
GðQÞ

R ðt − sÞVACGðϕÞ
0;Hð0; t; 0; sÞ: ð4:4Þ

The power PξðtÞ gives the contribution due to the classical,
deterministic component of PξðtÞ. That is, the power
delivered by the mean force eφhð0; tÞ in the classical
equation of motion (2.24)

Q̈ðtÞ þ 2γ _QðtÞ þ ω2
RQðtÞ ¼ e

m
φhðz; tÞ:

It is straightforward to see that the power delivered by
eφhð0; tÞ is

eφhð0;tÞ _QðtÞ

¼eφhð0;tÞ
�
_QhðtÞþe

Z
t

0

ds
∂

∂t
GðQÞ

R ðt−sÞφhð0;sÞ
�

ð4:5Þ

by (2.32), and is exactly PξðtÞ. This classical power can be
nonzero even at late time, when the classical force eφhð0; tÞ
is periodic, but it can vanish, not necessarily exponentially,
if the classical force has a sufficiently smooth spectrum,
according to our earlier discussions.
Equation (4.4), in contrast, has a quantum-mechanical

origin. The driving force is caused by the zero-point
fluctuations of the field, and the component of the velocity
of the emitter’s internal dynamics involved in P0

ξðtÞ is also
governed by the same quantum field fluctuations. This is
most transparently seen by the equation of motion (2.25)
for q̂

̈q̂ðtÞ þ 2γ _̂qðtÞ þ ω2
Rq̂ðtÞ ¼

e
m
½ϕ̂hð0; tÞ − φhð0; tÞ�:

We see the power input by e½ϕ̂hð0; tÞ − φhð0; tÞ� is exactly
P0
ξðtÞ. This quantum power, as shown in [1], will always

reach a time-independent constant for t ≫ γ−1.
The damping force −2mγ _̂QðtÞ will dissipate the energy

of the emitter’s internal dynamics at a rate given by

PγðtÞ ¼ −2mγh _̂Q2ðtÞi ¼ PγðtÞ þ P0
γðtÞ; ð4:6Þ

where likewise we define

PγðtÞ ¼ −2mγ

�
_QhðtÞ

þ e _QhðtÞ
Z

t

0

ds
∂

∂t
GðQÞ

R ðt − sÞφhð0; sÞ
�
2

; ð4:7Þ

P0
γðtÞ ¼ −2mγh _̂q2hðtÞi

− 2mγe2
Z

t

0

dsds0
∂

∂t
GðQÞ

R ðt − sÞ

×
∂

∂t
GðQÞ

R ðt − s0ÞVACGðϕÞ
0;Hð0; s; 0; s0Þ: ð4:8Þ

This dissipation power consists of two contributions, one of
a purely classical origin and one of a purely quantum
origin. We will come to this point when we discuss the
radiation. For the interacting Gaussian systems under
consideration, the classical and the quantum dynamics
are decoupled, so we have a clear distinction in the
components of the energy flow between the two subsys-
tems. Here the mean dynamics exclusively follows a
classical description, but this is not always true [24].
It has been shown [1,11–13,15] that the quantum power

P0
γðtÞ also approaches a constant at late times and is then

balanced by P0
ξðtÞ

lim
t≫γ−1

P0
ξðtÞ þ P0

γðtÞ ¼ 0: ð4:9Þ

In particular

P0
ξð∞Þ ¼ e2

Z
∞

−∞

dω
2π

sgnðωÞω
2

4π
ImG̃ðQÞ

R ðωÞ;

P0
γð∞Þ ¼ −P0

ξð∞Þ: ð4:10Þ

Equation (4.9) does not depend on the values of φhðtÞ and
QðtÞ because from previous discussions we have noticed
that the dynamics of Q and q̂ are independent. In the case
φhðtÞ → 0 when t → ∞, the reduced dynamics of Q̂ can
equilibrate at late times, as if the internal dynamics of the
emitter is coupled to the vacuum fluctuations of the scalar
field ϕ̂h. Nonetheless if φhðtÞ is periodic, then in general

lim
t≫γ−1

PξðtÞ þ PγðtÞ ≠ 0 ð4:11Þ
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as shown in an earlier example, so equilibrationdoes not exist
in this case. In addition, we recall that the balance between
energy exchange alone does not guarantee the existence of an
equilibrium state. This can be seen in the case of a classical
damped oscillator driven by a single-mode sinusoidal force,
whose driving frequency is equal to the physical frequency
of the oscillator. We also need stationarity of the correlation
function of Q̂ or the constancy of the powers associated with
the energy exchange at late times.
A short summary of what we have learned from the

reduced dynamics of the internal degree of freedom of the
emitter is perhaps useful here. When an emitter is coupled
to a quantum field initially in a coherent state, their
interaction will entice the emitter to give off radiation into
the field, whence the quantum field has two components:
the original free field and the radiation field generated
by the emitter. The free-field component plays the role of a
driving force acting on the internal dynamics of the emitter,
while the reaction from the radiation field gives rise to a
damping term in the emitter’s internal motion. When the
free field is initially in the coherent state, it possesses a
nonzero mean field. This introduces a nonvanishing mean
dynamics to the emitter’s internal degree of freedom, and
often dominates over the contributions from the quantum
fluctuations. Quantum fluctuations in the emitter’s internal
dynamics contain both the intrinsic fluctuations of the idf
and the induced one from the quantum field.
The late-time behavior of the free mean field leads to

different outcomes. We are interested in only two types of
free mean field dynamics: either periodic in time or
decreasing with time to zero. When the mean field is
periodic in time, the internal dynamics of the emitter will
also be periodic at late times. Thus if the coherent
parameter of the free field is much greater than one, the
classical mean dynamics of the emitter’s internal motion
always dominates over the fluctuation dynamics, which is
governed by the vacuum fluctuations of the field. In this
case, the correlation function of the emitter’s internal
dynamics is never stationary in time and will not reach
equilibrium. The energy pumped into the emitter by the free
mean field per unit time is not in sync with the rate of the
energy dissipated by the emitter’s internal degree of free-
dom, so there is net energy exchange between the emitter
and the field throughout the evolution.
In contrast, if the mean field vanishes at late times, the

emitter’s mean internal dynamics likewise approaches zero
at late times. Thus during the transient moment, even
though the internal motion is still dominated by the
classical mean dynamics, it will in the end be controlled
by the quantum fluctuation dynamics. This implies that the
correlation function of the emitter’s internal dynamics
gradually turns stationary in time because its classical
nonstationary component vanishes by then. The internal
dynamics will equilibrate such that the energy exchange
between the emitter and the field comes to a balance.

In the current setting, since the mean dynamics of the
internal degree of freedom of the emitter is decoupled from
its fluctuation dynamics, we can examine their behaviors
separately. We have shown that the fluctuation dynamics
always comes to equilibration, independent of the mean
dynamics, so the late-time behavior of the emitter’s reduced
dynamics is determined by its mean component. If the
mean dynamics does not vanish at late time, then the
emitter’s internal motion will not equilibrate. On the other
hand, if the mean dynamics diminishes asymptotically, then
the fluctuation dynamics will ensure the emitter’s reduced
dynamics will settle down to an equilibrium state. This
analysis showcases the differences between the classical
deterministic dynamics and the its quantum fluctuating
dynamics of the emitter’s internal degree of freedom.

V. RADIATION FLUX AT SPATIAL INFINITY

In the previous section, we have shown that the quantum
field pumps energy into the emitter’s internal dynamics,
and field fluctuations imparts a random component in the
motion of its internal degrees of freedom. The emitter in
turn will radiate energy back to its surrounding field in the
form of a radiation field. When the equilibrium condition is
established between the emitter’s idf and the field, two
questions of interest may arise: (1) If the field is initially in
the vacuum state where does the pumping energy come
from? (2) Where does the radiated energy go? Superficially
it may sound like a perpetual motion—extracting the
vacuum energy for practical use. In fact these two questions
are both sides of the same coin. We shall begin with this
puzzle and address this issue from the viewpoint of
radiation sent out by the emitter.
The radiation power of the scalar field at an observation

point x far away from the emitter located at z is given by

dWRAD

dτ
¼ −

Z
dΩ r2nμh≀TμνðxÞ≀ivνðτ−Þ; ð5:1Þ

where vμ ¼ dzμ=dτ is the external four-velocity of the
emitter and τ− is the retarded time. Since we are interested
in a stationary emitter in flat spacetime, the proper time of
the emitter τ will be synonymous with the coordinate
time t. The spacelike unit normal vector nμ specifies the
outward radial direction, and the distance r between the
observation point and the emitter is given by the projection

r ¼ nμ½xμ − zμðτ−Þ�: ð5:2Þ
This defines a spherical shell centered at the emitter at the
retarded time τ−. In (5.1), we introduce a shorthand
notation4 ≀T̂μνðxαÞ≀, defined by

4We take this opportunity to point out a misnomer in [1]: the
“normal-ordered” stress tensor operator should be the stress
tensor operator (5.3) defined here. The results in [1] remain valid
despite the incorrect notation.
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≀T̂μνðxÞ≀ ¼ T̂μνðxÞ − T̂ðhÞ
μν ðxÞ: ð5:3Þ

That is, we subtract from the full energy-momentum stress

tensor operator T̂μνðxÞ the component T̂ðhÞ
μν ðxÞ, which is the

corresponding stress tensor operator for the free in-field
ϕ̂hðxÞ and does not contain any field generated by the
emitter. The stress tensor of a classical linear massless
scalar field is given by

Tμν ¼ −
2ffiffiffiffiffiffi−ηp δSF

δημν
¼ ∂μϕ∂νϕ −

1

2
gμνgαβ∂αϕ∂βϕ: ð5:4Þ

When the field is promoted to an operator we may
conveniently express the expectation value of ≀T̂μνðxαÞ≀
by the Hadamard function of the scalar field in the
coincident limit

h≀TμνðxÞ≀i ¼ lim
x0→x

�
∂
2

∂xμ∂x0ν
−
1

2
gμνgαβ

∂
2

∂xα∂x0β

�

× ½GðϕÞ
H ðx; x0Þ − GðϕÞ

0;Hðx; x0Þ�; ð5:5Þ

so that

dWRAD

dτ
¼ − lim

x0→x

Z
dΩk r2

∂
2

∂r∂t0
½GðϕÞ

H ðx; x0Þ − GðϕÞ
0;Hðx; x0Þ�;

ð5:6Þ

where dΩk is the solid angle subtended over a spherical
shell centered at the emitter at the retarded time τ−. We are
interested in this radiation power at a distance sufficiently
far away from the emitter. By “sufficiently far,” we refer to
a distance where the dominant contribution can be iden-
tified and is independent of this distance.
The Hadamard function, the expectation value of the

anticommutator, of the scalar field GðϕÞ
H ðx; x0Þ is defined by

GðϕÞ
H ðx; x0Þ ¼ 1

2
hfϕ̂ðxÞ; ϕ̂ðx0Þgi; ð5:7Þ

where in the Heisenberg picture the expectation value is
computed with respect to the initial state of the total system,

andGðϕÞ
0;Hðx; x0Þ is the corresponding Hadamard function for

the free field ϕ̂h. Here we would like to emphasize again the

difference between GðϕÞ
H ðx; x0Þ and GðϕÞ

0;Hðx; x0Þ; the latter is
the Hadamard function of the free field while the former is
that of the full field, the sum of the free field and the field
radiated by the emitter. By radiation field, we mean the
component of the field generated by the motion of the
emitter’s internal degree of freedom. Finally, in contrast to
the retarded Green’s function of the scalar field which is
state-independent, the behavior of the Hadamard function
depends on the choice of the initial state of the field. Thus

(5.1) gives the total radiated power of the field given off by
the emitter at the retarded time τ−.
Since the Hadamard function GðϕÞ

H ðx; x0Þ of the scalar
field plays a central role, hereafter we will delineate its
structure. From (2.2), we find that the scalar in general will
take on the form

ϕ̂ðxÞ¼ ϕ̂hðxÞþ ϕ̂inhðxÞ¼ ϕ̂hðxÞþ ϕ̂TRðxÞþ ϕ̂RðxÞ; ð5:8Þ

where

ϕ̂inhðxÞ ¼ e
Z

t

0

dsGðϕÞ
0;Rðx; t; z; sÞQ̂ðsÞ: ð5:9Þ

The homogeneous solution ϕ̂h corresponds to the free field,
not affected by the internal degree of freedom Q̂ of the
emitter. The radiated field ϕ̂inhðxÞ generated by the emitter
contains two components denoted by

ϕ̂TRðxÞ ¼ e
Z

dt0GðϕÞ
0;Rðx; t; z; t0ÞQ̂hðt0Þ; ð5:10Þ

ϕ̂RðxÞ¼ e2
Z

dt0GðϕÞ
0;Rðx; t;z; t0Þ

Z
dt00GðQÞ

R ðt0− t00Þϕ̂hðz; t00Þ;

ð5:11Þ

where we have decomposed Q̂ according to (2.7). The
operator Q̂h represents the transient motion of the internal
degree of freedom of the emitter. Since this transient
dynamics decays to zero exponentially fast with respect
to the relaxation time γ−1, the field operator ϕ̂TR associated
with this component is usually ignored at late times, even in
the vicinity of the emitter. The field ϕ̂R on the other hand is
produced due to the resonant motion of Q̂ driven by the free
scalar field ϕ̂h. Since the resonant motion of Q̂, the
particular solution of (2.6), will survive at late times, the
field ϕ̂R will be emitted unabated by the emitter. More
importantly, this implies that at late times the dynamics of
ϕ̂R will be correlated with the dynamics of ϕ̂h and the initial
state of the field.
The Hadamard function formed by (5.8) can be classified

into three contributions

GðϕÞ
H ðx;x0Þ ¼GðϕÞ

0;Hðx;x0Þþ
�
1

2
hfϕ̂hðxÞ; ϕ̂Rðx0Þgi

þ1

2
hfϕ̂RðxÞ; ϕ̂hðx0Þgi

�
þ1

2
hfϕ̂RðxÞ; ϕ̂Rðx0Þgi;

ð5:12Þ

at late times. There are no cross terms like hfϕ̂hðxÞ;
ϕ̂TRðx0Þgi, hfϕ̂TRðxÞ; ϕ̂Rðx0Þgi and hfϕ̂TRðxÞ; ϕ̂TRðx0Þgi
because they are exponentially suppressed at late times.
Thus we have
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1

2
hfϕ̂hðxÞ; ϕ̂Rðx0Þgi ¼ e2

Z
t0

0

dsGðϕÞ
0;Rðx0; t0; z; sÞ

Z
s

0

ds0GðQÞ
R ðs − s0ÞGðϕÞ

0;Hðx; t; z; s0Þ; ð5:13Þ

1

2
hfϕ̂RðxÞ; ϕ̂Rðx0Þgi ¼ e4

Z
t

0

ds1

Z
t0

0

ds10 G
ðϕÞ
0;Rðx; t; z; s1ÞGðϕÞ

0;Rðx0; t0; z; s01Þ

×
Z

s1

0

ds2

Z
s0
1

0

ds02G
ðQÞ
R ðs1 − s2ÞGðQÞ

R ðs01 − s02ÞGðϕÞ
0;Hðz; s2; z; s02Þ: ð5:14Þ

Here GðQÞ
R is the retarded Green’s function of the full

interacting oscillator, satisfying (2.8).
Since we prepare the quantum field initially in a coherent

state, the Hadamard functions αGðϕÞ
0;Hðz; s; z0; s0Þ of the free

quantum scalar field ϕ̂h in (5.13)–(5.14) can be separated
into the classical and the quantum contributions

αGðϕÞ
0;Hðz; s; z0; s0Þ ¼ φhðz; sÞφhðz0; s0Þ þ VACGðϕÞ

0;Hðz; s; z0; s0Þ;
ð5:15Þ

We then can write the right-hand sides of (5.13)–(5.14) into
similar decompositions,

1

2
hfϕ̂hðxÞ; ϕ̂Rðx0Þgi¼φhðxÞφRðx0Þþ

1

2
hfϕ̂hðxÞ; ϕ̂Rðx0Þgi0;

ð5:16Þ

1

2
hfϕ̂RðxÞ; ϕ̂Rðx0Þgi¼φRðxÞφRðx0Þþ

1

2
hfϕ̂RðxÞ; ϕ̂Rðx0Þgi0;

ð5:17Þ

where the subscript 0 denotes the field state used for the
expectation value is the vacuum state, and

φRðxÞ¼ e2
Z

t

0

dsGðϕÞ
0;Rðx; t;z;sÞ

Z
s

0

ds0GðQÞ
R ðs− s0Þφhðz;sÞ

¼ e
Z

t

0

dsGðϕÞ
0;Rðx; t;z;sÞQinhðsÞ: ð5:18Þ

Here we recall that GðϕÞ
0;Rðz; s; z0; s0Þ is state-independent,

so there is no difference between αGðϕÞ
0;Rðz; s; z0; s0Þ and

VACGðϕÞ
0;Rðz; s; z0; s0Þ.

Alternative to writing ϕ̂inhðxÞ as the sum of ϕ̂TRðxÞ and
ϕ̂RðxÞ, we use q̂ ¼ Q̂ −Q to break ϕ̂inhðxÞ in (5.9) into
contributions of the classical and the quantum natures,

ϕ̂inhðxÞ ¼ φinhðxÞ þ ½ϕ̂inhðxÞ − φinhðxÞ�; ð5:19Þ

where

φinhðxÞ ¼ e
Z

t

0

dsGðϕÞ
0;Rðx; t; z; sÞQðsÞ

¼ e
Z

t

0

dsGðϕÞ
0;Rðx; t; z; sÞQhðsÞ

þ e2
Z

t

0

dsGðϕÞ
0;Rðx; t; z; sÞ

×
Z

s

0

ds0GðQÞ
R ðs − s0Þφhðz; s0Þ; ð5:20Þ

corresponds to the classical radiation due to the classical
motion Q, the first term being classical transient radiation
which becomes negligibly small at late times. The terms
inside the square brackets in (5.19) result from the
fluctuations q̂,

ϕ̂inhðxÞ − φinhðxÞ ¼ e
Z

t

0

dsGðϕÞ
0;Rðx; t; z; sÞq̂ðsÞ: ð5:21Þ

This is the source of quantum radiation. It includes both the
intrinsic quantum fluctuations q̂h of Q̂, which decays
exponentially with time, and the induced quantum fluctua-
tions by the vacuum fluctuations of the free field ϕ̂h.
The decompositions in (5.16) and (5.17) imply that the

radiation power of the quantum scalar field can be
accordingly written into two distinct components

dWRAD

dτ
¼ dWRAD

dτ
þ dwRAD

dτ
; ð5:22Þ

where WRAD is ultimately the contribution caused by the
mean field when the quantum scalar field is initially
prepared in the coherent state, while wRAD is the contri-
bution from the accompanying vacuum fluctuations of
the field. Here we focus on the mean field component
dWRAD=dτ because the other vacuum contribution is
already studied in our first paper [1], but we will include
it to show the essential features of both for comparison.
At late times, the classical contributions in (5.16) and

(5.17) can be combined into

φhðxÞφRðx0Þ þ φhðx0ÞφRðxÞ þ φRðxÞφRðx0Þ: ð5:23Þ
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at the observation point sufficiently far away from the
radiating emitter. The corresponding classical stress tensor
component is then given by

lim
x0→x

∂
2

∂r∂t0
½φhðxÞφRðx0Þ þ φhðx0ÞφRðxÞ þ φRðxÞφRðx0Þ�;

ð5:24Þ

as seen from (5.6), which can be further reduced to

�
∂

∂r
φhðx; tÞ −

∂

∂t
φhðx; tÞ −

∂

∂t
φRðx; tÞ

�
∂

∂t
φRðx; tÞ: ð5:25Þ

The first two terms inside the square brackets, correspond-
ing to the contributions of φhðxÞφRðx0Þ þ φhðx0ÞφRðxÞ, are
given by

∂

∂r
φhðx; tÞ −

∂

∂t
φhðx; tÞ

¼ 4
ffiffiffi
π

p Z
∞

0

dωω
3
2fαωG̃ðϕÞ

0;Rðr;ωÞe−iωt þ C:C:g; ð5:26Þ

since

φhðx; tÞ ¼
1ffiffiffi
π

p
r

Z
∞

0

dωω
1
2½αω sinωre−iωt þ C:C:�; ð5:27Þ

φRðx; tÞ ¼
e2ffiffiffi
π

p
Z

∞

0

dωω
3
2½αωLωðx; tÞ þ C:C:�; ð5:28Þ

at late times. Here we have placed the emitter at the origin
of the external coordinate system, so r ¼ jxj, r0 ¼ jx0j
and we have assigned e2 ¼ 8πγm, and Lωðx; tÞ ¼
θðt − rÞG̃ðQÞ

R ðωÞG̃ðϕÞ
0;Rðr;ωÞe−iωt. The other factor in (5.25)

has the form

−
∂

∂r
φRðx; tÞ ¼

∂

∂t
φRðx; tÞ

¼ θðt − rÞ e2ffiffiffi
π

p
Z

∞

0

dωω
5
2

× ½−iαωG̃ðQÞ
R ðωÞG̃ðϕÞ

0;Rðr;ωÞe−iωt þ C:C:�;
ð5:29Þ

Here we have used

G̃ðϕÞ
0;Rðr;ωÞ ¼

eþiωr

4πr
;

G̃ðQÞ
R ðωÞ ¼ 1

−ω2 − i2γωþ ω2
R
; ð5:30Þ

to rewrite the square brackets in (5.25) as

∂

∂r
φhðx; tÞ −

∂

∂t
φhðx; tÞ −

∂

∂t
φRðx; tÞ

¼ 4m
ffiffiffi
π

p Z
∞

0

dωω
3
2ðω2

R − ω2Þ

× fαωG̃ðQÞ
R ðωÞG̃ðϕÞ

0;Rðr;ωÞe−iωt þ C:C:g: ð5:31Þ

In order to determine whether the component of the
classical stress tensor (5.24) constitutes the energy flux far
away from the emitter at late times, we will examine the
temporal behavior of (5.29) and (5.31) in the large t limit.
According to the discussion in the previous section, if the
free mean field φhð0; tÞ is a periodic function of t, then
comparing (3.9) with (3.22), we find

1ffiffiffi
π

p ω
3
2αω ¼ g̃ðωÞ

2π
¼ g̃τðωÞ

τ

X∞
k¼−∞

δ

�
ω −

2kπ
τ

�
: ð5:32Þ

This implies that (5.31) will likewise manifest periodicity at

late times after the contributions from the poles of G̃ðQÞ
R

have dwindled off. Thus in this case the radiation flux
passing through a large spherical shell centered at the
emitter remains nonzero at late times. It is consistent with
the results we found for the internal dynamics of the
emitter. Since φR in (5.20) can be identified as a classical
potential equivalent to the Liénard–Wiechert potential in
classical electrodynamics, the derivations of the Larmor’s
formula and the self-force follow suit, which we will not
dwell on any further.
On the other hand, if the free mean field φhð0; tÞ falls

off to zero at late times t ≫ γ−1, then both φhðx; tÞ and
φRðx; tÞ will be vanishingly small at even later times
t ≫ γ−1 þ r. Here we stress that the observation point is
not literally at spatial infinity from the emitter. We only
need it to be sufficiently large. Thus, the classical radiation
fluxes will diminish with time, so that in the end it is no
longer to be dominant factors. The quantum radiation
fluxes, summarized below, still actively leave and enter a
large fictitious spherical shell centered at the emitter,
except that when equilibration is accomplished, the
incoming flux is equal to the outgoing flux. Comparing
with the former periodic case, we may trace the back-and-
forth radiation flux to the periodic behavior of the free
mean field.
At this point, it is interesting to recall how the radiation

fluxes due to the fluctuation dynamics of the emitter’s
internal degree freedom can possibly come to equilibrium.
This was treated in [1]. We will use the component
VACGðϕÞ

0;Hðz; s; z0; s0Þ in (5.15) as the contrasting example.
Here we shall summarize the results in [1] and show how
they enter in the present case. In this case, we find
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1

2
hfϕ̂hðxÞ; ϕ̂Rðx0Þgi0 ¼ e2

Z
∞

−∞

dω
2π

VACG̃ðϕÞ
0;Hðr;ωÞG̃ðϕÞ�

0;R ðr0;ωÞG̃ðQÞ�
R ðωÞe−iωðt−t0Þ; ð5:33Þ

1

2
hfϕ̂hðx0Þ; ϕ̂RðxÞgi0 ¼ e2

Z
∞

−∞

dω
2π

VACG̃ðϕÞ
0;Hðr0;ωÞG̃ðϕÞ

0;Rðr;ωÞG̃ðQÞ
R ðωÞe−iωðt−t0Þ; ð5:34Þ

1

2
hfϕ̂RðxÞ; ϕ̂Rðx0Þgi0 ¼ e4

Z
∞

−∞

dω
2π

VACG̃ðϕÞ
0;Hð0;ωÞG̃ðϕÞ

0;Rðr;ωÞG̃ðϕÞ�
0;R ðr0;ωÞG̃ðQÞ

R ðωÞG̃ðQÞ�
R ðωÞe−iωðt−t0Þ

¼ e2
Z

∞

−∞

dω
2π

sgnðωÞImG̃ðQÞ
R ðωÞG̃ðϕÞ

0;Rðr;ωÞG̃ðϕÞ�
0;R ðr0;ωÞe−iωðt−t0Þ; ð5:35Þ

at late times. It is of special importance that in (5.35) we have used the fluctuation-dissipation relations [1,11–13,15] of the
vacuum fluctuations of the field ϕ̂h and the fluctuating internal degree of freedom q̂ to rewrite part of its integrand as

e2VACG̃ðϕÞ
0;Hð0;ωÞG̃ðQÞ

R ðωÞG̃ðQÞ�
R ðωÞ ¼ sgnðωÞImG̃ðQÞ

R ðωÞ; ð5:36Þ

which are essential to connect (5.35) with the combining contributions of (5.33) and (5.34). These FDRs do not exist for the
classical component φh and Q.
Putting this statement in a more explicit way, we have

lim
x0→x

∂
2

∂r∂t0
ðV:33Þ þ ðV:34Þ ¼ e2

Z
∞

−∞

dω
2π

sgnðωÞω2fiReG̃ðϕÞ
0;Rðr;ωÞG̃ðϕÞ�

0;R ðr;ωÞG̃ðQÞ�
R ðωÞ − ImG̃ðϕÞ

0;Rðr;ωÞG̃ðϕÞ
0;Rðr;ωÞG̃ðQÞ

R ðωÞg

¼ −ie2
Z

∞

−∞

dω
2π

sgnðωÞω2G̃ðϕÞ�
0;R ðr;ωÞG̃ðϕÞ

0;Rðr;ωÞG̃ðQÞ
R ðωÞ; ð5:37Þ

while

lim
x0→x

∂
2

∂r∂t0
ðV:35Þ

¼ þie2
Z

∞

−∞

dω
2π

sgnðωÞω2G̃ðϕÞ�
0;R ðr;ωÞG̃ðϕÞ

0;Rðr;ωÞG̃ðQÞ
R ðωÞ;

ð5:38Þ
in the large r limit. It is clearly seen that (5.37) and (5.38)
cancel out. This in turn implies for the fluctuating dynamics
the net radiation power

dwRAD

dτ
¼ 0; ð5:39Þ

vanishes at late times over the spherical surface sufficiently
far away from the emitter. It is instructive to break down
dwRAD=dτ into two quantum powers P0

× and P0
R, where

P0
Rð∞Þ¼−

Z
dΩkr2ðV:38Þ

¼ e2θðt− rÞ
Z

∞

−∞

dω
2π

sgnðωÞω2ImG̃ðQÞ
R ðωÞ

× G̃ðϕÞ�
0;R ðr;ωÞG̃ðϕÞ

0;Rðr;ωÞ

¼ e2θðt− rÞ
Z

∞

−∞

dω
2π

sgnðωÞω
2

4π
ImG̃ðQÞ

R ðωÞ; ð5:40Þ

P0
×ð∞Þ ¼ −

Z
dΩk r2ðV:37Þ ¼ −P0

Rð∞Þ; ð5:41Þ

in the limit t ≫ γ−2. Here we have used the Fourier
transforms of the Green’s functions of the free field in
the vacuum state,

VACG̃ðϕÞ
0;Hðr;ωÞ ¼ sgnðωÞImG̃ðϕÞ

0;Rðr;ωÞ;

G̃ðϕÞ
0;Rðr;ωÞ ¼

eþiωr

4πr
; ð5:42Þ

and the parity properties of the Fourier transforms of the
Green’s functions. Equation (5.39) tells that the outgoing
radiating power P0

R is equal to the incoming power P×, so
that there is no net energy flow to spatial infinity.
The quantum power P0

R results purely from the radiation
field ϕ̂R, given off by the emitter when its internal dynamics
is driven by the vacuum fluctuations of the free field ϕ̂h.
The other quantum power P× has an intriguing nature.
From (5.33) and (5.34), we note it is the consequence of the
correlation between ϕ̂R and ϕ̂h. This correlation is propa-
gated from the vacuum fluctuations of ϕ̂h to the fluctuating
internal dynamics q̂ of the emitter, and finally to ϕ̂R. The
existence of the FDRs provides just the right amount of
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correlation to allow both powers to cancel out. This subtle
cancellation at spatial infinity in the quantum degree of
freedom of the field is necessary, even fascinating, when we
notice that there is a corresponding cancellation between
the noise power P0

ξð∞Þ and the dissipation power P0
γð∞Þ in

(4.10) at the location of the emitter, and that P0
×ð∞Þ is equal

to P0
ξð∞Þ in magnitude. This shows that when the equi-

librium state is reached, the steady incoming energy flow at
spatial infinity is exactly what furnishes the energy power
pumped into the emitter. The balance of energy flow at
spatial infinity and inside the emitter is a powerful
manifestation of the self-consistency condition locked
inside the FDRs.
Comparing with the classical radiation powers, we take

the product of the two equations (5.26) and (5.29), and
place (5.37) side by side. We at once note that (1) the latter
is time independent while the former is not even stationary
in time, (2) the factors G̃ðϕÞ

0;Rðr;ωÞ and G̃ðQÞ�
R ðωÞG̃ðϕÞ�

0;R ðr;ωÞ
for the classical power are not within the same integrand as
in the quantum power (5.37), (3) there are no FDRs for the
mean field φh and the mean internal degree of freedomQ to
relate (5.29) to (5.26), and (4) since for this case the mean
internal dynamics does not equilibrate, there is no definitive
connection betweenPξ andPγ as well as the corresponding
radiation powers PR and P×; everything remains time-
dependent.
In summary we have shown that classical radiation and

quantum radiation can be fused into a unified formalism by
the coherent state description. Depending on the late-time
behavior of the free mean field, we have shown that if the
free mean field is periodic, then the field radiated by the
emitter is essentially classical if the coherent parameter is
much greater than unity. There will be nonvanishing
classical radiation energy flowing outward to, or inward
from, spatial infinity. The emitter behaves similar to a
dipole antenna. Due to this nonstationary nature, the
internal dynamics of the emitter or the net radiation energy
flow never comes to equilibrium. (Here we would like to
emphasize that our setup is a little different from the one
used in [16,23], where the point charge follows a prescribed
external trajectory zðtÞ controlled by an external agent, not
by the field that takes part in the interaction, so the
contribution of P× is of no concern.) On the other hand,
if the free mean field diminishes at late times, then the
radiation power is mainly of quantum nature. The existence
of the fluctuation-dissipation relations for the quantum
fluctuation dynamics enforces a subtle correlation between
the free quantum field ϕ̂h and the radiation field ϕ̂R. We
thus find at late times there is no net quantum energy flow
to spatial infinity. The radiated quantum power is delicately
balanced by an incoming quantum energy flow due to the
aforementioned correlation. This shows a very distinct late-
time behavior in the radiated energy flow between the
classical deterministic dynamics and the quantum fluc-
tuation dynamics.

VI. CONCLUSION

This work continues what we began in Paper I, extending
the study of quantum radiation from a stationary emitter’s
internal degree of freedom to the appearance of radiation
and radiation reactions at both the quantum and the
classical levels. As the title of this paper suggests, our
goal is to paint a continuum landscape starting from
vacuum fluctuations in the quantum field to quantum
dissipation in the emitter resulting from its emittance of
quantum radiation, to classical radiation and classical
radiation reaction. Two major themes are presented: The
first theme starts with placing the quantum field in a
coherent state so we will have a unified formalism to
simultaneously treat the classical and the quantum fields. In
the context of the emitter-field interaction, one typically
expects that when the coherent parameter of the field state
is far greater than unity, both the field and the emitter it
interacts with behave essentially like classical systems.
This is a natural setting for our stated purpose and the
results are largely as expected, except for a few interesting
and important caveats. For one, when one deals with the
field initially in a multimode coherent state, it is true that
the mean field looks like a classical field and its interaction
with the internal degree of freedom of the emitter will
induce mean dynamics to it. For large coherent parameters,
the emitter’s mean internal dynamics can dominate over the
accompanying fluctuation dynamics. However, depending
on the frequency spectrum or the choice of the mode-
dependent coherent parameters of the field, the mean field
of physical interest to us, at late times, can be either
periodic or decaying with time. In the former case, the
classical components of the field and the emitter’s internal
dynamics will remain periodic and dwarf their quantum
counterparts, so the emitter’s internal motion will not settle
down to an equilibrium state. By contrast, in the latter case
the emitter will have a vanishing mean dynamics at late
times, where the corresponding fluctuating quantum evo-
lution endures. Thus, the coherent state of the field will lead
to quantum dynamics for the emitter’s internal degree of
freedom, rather than the commonly expected classical
dynamics. Furthermore the internal dynamics will approach
an equilibrium state, independent of the initial setting of the
internal degree of freedom.
The second theme is subtler. In the current configuration,

the classical and the quantum components of the field and
the emitter’s internal dynamics are fully decoupled. The
mean (free) field drives the internal degree of freedom, here
modeled by a harmonic oscillator. The induced nonuniform
internal motion causes the emitter to give off radiation, the
reaction of which results in a radiation reaction or self-
force, counteracting the motion of the emitter’s internal
degree freedom. The classical radiation will propagate to
spatial infinity. Up to this point, everything we have
described is classical and deterministic, just as in classical
electrodynamics. On the other hand, we also have a
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quantum component in the internal motion of the emitter
induced by the vacuum fluctuations of the quantum field in
its coherent state. This component incites randommotion in
the emitter’s internal degree of freedom, which also causes
the emitter to radiate. Compared to the mean dynamics, the
radiation in this case is purely quantummechanical because
the random motion is driven by the vacuum field fluctua-
tions, and its associated reactive force (quantum radiation
reaction or quantum self-force) is certainly of quantum
nature. Thus from this delineation, we are able to make
correct linkage between quantum (vacuum) fluctuation of
the field and the corresponding quantum radiation reaction,
whose origin is the stochastic motion driven by the field
fluctuations.
A stronger connection can be made through examining

the energy flux exchanges between the emitter and the
field. When the field fluctuations drive the emitter’s internal
degree of freedom, an accompanying energy flows into the
emitter. The frictional force due to the reaction of the
emitted radiation on the other hand drains the emitter’s
energy to the field surrounding the emitter. The far field
component of the radiated field will propagate away from
the emitter and transport part of the emitter’s energy to
spatial infinity. Since all the relevant physical quantities
contain both the classical and the quantum components, the
late-time behavior of the radiated classical far field at places
sufficiently far away from the emitter depends on the free
mean field around the emitter. When the free field is
periodic, a spatially fixed probe far away from the emitter
will receive an energy flux periodic in time. The signal is
typically much stronger than the noise level from the
quantum component of the far field. On the other hand,
if the mean field decreases with time, then this probe will
receive a classical energy flux decaying with time, and in
the end only the quantum component of the radiation power
will endure. Thus the probe may pick up a weak energy
flow exclusively associated with quantum radiation field
fluctuations.
The most drastic difference lies in the statistical char-

acteristics of the classical and quantum components. The
classical components are deterministic and at late times will
be either periodic or falling off to zero; they do not
equilibrate. The quantum components are stochastic in
nature, and for the presently studied configuration, they are
correlated and will result in dynamical equilibration. Our
results show that at late times the quantum component of
the rate of energy pumped into the emitter by the field is
balanced by the corresponding component of the rate of
energy lost to the field. The more intriguing and revealing
fact is—what we discovered in Paper I is repeated here—
that, at a point sufficiently far away from the emitter, the
energy carried away by the quantum component of the far
field radiated from the emitter is also compensated by
another incoming energy flux related to the correlation
between the radiated field far away from the emitter, and

the free field around the emitter. This subtle correlation is a
manifestation of two sets of fluctuation-dissipation rela-
tions: one associated with the free field and the other with
the emitter’s internal degree of freedom. These relations
govern the amount of correlation needed to balance the net
radiated power to spatial infinity. Thus in fact a probe
sitting at rest sufficiently far away will not see any energy
flow to spatial infinity from a stationary emitter. This, in
addition, indicates that the contribution of the quantum
field fluctuations is compensated exactly by the counterpart
from quantum dissipation (or quantum radiation reaction),
the reactive force of quantum radiation. Such cancellation
in general is not available for the classical radiation from a
stationary emitter because no FDR exists for the mean
internal dynamics of the emitter and the mean dynamics of
the field.
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APPENDIX: COHERENT STATE
IN A NUTSHELL

The coherent state jαi is the eigenstate of the annihilation
operator â with the complex eigenvalue α,

âjαi ¼ αjαi; ðA1Þ
which implies that an expansion in terms of the number
states

jαi ¼ e−
jαj2
2

X∞
n¼0

αnffiffiffiffiffi
n!

p jni; ðA2Þ

with N̂jni ¼ njni and N̂ ¼ â†â. It is then straightforward
to see that the coherent state is not orthogonal because for
any two coherent states jαi and jβi, they have nonzero
overlap,

hβjαi ¼ exp

�
−
jαj2
2

−
jβj2
2

þ β�α
�
: ðA3Þ

However the coherent states tend to become approximately
orthogonal for values of α and β are sufficiently different.
Thus in general the coherent state is not linearly indepen-
dent from one another. The coherent state forms a complete
set in the sense that

Z
d2α
π

jαihαj ¼ 1: ðA4Þ

Alternatively, we may define the coherent state in terms
of the unitary operator D̂ðαÞ
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D̂ðαÞ ¼ expðαâ† − α�âÞ: ðA5Þ

such that jαi ¼ D̂ðαÞj0i. It can be readily verified that

âjαi ¼ αjαi; ðA6Þ

indeed, is the eigenstate of â.
By the BCH formula

eX̂Ŷe−X̂ ¼ Ŷ þ ½X̂; Ŷ� þ 1

2!
½X̂; ½X̂; Ŷ��

þ 1

3!
½X̂; ½X̂; ½X̂; Ŷ��� þ � � � ; ðA7Þ

we find

D̂ðαÞâD̂−1ðαÞ ¼ â − α; ðA8Þ

such that

hâ2iα ¼ α2; hâ†2iα ¼ α�2;

hâ†âiα ¼ jαj2; hââ†iα ¼ jαj2 þ 1; ðA9Þ

where h� � �iα is understood as hαj � � � jαi.
In the context of oscillator dynamics, the Heisenberg

equation of motion of the harmonic oscillator is given by

̈Q̂ðtÞ þ ω2Q̂ðtÞ ¼ 0; ðA10Þ

where ω is the oscillating frequency, so its expectation
value takes the form

Q̈ðtÞ þ ω2QðtÞ ¼ 0; ðA11Þ

with QðtÞ ¼ hQ̂ðtÞiα. From (A10), the displacement oper-
ator Q̂ and the conjugate momentum P̂ of the quantum
harmonic oscillator evolves according to

Q̂ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
ðâ†eþiωt þ âe−iωtÞ;

P̂ðtÞ ¼ i

ffiffiffiffiffiffiffiffiffiffi
ℏmω

2

r
ðâ†eþiωt − âe−iωtÞ; ðA12Þ

so we immediately have

QðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
½α�eþiωt þ αe−iωt�;

PðtÞ ¼ i

ffiffiffiffiffiffiffiffiffiffi
ℏmω

2

r
ðα�eþiωt − αe−iωtÞ: ðA13Þ

Thus, Eqs. (A11) and (A13) implies the mean dynamics of
the quantum harmonic oscillator in the coherent state
behaves like a classical harmonic oscillator, with its
amplitude proportional to α.

On the other hand, the quantum harmonic oscillator in
the coherent state has nonzero dispersions for its canonical
variables,

hΔQ̂2iα ¼
ℏ

2mω
; hΔP̂2iα ¼

ℏmω

2
;

1

2
hfΔQ̂;ΔP̂giα ¼ 0:

ðA14Þ

We right away conclude

hΔĤiα ¼
ℏω
2

;

hΔQ̂2iαhΔP̂2iα −
�
1

2
hfΔQ̂;ΔP̂giα

�
2

¼ ℏ2

4
: ðA15Þ

Hence although its mean dynamics follows the trajectory of
a classical harmonic oscillator, the quantum harmonic
oscillator in the coherent state has the minimal uncertainty
exclusively due to the zero-point quantum fluctuations.
That is why the coherent state is sometimes viewed as the
most classical quantum state, in particular, when jαj ≫ 1.
For a given coherent state jαi of the oscillator, the

probability of finding the oscillator in the nth excited
state is

PðnÞ ¼ jhnjαij2 ¼ jαj2n
n!

e−jαj2 : ðA16Þ

If we let N be the average number of excitations

N ¼ hN̂iα ¼ hâ†âiα ¼ jαj2; ðA17Þ

then we can write the probability (A16) in terms of N,

PðnÞ ¼ Nn

n!
e−N: ðA18Þ

This corresponds to the Poisson distribution. This implies
that

hΔN̂2i12α
hN̂iα

¼ 1

jαj : ðA19Þ

If we define

Q̂ð−ÞðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
âe−iωt; and Q̂ðþÞðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
â†eþiωt;

ðA20Þ

then we may introduce the temporal degree of second-order
coherence by

gð2ÞðτÞ ¼ hQ̂ðþÞðtÞQ̂ðþÞðtþ τÞQ̂ð−Þðtþ τÞQ̂ð−ÞðtÞi
hjQ̂ð−ÞðtÞj2ihjQ̂ð−Þðtþ τÞj2i : ðA21Þ
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for a quantum state in which the expectation values in
(A21) are taken. For a coherent state, we find gð2ÞðτÞ ¼ 1

for all τ. In comparison, the classical light has gð2ÞðτÞ ≤
gð2Þð0Þ but gð2Þð0Þ ≤ 1. In fact, the coherent state owns all
orders of coherence because all of the degrees of the higher-
order coherence for the coherent state are equal to unity,
where the degree of the nth-order coherence is defined by

gð2Þðt1;…; tnÞ¼
hQ̂ðþÞðt1Þ � � �Q̂ðþÞðtnÞQ̂ð−ÞðtnÞ� � �Q̂ð−Þðt1Þi

hjQ̂ð−Þðt1Þj2i � � � hjQ̂ð−ÞðtnÞj2i
:

ðA22Þ

For the multimode coherent state, suppose we have a
Hermitian operator ÔðtÞ expanded in terms of the complex
mode functions ukðtÞ, labeled by k, and the associated time
independent annihilation and creation operators âk, â

†
k,

ÔðtÞ ¼
X
k

âkukðtÞ þ â†ku
�
kðtÞ: ðA23Þ

For the coherent state jfαgi, abbreviated for jfαgi ¼
jαk1i ⊗ jαk2i ⊗ � � �, we immediately have

OðtÞ ¼ hfαgjÔjfαgi ¼
X
k

αkukðtÞ þ α†ku
�
kðtÞ: ðA24Þ

The corresponding Hadamard function GðOÞ
H ðt; t0Þ is

GðOÞ
H ðt; t0Þ ¼ 1

2
hfαgjfÔðtÞ; Ôðt0Þgjfαgi

¼
X
k;k0

½αkukðtÞ þ α†ku
�
kðtÞ�½αk0uk0 ðt0Þ þ α†k0u

�
k0 ðt0Þ�

þ 1

2

X
k

½ukðtÞu�k0 ðt0Þ þ u�kðtÞuk0 ðt0Þ�

¼ OðtÞOðt0Þ þ 1

2
h0jfÔðtÞ; Ôðt0Þgj0i; ðA25Þ

where we have used

hfαgjâkâk0 jfαgi ¼ αkαk0 ; ðA26Þ

hfαgjâkâ†k0 jfαgi ¼ hfαgjâ†k0 âk þ δkk0 jfαgi ¼ αkα
�
k0 þ δkk0 :

ðA27Þ
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