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We examine the dynamics of noncommutative instantons of instanton number 2 and commutative
instantons of instanton number 3 in 5D super Yang-Mills theory. We begin by detailing the construction of the
1=4-Bogamolyni-Prasad-Somerfeldt instanton solutions, their moduli space, and the moduli space potential
using an explicit parametrization of the moduli space coordinates in terms of the biquaternions. We then go on
to numerically analyze the dynamics on the moduli spaces we have constructed, discussing some of the
numerical issues which arose, and describing the numerical algorithm we developed to solve them.
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I. INTRODUCTION

The aim of this paper is to present new solutions for the
moduli space dynamics of 2- and 3-instantons in 5D super
Yang-Mills (SYM) theory. Instantons are a specific example
of topological solitons, which are nonlinear solutions to
certain partial differential equations (PDEs). Because the
properties of these solutions are tied to topological invariants
of the spaces they are defined upon, they are very stable—no
continuous transformation (including time evolution) of the
solutions can cause these properties to change. Originally
discovered in [1], research into their properties took off
after the discovery of the Atiyah-Drinfield-Hitchin-Manin
(ADHM) method for constructing them in [2]. Whilst
instantons were originally constructed as solutions in four
Euclidean dimensions, we can also define them in 5D SYM.
Here the instantons are static solutions in every slice of the
four Euclidean dimensions, and the 5th timelike dimension
is seen as describing their evolution. In the context of
string theory this arises since the instantons appear as 1=2-
Bogamolyni-Prasad-Somerfeldt (BPS) states corresponding
to an interacting system of D0-branes and D4-branes [3,4].
In this system, there are have five SUðNÞ scalar fields

which describe the transverse positions of the D4-branes.
Separating the branes gives at least one of these scalars a
nonzero expectation value. In the low-energy limit this
corresponds to introducing a nonzero scalar field on top of

the instanton equations. This configuration would usually be
an unstable field configuration due to interactions with the
Higgs field; however, the introduction of the scalar field
gives the instantons an electric charge which balances
the scalar Higgs field, producing a stable solution [5,6].
These charged instantons are knownas dyonic instantons, and
are 1=4-BPS rather than 1=2-BPS. They are the low-energy
limits of a bound state of fundamental strings and D0-branes.
This system has been the subject of particular interest as

the low-energy limit of M5 branes in M-Theory. The low-
energy dynamics of these objects is described using the so-
called (2,0) theory, a 6D superconformal field theory. It has
been shown that if we dimensionally reduce this theory, we
get 5D SYM [7,8]. Another way of reducing the number of
dimensions is to compactify one of the six dimensions into
an S1. Somewhat surprisingly, it turns out that this also
gives 5D SYM theory. In this case, the instanton sector,
with separate solutions labeled by the integer instanton
number k, has been shown to agree for low k with the
Kaluza-Klein modes arising from the compactifaction,
which are labeled by an integer winding number. This
raises the possibility that if these sectors are in fact
identical, then 5D SYM with all instantons included
corresponds to including all the Kaluza-Klein modes of
the compactified (2,0) theory. This would imply that the
6D (2,0) theory is the UV fixed point of 5D SYM, even
though 5D SYM is pertubatively nonrenormalizable [9,10].
Directly calculating the dynamic behavior of instanton

solutions is both analytically and computationally expen-
sive. The moduli space method developed by Manton [11]
simplifies things by treating the free parameters as coor-
dinates on a manifold, called the moduli space. Evolution
of an instanton solution is approximated for slow motion
by geodesic motion on the moduli space. This moduli
space contains singularities when the size of the instanton
shrinks to zero size. They correspond in the string theory to
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a transition between the Coloumb and Higgs branches of
the D0 theory [4].
This is the motivation for introducing noncommutativity,

corresponding to adding a Fayet-Illiopoulos term to the
string theory. Defining the instantons on a noncommutative
spacetime has the effect of introducing a minimum size for
the instantons. This resolves the moduli space singularities
as the instantons can only shrink to a finite size, so cannot
reach the singularity where their size vanishes.
We begin by introducing instantons themselves, and the

noncommutative spacetimes we will be studying them on.
This includes a brief discussion of the biquaternions—the
algebra C × H. The calculation of instanton solutions uses
the ADHM construction first developed in [2]. We briefly
review the use of this method in the SUð2Þ Yang-Mills case.
We then introduce the instanton moduli space [11]. We

recap how this construction can be extended to dyonic
instantons via introducing a potential on the moduli
space, following the presentation in [12]. A practical
method for calculating the moduli space metric and
potential for noncommutativeUðNÞ instantons is presented
in Appendix C. This generalizes the method presented for
SUð2Þ commutative instantons in [13].
In the second part of the paper, we look for solutions to

the equations we have derived. The noncommutative two-
instanton case was first studied in [14] however we found
an error in this result. We were unable to find the exact
result for the full moduli space but we present a solution
defined on a subspace of the full moduli space taking values
in the C × C subgroup of C × H; this is a geodesic
submanifold of the full moduli space. After finding this
solution, we use it to derive the metric and potential on this
subspace. We then numerically evaluate scattering in
this subspace and we compare these results to the results
for the commutative two-instanton in [13].
Finally, we look at the commutative three-instanton case.

Again we present a solution for the complex subspace
C × C and calculate the moduli space metric and potential
for that subspace. Numerical scattering calculations proved
to be very computationally expensive; however, we were
able to plot scalar field and topological charge density
profiles, which allowed us to make some comparison to the
two-instanton case in the appropriate limits.
We use two different numerical algorithms to integrate

the moduli space equation of motion, depending on the
algebraic complexity of the moduli space metrics and
potentials considered. For two noncommutative instantons
with an orthogonal gauge embedding and four-dimensional
moduli space, we find the system sufficiently simple to
solve with the numerical algorithm developed in [13].
Increasing to the full six-dimensional gauge embedding
results in significantly more complex metrics and potentials
on the moduli space, and we find that these cases are no
longer tractable to the algorithm from [13]. To overcome
this problem we developed a new numerical algorithm.

II. BACKGROUND MATERIAL

We begin by defining our notations and conventions for
the biquaternions and for noncommutative spacetime.
These will be used throughout the rest of the paper.

A. Quaternions and biquaternions

The group C × H, known as complex quaternions,
biquaternions, and even tessarions has a long history [15].
To avoid confusion we will refer to the group as biqua-
ternions in the rest of the paper. As discussed in, e.g., [16],
the algebra is equipped with three notions of conjugation.
We write a general element of the group as

q ¼ qR þ iqI ¼ qR0 þ qR þ iðqI0 þ iqIÞ: ð1Þ

Where qR; qI ∈ H, and correspondingly qR0; qI0 ∈ R and
qR, qI belong to the quaternion imaginary part of H. Then
we have a complex conjugation q⋆, which takes

qR þ iqI → qR − iqI: ð2Þ

We also have a quaternion conjugation q̄

qR þ iqI → q̄R þ iq̄I ¼ qR0 − qR þ iðqi0 − qIÞ: ð3Þ

Finally, we have a total conjugation q† which applies both
these operations simultaneously

qR þ iqI → q̄R − iq̄I ¼ qR0 − qR − iðqi0 − qIÞ: ð4Þ

To clarify our notation, we use the basis σn for the
quaternions, with σn ¼ ð12; iτiÞ, where the τi are the
standard Pauli matrices. We also define σ̄n ¼ ð12;−iτiÞ.
Further, we define the self-dual object

σmn ¼
1

4
ðσmσ̄n − σnσ̄mÞ; ð5Þ

and the antiself-dual

σ̄mn ¼
1

4
ðσ̄mσn − σ̄nσmÞ: ð6Þ

Here, we define a self-dual matrix as one for which
A⋆
nm ¼ Amn, and an antiself-dual one as A⋆

nm ¼ −Amn.
With these definitions, we have

σ0 ¼
�
1 0

0 1

�
; σ1 ¼

�
0 −1
1 0

�
;

σ2 ¼
�
0 i

i 0

�
; σ3 ¼

�
i 0

0 −i
�
: ð7Þ

Finally, the fact that the biquaternions have multiple
notions of conjugation means that there are multiple
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notions of the imaginary part. Wewill use ImH to denote the
quaternion imaginary part, defined for q ¼ q0 þ q ∈ H,
with q0 ∈ R and q a purely imaginary quaternion, as

ImHðqÞ ¼ q: ð8Þ
We also have the complex imaginary part, defined for
z ∈ C, z ¼ xþ iy as

ImCðzÞ ¼ y: ð9Þ
Note that ImC doesn’t include the factor i which we must
add in by hand where it is required—this is done to match
with the usual definition of Im in the complex case.
However it does mean some care has to be taken when
restricting from H to C, as i then corresponds to the
imaginary quaternion basis vector, which is included
in ImH but not in ImC.
In the case of a biquaternion q ¼ qR þ iqI we have

ImCðqÞ ¼ qI; ImHðqÞ ¼ qR þ iqI; ð10Þ
where qR and qI are the quaternion imaginary parts of qR
and qI respectively. We similarly define ReH and ReC.

B. Noncommutativity

It is convenient to introduce the study of noncommuta-
tive spacetimes into the study of instantons. It is convenient
because it allows us to resolve singularities on the instanton
moduli space (see the next section). It was first shown
in [17] that this was possible, and since then many
examples have been constructed (see e.g., [18–20] for a
selection).
To construct a noncommutative version ofR4, we simply

impose an anticommutation relation on the spacetime
coordinates

½xm; xn� ¼ θmn: ð11Þ

Here m, n are the Euclidean-Lorentz indices, and θmn is a
real, antisymmetric, constant matrix. We can always rotate
it into the form

θmn ¼

2
6664

0 θ12 0 0

−θ12 0 0 0

0 0 0 θ34

0 0 −θ34 0

3
7775: ð12Þ

There are several interesting subcases of this matrix [20]; in
this paper we consider the self-dual (SD) case, where
θ12 ¼ θ34 ¼ 2ζ.
The noncommutativity of the spacetime coordinates

forces us to modify our notion of the multiplication of
functions. Rather than the usual multiplication, we use the
Moyal Star Product [21]. This is defined as

fðxÞ ⋆ gðxÞ ¼ exp

�
i
2
θij∂i∂

0
j

�
fðxÞgðx0Þjx¼x0 : ð13Þ

This gives the following expansion on powers of θij

fðxÞ⋆ gðxÞ¼fðxÞgðxÞþ i
2
θij∂ifðxÞ∂jgðxÞþOðθ2Þ: ð14Þ

Using this, the gauge potential and field strength become

Ai → g−1 ⋆ Ai ⋆ gþ g−1 ⋆ ∂ig; ð15Þ

and

Fij ¼ ∂½iAj� − i½Ai; Aj�⋆; ð16Þ

where

½Ai; Aj�⋆ ¼ Ai ⋆ Aj − Aj ⋆ Ai: ð17Þ

This has two effects on our instanton solutions. First of all,
it allows us to find solutions with no commutative equiv-
alent, since the additional length scale ½ζ� ¼ ½length�2 and
the fact we are not in Euclidean flat space means Derrick’s
theorem does not apply.
Secondly, and less positively, in theory it implies we have

an infinite number of terms to calculate. However, we can
avoid this thanks to an isomorphism between the algebra of
functions with the ⋆-product, and certain operators over
Hilbert space. This is more fully discussed in [22].

III. DYONIC INSTANTONS

Now we have discussed these notational conventions we
define what is meant by dyonic instantons. Following the
presentation in [13] we start with the action

SYM ¼
Z

d5x
1

4
Fa
μνF

μν
a þ 1

2
DμϕDμϕ: ð18Þ

We consider static solutions, for which the integral is
taken over the four spatial dimensions. These have
energy, topological charge, and electric charge given
respectively by

E ¼
Z

d4xTr

�
1

2
Fi0Fi0 þ

1

4
FijFij þ

1

2
D0ϕD0ϕ

þ 1

2
DiϕDiϕ

�
;

k ¼ −
1

16π2

Z
d4xϵijklTrðFijFklÞ;

QE ¼
Z

d4xTrðDiϕFi0Þ ¼
Z

d4xTrðDiϕÞ2: ð19Þ
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We use a Bogomolny argument of the type [23] to give us a
bound on the energy, by completing the square

E ¼
Z

d4xTr

�
1

8

�
Fij �

1

2
ϵijklFkl

�
2

þ 1

2
ðFi0 �DiϕÞ2

þ 1

2
DiϕDiϕþ 1

8
ϵijklFijFkl ∓ Fi0Diϕ

�
; ð20Þ

So we get

E ≥ 2π2jkj þ jQEj; ð21Þ

where

k ¼ −
1

16π2

Z
d4xϵijklTrðFijFklÞ;

QE ¼
Z

d4xTrðDiϕFi0Þ ¼
Z

d4xTrðDiϕÞ2: ð22Þ

The conditions for this bound to be saturated are

Fij ¼
1

2
ϵijklFkl;

Fi0 ¼ Diϕ;

D0ϕ ¼ 0: ð23Þ

With the boundary condition on ϕ that it goes to the
vacuum expectation value (VEV) ϕ0 ¼ iq at infinity [5]
where q is an arbitrary imaginary quaternion. The second
and third of these are satisfied provided the fields are static
and A0 ¼ ϕ. Requiring our solutions to obey Gauss’ law,
DiEi ¼ ig½ϕ; D0ϕ�, imposes the further equation

D2ϕ ¼ 0: ð24Þ

So, to find a dyonic-instanton solution, we can use the
ADHM method to calculate a self-dual field strength Fμν,
then additionally calculate the background scalar field
using Eq. (24). An important corollary is the observation
that when ϕ ¼ 0, the solution reduces to precisely that of a
pure instanton, and such solutions are in one-to-one
correspondence with the pure instanton solutions discussed
above.

A. The ADHM construction

To calculate an instanton solution, we use the ADHM
construction. We follow an ansatz-based construction out-
lined in [20]. A good discussion of this can be found in [24].
The main ingredient in the ADHM construction is the

ADHM data Δ. This is an ðN þ 2kÞ × 2k matrix, where N
is the degree of the gauge group SUðNÞ or UðNÞ, and k is
the instanton number, or topological degree. In the com-
mutative case the entries are usually taken to be real,
whereas in the noncommutative case they are taken as

being complex. However, they can be taken to be complex
in the commutative case too, with the real solution
recovered using the symmetries due to the additional
redundancy. Therefore, we will treat the entries as being
complex in the remainder of this paper unless otherwise
stated. With this in mind, we have

Δ ¼
�Λ
Ω

�
; ð25Þ

where Λ is an N × 2k complex matrix and Ω is a 2k × 2k
Hermitian matrix. It is often useful for the purpose of
performing calculations to treat these as being instead
biquaternion-valued matrices (or quaternion-valued, for real
matrices). The matrix Ω can always be treated as a k × k
matrix of biquaterions, but Λ is not as straightforward. For
some values of N and k there is a similar identification—for
example, for the Uð2Þ instantons we consider in this paper,
we can always write Λ as a row of N (bi)quaternions.
However, in general, this is not possible.
This difficulty is mitigated by the fact that we will

always end up considering Δ†Δ in any practical calcu-
lation, and as we shall see below, this can always be written
in (bi)quaternion form.
The commutative ADHM method involves solving the

equation

Δ†Δ ¼ 12 ⊗ f−1; ð26Þ
where f is an invertible k × k matrix, and we can think of
12 as the quaternion identity. This also means we can look
at the ADHM equation above as

ImHðΔ†ΔÞij ¼ 0; ð27Þ
where ImH takes the quaternion imaginary part. In the
noncommutative case we must modify the ADHM equa-
tion (26) to be

ðΔ†ΔÞij ¼ 12 ⊗ f−1ij − 4ζσ3δij; ð28Þ

which we can view as

ImHðΔ†ΔÞij ¼ −4ζσ3δij: ð29Þ

This solution has some residual freedom—we can trans-
form any solution Δ to

Δ →

�
1 0

0 RT

�
ΔR ð30Þ

to obtain a new solution, where R lies in OðkÞ if we are
using real quaternions, or SUðkÞ if we are using biqua-
ternions. This additional freedom in the biquaternion
case cancels out the additional degrees of freedom from
the complexified ADHM parameters. This freedom is also
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important in obtaining the moduli space metric (see
Appendix C). Once we have solved Eq. (26), or its
noncommutative analog, we can use it to calculate the
gauge potential and field strength.
To do this, we need to find a zero eigenvector UðxÞ

of Δ†, normalized so that U†U ¼ 1. There are N such
vectors, spanning the nullspace of Δ, satisfying

U†Δ ¼ Δ†U ¼ 0: ð31Þ

This implies that U has dimension N þ 2k as a complex
vector. Once we have this U we can use it to define the
gauge potential as

Aμ ¼ U†
∂μU; ð32Þ

and the field strength as

Fμν ¼ −4U†bfσmnb†U; ð33Þ

where b is a ðN þ 2kÞ × 2k matrix whose top N × 2k part
is 0 and whose bottom 2k × 2k part is the identity, and σmn
is as given in (6). This procedure works for both the
commutative and the noncommutative cases. An additional
subtlety in the noncommutative case comes from the
assumption implicit in the above construction that we
can factorize the projection operator

1 −UŪ; ð34Þ

as

1 − P ≡ δλκδα
β − Pλκα

β ¼ ΔfΔ̄: ð35Þ

This is called the ‘completeness relation’. It is automati-
cally satisfied in the commutative case, however there are
some complications in the noncommutative case. The issue
is that, whereas the normalization of UðxÞ is straightfor-
ward in the commutative case, there is are subtleties in the
case where x is itself an operator. We must therefore be
careful to pick a good definition for this normalization.
These issues were first discussed in [20]. However, this is
highly nontrivial as it only affects the value of U and not
the validity of the remainder of the solution—it is only
necessary if one is constructing an explicit expression for
the gauge potential, which we are not. The only point we
use U is in Appendix D, and there we take it in the limit
x → ∞ in which any noncommutative effects (which go as
ζ
xr for some positive integer r) are automatically neglected.
This does not affect our results though a full investigation
might be a fruitful topic for future research.

B. The moduli space

The moduli space of instanton solutions is a the space
of inequivalent solutions to the self-dual Yang-Mills

equations (26). This was first introduced for instantons
in [11]. Calculating the dynamics of an individual instanton
solution over a period of time is difficult. However, for
sufficiently slow velocities we can approximate such a
solution by a slow transition between different instanton
solutions with marginally different initial conditions. This
corresponds to motion on the moduli space. For a review of
techniques and applications see e.g., [6,12,13,25]. The
moduli space is parametrized by the 4kN − 4 free ADHM
parameters, which are called the collective coordinates.
To define small velocities, we must introduce a moduli
space metric. To do this we look at small fluctuations
AmðxÞ þ δAmðxÞ. If this is also to be a solution to the
equations (and hence lie in the moduli space), the δAm must
satisfy the linearized self-duality equation

DmδAn −DnδAm ¼ ϵmnklDkδAl: ð36Þ

In addition, it must not be related to AnðxÞ by a local gauge
transformation. We therefore require the solutions to be
orthogonal to gauge transformations. To define this ortho-
gonality, we take the natural metric on the space of all
solutions

gðδAmðxÞ; δA0
mðxÞÞ ¼

Z
d4xTrðδAmðxÞδA0

mðxÞÞ; ð37Þ

and then use this to induce a metric on the moduli space
after quotienting out the gauge-equivalent solutions. We
then require that under this metric, zero modes δAiðxÞ are
orthogonal to all gauge transformations DiΛ. This is
equivalent to satisfying

DiδAi ¼ 0: ð38Þ

For small perturbations, we get the following action on the
moduli space [12,26]

S ¼ 1

2

Z
d5xTrðFi0Fi0 −DiϕDiϕþD0ϕD0ϕÞ: ð39Þ

If we neglect terms of order _z2jqj2, where zðtÞ refers to any
of the collective coordinates on the moduli space, we get
the effective action

S ¼ 1

2

Z
dtðgrs _yr _ys − jqj2grsKrKsÞ; ð40Þ

where the Kr are Killing vectors of the moduli space and
satisfy Dmϕ ¼ jqjKrδrAm. Then Eq. (40) is the sum of a
free instanton and the potential

V ¼ 1

2

Z
d5xTrðDiϕDiϕÞ ¼

jqj2
2

Z
dtgrsKrKs: ð41Þ

This solution is valid in the limit
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_z2; jqj ≤ 1; ð42Þ

where we can ignore terms of order _z2jqj2 and higher. The
geometric interpretation of this is both that the kinetic
energy of the instanton solution is sufficiently small, and
that the potential evaluated on the instanton solutions,
which lie on the moduli space, is shallow compared to the
potential on non-BPS solutions evaluated off the moduli
space. This allows us to imagine our approximate solution
as lying in a steep valley given by the locally small potential
around the moduli space solutions, where the small kinetic
energy prevents our dynamics from, ‘climbing away’ from
the moduli space.

C. The complex subspace

There is one final technical point to discuss, which
applies to both pure and dyonic instantons. The moduli
space has several subspaces, which are preserved under the
geodesic motion. This means a geodesic beginning in one
of these subspaces (i.e., whose initial tangent vector lies in
that subspace) will remain in it throughout its motion.
The subspace we are interested in is as follows.

The moduli space is a manifold over the collective
coordinates z. However, as we saw in Sec. III A these
collective coordinates are elements of the ADHM matrix Δ
and therefore are parametrized by the (bi)quaternions. That
algebra can be thought of as C × C × H. Therefore, in the
sameway that the quaternions contain an invariant complex
subspace C, the biquaternions have the subspace C × C.
We can therefore restrict from the full moduli space
where the collective coordinates are biquaternions, to a
submanifold where they lie in C × C.
This corresponds to conjugating all the moduli space

coordinates by a unit quaternion q, e.g., τ → qτq̄. This
corresponds geometrically to leaving the real quaternion
part fixed, whilst the imaginary quaternion is rotated
around an axis in S3 represented by q. Imposing invariance
under such rotations corresponds to requiring our solutions
to be fixed points under this rotation, which constrains
them to lie in a two-dimensional plane within the four
dimensional quaternions. Because q̄q ¼ 1, if we multiply
two (bi)quaternions together and apply this rotation
to each of them then the result is that the entire product
is rotated—e.g.,

Δ†Δ → qΔ†q̄qΔq̄ ¼ qΔ†Δq̄: ð43Þ

We can therefore think of all our equations and objects (for
example the scalar field and potential) as being rotated in
the same overall way. In the commutative space, for pure
instantons we can see the invariance of this subspace
automatically, since the elements of C ∈ H automatically
commute with all other elements, meaning that they form
an ideal within that group (and ideals are invariant sub-
spaces) [27]. For dyonic instantons, we must choose the

imaginary direction to be the same as the VEV in SU(2),
since otherwise the VEV will not be preserved. The result is
that the transformation maps solutions to solutions, and so
the fixed point manifold thus generated is also a geodesic
submanifold of our moduli space. In the noncommutative
case, the presence of the noncommutative parameter means
that the spacetime coordinates do not automatically com-
mute. The only complex subspace which is preserved in this
case is the complex subspace spanned by f1; σ3g, as, since
σ3 is the direction associated with the noncommutativity, it is
preserved under rotations of the space, and 1 commutes with
everything. We must then align the plane within H that we
are preserving with this direction. Hence we see, as would be
expected, the presence of a noncommutative parameter
reduces the symmetries of the theory.
Calculations on the full quaternion moduli space are

very computationally expensive, and this subspace is often
much easier to run simulations on. In addition, the fact that
elements in this subspace commute makes solving the
ADHM equations on this restricted part of the theory
much easier.

IV. THE TWO INSTANTON SOLUTION

Now we have discussed the technical background, we
present our work on the dynamics of the noncommutative
U(2) 2-instanton. First, we review the single U(2) instanton
as presented in [18]. This is necessary to test the two-
instanton solution in the appropriate limits. Next we derive
the ADHM equations for the two-instanton case, using
biquaterion coordinates. We were unable to find a solution
for the full moduli space; however, we were able to find
a solution for the geodesic submanifold discussed in
Sec. III C. This corrects the solution in [14].
After finding this solution we use it to derive the metric

and potential for the relevant moduli space, and show
that the metric and potential behave suitably in the
commutative limit and in the limit of the instantons being
far separated.

A. The single U(2) instanton

First, we state the solution for a single U(2) instanton in
noncommutative space. We will follow [18]; however, we
rederive their solution in our notation. One key difference is
that the relation between their ζ0 and our ζ is ζ0 ¼ 2ζ Other
discussions of the solution can be found in [20,19]. First,
for the single noncommutative U(2) instanton, the ADHM
data has the form

�
vR þ vIσ3
X − x0

�
; vR; vI; X; x0 ∈ H: ð44Þ

As discussed in [18], we can set X − x0 ¼ 0 by a symmetry
transformation related to the centre of mass. Then we can
solve for vI in terms of the free parameter vR.
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vI ¼ −
2ζvR
jvRj2

; vR ∈ H: ð45Þ

This gives us four ADHM coordinates, as required. Now
we have this, we can calculate the metric and potential
using the method discussed in Appendixes B and D. The
potential is equal to

V ¼ 8π2jqj2
�
ρ2 −

16ζ2

ρ2
cos2ðθÞ

�
; ð46Þ

and the metric is

ds2 ¼ 8π2
�
dv2R þ dv2I −

ðvRdvI − v̄IdvRÞ2
jvRj2 þ jvIj2

�
: ð47Þ

Here jqj is the VEV of the scalar field ϕ; vR ¼ ρ cosðθÞ
and vI ¼ ρ sinðθÞ.

B. Two U(2) instantons

We now move on to the case of two U(2) instantons. In
the commutative case, a solution was found for the real
quaternions [and with gauge group SU(2)] in [13]. A
solution for the noncommutative case was postulated in
[14]; however, this is not in fact correct, and an alternative
solution is therefore presented here. We were unable to find
a solution for the full moduli space, but we obtained a
solution for the subspace defined in Sec. III C. For the case
of two U(2) instantons, the ADHM data has the form

Δ¼a−bx; a¼
�Λ
Ω

�
¼

2
64
v w

τ σ⋆

σ −τ

3
75; b¼

2
64
0 0

1 0

0 1

3
75: ð48Þ

Note that here Ω is constrained to be Hermitian (under
complex conjugation) rather than symmetric, as in the real
ADHM construction. v, w, and σ lie in the biquaternions;
however, due to the requirement that Ω be hermitian, τ
remains a member of H. Proceeding as in Sec. III A,
Eq. (26) gives the following. First, the diagonal equations

v†vþ jτj2 þ σ†σ ¼ f−111 1þ 2ζσ3;

w†wþ jτj2 þ ðσ†σÞ⋆ ¼ f−111 1 − 2ζσ3: ð49Þ

Next, the off-diagonal constraints are given by

v†wþ τ̄σ⋆ − σ†τ ¼ f−112 1;

w†vþ ðσ†Þ⋆τ − τ̄σ ¼ f−1⋆12 1: ð50Þ

This gives a total of four equations for the complex
ADHM constraints. For completeness we list them here

2ImHðσ̄RσIÞ − ImHðw̄RwIÞ þ ImHðv̄RvIÞ ¼ 0;

ImHðw̄RwIÞ þ ImHðv̄RvIÞ ¼ −4ζσ3;

ImHðτ̄σIÞ ¼
ImHðw̄RvI þ v̄RwIÞ

2
≡ϒ

2
;

ImHðτ̄σRÞ ¼
ImHðw̄RvR þ w̄IvIÞ

2
≡ Λ

2
: ð51Þ

As a check, if we assume that our solutions to the ADHM
equations are entirely real and that ζ ¼ 0, we have the
complex imaginary parts of all our variables being 0, and
we have only the one equation which is not trivially
satisfied (just as in [13])

ImHðτ̄σRÞ ¼
ImHðw̄RvRÞ

2
: ð52Þ

It should be noted that no new degrees of freedom are
introduced compared to the real ADHM equations.
Complexifying v, w, and σ adds twelve degrees of freedom.
However, each of the three new equations affecting the
imaginary part of an expression adds three constraints,
giving a total of nine. Recall that we have a residual O(2)
symmetry on our solutions to the ADHM equation in the
quaternion case, which is promoted to a U(2) symmetry in
the biquaternion case allows us to remove a further three
degrees of freedom. This gives a total of 12 degrees of
freedom removed, canceling the number of new parameters
and showing that there are no new solutions. We have
checked this explicitly by constructing the transformation
taking a commutative ADHM solution with biquaterion
coordinates to the standard solution parametrized by
quaternions. However, this is time consuming and not
especially illuminating.
We were unable to solve these equations for the full

biquaternion valued space, but we were able to calculate
solutions restricted to the complex subspace defined
in Sec. III C. After some calculation (see Appendix A),
we get

vI ¼
−2ζvRσ3
jvRj2

;

wI ¼
−2ζwRσ3
jwRj2

;

σR ¼ τImðw̄RvR þ w̄IvIÞ
2jτj2

¼ ðjvRj2jwRj2 þ 4ζ2Þ
2jτj2jvRj2jwRj2

τImCðw̄RvRÞσ3;

σI ¼
τImCðw̄RvI þ v̄RwIÞ

2jτj2

¼ −
ζðjwRj2 þ jvRj2Þ
jτj2jvRj2jwRj2

τImCðw̄RvRσ3Þσ3: ð53Þ
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We can check our assumption about the symmetries by
checking both that our solution really does solve the
ADHM equations, and that there are no residual sym-
metries remaining. To show there are no residual sym-
metries, we consider a general U(2) transformation

Δ ↦

�
1 0

0 R†

�
ΔR; R ¼

�
a b

−b̄ ā

�
;

a; b ∈ C; jaj2 þ jbj2 ¼ 1: ð54Þ
This generates the transformation

2
64
v w

τ σ⋆

σ −τ

3
75 ↦

2
64
v0 w0

τ0 σ0⋆

σ0 −τ0

3
75 ¼

2
64

av − b̄w bvþ āw

ðjaj2 − jbj2Þτ − abσ − ā b̄ σ⋆ 2ābτ − b2σ þ ā2σ⋆

2ab̄τ þ a2σ − b̄2σ⋆ −ðjaj2 − jbj2Þτ þ abσ þ ā b̄ σ⋆

3
75: ð55Þ

Now, in Appendix A we use the residual symmetry to do
two things. First, we require that ReCðτ̄σÞ ¼ 0. This
imposes the condition that σ has no component propor-
tional to τ. Second, we require that w̄RwI ¼ v̄RvI . We need
to work out the form of the transformation in Eq. (55) so
that the new variables v0, τ0 etc., also satisfy these
conditions. If the form of the transformation is completely
determined by this, then we know we have no remaining
symmetries to consider.

To aid in this, we write

a ¼ cos χðcos θ þ i sin θÞ;
b ¼ sin χðcosϕþ i sinϕÞ: ð56Þ

The first of these conditions, ReCðτ̄0σ0Þ ¼ 0 requires that
jaj2 − jbj2 ¼ 0, and hence that both χ ¼ nπ

4
for n from 1 to

7, and also θ ¼ −ϕ. This condition on χ gives the dihedral
group of order 16 as a group of discrete rotations. The
implications of this are discussed in [13]. Now, we look at
the second part of our symmetry, which is unique to the
noncommutative case. Keeping w̄0

Rw
0
I ¼ −v̄0Rv0I requires

cosð2θÞ þ i sinð2θÞ ¼ 0. This leads to

θ ¼ nπ
2
; e:g:; θ ¼ 0;

π

2
; π;

3π

2
…: ð57Þ

Now, θ ¼ nπ
2
multiplies a, b by �1 and so does not change

the symmetries in [13]. If we set θ ¼ 0; π we multiply a and
b by �i and ∓i, respectively. This does not change τ, but
sends σ → −σ. It also interchanges the complex real and
imaginary parts of v0 and w0. Between them these two
conditions fully fix the form of the transformation in
Eq. (55) and therefore there is no residual symmetry.

The next step is to calculate the scalar field, potential,
and metric. The calculations and results are long and not
particularly illuminating, and so are given in Appendixes B
and C. Now we will go on to investigate the dynamics on
the moduli space via numerical methods.

V. TWO-INSTANTON DYNAMICS

In this section we discuss the dynamics of the instantons
on the noncommutative two instanton moduli space we

have constructed, solving for motion on the moduli
space numerically. Where possible we use the same
numerical algorithms developed in [13] to produce the
following figures, and for when the scattering problem
becomes more complex we used a new numerical
algorithm.

A. The setup

The ADHM data are in terms of v ¼ vR þ ivI, wR þ iwI ,
σ ¼ σR þ iσI and τ. We showed in Appendix A that vI, wI
and σ depend on the collective coordinates vR, wR, and τ.
As stated in Sec. III C, we are working on the subspace of
the total moduli space with the collective coordinates in
C × C rather than C × H. This means that v and w are in
C × C, whilst τ is in C (since it lies on the diagonal, and
Δ is Hermitian with respect to the complex structure). As
is standard [23], we interpret v, w as describing the
embedding of the instantons into the gauge group, with
ρ̃1 ¼ jvj and ρ̃2 ¼ jwj giving the physical size and
τ giving the position. This is shown in Fig. 1. We also

FIG. 1. The setup of the instantons. The instantons are located at

�ðx; bÞ ¼ ðω cosðχÞ;ω sinðχÞÞ. They have size ρ̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i þ 4ζ2

ρ2i

q
.
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rewrite our independent ADHM coordinates in polar
form as

vR ¼ ρ1ðcosðθ1Þ þ i sinðθ1ÞÞ;
wR ¼ ρ2ðcosðθ2Þ þ i sinðθ2ÞÞ;
τ ¼ ωðcosðχÞ þ i sinðχÞÞ: ð58Þ

It is convenient to describe the initial conditions in
cartesian coordinates b and x as indicated in Fig. 1.
The relation between the parameters b, x and ω, χ is

x ¼ ω cosðχÞ;
b ¼ ω sinðχÞ;
ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ x2

p
;

χ ¼ arctanðb=xÞ: ð59Þ

Now, using the equations

vI ¼
−2ζvRσ3
jvRj2

;

wI ¼
−2ζwRσ3
jwRj2

: ð60Þ

It follows that in the noncommutative case, the total
instanton size ρi is defined as

ρ̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2i þ

4ζ

ρ2i

s
; ð61Þ

where the index i in ρi is either 1 or 2, referring to the
magnitude of v or w respectively. Calculating the scatter-
ing with general ρ1 and ρ2, and with general gauge
embedding is very computationally expensive for the
noncommutative case. Therefore, we did a lot of the
simulations in the ‘orthogonal’ case where ρ1 ¼ ρ2 and
the relative gauge angle between the two instantons is
θ1 − θ2 ¼ π=2. There are several technical issues which
emerged. First of all, at the collision point there are two
ingoing and two outgoing paths where the instanton
positions nearly coincide; it is difficult to work out which
ingoing and outgoing paths ought to be connected. The
plotting program we used appears to choose sensibly
except in a few cases where it appears to connect the
wrong pairs, as evidenced by a discontinuity in the path
near the origin. This can be seen on several of the graphs,
e.g., in Fig. 6.
The second issue is with the parametrization of the

instanton position in terms of τ. The position of the
instanton is given by the eigenvalues of the submatrix

�
τ σ⋆

σ −τ

�
ð62Þ

of the ADHM data [13]. Recall that

σR¼
Imðw̄RvRþ w̄IvIÞ

2
¼ðjvRj2jwRj2þ4ζ2Þ

2jτj2jvRj2jwRj2
τImðw̄RvRÞ;

σI ¼
Imðw̄RvIþ v̄RwIÞ

2
¼−

ζðjwRj2þjvRj2Þ
jτj2jvRj2jwRj2

τImðw̄RvRσ3Þ:

ð63Þ

In the subspace under discussion, and in the coordinates we
are using, this becomes

σR¼
iðρ21ρ22þ4ζ2ÞðcosðχÞþ isinðχÞÞsinðθ1−θ2Þ

2ρ1ρ2ω
;

σI ¼
−iζðρ21þρ22ÞðcosðχÞþ isinðχÞÞcosðθ1−θ2Þ

ρ1ρ2ω
; ð64Þ

At large τ, the matrix is effectively diagonal, and so the
positions of the two instantons can be approximated by τ
and −τ respectively. At small values of τ, however, σ
becomes very large and therefore �τ is no longer a good
description. A better approach is to diagonalize the full
matrix which gives the parametrization �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ σ2

p
for the

position (note that this is in general a complex number),
though this can give a discontinuity at the origin due to the
presence of the square root, with both positive and negative
values. In the commutative case this is the true position of
the instanton. In the noncommutative case, the noncom-
mutativity of the underlying space means that the meaning
of, ‘true position’ is not clear; however, it still makes more
sense to use the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ σ2

p
parametrization, as the presence

of ζ in σ means that this becomes more important (as shown
in Fig. 2). We now move on to looking at the graphs.

B. Pure instantons

We start with the four-parameter orthogonal instantons.
There are two procedures we can use to investigate the
moduli space dynamics when noncommutativity is intro-
duced. The first is to start off with a particular example of
commutative scattering and see how turning on the non-
commutativity affects this. The second relies on the fact
that choosing a value for the noncommutative parameter ζ
sets an overall scale. We can therefore ‘scan’ the parameter
space for interesting behavior by varying one of the other
parameters at a time for a fixed value of ζ. It should be
noted that this scanning process is not in itself sensitive to
periodic ambiguities in the scattering angles—e.g., instan-
tons moving parallel and not interacting and instantons
reflecting directly off each other would both register a
scattering angle of zero. Therefore we must supplement this
scanning by looking at individual plots to check the
interpretation of the scattering angles we have found.
Both these methods have their uses and we will use each

in turn. With the first method, we will see how a typical
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example of scattering changes with the parameter ζ. We
will also investigate what happens to the orthogonal
scattering in the noncommutative case. We will then use
the second method to see if there is interesting systematic
behavior associated with the other ADHM parameters.
First, we take a typical example of scattering in the

commutative case, and see what happens when we add in
noncommutativity. In this case, the parameters fρ; θ; b; xg
take the values f1; 0; 0.5; 50g and their initial derivatives
are f0; 0; 0;−0.03g. The change in scattering angle as we
change the value of ζ from 0 to 5 is shown in Fig. 4. The
most obvious feature is the presence of a peak. This is a
general feature of scattering as we change ζ—see Fig. 3.
The peak is hard to resolve numerically—there seems to be
a discontinuity. To analyze this we can zoom in on that

FIG. 2. Scattering of dyonic instantons with b ¼ 0.5 and ζ ¼ 1.15. Both plots are solutions of the same initial set up, with different
choices of parametrization of the position The left plot shows the jτj parametrization, the right shows �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ σ2

p
. The radii of the

instantons are not shown. In this case the σ behavior dominates and after the interaction the position of the instantons goes as 1
jτj2. Note

that after 2,400 time steps the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ σ2

p
had left the plot region, whereas the τ case has been run for 50,000 time steps and still has not

left the plotted area. This is because the size of the instantons (hence v and w) becomes very large and so σ dominates τ in the definition
of the instanton position, so that merely plotting τ is a very inaccurate approximation to the position.

FIG. 3. Plot of scattering angle vs impact parameter for different
values of ζ. From left to right we have ζ ¼ f0.65; 1.5; 3g.

FIG. 4. Change of scattering angle (above) with noncommu-
tative parameter ζ for b ¼ 0.5, with the other parameters as
discussed in the main body of the text. On the below graph is
shown the area around the discontinuity, which seems to be a
region where the numerics have confused �θ.
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section of the graph (Fig. 6). Part of the issue seems to be a
numerical error based on the code jumping between �θ at
π=4 and π=2. This cannot completely explain the phe-
nomenon however. Looking at the graphs in Fig. 6, the
instantons appear to merge then divide again in a way that,
‘swaps over’ the ingoing and outgoing tracks. This may
indicate the presence of a bound state at the cusp, which the
numerics cannot fully resolve. Another possibility is that
there is suddenly a second scattering at right angles. It is
not clear why there should be such a sharp transition, but
perhaps it happens when the instantons become large
enough to overlap during the scattering process. This
would be a good topic for future work with more powerful
numerical methods.
In general, the effect of the noncommutativity is to

increase the repulsion between the instantons. Initially, the
instanton scattering angle seems to rotate anticlockwise,
going from glancing off each other, to moving parallel,

to crossing over. This occurs rapidly as ζ changes from
0.85 until about 0.88 (Fig. 5).
At the first apparent discontinuity, the instantons

change from moving across each others paths, to repelling
and turning back on themselves, so that their paths form a
loop near the interaction point. This change happens
somewhere between ζ ¼ 0.8818695 and ζ ¼ 0.88187.
The beginnings of the looping behavior can be seen in
the first graph in Fig. 6, however as can be seen in the
second graph there is no way of assigning the trajectories
to different instantons. This is a general feature of
instanton dynamics—you cannot distinctly separate
instantons when they get too close [23].
Some of the issue with correctly defining the angle can

be seen from the bottom two graphs in Fig. 6, where the
loops are joined in two different ways. Comparing the last
graph in 6, the last graph in Fig. 4 and the first graph in
Fig. 7 indicates that the particles seem to loop back on

FIG. 5. Scattering for two instantons with b ¼ 0.5, and, moving in each row from left to right, ζ ¼ f0.1; 0.86; 0.87; 0.88g. This
corresponds to the region to the left of and around the peak in Fig. 4 where the sizes are not shown this is in order to make the trajectories
clearer. Note that the instantons go from glancing off one another, to moving parallel, to crossing over, and then deflecting.
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themselves. This is further evidence for the fact that
discontinuities in the scattering angle graph 6 are based
on a breakdown of the notion of the instanton positions as
they begin to intersect.
After the peak (Fig. 7), the scattering angle appears to

rotate clockwise—the loop at the interaction point is,
‘unwound’. This leads to them then repelling entirely
before the angle widens to about π=4, with the instantons
repelling rather than glancing off each other as they did at
the start.
We observed this behavior for a number of different

setups, including where the instantons began too far apart
to originally interact. An overall feature of all this graphs is
that whereas in the commutative case the instantons shrink
through zero size then expand again, in the noncommuta-
tive case, as we would expect, they shrink to a finite size
before expanding since due to the noncommutativity the
zero size point cannot be reached.
Plotting the scattering angle for differing values of the

impact parameter b shows the same distinctive spike for a
particular value of b (Fig. 3). As a numerical check, if we
interchange the roles of b and ζ by plotting the scattering
angle for varying ζ whilst keeping b fixed, the spike
appears at the same ðb; ζÞ coordinates. If we plot the graphs
of scattering angle vs impact parameter for different values
of ζ we see that the overall behavior stays the same,
however the position of the peak moves to the right as ζ
increases as shown in Fig. 3. This behavior only appears
when ζ ≠ 0, and therefore seems to be unique to the
noncommutative case. This would be another topic for
further investigation.
The next case we will look at is the case where the

scattering is orthogonal in the commutative case (so b ¼ 0).
This remains consistently orthogonal in the noncommuta-
tive case—see Fig. 8. Overall the scattering keeps its
perpendicular character. We can explain this analytically
in a similar way as in the commutative case in [13]. As
discussed above, the location of the instantons is described

by a combination of τ and σ. Because σ behaves like 1=jτj,
the change in which parameter dominates happens when
jτj ¼ jσj. Recall the definitions of τ and σ in Eq. (64).
For the case of orthogonal scattering, χ ¼ 0. Therefore
τ ¼ ω, and so lies entirely on the x-axis. On the contrary,
σ is proportional to i and so lies on the y-axis. Therefore, as
the dominant parameter in the position changes between τ
and σ, the instanton motion changes from the x-axis to the
y-axis and so they scatter orthogonally.
We then used the scanning method to look for interesting

behavior amongst the other parameters. Fixing ζ fixes the
length scale of the system, therefore we investigated the
behavior of the system keeping ζ at a constant value of 1,
and looking at how the scattering angle of the instantons
depends on the other parameters. The variables for which
there was notable behavior were _ρ and _θ. These showed
similarly interesting behavior in both cases, and so we
will discuss them together. As can be seen in Fig. 9, in
both cases, a small perturbation in _ρ and _θ causes almost
orthogonal scattering, no matter what the initial scattering
angle. The difference is that there seems to be jump of the
scattering angle from positive to negative, for positive and
negative _θ, which is not present for _ρ. However, it is unclear
even from individual scattering graphs if this is a mis-
identification of incoming and outgoing particles. Even
if there is no scattering in the, ‘base’ case where both are
zero, as in Fig. 8, we still get the same orthogonal scattering
behavior; however, there is not the same jump in scattering
angle at the origin. The reason for this behavior seems to be
that changing either of these parameters from zero makes
the instanton size very large, causing a high degree of
interaction (and hence orthogonal scattering) no matter
what the initial separation is. There is a subtlety in that _ρ
is not the variation in the actual size, but only in the
parameter ρ. The variation in the actual size is give by

_̃ρ ¼
_ρρ − 4ζ2 _ρ

ρ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ 4ζ2

ρ2

q : ð65Þ

FIG. 6. Graphs of the interaction around the peak, zoomed in at the center, with ζ ¼ f0.8187; 0.89; 0.9g. The vertical lines on the
graph are the results of confusion about which parts of the trajectory belong to which instanton, and can be ignored. A more detailed
interpretation of the graphs is given in the main text.
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FIG. 8. Examples of scattering behavior for the orthogonal scattering with b ¼ 0 for ζ ¼ f0; 2g.

FIG. 7. Scattering for two instantons with b ¼ 0.5 and ζ ¼ 0.9; 1; 1.15; 2. This corresponds to the right side of the peak. Note that the
instanton angle begins to turn back on itself, until the scattering becomes a direct repulsion ζ ¼ 1.15, then opens to about π=4.
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Therefore, _ρ is a good approximation when 2ζ=ρ
is small. We have been careful to only consider such
cases We now move on to dyonic instantons. We follow the
same method as before. First we look at how changing ζ
changes a specific case of scattering. Then we use the
scanning technique to look for interesting behavior linked
to varying the ADHM parameters. In the dyonic case, the
length scale is still set by ζ, however the scale of the
time dimension is no longer arbitrary, but is set by jqj.
Therefore, we must consider the consequences of vary-
ing both.
Looking at specific scattering examples, we again see

that the noncommutative parameter initially introduces a
repulsive effect (e.g., Fig. 10). Here, the basic values of
the parameters are as in the pure case, except that we give
θ a small initial velocity of 0.1 in order to avoid numerical
issues. Any changes to these parameters will be discussed
in the captions to the graphs. As discussed in [13], dyonic
instantons oscillate along their motion, and this effect
is much more observable with the noncommutativity

turned on. Scanning along the scattering angle in both
the commutative and noncommutative case gave very
noisy graphs from which it is hard to deduce any global
behavior. However we found some interesting examples
of orbiting behavior, especially for small q relative to
the other parameters—a particularly impressive example
is Fig. 11.
We can then systematically look for interesting behavior

amongst the remaining parameters. A recurring feature was
the presence of stable combinations of ζ and q for which
there was a clear pattern of behavior with no observable
pattern outside of these regions.
We started by looking at varying θ, but this did not yield

any interesting systematic behavior—only random noise.
We then looked at ρ—here there seemed to be a window
where the behavior matched the commutative case, e.g.,
with ζ ¼ 0.1 and q ¼ 0.1, as shown in Fig. 12. Exploring
around that point showed that the behavior persisted with
roughly ζ < 1 and with q > 0.08.

FIG. 9. (left) Graph showing variation of scattering angle vs starting velocity gauge angle _θ for b ¼ 0.5 and ζ ¼ 1. Note the jump in
scattering angle between positive and negative _θ. (right) Graph showing variation of scattering angle vs _ρ for b ¼ 0.5 and ζ ¼ 0.1. Note
that here there is no jump in the scattering angle, unlike in the case of _θ.

FIG. 10. Plot of dyonic-instanton scattering for b ¼ −1, jqj ¼ 0.1, ζ ¼ 0 (above), ζ ¼ 1 (below). Note the visible oscillations on the
right-hand graph.
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We then moved on to looking at b; here, there was
similar behavior. At low ζ there did not seem to be any
overall pattern, however increasing ζ led to graphs having a
linear pattern, as in Fig. 12. This seems to be two examples
of the same phenomenon, with very different scaling
caused by the differences in the relative values of ζ. The
magnitude of q did not seem to have a major effect on
whether any linear pattern in the behavior was observed
past a certain point, but continuing to make ζ larger caused
the nonlinear behavior to return. Finally, we did not find
any discernible patterns for _θ or _ρ either. This difference as
compared to the pure case is probably because the potential
prevents the instanton size from growing large in the dyonic
case, and therefore the transition to orthogonal scattering
cannot occur.

C. The six-parameter space

We now move on to look at the full six-parameter space,
where the instantons are free to have different sizes and to
vary in their gauge angle. The additional parameters add
greatly to the complexity of the numerics. Due to this it is
no longer possible to use the numerical algorithm from [13]
as we had in the four-parameter case and so we had to use a
new algorithm to produce the figures in this section.
There are two parameters to examine here. These are

the relative gauge angle ϕ and the relative sizes of the
instantons. Unless otherwise stated, the initial conditions
for fρ1; ρ2; θ; xg take the values f1; 1; 0; 50g, and the initial
derivatives of all parameters are zero, except _x ¼ −0.03.
In the noncommutative case it is tricky to systematically
explore the latter as the instanton sizes are nonlinear
functions of ζ and the ρi. Therefore we chose to keep ζ
fixed to set the overall length scale, and to vary the impact
parameter rather than the instanton size, looking at cases
where the separation was much smaller than, larger than
and of the same order as the sizes of the instantons. Initially
we kept the instantons the same size. We then checked
the behavior in three cases ρ1 < b < ρ2, b < ρ1 < ρ2, and
ρ1 < ρ2 < b.
In the commutative case, varying the gauge angle

produces a clear sinusoidal variation (Fig. 13). This pattern
held for different values of the impact parameter, however
when the impact parameter was small compared to the
instanton size, the variation takes on more of a, ‘square’
shape (Fig. 13). As can be seen both from these two figures
and from the scattering angles in Fig. 16, at ϕ ¼ nπ, where
the instantons are parallel in the gauge group, the inter-
action between the instantons disappears and they just
move past one another. Conversely, the instantons interact
most strongly at ϕ ¼ nπ þ π=2, where they are orthogonal
in the gauge group. Changing the relative sizes of the
instantons did not seem to affect this sinusoidal behavior,
but it did change the strength of the interaction, with the
scattering angle decreasing when the instantons were

FIG. 11. Graph of scattering with orbiting behavior with
ζ ¼ 0.5, b ¼ 0.5, q ¼ 0.00438.

FIG. 12. Left: Scattering angle vs parameter ρ for ζ ¼ q ¼ 0.1. As discussed in the text, we expect ρ to be a good approximation to the
true initial size after the peak. Right: Scattering angle vs impact parameter for ζ ¼ q ¼ 0.5. The case b ¼ 0 is discussed in Fig. 8 and not
included in this graph.
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different sizes, with smaller sizes making the scattering
angle smaller (Fig. 14).
The behavior in the noncommutative case is not so

simple. The outline of the sinusoidal pattern is still present,
but it is significantly disrupted, as in Fig. 15. Increasing the
impact parameter somewhat restores the behavior (Fig. 15).
There is therefore much less variation in the scattering
angle for the noncommutative case. The instantons also no
longer stop interacting when they are parallel in the gauge
group, instead oscillating between minimum and maximum
scattering angles, as in Fig. 15. Making one of the
instantons smaller than the other and the impact parameter
did not seem to have too much of an effect; however,
making one larger than the impact parameter further
disrupted the sinusoidal pattern, as in Fig. 17.

D. Conclusions

We end this section by reviewing the main results. We
looked at both the full six-parameter space, and also a four-
parameter subspace where the instantons were orthogonally
embedded in the gauge group. This was necessary to
analyze the dyonic case. Overall, increasing the noncom-
mutative parameter ζ increases the repulsion between the

instantons. The form this takes is not straightforward, and
in the pure instanton case involves a peak with strange
behavior which requires a future, more detailed analysis
with more sophisticated simulations. However, in general,
even if the instantons begin by not interacting, they move
from glancing off each other, to reflecting entirely as the
parameter ζ increases.
We also found that orthogonal scatteringwas present in the

noncommutative case as well as the commutative case.
Systematically looking at the other parameters, we saw that,
as expected, increasing ρ strengthens the repulsive effect of
the scattering, and increasing the separation b decreases it.
Further interesting behavior was observed seeing how the
scattering changed when the quantities _ρ and _θ were varied.
For any nonzero value of these initial velocities, the scattering
rapidly became almost orthogonal. This seems to be because
making these parameters nonzero causes a rapid increase in
the instanton size, and hence a very strong interaction.
This behavior is not found in the dyonic case; probably

because the presence of the potential suppresses the
instanton size. In the dyonic case there was the additional
feature of orbiting behavior, some of a high winding
number and great complexity.

FIG. 14. Graph showing variation of scattering with gauge
angle ϕ, where ζ ¼ 0 and b ¼ 0.5. In both graphs ρ1 ¼ 1. In the
left graph, ρ2 ¼ 5, and in the right graph ρ2 ¼ 0.1. Note that the
scattering angle is much smaller in this case.

FIG. 13. Left: Graph of varying scattering angle ϕ with ζ ¼ 0,
ρ1 ¼ ρ2 ¼ 1 and b ¼ 0.5. Right: Graph of varying scattering
angle ϕ with ζ ¼ 0, ρ1 ¼ ρ2 ¼ 1 and b ¼ 0.1.
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Finally, we were able to use the six-parameter pure
instanton case to analyze changing the gauge embedding.
In general we found that the scattering oscillated with the
gauge angle, but that this was suppressed as ζ was increased.

VI. THREE INSTANTONS

We now move on to the case of three instantons in SU(2)
Yang-Mills. Here we only consider a commutative back-
ground, not a noncommutative one. We also use the usual
version of the commutative ADHM construction with the
quaternions rather than the biquaternion construction out-
lined above. As before, we begin by solving the ADHM
constraints. We then calculate the scalar field for the dyonic
case and use this to calculate the moduli space potential.
Finally, we calculate the moduli space metric. The results in
this section are original. There is, however, some related
work in [28] and its related papers. There, some three

FIG. 16. Graph showing scattering examples from Fig. 15, with ϕ ¼ π left and ϕ ¼ 3π=2 right. Note that the scales are different on the
two graphs, and that the behavior is extremely different.

FIG. 15. Left: Graph showing variation of scattering angle ϕ
with ζ ¼ 1, ρ1 ¼ ρ2 ¼ 1, and b ¼ 0.5. The true instanton size is
therefore

ffiffiffi
2

p
, and so is roughly comparable to the separation. The

splitting of the left peak appears to be a numerical error. Right:
Graph showing variation of scattering angle ϕ with ζ ¼ 1,
ρ1 ¼ ρ2 ¼ 1, and b ¼ 4. The true instanton size is thereforeffiffiffi
2

p
, and so is much smaller than the separation. Note that the

sinusoidal form is much more preserved, but now oscillates
around zero rather than away from it.

FIG. 17. Graph showing varying gauge angle ϕ with ζ ¼ 1,
ρ1 ¼ 1, ρ2 ¼ 5, and b ¼ 0.5. The true instanton sizes are

ffiffiffi
2

p
and

just over 25 respectively.
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monopole solutions are found, using two methods involv-
ing writing the solution as a reduction of the ADHM
equations. The first method is to use the Jackiw- Nohl-
Rebbi (JNR) ansatz. This corresponds to taking Ω to be
diagonal in our notation. The second is to calculate axial
monopoles using ADHM data which has axial symmetry
imposed on it via the Manton- Sutcliffe method. In our
notation, there is a nondiagonal but specific form for Ω,
and the instanton size v is chosen to be zero. These
specific symmetries do not seem to match the ones we
have chosen, and hence it not immediately clear how the
results in that work relate to those presented here, but it
would be interesting and worthwhile to pursue this in
future.
Since we are in the commutative case, we need to solve

the equation Δ†Δ ¼ 0. For three instantons in SU(2) Yang-
Mills, the ADHM data Δ is

�Λ
Ω

�
¼

2
6664

u v w

τ1 σ1 σ2

σ1 τ2 σ3

σ2 σ3 τ3

3
7775; ð66Þ

where the entries of Δ all lie in H. With Δ as given above,
we have three equations, one for each basis vector of oð3Þ.
These are

ImHðūvþ ðτ̄1 − τ̄2Þσ1 þ σ̄2σ3Þ ¼ 0;

ImHðūwþ ðτ̄1 − τ̄3Þσ2 þ σ̄1σ3Þ ¼ 0;

ImHðv̄wþ ðτ̄2 − τ̄3Þσ3 þ σ̄1σ2Þ ¼ 0: ð67Þ

Note that these are now nonlinear in the ADHM data.
Again, we were unable to find a solution on the full
quaternion moduli space; however, if we restrict to the
complex subspace as in the noncommutative two-instanton
case, and use the three residual symmetries to set the real
parts of the σi to zero, the terms in ImðσiσjÞ vanish, and we
can solve as

σ1 ¼
τ1 − τ2
jτ1 − τ2j2

ðα − ImCðūvÞÞ;

σ2 ¼
τ1 − τ3
jτ1 − τ3j2

ðβ − ImCðūwÞÞ;

σ1 ¼
τ2 − τ3
jτ2 − τ3j2

ðγ − ImCðv̄wÞÞ: ð68Þ

For constants α; β; γ ∈ R, these are then constrained by the
condition ReCðσiÞ ¼ 0 to be

α ¼ −
ImCðτ1 − τ2ÞImCðūvÞ

Reðτ1 − τ2Þ
;

β ¼ −
ImCðτ1 − τ3ÞImCðūwÞ

Reðτ1 − τ3Þ
;

γ ¼ −
ImCðτ2 − τ3ÞImCðv̄wÞ

Reðτ2 − τ3Þ
: ð69Þ

The minus sign comes from the fact that each ImC comes
with a σ3, which multiply together to give −1. The above
equations give a solution for the complex subspace. As with
the two-instanton case, the solutions for the scalar field,
metric and potential are long and are given in Appendix F.

A. Three-instanton dynamics

The next step is to analyze the dynamics numerically, as
was done in the case of two instantons. Unfortunately, we
were unable to generate enough simulations to carry out a
full analysis; however, we were able to observe some
particular behaviors by plotting the scalar field profiles.
When the instantons are far separated, this gives three
peaks at the positions of each instanton, with the position
defined as τi (Fig. 18). This confirms the interpretation of
that parameter. If we move one instanton far away from the
others (off to the right of the plot, in fact) then we see two
peaks which look very similar to the graphs for two
commutative instantons found in [13]. As the splitting in
the right peak increases the closer the third instanton gets.
In the graph in question, the two instantons shown are at
ð�1; 0Þ and the third is at (0, 40). Finally, we were able to
approximate some aspects of the scattering by plotting the

FIG. 18. (left) Plot of the scalar field profile for three separated instantons. (right) Plot of the scalar field profile for two instatons, with
the third far separated off to the right.
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topological charge density (Fig. 19). Here, if one instanton
is kept, ‘stationary’ at the origin, and the other instantons
are plotted at successively closer values of τi, there appears
to be the kind of right-angled scattering that is a familiar
part of soliton dynamics. The fact that the instantons are
moving away at very small values of τi is a function of the
fact that the position depends both upon τi and σi, as in the
two instanton case.

VII. CONCLUSION

We have presented a new notation and method for
working with noncommutative ADHM instantons, by
writing them explicitly in terms of biquaternion compo-
nents. After deriving the form of the ADHM equation, as
well as the moduli space and potential, for general SU(2)
instanton number in this notation, we attempted to solve
them for the two-instanton case.
First, we rederived the commutative solution which was

found in [13], but using biquaternions rather than quatern-
ions. We were unable to find a solution on the full subspace
but we were able to find one for the subspace of the moduli
space spanned by the C × C subalgebra of C × H. We used
this solution to calculate the metric and potential for that
subspace, and checked its behaviors in various limits.

Once we had these two solutions, we investigated the
dynamics on the noncommutative moduli space numeri-
cally. In general, increasing the value of the noncommu-
tative parameter ζ increased the repulsion between the
instantons. However, the addition of the potential sup-
pressed the repulsive force, particularly for large ζ.
Finally, we looked at the case of three Uð2Þ instantons.

Again, we were able to find a solution on the submanifold
of the moduli space spanned by the C subgroup of H. This
solution once more allowed us to calculate the metric
and potential on that submanifold, and to numerically
graph the scalar field profiles. These solutions were very
challenging numerically—however, the limited results
we got indicated the presence of right-angled scattering,
and the appropriate behavior of the solution in various
limits. In terms of further work, the most obvious thing to
do is to try and improve the efficiency of the numerical
evaluations so that we can explore the dyonic six-
parameter case for the noncommutative two instantons,
and to access more of the three particle scattering in the
three-instanton case. Analytically, we could try and
extend our ADHM solutions from the subspaces of the
moduli spaces to the full moduli spaces.
This would allow us to use the moduli space to calculate

the number of BPS states in this topological sector, by

FIG. 19. Plot of the topological charge density with one instanton at the origin and the other two at decreasing values of τi. Note the
apparent right angled scattering.
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calculating a specific Witten index [29] on the moduli space.
As argued in [29] the index is invariant under changes of the
parameters of a theory, provided that these changes can be
expressed as a conjugation of the supersymmetric variables
in the theory, as such a conjugation leaves the supersym-
metry properties of a theory unchanged. The moduli space
potential is one of these parameters.
In [30] it is argued that the Dirac operator on the moduli

space goes as expð−qÞ, where q is the absolute value of the
moduli space potential, outside of small regions around
the zeros of that potential. It is shown that rescaling the
potential does not change the Witten index, so the number
of BPS states remains the same in the limit that q → ∞. In
this limit the moduli space dynamics are exponentially
suppressed outside of the small regions around the zeros.
On the commutative moduli space this procedure cannot be
carried out due to the presence of singularities, but because
these singularities are removed by the multiplicity, in this
case these regions should be describable by supersymmet-
ric harmonic oscillators, as was found to be the case in [18]
for single U(2) instantons. Calculating the Witten index,
and hence the number of BPS states, would then be fairly
straightforward. Therefore a key goal for future research
would be to find the full moduli space and take the potential
to infinity. This would suppress the dynamics everywhere
except from regions of a small radius around the zeros of
the potential, where it would be described by a super-
symmetric quantum mechanics, for which we could cal-
culate the Witten index, and hence the partition function.
Once we have calculated this function, we can compare it to
the result directly calculated from the field theory in [31].
This would provide a check for the k ¼ 2 case of the
hypothesis mentioned in the introduction, where the (2,0)
theory describing the interaction of multiple M5 branes is
the strong coupling completion of 5D super Yang-Mills. If
this is true, then the instantons of topological charge k
should match with states of Kaluza-Klein momentum k
around the circle of compactification, as explained in [32].
The k ¼ 2 section of the partition function for Kaluza-
Klein states was calculated in [31], and so comparing this to
the partition function on the instanton moduli space would
be an important next step in verifying this conjecture.
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APPENDIX A: SOLVING THE ADHM
EQUATIONS

As stated in Eq. (51) the noncommutative ADHM
equations are

2ImHðσ̄RσIÞ − ImHðw̄RwIÞImHðv̄RvIÞ ¼ 0;

ImHðw̄RwIÞ þ ImHðv̄RvIÞ ¼ −4ζσ3;

ImHðτ̄σIÞ ¼
ImHðw̄RvI þ v̄RwIÞ

2
≡ϒ

2
;

ImHðτ̄σRÞ ¼
ImHðw̄RvR þ w̄IvIÞ

2
≡ Λ

2
; ðA1Þ

where σ3 is the quaternion basis element�
i 0

0 −i

�
: ðA2Þ

We can solve the third and fourth equations as

σR ¼ τ

jτj2
�
αþ Λ

2

�
ðA3Þ

and

σI ¼
τ

jτj2
�
γ þϒ

2

�
: ðA4Þ

We can use the second equation to deduce that

w̄RwI ¼ β − v̄RvI − 4iζσ3; ðA5Þ
and so

wI ¼
wRβ − wRv̄RvI − 4iζwRσ3

jwRj2
: ðA6Þ

We want 12 independent real parameters, or three inde-
pendent quaternion ones. We therefore aimed to solve for
the other parameters in terms of vR, wR, and τ. We were
unable to find a solution to these equations for the full
biquaterion moduli space. However, we were able to find a
solution on a complex valued geodesic submanifold. This
subspace comes from restricting the quaternions to the
subspace consisting of elements z ∈ C written as xþ yσ3,
for x; y ∈ R and σ3 is given by

σ3 ¼
�
i 0

0 −i
�
: ðA7Þ

Note that σ23 ¼ −1H, and therefore σ3 can play the role of
the imaginary unit. We start with the second ADHM
equation, now for complex variables

ImCðv̄RvIÞ þ ImCðw̄RwIÞ ¼ −4ζσ3: ðA8Þ
Recall that we are using the notation ImH to mean the
imaginary quaternion part of an element of H; e.g., for
q ¼ q0 þ q ∈ H,

ImHðqÞ ¼ q: ðA9Þ
On the other hand, ImC takes the imaginary component of
an element of C. If z ∈ C; z ¼ aþ ib
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ImCðzÞ ¼ b: ðA10Þ
With these definitions in mind, we can solve this for wI and
vI in terms of the other variables by finding a particular
solution, then by adding the null space, found by solving

ImCðv̄RvIÞ þ ImCðw̄RwIÞ ¼ 0: ðA11Þ

A particular solution is given by

vIp ¼ −2ζvRσ3
jvRj2

; wIp ¼ −2ζwRσ3
jwRj2

: ðA12Þ

We already know the solution to the null equation; it is

ṽI ¼
vR
jvRj2

ðβ − w̄Rw̃IÞ: ðA13Þ

For arbitrary real β and arbitrary quaternion w̃I. Therefore,
we have the general solution

vI ¼
−2ζvRσ3
jvRj2

þ vR
jvRj2

ðβ − w̄Rw̃IÞ;

wI ¼
−2ζwRσ3
jwRj2

þ w̃I: ðA14Þ

To complete this general solution we need to solve for w̃I.
This is done by solving the first ADHM equation

ImCðσ̄RσIÞ ¼ ImCðv̄RvIÞ − ImCðw̄RwIÞ: ðA15Þ

We can use two of the symmetries in Eq. (54) to set
Reðτ̄σÞ ¼ 0, by analogy to [13]. This corresponds to
removing any component proportional to τ from σ. If
we do this, then the equation becomes

−
ImCðΛϒÞ

jτj2 ¼ ImCðv̄RvIÞ − ImCðw̄RwIÞ: ðA16Þ

If we now restrict to the complex plane spanned by 1 and σ3
the left-hand side becomes zero, since Λ and ϒ are both
proportional to σ3, and hence their product is real and so
ImCðΛϒÞ ¼ 0. Putting the solutions in (A14) into the right-
hand side we get

ImCðw̄Rw̃IÞ ¼ 0: ðA17Þ

This leads to the solution

vI ¼
−2ζvRσ3
jvRj2

þ BvR;

wI ¼
−2ζwRσ3
jwRj2

þ AwR; ðA18Þ

for A; B ∈ R. We can then use the remaining two sym-
metries to set A and B above to zero—see the discussion

below Eq. (54). Then we get the full solution for the
complex subspace

vI ¼
−2ζvRσ3
jvRj2

;

wI ¼
−2ζwRσ3
jwRj2

;

σR ¼ τImðw̄RvR þ w̄IvIÞ
2jτj2

¼ ðjvRj2jwRj2 þ 4ζ2Þ
2jτj2jvRj2jwRj2

τImCðw̄RvRÞσ3;

σI ¼
τImCðw̄RvI þ v̄RwIÞ

2jτj2

¼ −
ζðjwRj2 þ jvRj2Þ
jτj2jvRj2jwRj2

τImCðw̄RvRσ3Þσ3: ðA19Þ

APPENDIX B: SOLVING THE SCALAR FIELD

The method outlined here is mainly based on Appendix 1
in [13], generalized to the case of arbitrary noncommutative
instantons. That method is in turn based on [24]. It begins
with the ansatz

ϕ ¼ iU†AU; A ¼
�
q 0

0 P

�
; ðB1Þ

where ϕ is the scalar field we are trying to calculate and U
is an element of the null space of the ADHM Matrix Δ.
Further, q ∈ uðNÞ, where N is the degree of the instaton
gauge group, and P ∈ uðkÞ, where k is the instanton
number. In fact, iq is the VEV of the scalar field. For
the real ADHM construction, we can use oðkÞ rather than
uðkÞ. In the biquaternion case in theory there is an addi-
tional uð1Þ, promoting the symmetry group to uð2Þ. In what
follows we use our freedom to choose the VEV so that it
lies in the suð2Þ part of this overall uð2Þ.
Note that the equation for ϕ has the form of a rotation of

A by U. We can think of this as follows. The matrix A
belongs in uðNÞ × uðkÞ. We can imagine it being defined
on a uðNÞ × uðkÞ bundle over R4. However we know the
ADHM construction breaks the ‘gauge group’ uðNÞ × uðkÞ
down to uðNÞ. We can therefore see the rotation as rotating
A into the uðNÞ subspace picked out by the ADHM
constraints. This interpretation can be confirmed by the
straightforward observation that U†ð1 −UU†ÞAU ¼ 0. A
long and algebraic justification for the ansatz is given in
[24]. Regardless of the justification for the ansatz, once we
have it, the problem of solving for ϕ becomes the problem
of solving for P above. It is shown in [24] that the equation
of motion for ϕ

D2ϕ ¼ 0 ðB2Þ
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expands as

D2ϕ¼−4iU†fbfb†;AgUþ4iU†bfTr2ðΔ†AΔÞfb†U¼0:

ðB3Þ

Here, Tr2 refers to the quaternion trace on each element of a
matrix, not to the trace of the matrix itself, which is written
Tr. Hence, applied to a (complex/real) quaternion valued
matrix, Tr2 will give a complex/real valued matrix, whereas
Tr will give a (complex/real) quaternion.

WithAwritten as above, the first term is −4iU†ff; pgU.
For the second term, we recall that Δ can be written as

Δ ¼
� Λ
Ω − 1x

�
: ðB4Þ

Writing Ω0 ¼ Ω − 1x, recalling that Ω and Ω0 are
Hermitian, and using the ADHM constraint Δ†Δ ¼ Λ†Λþ
Ω0†Ω0 ¼ f−1 we can see

Tr2ðΔ†AΔÞ ¼ Tr2ðΛ†qΛÞ þ Tr2ðΩ0†AΩ0Þ

¼ Tr2ðΛ†qΛÞ þ 1

2
Tr2ð½Ω0†; P�Ω0 − ω0†½Ω0; P� þ fP;Ω0†Ω0gÞ

¼ Tr2ðΛ†qΛÞ þ 1

2
ð½Ω0†; P�Ω0 −Ω0†½Ω0; P� þ fP; f−1g − fP;Λ†ΛgÞ

¼ Tr2ðΛ†qΛÞ þ 1

2
ð2Ω0†PΩ0 − fΩ0†Ω0; Pg þ fP; f−1g − fP;Λ†ΛgÞ: ðB5Þ

Now, note that x in the above expression is always the coefficient of 1. Therefore, the terms involving x in the above
expression cancel, and we can everywhere replace Ω0 by Ω [this is most easily seen from the third line of Eq. (B5)].
We can use these to rewrite (B3) as

D2ϕ ¼ −4i
�
U†

�
f; P −

1

2
Tr2ðPÞ

�
U þ U†bf

�
Tr2ðΛ†qΛÞ þ 1

2
ð2Ω0†PΩ0 − fΩ0†Ω0; Pg − fP;Λ†ΛgÞ

��
: ðB6Þ

Since P has complex components, not quaternion valued
ones, Tr2ðPÞ ¼ P and the first term vanishes. Hence the
equation of motion D2ϕ ¼ 0 is equivalent to

Tr2ðΛ†qΛÞ þ 1

2
ð2Ω0†PΩ0 − fΩ0†Ω0; Pg − fP;Λ†ΛgÞ ¼ 0:

ðB7Þ
This gives one equation for each component of P, allowing
us to solve for P and hence, by extension, for ϕ.

APPENDIX C: CONSTRUCTING THE MODULI
SPACE METRIC AND POTENTIAL

This section is based on Appendix 2 in [13], which is
itself based on the method of [33] for calculating the metric
determinant. This technique was adapted in [6] for the
moduli space metric of two instantons, which they calcu-
lated to order jτj−2. In [13] this is extended to the full metric
for two commutative U(2) instantons. We present the
argument for arbitrary gauge group and topological charge.
As in Sec. III B, the metric on the moduli space is

defined as

grs ¼
Z

d4xTr⋆ðδrAiδsAiÞ; ðC1Þ

where

δrAi ¼ ∂rAi −Diϵr ðC2Þ

and

Tr⋆ðqÞ ¼ Tr2ðTrðqÞÞ: ðC3Þ

There is one mode for each of the 8k moduli space
coordinates, labeled here by the indices r and s. The index
i refers to spacetime coordinates. Recall these zero modes
are orthogonal to gauge transformations by definition

DiðδrAiÞ ¼ 0: ðC4Þ

We can use this fact to find an explicit expression for the
metric. First, we need an expression for ∂rAijz¼z0 in terms
of the ADHM data. To do this, we recall that Ai ¼ U†

∂iU,
and use the identityU ¼ PU withU the projection operator
1 − ΔfΔ† to derive

∂rU ¼ −Δf∂rΔ†U þ P∂rU: ðC5Þ

Using this result, the definition Ai ¼ U†
∂iU, and the

product rule allows us to get the necessary result
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∂rAijz¼z0 ¼ −iU†
∂rΔfēib†U þ iU†beif∂rΔ†U

þDiðiU†
∂rUÞ; ðC6Þ

around an arbitrary point of the moduli space z0. The zero
mode is then this expression with the gauge dependent
part removed. The third term above is explicitly a gauge
transformation, however we also need to ensure that there is
no gauge part implicit in the first two terms. To do this, we
use the residual transformations described in Eq. (54) to
transform the ADHM data as

Δ→qΔR; U→QU; Qðz0Þ¼1; Rðz0Þ¼1: ðC7Þ

It can be seen that this transformation leaves Ai invariant,
and that

∂rAijz¼z0 ¼ −iU†Crfēib†U þ iU†beifC
†
rU

þDðiU†
∂rðQ†UÞÞ ðC8Þ

with

Cr ¼ ∂rΔþ ∂rQΔþ Δ∂rR: ðC9Þ

It turns out we can choose Cr so that the first two terms of
δrAi have no gauge part—i.e., they are a zero mode. To do
so we must prove the following:
Lemma C.1. If we choose Cr to be independent of x

with

Δ†Cr ¼ ðΔ†CrÞT⋆ ðC10Þ

the expression

∂rAi ¼ −iU†Crfēib†U þ iU†beifC
†
rU ðC11Þ

will be a zero mode.
To do this, we first note that the condition (C10) is

equivalent to the two conditions

a†Cr ¼ ða†CrÞT⋆; b†Cr ¼ ðb†CrÞT⋆; ðC12Þ

and then consider the expression (forming part of δrAi
above)

ai ≔ U†bfei: ðC13Þ

We can then calculate

Diaj ¼ ∂iaj − iAiaj

¼ U†eibfΔ†bfej þU†bfðēib†Δþ Δ†beiÞ: ðC14Þ

We then write Δ†b in terms of its quaternion components
as ckēk, where the ck are complex valued matrices. It is
important to note that since Δ†b ¼ Ω, the bottom 2k × 2k

part of the ADHM data, the ck are hermitian, since Ω is
Hermitian by construction. Keeping this fact in mind, we
can write (C14) as

Diaj ¼ U†bfckfðeiēkej þ ēiekej þ ēkeiejÞ: ðC15Þ

Now, we use the identity ēiej ¼ −ējei þ 2δij to get

Diaj ¼ −U†bfckðeiējek − 2δjkei − 2δikejÞ: ðC16Þ

Then we can see aj satisfies both the linear self-dual field
equation

D½iaj� ¼
1

2
ϵijklakal ðC17Þ

and the zero mode condition Diai ¼ 0. What does this say
about the full mode δrAi? We calculate

DiðδrAjÞ ¼ −iDiU†CrDia
†
j þ iajC

†
rDiU − iU†CrðDiajÞ†

þ iDiajC
†
rU

¼ −iU†bfðeiΔ†Crēj − ejC
†
rΔēiÞfb†U

− iU†CrDia
†
j þ iDiajC

†
rU

− iU†CrDia
†
j þ iDiajC

†
rU: ðC18Þ

Here we have used the fact that

DiU† − iAiU† ¼ U†eibfΔ†: ðC19Þ

The discussion above of Diaj shows that the last two terms
of (C18) are a zero mode. We must therefore check the first
two terms. The only parts of these which depend on the
moduli space coordinates are

eiΔ†Crēj − ejC
†
rΔēi ≡ Kij: ðC20Þ

So the first two terms being a zero mode are equivalent to

K½ij� ¼
1

2
ϵijklKkl; Kii ¼ 0 ðC21Þ

and these are satisfied iff Δ†Cr ¼ ðΔ†CrÞT⋆. This proves
the above lemma. To use this result, we must see what this
condition says about the form of Cr. First we define

Cr ¼ ∂rΔþ ∂rQΔþ Δ∂rR; ðC22Þ

Q ¼
�
q 0

0 R−1

�
; ðC23Þ

Note that we can write Cr as

∂raþ ∂rQaþ a∂rRþ ð∂rbþ ∂rQbþ b∂rRÞx: ðC24Þ
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Next we set q ¼ 1. This means it does not contribute to the
variation of Q which means

∂rQ ¼ −b∂rRb†: ðC25Þ

(The conjugation by b is necessary to give ∂rQ the correct
dimensions). Then we see that the part of Cr proportional to
x is zero, since ∂rb is zero as b is a constant matrix and the
other two terms cancel. This leaves us with

Cr ¼ ∂raþ ∂rQaþ a∂rR: ðC26Þ

With this form, and the fact that RT⋆ ¼ −R, since R is
antiunitary, it is straightforward that b†Cr ¼ ðb†CrÞT⋆.
The second condition, a†Cr ¼ ða†CrÞT⋆ is satisfied if
and only if

a†∂ra − ða†∂raÞT⋆ − a†b∂rRb†a − ða†b∂rRb†aÞT⋆
þ a†a∂rR − ða†b∂rRb†aÞT⋆ ¼ 0: ðC27Þ

We have therefore reduced the problem of finding the zero
modes to solving the above equation.
The metric is then derived from the inner product of

two zero modes. To find this, we use the following result
from [33]

Tr⋆ðδrAiδsAiÞ ¼ −
1

2
∂
2Tr⋆ðC†

rPCsf þ fC†
rCsÞ; ðC28Þ

where P ¼ 1 − ΔfΔ†. We can then use Stoke’s theorem to
find the metric

grs¼−
1

2

Z
M
∂
2Tr⋆ðC†

rPCsfþfC†
rCsÞ

¼
Z
∂M

Tr⋆ðC†
rP∞CsþC†

rCsÞij
¼2π2Tr⋆ðC†

rP∞CsþC†
rCsÞij

¼2π2Tr⋆ð∂ra†ð1þP∞Þ∂sa−ða†∂ra−ða†∂raÞTÞij∂sRÞ:
ðC29Þ

Here

P∞ ¼ limx→∞P ¼ 1nþ2k×nþ2k − bb†

¼
�
1n=2×n=2 0

0 0k×k

�
ðC30Þ

remembering that

ΔðxÞ ¼
� Λ
Ωþ ρ̃1k×k

�
− x

�
0

1k×k

�
: ðC31Þ

(Note that the term in ρ̃ gives the center of mass, and is
usually absorbed into the x component by a suitable choice
of coordinates, but it is there, and therefore we consider it
here—albeit briefly). The first term above then gives

2π2Tr⋆ðda†ð1þP∞ÞdaÞ¼2π2Trð2Λ†ΛþΩ†Ωþ2dρ̃†dρ̃Þ:
ðC32Þ

The dρ̃†dρ̃ directions are flat and decouple from the rest of
the metric and so we ignore them (They correspond to the
position of the center of mass). This gives the first part of
the metric

ds21 ¼ 2π2Tr⋆ðda†ð1þ P∞ÞdaÞ ¼ 2π2Tr⋆ð2Λ†Λþ Ω†ΩÞ:
ðC33Þ

Now for the second part of the metric

ds22 ¼ 2π2Tr⋆ðða†da − ða†daÞT⋆ÞdRÞ: ðC34Þ

To find an explicit expression we write dR in terms of its
components considered as a UðkÞ matrix, and solve for
them using (C27). We get one equation for each compo-
nent, and solving them gives dR in terms of the ADHM
parameters. We will see this explicitly in the specific cases
below. Once we have done this, we can put all these parts
together to get the full metric

ds2 ¼ ds21 þ ds22 ¼ 2π2ðTr⋆ðda†ð1þ P∞ÞdaÞ
¼ 2π2ðTr⋆ð2dΛ†dΛþ dΩ†dΩÞ
þ Tr⋆ðða†da − ða†daÞT⋆ÞdRÞÞ; ðC35Þ

APPENDIX D: CONSTRUCTING
THE POTENTIAL

We can use the metric to calculate the potential for
the dyonic-instanton moduli space. This also makes use of
the solution for the scalar field in Appendix B. Recall the
definition of the potential

V ¼
Z

d4xTrðDiϕDiϕÞ: ðD1Þ

Integrating by parts and using the fact that D2ϕ ¼ 0 via its
equation of motion we get

V ¼ limR→∞

Z
jxj¼R

dS3x̂iTrðϕDiϕÞ: ðD2Þ

Using the facts that ϕ ¼ U†AU, Di ¼ ∂i − iAi and
Ai ¼ U†

∂iU, a moderately long calculation [13] gives

Diϕ ¼ iU†eibfΔ†AU þ iU†AΔfēib†U: ðD3Þ
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To fully evaluate this integral, we need an expression forU.
In general this would be rather complicated; however,
we only need the value of U on the boundary, in the limit
R → ∞. For a general ADHM matrix2

666666664

v1 v2 v3 … vk
τ1 − x σ⋆1 σ⋆2 … σ⋆k−1
σ1 τ2 − x σ⋆k … σ⋆2k−3
..
. . .

. ..
.

σk−1 σ2k−3 σ3k−4 … τk − x

3
777777775
; ðD4Þ

the condition Δ†U ¼ 0 is solved to leading order in jxj by

U1 ↦ 1; Ui ↦
x
jxj2 v

†
i−1; i ≠ 1: ðD5Þ

We might worry here about the issue discussed in
Sec. III A, where U may or may not satisfy the complete-
ness relation (35). In general we would need to worry about
this, however if we expand in powers of ζ, any terms
including a correction of order ζn would, by dimensional
analysis, also have to go as jxj−2n, and are therefore
neglected in this limit. We also need these two results
for the behavior of other quantities in this limit

Δ ↦

� Λ
−x1k

�
;

f ↦
1

jxj2 1k: ðD6Þ

We can use these to expand Eq. (D3), and then multiplying
by x̂i we get, to leading order

x̂iDiϕ ¼ 2i
jxj3 ðqΛΛ

† − ΛPΛ†Þ þO
�

1

jxj4
�
: ðD7Þ

Remembering that ϕ ¼ iq on the boundary, we can then
write, to leading order

V¼ limR→∞

Z
jxj¼R

dS3x̂iTrðϕDiϕÞ

¼−2limR→∞

Z
jxj¼R

dS3
1

jxj3 ðq
2ΛΛ†−qΛPΛ†ÞþO

�
1

jxj4
�

¼−4π2Trðq2ΛΛ†−qΛPΛ†Þ: ðD8Þ
Now we have these general expressions and methods for
the ADHM solutions, moduli space metric, and potential,
the following appendices will provide particular solutions
for the cases discussed in the main text.

APPENDIX E: SCALAR FIELD, METRIC AND
POTENTIAL IN THE TWO INSTANTON CASE

1. The scalar field

We begin with the scalar field. Following the method in
Appendix B, we have the ansatz,

ϕ ¼ U†AU; A ¼
�
q 0

0 P

�
: ðE1Þ

Here q is in the odd graded part ofC × H; i.e., q ¼ iq0 þ q,
where q0 ∈ R and q ∈ ImHH. The matrix P is anti-
Hermitian, and so can be parametrized by�

ai ci − b

ciþ b di

�
: ðE2Þ

The equation for the scalar field is

2Tr2ðΛ†qΛÞ þ Tr2ð½Ω†; P�Ω −Ω†½Ω; P�Þ
− Tr2ðfP;Λ†ΛgÞ ¼ 0: ðE3Þ

Solving this equation is a lengthy calculation, which gives

a ¼ −
1

Θ
ðAð3Þðg2NAI − f2NARÞ þ Að2Þwð4gP − fNARÞ þ Að1Þwð4fP − gNAIÞ

− ðð16P2 − NARNAIÞðAð3Þð2sþ wÞ þ wAð4ÞÞÞ;

b ¼ 1

2Θ
ðAð1Þðf2ðvþ wÞ − 2NAIðsvþ swþ vwÞÞ þ Að2Þðfgðvþ wÞ þ 8Pðsvþ swþ vwÞÞ

þ ð4fPþ gNAIÞðAð3Þðv − wÞ − Að4Þðvþ wÞÞÞ;

c ¼ 1

2Θ
ðAð1Þðfgðvþ wÞ − 8Pðsvþ swþ vwÞÞ þ Að2Þðg2ðvþ wÞ þ 2NARðsvþ swþ vwÞÞ

þ ðfNAR þ 4gPÞðAð3Þðv − wÞ þ Að4Þðvþ wÞÞÞ;

d ¼ −
1

Θ
ðAð3Þðf2NAR − g2NAIÞ þ Að2Þvð4gP − fNARÞ þ Að1Þvð4fP − gNAIÞ

þ ðAð3Þð2sþ vÞ − Að4ÞvÞð16P2 − XYÞÞ; ðE4Þ
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where

Að1Þ ¼ 4q0ReHðv̄RwI − v̄IwRÞ − 4ReHðv̄RqwR þ v̄IqwIÞ;
Að2Þ ¼ 4q0ReHðv̄RwR þ v̄IwIÞ þ 4ReHðv̄RqwI − v̄IqwRÞ;
Að3Þ ¼ q0ðjvRj2 þ jvIj2 − jwRj2 − jwIj2Þ þ 2ReHðv̄RqvI − w̄RqwIÞ;
Að4Þ ¼ q0ðjvRj2 þ jvIj2 þ jwRj2 þ jwIj2Þ þ 2ReHðv̄RvI þ w̄RqwIÞ;

f ¼ ReHðw̄RvR þ w̄IvIÞ;
g ¼ ReHðw̄IvR − v̄IwRÞ;
x ¼ jσRj2;
y ¼ jσIj2;
P ¼ ReHðσ̄RσIÞ;
v ¼ jvRj2 þ jvIj2;
w ¼ jwRj2 þ jwIj2;

NAR ¼ jvRj2 þ jvIj2 þ jwRj2 þ jwIj2 þ 4ðjτj2 þ jσRj2Þ;
NAI ¼ jvRj2 þ jvIj2 þ jwRj2 þ jwIj þ 4ðjτj2 þ jσIj2Þ;
Θ ¼ ðvþ wÞðf2NAR − g2NAIÞ þ 2ð16P2 − NARNAIÞðsvþ swþ vwÞ: ðE5Þ

In the commutative limit from [13], that is, ζ ¼ 0 and the
imaginary quaternion parts qI set to zero, this becomes

b ¼ −2ReHðv̄qwÞ
Σþ þ 4ðjτj2 þ jσRj2Þ

; a; b; d ¼ 0; ðE6Þ

which is precisely the result in that paper.
Another useful limit is that in which jτj ↦ ∞. In this

case

a ¼ q0ðjvRj2 þ jvIj2Þ þ 2Reðv̄RqvIÞ
jvRj2 þ jvIj2

;

d ¼ q0ðjwRj2 þ jwIj2Þ þ 2Reðw̄RqwIÞ
jwRj2 þ jwIj2

: ðE7Þ

With b, c ¼ 0. This corresponds to the two instantons being
far separated. In this case we would expect them to look
like two single U(2) instantons, and we see that we do in
fact have two copies of the solution for a single instanton
given in Sec. (IVA). The next step is to use this to explicitly
calculate the potential.

2. The potential

Recall from Appendix D that the potential is given by

V ¼
Z

d4xTrðDiϕDiϕÞ: ðE8Þ

Integrating by parts, and using the equation of motion for ϕ

D2ϕ ¼ 0 ðE9Þ

we get

V ¼ limR↦∞

Z
jxj¼R

dS3x̂iTrðϕDiϕÞ: ðE10Þ

We know that the vector U, being a null vector of Δ, must
solve

v†U1 þ ðτ† − x†ÞU2 þ σ†U3 ¼ 0;

w†U1 þ σ†U2 − ðτ† þ x†ÞU3 ¼ 0: ðE11Þ

This is solved on the boundary by

U1 ↦ 1;

U2 ↦
x
jxj2 v

†;

U3 ↦
x
jxj2 w

†: ðE12Þ

Solving these equations following the method in
Appendix D is long, however eventually we get
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V ¼ 8π2ðjqj2ðjvRj2 þ jvIj2 þ jwRj2 þ jwIj2Þ þ 4q0ReHðv̄Rq⃗vI þ w̄Rq⃗wIÞ − aðq0ðjvRj2 þ jvIj2 þ 2ReHðv̄RqvIÞÞ
− dðq0ðjwRj2 þ jwIj2Þ þ 2ReHðw̄Rq⃗wIÞÞ þ 2bReHðv̄Rq⃗wR þ v̄Iq⃗wIÞ
− 2bq0ReHðwIv̄R − wRv̄IÞ − 2cq0ReHðwRv̄R þ wIv̄IÞ − 2cReHðv̄Rq⃗wI − v̄Iq⃗wRÞÞ: ðE13Þ

We can choose the q0 to be zero by requiring the VEV to lie in SUð2Þ. This simplifies our solution to

V ¼ 8π2ðjqj2ðjvRj2 þ jvIj2 þ jwRj2 þ jwIj2Þ − að2Reðv̄RqvIÞÞ − dð2Reðw̄Rq⃗wIÞÞ
þ 2bReðv̄Rq⃗wR þ v̄Iq⃗wIÞ − 2cReðv̄Rq⃗wI − v̄Iq⃗wRÞÞ; ðE14Þ

where a, b, c, and d are given above.
If instead we go back to the large τ limit, using (E7)

V ¼ 8π2
�
jqj2ðjvRj2 þ jvIj2 þ jwRj2 þ jwIj2Þ þ 4q0Reðv̄Rq⃗vI þ w̄Rq⃗wIÞ

−
ðq0ðjvRj2 þ jvIj2 þ 2Reðv̄RqvIÞÞ2

jvRj2 þ jvIj2
−
ðq0ðjwRj2 þ jwIj2Þ þ 2Reðw̄Rq⃗wIÞÞ2

jwRj2 þ jwIj2
�
: ðE15Þ

In this case, the q0 parts cancel explicitly, and we get

V ¼ 8π2jqj2
�
q̂ðjvRj2 þ jvIj2 þ jwRj2 þ jwIj2Þ −

4Re2ðv̄Rq̂vIÞ
jvRj2 þ jvIj2

−
4Re2ðw̄Rq̂wIÞ
jwRj2 þ jwIj2

�
: ðE16Þ

We would expect this is the potential for two copies of the
single U(1) instanton, and if we compare to the result in
Sec. IVA we can easily see that this is the case.

3. The metric

As in Appendix C, we begin by calculating a†δCr, and
impose the condition

a†δCr ¼ ða†δCrÞT⋆: ðE17Þ

Once again, we carefully note that T involves taking the
transpose considered as a 2 × 2 matrix of biquaternions. It

does not affect the quaternions themselves. The operation ⋆
takes the complex conjugate of each element, which again
does not affect the quaternions but only their complex
coefficients.
We can expand δR in the uð2Þ basis as

δR ¼
�

idϕ idψ − dθ

idψ þ dθ idχ

�
: ðE18Þ

This gives three simultaneous equations for the derivations
in the different gauge directions. As discussed below
Eq. (C34), we can use these along with Eq. (C27) to find
δR in full

dϕ ¼ 1

Φ
ð−2Bð1Þð2sþ wÞð4fP − gNAIÞ þ 2Bð2Þðð2sþ wÞð4gP − fNARÞ − ðBð3Þð2sþ wÞ þ Bð4ÞwÞð16P2 − NARNAIÞ

− 2Bð4Þðf2NAR − 8fgPþ g2NAIÞÞ;

dθ ¼ 1

Φ
ð2Bð1Þðf2ð4sþ vþ wÞ − NAIðsvþ swþ vwÞÞ þ 2Bð2Þðfgð4sþ vþ wÞ − 4Pðsvþ swþ vwÞÞ

þ ðBð3Þð4sþ vþ wÞ − Bð4Þðv − wÞÞð4fP − gNAIÞÞ;

dψ ¼ 1

Φ
ð−2Bð1Þðfgð4sþ vþ wÞ − 4Pðsvþ swþ vwÞÞ − 2Bð2Þðg2ð4sþ vþ wÞ − 2NARðsvþ swþ vwÞÞ

þ ðBð3Þð4sþ vþ wÞ − Bð4Þðv − wÞÞð4gP − fNARÞÞ;

dχ ¼ 1

Φ
ð−2Bð1Þð2sþ vÞð4fP − gNAIÞ þ 2Bð2Þð2sþ vÞð4gP − fNARÞ

− ð16P2 − NARNAIÞðBð3Þð2sþ vÞ − Bð4ÞvÞ þ 2Bð4Þðf2NAR − 8fgPþ g2NAIÞÞ; ðE19Þ
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where the terms are defined in (E5) with the addition of

Bð1Þ ¼ v̄RdwR þ v̄IdwI − w̄RdvR − wIdvI þ 2ðτ̄dσR − σ̄RdτÞ;
Bð2Þ ¼ v̄RdwI − v̄IdwR þ w̄RdvI − w̄IdvR þ 2ðσ̄Idτ − τ̄dσIÞ;
Bð3Þ ¼ v̄RdvI − v̄IdvR þ w̄RdwI − w̄IdwR;

Bð4Þ ¼ v̄RdvI − v̄IdvR − w̄RdwI þ w̄IdwR þ 2ðσ̄RdσI − σ̄IdσRÞ;
Φ ¼ 4ðð4sþ vþ wÞðf2X − 8fgPþ g2YÞ þ ð16P2 − XYÞðsvþ swþ vwÞÞ: ðE20Þ

We can now use this in our formula (C35)

ds2 ¼ ds21 þ ds22 ¼ 2π2ðTr⋆ð2dΛ†dΛþ dΩ†dΩÞ þ Tr⋆ðða†da − ða†daÞT⋆ÞdRÞÞ: ðE21Þ

First we have that a†da − ða†daÞT⋆ is

�
0 v̄RdwR þ v̄IdwI − w̄RdvR − w̄IdvI þ 2ðτ̄dσR − σ̄RdτÞ

−ðv̄RdwR þ v̄IdwI − w̄RdvR − w̄IdvI þ 2ðτ̄dσR − σ̄RdτÞÞ 0

�

þ i

�
2ðv̄RdvI − v̄IdvR þ σ̄RdσI − σ̄IdσRÞ v̄RdwI − v̄IdwR þ w̄RdvI − w̄IdvR þ 2ðσ̄Idτ − τ̄dσIÞ

v̄RdwI − v̄IdwR þ w̄RdvI − w̄IdvR þ 2ðσ̄Idτ − τ̄dσIÞ 2ðw̄RdwI − w̄IdwR − σ̄RdσI þ σ̄IdσRÞ

�
:

ðE22Þ

Once we have this it is fairly straightforward to calculate the metric as

ds2 ¼ 8π2ðd2vR þ d2vI þ d2wR þ d2wI þ d2τ þ d2σR þ d2σI − ReHððv̄RdvI − v̄IdvR þ σ̄RdσI − σ̄IdσRÞdϕ
þ ðw̄RdwI − w̄IdwR − σ̄RdσI þ σ̄IdσRÞdχ þ ðv̄RdwR þ v̄IdwI − w̄RdvR − w̄IdvI þ 2ðτ̄dσR − σ̄RdτÞÞÞdθ
þ ðv̄RdwI − v̄IdwR þ w̄RdvI − w̄IdvR þ 2ðσ̄Idτ − τ̄dσIÞÞdψÞ: ðE23Þ

We can check the behavior of this solution in various limits.
First of all, the commutative real limit, where the various
imaginary quaternion parts qI and the noncommutative
parameter ζ are set to zero. In this limit we have

dϕ¼dψ ¼dχ¼0;

dθ¼ v̄RdwR− w̄RdvR− w̄RdvRþ2ðτ̄dσR− σ̄RdτÞ
jvRj2þjwRj2þ4ðjτj2þjσRj2Þ

: ðE24Þ

This allows us to calculate the metric to be

ds2 ¼ 8π2
�
d2vR þ d2wR þ d2τ þ d2σR −

dk2

NA

�
ðE25Þ

with

NA¼jvRj2þjwRj2þ4ðjτj2þjσRj2Þ;
dk¼ v̄RdwR− w̄RdvR− w̄RdvRþ2ðτ̄dσR− σ̄RdτÞ: ðE26Þ

exactly as in [13]. The second limit we can check is the
limit in which jτj ↦ ∞. Since this corresponds to the two
instantons becoming far separated, in this limit we would

expect to get two copies of the solution for a single Uð2Þ
instanton. In fact, we get

dϕ ¼ vRdvI − v̄IdvR
jvRj2 þ jvIj2

; dχ ¼ wRdwI − w̄IdwR

jwRj2 þ jwIj2
: ðE27Þ

This gives the metric

ds2 ¼ 8π2
�
d2vR þ d2vI þ d2wR þ d2wI

−
ðvRdvI − v̄IdvRÞ2

jvRj2 þ jvIj2
−
ðwRdwI − w̄IdwRÞ2

jwRj2 þ jwIj2
�
: ðE28Þ

This is precisely the sum of two copies of the form in
Sec. IVA above [Eq. (47)].

APPENDIX F: THREE INSTANTON
METRIC AND POTENTIAL

1. The scalar field

As in the two-instanton case the expressions derived here
for the scalar field, metric and potential are in principle
valid for the full quaternion parametrization. However,
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when we substitute in the solutions for the σi derived in
Eq. (68), that is only valid for that particular complex
subspace. Keeping this in mind, we use the same method as
before. This time the ansatz is given by

A ¼
�
q 0

0 P

�
; ðF1Þ

where q ∈ suð2Þ, and P ∈ oð3Þ, parametrized as2
64

0 −a b

a 0 −c
−b c 0

3
75: ðF2Þ

The ADHM data Δ is given, in this case, by

2
6664

u v w

τ1 σ1 σ2

σ1 τ2 σ3

σ2 σ3 τ3

3
7775; ðF3Þ

where τ1 þ τ2 þ τ3 ¼ 0. Now the elements are all quatern-
ions, not biquaternions. The equation we want to solve is
still

2Tr2ðΛ†qΛÞ þ Tr2ð½Ω†; P�Ω − Ω†½Ω; P�Þ
− Tr2ðfP;Λ†ΛgÞ ¼ 0: ðF4Þ

Proceeding as in the previous cases, we can solve for the
components of A as

a ¼ 1

ϒ
ðC3ð2Ψ2MA2 −Ψ1Ψ3Þ þ C2ð2Ψ1MA3 −Ψ2Ψ3Þ þ C1ð−ð4MA2MA3 − Ψ2

3ÞÞÞ;

b ¼ 1

ϒ
ð−C3ðΨ1Ψ2 þ 2MA1zÞ þ C1ð2Ψ1MA3 −Ψ2Ψ3Þ − C2ð4MA1MA3 −Ψ2

2ÞÞ;

c ¼ 1

ϒ
ð−C3ð4MA1MA2 −Ψ2

1Þ − C2ðΨ1Ψ2 þ 2MA1Ψ3Þ þ C1ð2Ψ2Y − Ψ1Ψ3ÞÞ; ðF5Þ

where

C1 ¼ 4ReHðv̄quÞ;
C2 ¼ 4ReHðūqwÞ;
C3 ¼ 4ReHðw̄qvÞ;

MA1 ¼ juj2 þ jvj2 þ 3jσ1j2 þ Σ2 þ jτ1 − τ2j2;
MA2 ¼ jwj2 þ jvj2 þ 3jσ2j2 þ Σ2 þ jτ1 − τ3j2;
MA3 ¼ jwj2 þ jvj2 þ 3jσ3j2 þ Σ2 þ jτ2 − τ3j2;
Ψ1 ¼ ReHð3ðτ̄1σ3 − σ̄2σ1Þ − w̄vÞ;
Ψ2 ¼ ReHð3ðτ̄2σ2 − σ̄1σ3Þ − ūwÞ;
Ψ3 ¼ ReHð3ðτ̄3σ1 − σ̄3σ2Þ − v̄uÞ;
ϒ ¼ 2ðΨ2

1MA3 þΨ1Ψ2Ψ3 − 4MA1MA2MA3

þMA1Ψ2
3 þΨ2

2MA2Þ: ðF6Þ

2. The potential

We can now use this to calculate the potential, using the
formula

V ¼
Z

d4xTrðDiϕDiϕÞ: ðF7Þ

We can now follow the standard method. Integrating by
parts, and using the equation of motion for ϕ

D2ϕ ¼ 0: ðF8Þ

We get

V ¼ limR↦∞

Z
jxj¼R

dS3x̂iTrðϕDiϕÞ: ðF9Þ

We know that the vector U, being a null vector of Δ, must
solve Δ†U ¼ 0, which gives the equations

ūU1 þ ðτ̄1 − x̄ÞU2 þ σ̄1U3 þ σ̄2U4 ¼ 0;

v̄U1 þ σ̄1U2 þ ðτ̄2 − x̄ÞU3 þ σ̄3U4 ¼ 0;

w̄U1 þ σ̄2U2 þ σ̄3U3 þ ðτ̄3 − x̄ÞU4 ¼ 0: ðF10Þ

These can be solved in the jxj2 ↦ ∞ limit as

U1↦1; U2↦
xū
jxj2 ; U3↦

xv̄
jxj2 ; U4↦

xw̄
jxj2 : ðF11Þ

We can continue to calculate the potential as in the previous
cases. Using the method in Appendix D, analogously to the
discussion for two instantons in Appendix E 2 we get

V ¼ 8π2ðjqj2ðjuj2 þ jvj2 þ jwj2Þ
− 2aReHðv̄quÞ − 2bReHðūqwÞ − 2cReHðw̄qvÞÞ;

ðF12Þ

with a, b, and c given as above.
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3. Oð3Þ metric

The final thing to calculate is the metric. As in the
previous case, we need to calculate aTδCr, and impose the
condition

aTδCr ¼ ðaTδCrÞT⋆: ðF13Þ

Note that here we have the operation T rather than † as
we are dealing with the usual, real quaternions rather
than the complexified version. Since in this commutative

three-instanton case, the remaining symmetry is oð3Þ, we
can write

δR ¼

2
64

0 −dϕ dθ

dϕ 0 −dψ
−dθ dψ 0

3
75: ðF14Þ

We should end up, analogously to the previous case, with
three simultaneous equations. We now follow the same
method as before in Appendixes C and E 3. The solution is

dϕ ¼ 1

Ξ
ðD1ðMA2MA3 þ Ψ2

3Þ þD2ðMA3Ψ1 − Ψ2Ψ3Þ −D3ðMA2Ψ2 þ Ψ1Ψ3ÞÞ;

dθ ¼ 1

Ξ
ð−D1ðMA3Ψ1 þ Ψ2Ψ3Þ −D2ðMA1MA3 −Ψ2

2Þ þD3ðMA1Ψ3 þ Ψ1Ψ2ÞÞ;

dψ ¼ 1

Ξ
ðD1ðΨ1Ψ3 −MA2Ψ2Þ þD2ðMA1Ψ3 − Ψ1Ψ2Þ þD3ðMA1MA2 −Ψ2

1ÞÞ; ðF15Þ

where

D1 ¼ ūdv − v̄duþ τ̄1dσ1 − σ̄1dτ1 þ σ̄1dτ2 − τ̄2dσ1 þ σ̄2dσ3 − σ̄3dσ2;

D2 ¼ ūdw − w̄duþ τ̄1dσ2 − σ̄2dτ1 þ σ̄1dσ3 − σ̄3dσ1 þ σ̄2dτ3 − τ̄3dσ2;

D3 ¼ v̄dw − w̄dvþ σ̄1dσ2 − σ̄2dσ1 þ τ̄2dσ3 − σ̄3dτ2 þ σ̄3dτ3 − τ̄3dσ3;

MA1 ¼ juj2 þ jvj2 þ 3jσ1j2 þ Σ2 þ jτ1 − τ2j2;
MA2 ¼ jwj2 þ jvj2 þ 3jσ2j2 þ Σ2 þ jτ1 − τ3j2;
MA3 ¼ jwj2 þ jvj2 þ 3jσ3j2 þ Σ2 þ jτ2 − τ3j2;
Ψ1 ¼ ReHð3ðτ̄1σ3 − σ̄2σ1Þ − w̄vÞ;
Ψ2 ¼ ReHð3ðτ̄2σ2 − σ̄1σ3Þ − ūwÞ;
Ψ3 ¼ ReHð3ðτ̄3σ1 − σ̄3σ2Þ − v̄uÞ;
Ξ ¼ MA1MA2MA3 þMA1Ψ2

3 −MA2Ψ2
2 −MA3Ψ2

1: ðF16Þ

Once more we use our formula, modified for real quaternions

ds2 ¼ ds21 þ ds22 ¼ 2π2ðTr⋆ð2dΛ†dΛþ dΩ†dΩÞ þ Tr⋆ðða†da − ða†daÞTÞdRÞÞ; ðF17Þ

which enables us to calculate the metric as

ds2 ¼ 8π2ðd2uþ d2vþ d2wþ d2τ1 þ d2τ2 þ d2τ3 þ d2σ1 þ d2σ2 þ d2σ3 − ðD1dϕþD2dθ þD3dψÞÞ2: ðF18Þ
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