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Although the Wald entropy is commonly suitable for the first law of black hole thermodynamics,
whether it satisfies the second law has not been examined sufficiently. For any high-order curvature gravity,
the Wald entropy has been shown not to obey the linearized second law, and the general expression of
entropy of black holes that always satisfies the linearized second law is further obtained. For gravity with
nonminimal coupling matter fields, however, whether the Wald entropy of black holes satisfies the second
law has not been studied enough. Recently, a general second-order scalar-tensor gravitational theory has
been proposed. The Lagrangian of the gravitational theory is a linear combination of four components, and
the Wald entropy can also be written as four parts. We should investigate each part of the expression
separately to examine whether the Wald entropy satisfies the linearized second law. For the first and fourth
parts contributed by two nonminimal coupling terms in Lagrangian contained in Horndeski gravity and
Gauss-Bonnet gravity, the entropy of black holes is not expressed as the Wald entropy because the entropy
in Gauss-Bonnet gravity is Jacobson-Myers entropy. The third part contributed by the Lagrangian in
Einstein-Hilbert action is Bekenstein-Hawking entropy, which obeys the second law automatically.
Therefore, to obtain the entropy of black holes that meets the linearized second law, we only need to study
the second part of the Wald entropy. According to the null energy condition and the Raychaudhuri
equation, one can show that the second part of the Wald entropy with correction terms will increase
monotonically constrained by the null energy condition during the perturbation process. The second part of
the Wald entropy should be modified to satisfy the linearized second law, and the expression of the entropy
of black holes, which always obeys the linearized second law, is obtained in the general second-order

scalar-tensor gravity.
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I. INTRODUCTION

General relativity (GR) has predicted the existence of
black holes as particular spacetime structures in our
universe, and the boundary of black holes is a specific
null hypersurface called the event horizon of black holes.
Many essential properties of black holes, especially black
hole thermodynamics, are reflected by the event horizon at
an equilibrium or a dynamical evolution state. The area
theorem of black holes was first proposed by Hawking [1],
which states that the area of the event horizon of black holes
never decreases with time evolution. Based on this theorem,
Bekenstein [2] conjectured that the area of the event
horizon of black holes could be equivalent to the entropy
of an ordinary thermodynamic system. From the perspec-
tive of the quantum field theory in curved spacetime,
Hawking [3] proved that black holes can be regarded as
thermodynamic systems, not just pure spacetime structures,
while the temperature and the entropy can be defined by the
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surface gravity and the area of the event horizon of black
holes, respectively. The entropy of black holes is called
Bekenstein-Hawking entropy, which can be written as
Sgu = A/4, where A is the area of the event horizon.
Based on definitions of the temperature and the entropy of
black holes, the black hole thermodynamics is established
gradually, which is identical to the four laws of thermo-
dynamics for a classical thermodynamic system [4—0].
Although the four laws of thermodynamics are established
for black holes in classical GR, it has become clear that the
four laws of classical black hole thermodynamics still hold
in much more general contexts.

If a timelike Killing vector £ exists in spacetime at infinity
and is normal to a null hypersurface, the null hypersurface is
called the Killing horizon. The event horizon of stationary
black holes can be treated as a Killing horizon according to
the rigidity theorem [7]. The surface gravity  at any point on
a Killing horizon is defined as [8]

&PV, = K& (1)

The zeroth law of black hole thermodynamics states that k is a
constant over the event horizon of stationary black holes in
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the classical theory of gravity. The proof of this law is closely
related to a specific form of the Einstein equation, and this
proof process seems unlikely to be extended to other theories
of gravity [5]. Furthermore, it has been shown that the zeroth
law is held without the concrete expression of the field
equation of gravity when the bifurcation surface exists in
spacetime [9]. In addition, based on the rigidity theorem and
the dominant energy condition, the zeroth law has been
generally demonstrated without dependence on the field
equation and other additional assumptions [10,11]. This
result means that if the rigidity theorem is valid, the zeroth
law of black hole thermodynamics can be generalized to
other modified gravitational theories.

The black hole uniqueness theorem requires that all
black hole solutions in Einstein-Maxwell gravity can be
characterized by only three externally observable quan-
tities, i.e., the mass M, the electric charge Q, and the
angular momentum J [12]. The most general black hole in
the gravitational theory is the Kerr-Newman (KN) black
hole. The first law of black hole thermodynamics describes
how the variation of mass is related to the change of area,
angular momentum, and electric charge of the event
horizon for the perturbation of stationary black holes,
and the first law of KN black holes can be expressed as

5M == TéSBH + q)HéQ + QHSJ, (2)

where the quantities 7', @, and Qy are the temperature, the
electrostatic potential, and the angular velocity of the event
horizon, respectively. Since the first law describes the
change of related physical quantities of KN black holes
from one equilibrium state to another, the initial and final
states obey the rigidity theorem. Equation (2) is the general
expression of the first law of black holes in classical GR.
Furthermore, whether the first law can still be suitable for
much more general gravitational theory should be further
investigated. Based on the Noether charge method, the first
law of black hole thermodynamics in any diffeomorphism
invariant theory of gravity has been investigated by Iyer and
Wald [13,14]. The entropy in the general first law is called
the Wald entropy rather than Bekenstein-Hawking entropy,
which is defined as

oL
Sw = —27:/ d"y\ﬁ’m%zﬁcd, (3)

where y is used to describe the transverse coordinates on
any cross section of the event horizon, y is the determinant
of the volume element of the cross section, £ is the
Lagrangian of the gravitational theory, R,,.; is the
Riemann curvature tensor, and €, represents the binormal
of any slice on the event horizon. Besides, for the general
first law, the rigidity theorem is still suitable for the initial
and final states in the perturbation process because the two
states are both stationary.

The third law of black hole thermodynamics states that it
is impossible to form a black hole with vanishing surface
gravity through finite operators. If the surface gravity
continues to exceed the critical value, i.e., k = 0, the value
of surface gravity will become negative. It implies that the
event horizon of black holes disappears, and the naked
singularity exports into spacetime. The naked singularity is
forbidden to appear because it can invalidate the causality
law of spacetime. To guarantee the completeness of
spacetime geometry and the validity of the causality law,
an assumption which is called the cosmic censorship
conjecture (CCC) was proposed by Penrose [15]. The
CCC can be divided into the weak cosmic censorship
conjecture (WCCC) and the strong cosmic censorship
conjecture (SCCC). Recently, the CCC, especially the
WCCC, has been widely investigated using the perturba-
tion method [16]. The stability condition is further intro-
duced to examine the WCCC of black holes, which states
that the spacetime geometry still belongs to the class of
original solutions of spacetime geometry after the pertur-
bation process. If black holes still exist at the final state, the
WCCC of black holes is valid at the end of the perturbation.
The stability condition requires that black holes in the
initial and final states in the perturbation process are both
stationary black holes. In other words, the rigidity theorem
still holds in the initial and final states. Although this
conjecture closely relates to the extreme black hole, it is not
identical to the third law of black hole thermodynamics. In
other words, examining the WCCC cannot be regarded as
proving the third law directly. However, if the surface
gravity of black holes does not approach or exceed the
critical value, the third law of black hole thermodynamics is
guaranteed in significant measure.

The above discussions indicate that the rigidity theorem
permeates through the investigation of the zeroth, the first,
and the third laws of black hole thermodynamics. However,
the study of the second law of black hole thermodynamics
is different from the other three laws of black hole
thermodynamics because it focuses on how the entropy
of black holes changes with a dynamic process. In this
situation, the rigidity theorem is no longer valid during the
dynamical process. Therefore, how to study the second law
in more general gravitational theory has become an
important research direction for black hole thermodynam-
ics until now. Additionally, the two most profound of the
four laws of black hole thermodynamics are the first and the
second laws. If black holes in any gravitational theory are
regarded as thermodynamic systems, the first two laws of
black hole thermodynamics should first be satisfied. Since
the Wald entropy generally obeys the first law, we naturally
expect that the Wald entropy of black holes in any diffeo-
morphism invariant theory of gravity can also satisfy the
second law of black hole thermodynamics.

The quantization of gravitational field is a frontline issue
in the research of GR. Although many methods are used to
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quantize the gravitational field, an appropriate quantization
scheme has not been established perfectly until now. It
means that when the self-interaction of gravity or the
nonminimal coupling interaction between gravity and
matter fields is involved in the theory of gravity, we cannot
investigate these interactions rigorously at the quantum
level. Therefore, to study these interactions from the
perspective of quantum gravity, the most convenient
method is to construct a corresponding low-energy efficient
field theory, and the results obtained in classical GR should
be recovered through the efficient field theory. At present,
one of the most fruitful approaches to construct the
approximation of the low-energy efficient theory of gravity
is that of the extended gravitational theory based on
corrections and enlargements of Einstein’s theory, which
have become a sort of paradigm. This paradigm essentially
introduces high-order curvature invariants and minimal or
nonminimal coupling matter fields into the effective
Lagrangian of quantum gravity theory at a low energy
approximation. In other words, quantum correction terms
are added to the Lagrangian of the gravitational theory
when the low-energy efficient field theory is used to deal
with the nonminimal coupling interactions. The quantum
correction terms are the high-order curvature terms that
describe the self-interaction of gravity and the nonminimal
coupling terms that describes the interaction between
gravity and matter fields. Besides, it is recognized that
these correction terms are unavoidable to obtain the
efficient effect of quantum gravity under the Planck scale
[17]. The expression of the Wald entropy is sufficiently
affected by the quantum correction terms in the Lagrangian
according to Eq. (3). It implies that examining whether the
Wald entropy of black holes in a specific gravitational
theory containing quantum correction terms satisfies the
second law is a prerequisite for finding a general method to
check whether the Wald entropy of black holes in any
diffeomorphism invariant theory of gravity obeys the
second law. The Wald entropy of black holes in f(R)
gravity has been investigated according to the field redefi-
nition, and the result shows that it obeys the second law of
thermodynamics [18,19]. Subsequently, considering a qua-
sistationary accretion process of black holes, the spacetime
geometry of black holes will be perturbed by the accretion
process. And an assumption that black holes will settle
down to a stationary state at the end of the perturbation
process is introduced. This assumption means that the
initial and the final states under the perturbation process
still satisfy the rigidity theorem in the proving process of
the second law. In other words, the validity of the rigidity
theorem still affects the study of the second law. From the
method of matter fields perturbation, the second law in the
most general second-order higher curvature theory of
gravity has been examined under the first-order approxi-
mation [20]. The second law of black hole thermodynamics
that holds under the linear order approximation of the

perturbation is called the linearized second law. Utilizing
the perturbation method, the linearized second laws of
black holes in the Gauss-Bonnet gravity and the Lovelock
gravity are investigated [21,22]. The results show that the
entropy of black holes that obeys the linearized second law
in two gravitational theories is called the Jacobson-Myers
(JM) entropy rather than the Wald entropy. Furthermore, a
common approach to investigate the linearized second law
of black holes in the gravitational theory that contains
arbitrary high-order curvature terms has been proposed by
Wall [23]. The general expression of the entropy of black
holes that obeys the linearized second law is given, which
can be written as a linear combination of Wald entropy and
some correction terms. The result illustrates that the Wald
entropy should be corrected to satisfy the linearized second
law when the quantum correction terms of arbitrary high-
order curvature are contained in the Lagrangian of the
gravitational theory.

In the previous research, from the perspective of
perturbation, the situation that quantum correction terms
of arbitrary high-order curvature are contained in the
Lagrangian has been sufficiently investigated because the
general expression of entropy of black holes satisfying
the linearized second law has been obtained. As men-
tioned above, the quantum corrections in the Lagrangian
not only involve any high-order curvature term but the
nonminimal coupling term that describes the interaction
between gravity and matter fields. The linearized second
law of black holes in the gravitational theory with the
nonminimal coupling scalar field or gauge fields has been
investigated in the recent research through the construc-
tion of entropy current [24]. Although the linearized
second law of black holes has been discussed extensively
in the theory of gravity involving arbitrary nonminimal
coupling matter fields, the general expression of entropy
of black holes obeying the linearized second law has not
been obtained until now. To deduce the entropy of black
holes generally obeying the linearized second law in the
gravitational theory with the nonminimal coupling matter
fields, we should first examine whether the Wald entropy
of black holes in this kind of gravitational theory always
satisfies the linearized second law. If the Wald entropy
does not generally obey the second law, we will need to
explore the new expression of the entropy of black holes
that satisfies the linearized second law during the pertur-
bation all the time. In our previous works, the Wald
entropies of black holes in Horndeski gravity and the
general quadric corrected Einstein-Maxwell gravity were
both demonstrated to obey the linearized second law
[25,26]. For Horndeski gravity, there are no more non-
minimal coupling terms between gravity and the scalar
field in the Lagrangian, except the nonminimal coupling
term between the Einstein tensor and the scalar field. In
other words, the Wald entropy always obeys the linearized
second law in general Horndeski gravity. Recently, a new
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general second-order scalar-tensor gravitational theory
has been proposed, and the Lagrangian is a linear
combination of four components. There are three types
of nonminimal coupling interaction terms in the four
components. These terms are the Gauss-Bonnet combi-
nation, the nonminimal coupling interaction between the
Einstein tensor and the scalar field that is the same as
the nonminimal coupling term in Horndeski gravity,
and the nonminimal coupling term that describes the
interaction between the double dual of Riemann curva-
ture and the scalar field. The Wald entropy of black
holes can be expressed as the linear combination of four
parts that correspond to the four components in the
Lagrangian according to the definition. To examine the
second law of thermodynamics under the first-order
approximation of the matter fields perturbation, we only
need to investigate whether each part in the expres-
sion of the Wald entropy of black holes obeys the
linearized second law respectively. As mentioned above,
the linearized second law of black holes in Horndeski
gravity and the Gauss-Bonnet gravity has been inves-
tigated. The results show that the Wald entropy does not
satisfy the linearized second law because the entropy of
black holes in Gauss-Bonnet gravity obeying the second
law is JM entropy rather than the Wald entropy. It
implies that the Wald entropy no longer meets the
linearized second law even if the nonminimal coupling
term between the double dual of Riemann curvature and
the scalar field is not contained in the Lagrangian of the
gravitational theory. Therefore, to explore the final
expression of black holes obeying the linearized second
law in general second-order scalar-tensor gravitational
theory, we still start from the definition of Wald entropy
to examine whether the entropy contributed by the
nonminimal coupling term containing the double dual
of the Riemann curvature satisfies the linearized second
law. If it does not meet the requirement of the linearized
second law, we should further explore the concrete
expression of the entropy that always satisfies the
linearized second law from this nonminimal coupling
term in the Lagrangian.

The organization of the paper is as follows. In Sec. II, the
general second-order scalar-tensor gravity is introduced
first, and the expression of the Wald entropy, especially the
specific expression contributed by the nonminimal cou-
pling term between the double dual of the Riemann
curvature and the scalar field, is given. In Sec. III, based
on the null energy condition of the additional matter fields,
while according to the definition of the Wald entropy,
whether the entropy of black holes contributed by the
nonminimal coupling term between the double dual of the
Riemann curvature and the scalar field in general second-
order scalar-tensor gravity still satisfies the linearized
second law during the perturbation process will be exam-
ined. The paper ends with conclusions in Sec. I'V.

II. THE GENERAL SECOND-ORDER
SCALAR-TENSOR GRAVITATIONAL
THEORY AND THE WALD ENTROPY

We consider the (n 4 2)-dimensional general second-
order scalar-tensor gravitational theory [27]. The Lagrangian
of the gravitational theory is a linear combination of four
components. These four components are the Einstein tensor
nonminimal coupling with the scalar field, the double dual
of the Riemann tensor nonminimal coupling with the
scalar field, the Ricci scalar that is the Lagrangian in the
Einstein-Hilbert action, and the Gauss-Bonnet combination.
To investigate the linearized second law of black hole
thermodynamics, the quasistationary accretion process that
describes additional matter fields minimally coupling to
gravity outside black holes passing through the event horizon
and falling into black holes should be considered. The
accretion process will perturb the spacetime geometry of
black holes. If the perturbation process can be regarded as a
complete dynamical process, the Lagrangian of the matter
fields should be added to the Lagrangian of the original
gravitational theory. Therefore, the specific expression of the
Lagrangian can be written as

Lo = L1+ Ly + L3+ Ly + Loy, (4)
where
=€V (9)GV PV b,
52 = €V, () PN PV PV, V 4.
Ly =€eV;3(P)R,
Ly =eVy(9)G. (5)

For the four components in the Lagrangian, G, is the
Einstein tensor, P*¢ = 1 e***/ R, ; ,€“%" is the double dual
of the Riemann tensor with the Levi-Civita tensor €,,.4, R 1S
the Ricci scalar, G = R,,.;R? — 4R ,R* + R? is the
Gauss-Bonnet combination, € is the volume element of
the spacetime, and £, represents the Lagrangian of minimal
coupling additional matter fields. In the following, to
simplify the calculation and the expression as well as make
the final result clearer, the values of coefficients V(¢),
Vy(¢), V3(¢), and V4(¢) in the four components of the
Lagrangian are setas V(¢) = V,(¢p) = V3(¢p) = V4(gp) =1
without losing generality.

It has been shown that the entropy of black holes in any
diffeomorphism invariant gravity can be expressed as the
Wald entropy that generally obeys the first law of black
hole thermodynamics. According to the definition in
Eq. (3), the Wald entropy for stationary black holes in
the general second-order scalar-tensor gravitational theory
can be written formally as a linear combination of four parts
that corresponds to the first four components of the
Lagrangian, respectively, in Eq. (4), i.e.,
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Sw = Swi + Swa + Sw3z + Swa

1
B Z/ d"y\7(pw1 + pw2 + pws + pwa),  (6)

where pyw; (i = 1, 2, 3, 4) represents the entropy density of
the four parts of the Wald entropy. The first component of
the Lagrangian £, is the nonminimal coupling term that
describes the interaction between the Einstein tensor and
the scalar field, which is the only one nonminimal coupling
interaction term between gravity and the scalar field
contained in the Lagrangian of the general Horndeski
gravity. In our previous work, we have proved that the
Wald entropy in Horndeski gravity always satisfies the
linearized second law during the matter fields perturbation
process. The third part and the fourth part of the
Lagrangian, £; and L, contain the Ricci scalar term
and the Gauss-Bonnet combination. The entropy of black
holes contributed by the third part is the Bekenstein-
Hawking entropy which obeys the second law of black
hole thermodynamics automatically according to the area
theorem. The fourth part of the Wald entropy contributed
by the fourth component of the Lagrangian does not obey
the linearized second law because the entropy of black
holes meets the linearized second law during the perturba-
tion process in Gauss-Bonnet gravity and is expressed as
the JM entropy. It indicates that even without considering
the second part of the Lagrangian, the Wald entropy of
black holes in the theory of gravity composed of the first,
third, and fourth parts in the Lagrangian is no longer
obeying the requirements of the linearized second law. In
other words, the Wald entropy of black holes in general
second-order scalar-tensor gravity does not satisfy the
linearized second law. Therefore, in the following, the
expression of the entropy obeying the linearized second law
in the general scalar-tensor gravity should be further
deduced to investigate the linearized second law in the
theory of gravity. Since the entropy contributed by the first,
the third, and the fourth components in the Lagrangian
from the definition of the Wald entropy has been studied

|

except the entropy comes from the second component of
the Lagrangian, we only focus on the second part of the
Wald entropy to investigate whether it satisfies the second
law under the first-order approximation of the perturbation
process. If the second part of the Wald entropy does not
meet the linear second law, the second part of entropy,
which comes from the second components of the
Lagrangian and always obeys the second law under the
linear order approximation of the matter fields perturbation,
should be further calculated. From Eq. (4), the Lagrangian
that is used to study the linearized second law in this
gravitational theory can be simplified as

L=Ly+ Ly = €PNV PV Vi + L. (7)

From the Lagrangian in Eq. (7), the equation of motion
of the gravitational part can be formally written as

H(lb = SﬂTah' (8)
The left-hand side of the equation of motion H,;, can be
further written as a linear combination of Hflil), Hgng),

H%l), and H%z), ie.,

(G1)

Hy =H'SY + HS + YY) 4 g9, (9)

The first two parts of Eq. (9), Hﬁ” and H((fb;z), are derived
from the derivative of the Lagrangian with respect to the
Riemann curvature R,,.;; specifically, the second part

Hggz) only contains all total derivative terms in the first

two parts. The third part of Eq. (9), Hiﬁl), comes from the

derivative of the Lagrangian with respect to the first-order

derivative of the scalar field V ¢. The fourth part Hg;z) is

deduced from the derivative of the Lagrangian with respect
to the second-order derivative of the scalar field V,V,¢.
The specific expression of the four parts in Eq. (9) can be
written, respectively, as

HG = = V9 TV IR+ V0T VDR, VBT VTR, = LT V0 T R,

4

4

4

2

2

30TV VI BR — 0,5 pV b VR, — 0.V VYV R,
30T BV VDR, L NV GV DR, 4 0,V BV 5 VIR,
4300V VR~ 0,5 PV PV R, 4 2 0. V5 bV VR,
0B VPR~ 0 NV NV DR, 43 0,5 bV 5 PV PR

1 , 1 .
- 7gadgcequsquﬁvgvg(prLde + Egadgcevfd)vgvfd)vgqﬁRbcdev (10)
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1 1 1
Hyy? = =3 VYYDV V) + 5 VVIT o,V pV i) +5 VTV 9,4V ,V o)

1

. 1o, 1o, .
~5 VVAVpV ¢V, Vo) + 7V VU 9eaV VY. VP) — 3 VY9V V1V V)

1 1 1
- E VCvd (gcbva¢vd¢veve¢) + 5 vcvd(gabvc¢vd¢veve¢) - 5 vcvd(gcdva¢vbve¢ve¢)

1 1 1
+ 5 vcvd(gadvc¢vbve¢ve¢) + 5 vcvd(gd)va¢vdve¢ve¢) - E vcvd(gabvc¢vdve¢ve¢)

1 1 Io.
) VeV (9edVp VoV V) — 3 VeV (90aVy VeV V) — 3 V(g VVapV V)

1 1 1
) VNV 9 VaV PV PV P) - 3 VNV 9:aVppV. V.V P) + 3 VeV g, VapV ViV )

1 1 1
+ 5 vevd (gadvb¢vevc¢ve¢) - 5 vcvd(gabvd¢vevc¢ve¢) + 5 vcvd(gadgcbve¢ve¢vaf¢>

1

. 1 1
- 5 Ve vd(gabgcdve¢ve¢vaf¢) - 5 vcvd(gadgcbve¢vae¢vf¢) + E veve (gabgcdve¢vae¢vf¢) ’ (1 1)

1 1
HYY = LRVGY, 9 GV~ 3 RVt TGV s+ RY GV 9 L RV V.V

1

~ SRV DT IG s+ RG99 1~ 3 R V99V 9 = 3 Ry GV 9,

1 1
+ Rcdva¢vdvc¢vb¢ - ERadcevcgbvevdqﬁvbgb - iRaecde¢vevd¢vb¢’ (12)

and

b 1
Y = =2V, gV RV GV,) + VoV (RpgV V) + VoV (R gV, V) = V¥ (R Vi V)

2
1

2

2
RN LA ZAA

For the right-hand side of Eq. (8), T, represents the total
stress-energy tensor of the gravitational theory. Since the
scalar field is involved in the nonminimal coupling terms
between the double dual of the Riemann curvature and the
scalar field in Eq. (7), the total stress-energy tensor only
contains the stress-energy tensor of the additional matter
fields, i.e.,

Tap = Tap» (14)

where 77} is the stress-energy tensor of the additional
matter fields. From the physical perspective, a reasonable

1
+ _gcbvad)vc (Rvd¢vd¢> - gcbva¢vc (Rdevd(ﬁve(ﬁ) =+ va¢vc (Rcdbevd¢ve¢) =+ %vcgbvc (Rva¢vb¢)
1 1
) V.V (R, NV V) — 5 V. V(R V Vi) + 3 V. V(R V) — %gabvc(ﬁvc(Rvdﬁbvdfﬁ)
0V RV PV D) ~ L VBV Rugp P BVD) + L RV, 9V~ L Ry V99,V

1 1 1
= =R VpdpVIPV Ve + ERabvdfﬁvdfﬁvcvcfﬁ - ZgabRVd(degbVCV"qﬁ + %gadeequsz(pvcvc(p

(13)

|

assumption should be introduced to obtain the entropy of
black holes satisfying the linearized second law, which
states that the stress-energy tensor of the additional matter
fields should obey the null energy condition. For an
arbitrary null vector field along the future direction n?,
the expression of the null energy condition can be ex-
pressed as T™n“n? > 0. Moreover, according to Eq. (14),
the assumption also means that the total stress-energy
tensor in the gravitational theory still obeys the requirement
of the null energy condition, i.e.,

T »nn® > 0. (15)
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According to the definition of the Wald entropy in
Eq. (3) and the expression of Eq. (6), the second part of
the Wald entropy of black holes contributed by the non-
minimal coupling interaction between the double dual of
the Riemann curvature and the scalar field in the first term
of Eq. (7) can be obtained as

1
Swy = Z/ d"Yﬁsz, (16)

and the specific expression of the entropy density py, is
given as

P = =3 VbV G0,V + VGV 0 KRN 9,V

— kPN ,pV ,pV Vo + %kazbvavcfpvbw%ﬁ + %kﬂlbvawbvcfpvv(p

1 1 1
~ KDV NGV PV P = K PV VPV + S KV, VYV

+ %k“l”vaqbvcvhd)chs + %k“k”l”l‘lvhvadychﬁvd(ﬁ - % k¢kP1€19N , N PV )V b

+ %kakbzwdvuqsqusvdchs.

As mentioned above, to obtain the entropy of black holes
that obeys the linearized second law of black hole thermo-
dynamics in the general second-order scalar-tensor tensor
gravitational theory, we should consider whether the
second part of the Wald entropy still satisfies the linearized
second law first. In other words, we only focus on the
expression of Eq. (17) to check whether it obeys the second
law of black hole thermodynamics under the linear order
approximation of the matter fields perturbation in the
following. If this expression does not meet the linearized
second law, the new expression for the entropy of black
holes that comes from the first term in Eq. (7) should be
further explored.

III. INVESTIGATION OF THE LINEARIZED
SECOND LAW OF BLACK HOLES IN GENERAL
SECOND-ORDER SCALAR-TENSOR GRAVITY

The nonminimal coupling term that describes the non-
minimal coupling interaction between the double dual
of the Riemann curvature and the scalar field exists in
the second component of the Lagrangian. According to the
definition, this term will substantially contribute to the
expression of the Wald entropy. To obtain the expression of
the entropy of black holes in the general second-order
scalar-tensor gravitational theory that satisfies the linear-
ized second law, we should first examine whether the
second part of the Wald entropy contributed by the second
component of the Lagrangian still obeys the linearized
second law as mentioned above. If it does not meet the
linearized second law, we need to investigate further what
correction terms will be added to the expression of the
second part of the Wald entropy so that the modified second
part of the Wald entropy always satisfies the linearized
second law. A quasistationary physical accretion process

(17)

should be introduced to investigate the linearized second
law of black hole thermodynamics, which describes that
additional matter fields minimally coupling to gravity
outside black holes pass through the event horizon and
fall into black holes during the dynamical accretion
process. In other words, the spacetime geometry of black
holes will be perturbed by the accretion process. Besides,
another essential assumption should be further introduced
to investigate the linearized second law, which states that
black holes will settle down to a stationary state after the
perturbation process.

For black holes in (n 4 2)-dimensional general second-
order scalar-tensor gravitational theory, the event horizon of
black holes is denoted as H, which is (n + 1)-dimensional
null hypersurface in spacetime. If the parameter 4 is chosen
as an affine parameter to parametrize the event horizon, the
null vector k* = (9/d4)“ can be used to generate the event
horizon and obeys the geodesic equation k*V k% = 0. The
coordinates with two null vectors {k“, [*, y¢} on any cross
section of the event horizon can be further constructed. In
the coordinates, the null vector field k¢ is tangent to the
event horizon of black holes, [* is another null vector field
that is different from the null vector field k%, and y¢ is used
to describe transverse coordinates on any cross section. The
relationships between the two null vectors can be further
given as

kk, =19, =0, Kk, = 1. (18)

According to the two null vectors, the binormal on the cross
section of the event horizon can be defined as €,;, = 2k(,/;),
while the definition of the induced metric on any slice of
the future event horizon can be given as
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Yab = Gab T+ 2k(alb)- (19)

From the definition of the induced metric, the relationship
between the two null vectors and the induced metric can be
given as k%, = [“y,;, = 0. Besides, for any spatial tensor
X4,a,--» We can define the spatial derivative operator D, as

D Xpa =7a"Va," Va0, 2"V Xy p, . (20)

and the spatial derivative operator is compatible with the
induced metric on the cross section of the event horizon,
i.e., Dcyab =0.

The extrinsic curvature of the event horizon can be
defined as

B, = 7ac7/bdvckd’ (21)

and the evolution of the induced metric along the future
direction of the event horizon is further given as

0
Va6 LiYea = 2(0ab + ;hb) = 2B, (22)

where ¢,;, and 6 represent the shear and the expansion of
the event horizon, respectively. Furthermore, the evolution
of the extrinsic curvature along the same direction can be
obtained as

7dc7/bd£chd = BB, - VdCVbdRecfdkekf- (23)

According to this result, the Raychaudhuri equation can be
written as

do 0
- T a "4y = Ry (24)

where R;;, = R,,k°k". In the following, we will use the
convention X, = kk"X,;, to simplify the expression for
any tensor X, contracting with two null vector fields k“.

To describe the perturbation for the spacetime geometry
of black holes from the additional matter fields, the
sufficient small parameter € is introduced to represent
the order of the approximation during the perturbation
process. We assume that three quantities, i.e., the extrinsic
curvature, the expansion, and the shear of the event
horizon, are all treated as the quantity under the first-order
approximation during the quasistationary perturbation
process. Using the small parameter €, the relationship of
three quantities can be expressed as B, ~ 6 ~ 6, ~ O(e).
In the following, the quantity under the zero-order approxi-
mation during the perturbation process is called the zero-
order quantity (or the background quantity), and the
quantity under the linear order approximation of the matter
fields perturbation is called the first-order quantity directly.
Besides, two symbols are introduced to simplify the

expression of the equation and emphasize that the second
law is studied only under the first-order approximation. As
above, since we will investigate the linearized second law
of black holes in the general second-order scalar-tensor
gravity under the process of the matter fields perturbation,
the symbol “~” is introduced to represent the identity under
the linear order approximation of the perturbation process.
Besides, the other symbol “"” is introduced to represent the
pure spatial index in any tensor to simplify the concrete
expression of the following calculation. The extrinsic
curvature and the evolution equation of the extrinsic
curvature in Egs. (21) and (23) under the first-order
approximation of the perturbation process using the two
symbols can be further expressed as

B, = V,k;, LB~ —kkIR, (25)
and the linear version of the Raychaudhuri equation is
written as

—_— = _Rkk' (26)

Analogous to the calculation for the evolution of the
external curvature along the future direction of the event
horizon, the evolution of the quantity (V,/;) along the
same direction on the background spacetime can be
obtained as

Li(Val;) = —KIR, ;. (27)

Since the additional matter fields are required to satisfy the
null energy condition during the perturbation process, the
total stress-energy tensor obeys the null energy condition
naturally according to Eq. (14). From Eq. (15), while using
the above convention, the null energy condition of the total
stress-energy tensor in coordinates {k%, 1% y¢} can be
rewritten as

T > 0. (28)

So far, the two assumptions that black holes will settle
down to a stationary state and that the total stress-energy
tensor obeys the null energy condition have been intro-
duced. To investigate the linearized second law of black
holes in the general second-order scalar-tensor gravity,
another assumption that a regular bifurcation surface exists
in the background spacetime should also be introduced.
The coordinates with two null vectors k“ and [ can be
constructed on any cross section of the Killing horizon as
{k%,1%,y¢}, and an arbitrary vector zZ¢ is involved to
represent one of the two null vectors, i.e., z¢ € {k“, [?}.
The assumption indicates that when any tensor X, .., is
smooth on the whole Killing horizon ‘H with bifurcation
surface, all indexes of the tensor X, .., contracting with
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the vectors z¢, i.e., X, .4, 21" - - - Z¢'» is also smooth over the
whole Killing horizon on the background spacetime if
the number of the null vector k¢ is less than or equal to the
number of the null vector /. This result has been demon-
strated in Ref. [28]. Next, we will briefly review the proof
process.

For stationary black holes, the event horizon H can be
regarded as the Killing horizon directly, and the bifurcation
surface B exists at the beginning of the Killing horizon. We
set £ as a null Killing vector that is tangent to the Killing
horizon, and S represents any cross section on the event
horizon. Other coordinates with two Killing vectors, i.e.,
{&*, s, y}, can also be constructed on the cross section of
the event horizon, in which s¢ is another null Killing vector
on the event horizon ‘H which is different from £“, and y¢
also represent transverse coordinates on any cross section.
Two null Killing vectors and transverse coordinates in the
coordinates {&“, s, y¢} satisfy the following relationships:
&y =—1, &%, =s%,=0, y?éa =Yyis, = 0. (29)
After introducing any scalar field C on the cross section S,
the two relationships between the two Killing null vectors,
&% and s, and the other two null vectors, k“ and /¢, can be
given as

k¢ = C&*, [*=C s, (30)
On the other hand, for any kth-order tensor X, ...,
we assume that it is smooth on the Killing horizon and
satisfies the condition L£:X, .., = 0. This condition means
that the tensor is invariant along the Killing horizon. Since
the coordinates {&“, s y¢} are also invariant along the
Killing horizon, and any vector z{ that corresponds to
one of the two null Killing vectors, i.e., z¢ € {&%, 5%},
the vector z{ will obey the condition L:z{ = 0. After
contracting z{ with all indexes in the tensor X, .., , the
quantity X, .,z ---z;* obeys a
Le(Xg, 02" - 2¢°) = 0, which also means that the quan-
tity is invariant along the Killing horizon. When the
selected cross section approaches the bifurcation surface
S — B, the value of the Killing vector £ will tend to zero
£ — 0. However, the identity s*£, = —1 in Eq. (29)
implies that the value of the Killing null vector s“ is
divergent when the Killing vector £ approaches zero. The
value of the scalar field C on the Killing horizon is also
divergent C — oo when S — B because the two null
vectors k¢ and [“ in the coordinates {k%, 1%, y¢} are finite
on the whole Killing horizon. Besides, when the cross
section S does not approach the bifurcation surface B, the
values of the two vectors z¢ and zZ¢ are both finite.
According to Eq. (30), all indexes in the tensor X, .,
contracted with z{ and z{, respectively, can be represented
by the following identity:

similar condition

Xy g 20 20 = O X, g (31
where m is the number of the Killing vector £ and n is the
number of the Killing vector s Since the vector z{ is
always finite, the quantity X, ., Z{" - - - Z;* on the left-hand
side of Eq. (31) is finite over the whole Killing horizon on
the background spacetime. However, since the value of the
scalar field C is divergent C — oo when S — BB, the value of
X4 q.21" - 2" must be zero to ensure the quantity on the
left-hand side of Eq. (31) is finite on the background
spacetime when m > n. In other words, when S — B and
m > n, we have

Xopoa 21 30 =0 (32)
on the background spacetime. This result means that for
any kth-order tensor X, .., , after contracting all its indexes
with the vectors z¢, the quantity X,, .., " - - - Z;* should be
zero on the background spacetime when the number of £ is
greater than the number of /¢. It indicates that this quantity
can be regarded as a first-order quantity. Otherwise, when
the number of k¢ is less than or equal to the number of /¢,
the quantity X, ., Z" ---Z;* can be regarded as a back-
ground quantity. In the following calculation, we will
directly use this result to judge the order of the relevant
quantity during the perturbation process.

According to the above three assumptions, we will
examine whether the second part of the Wald entropy
Sw» always obeys the linearized second law during the
matter fields perturbation. If it does not satisfy the linear-
ized second law, we will need to find what kinds of
correction terms should be added to the second part of
the Wald entropy to make it meet the linearized second law.
Following the similar train of thought in Ref. [22], when the
additional matter fields always satisfy the null energy
condition, if the second part of the Wald entropy of black
holes in the general second-order scalar-tensor gravity
always obeys the linearized second law during the pertur-
bation process, the second part of the Wald entropy should
meet the following relationship under the first-order
approximation of the matter fields perturbation:

1
E%SWZ ~ —4/ éHkk = —271'/ ETkk S O, (33)

where the equation of motion in Eq. (8) has been used in the
second step. The sign of inequality is only contributed by
the null energy condition of the additional matter fields,
which determines the variation trend of entropy of black
holes with the perturbation process. Next, it should be
clarified further why the inequality in Eq. (33) reflects the
second part of the Wald entropy obeying the linearized
second law. Since the assumption states that black holes
should settle down to a stationary state after the perturba-
tion process has been introduced, it implies that the rate of
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change of the second part of the Wald entropy will decrease
to zero at the end of the process. In other words, the
tendency of the rate of change of the second part can be
expressed equivalently as the second-order Lie derivative
of the second part of the Wald entropy and is always
negative, E%S\W <0, during the process. On the other
hand, the second part of the Wald entropy should always
increase during the process to ensure that black holes
eventually evolve into a stationary state. It means that the
first-order Lie derivative of the second part is positive,
ie., LiSwy > 0. It indicates that the value of Sy, monoto-
nously increases with the perturbation process, and the
second part of the Wald entropy satisfies the second law.
Therefore, according to the above discussion, if the second
part of the Wald entropy satisfies the relationship in
Eq. (33), it will obey the linearized second law of black
|

1

hole thermodynamics. In the following, we will only
focus on whether the second part of the Wald entropy
satisfies Eq. (33) to check whether it obeys the second law
under the first-order approximation of the matter fields
perturbation.

According to Eq. (33), to investigate whether the second
part of the Wald entropy satisfies the linearized second law,
we should first calculate the specific expression of Hy;
under the first-order approximation of the perturbation
process. After contracting two null vectors £ and using the
convenience as above, Eq. (9) can be rewritten as

Gl G2 p1 2
o = HE B L

and the concrete expression of each part in Hy; is given as

HIG = KRV PTG GR e+ RV PV GTGRyg + L KK GG pRy,

1

~ KR VGV PR, g+ % Kk , VAPV NV PRy — % K kb YV AGY NV PRy

+ %k“kbvagbchbvdvdqubc + ‘_1‘ k“kaC(j)V"gbequﬁRbme - %k“kbvagbvcvdqﬁvdgbRbc

+ KRG GTIT GV PRy~ KRV VG sRy — L KRIT GVT G R

+ % A A A VY S % kKNP 1 V! Ry + % KKV (Y V! Ry

+ %k“kaeV"g{)V OV PRy — %k“k”V‘i(pV VoV PR,y — %kakbvegbv VUGV PRy,

+ %k“kbvdgl)v VPV PR e — %kakbveqav VPV PRy — %kakbvegbvegbv VPR,

1 1 1
~ KR PGV VI PRy + KRV VN $VGR 4 7KKV G VPR (35)

1 1 1
Hi? = =S KRVVHT VNV V) + 5 KRV VYV Vi) + 5 KR TV PV, V0V o)

1 1 1
- 5 kakbvcvd(va¢vb¢vdvc¢) + E kakbvcvd(gz?dva¢vb¢veve¢> - E kakbvcvd(gadvc¢vb¢veve¢)

— SRV g 0BV PV V) = SRRV g VO,V V) + SRRV 5,5 Y, V9

SRR,V GV NV BP) + SRR 5, 9,9 V) ~ S KTV, ¥,V 9 V)

1

2
KRV 0,40, V09 T HVI ),

+ L Ve (g, V4V pVe ) + %k“k"V"V"(

1 1
=S KKVNUgep ViV apV pVeh) = S KUKV NV geaVypV VoV P) + S KUKV NV gy VapV VoV )

gadgcbved)veqﬁvafd))

(36)
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HIY = lk“thV‘qﬁV V.pV,¢ ——k“kh R VOV VPV b + ~ k“k”RV‘c/)V AVAV ——k“k”RV N AVAVY AV
— Kk R NPV V9PN i + kKPR VPN NPV p — Ek“kbRchCg{)VdVa(j)ngb + kKPR, 4V ,pVIVPY b
1 1
- E kakbRadcevC¢vevd¢vb¢ - E kakbRaecde¢vevd¢vb¢v (37)

and

(42)
Hy™ =

S KRGV (RY GV, ) + KTV (RygVoVh) + KKV 0 RV V)
— KR GV (Rep Y 95) + KK 0, (RY V) — KR (R iV V)
— KK GV (R TPV ) + KRV BV RV, 9,) = 5 KOV 9 (R ¥ V)
~ SR BV RV 9) + KR GV (R ¥ V) = 3 KK 9 (R V)
+ %k“kbRVachbqﬁvcchﬁ - %k“k”Rdeagdeq’zvcchﬁ S KR gV, VPV Ve op
+ %k“kbRadeqbV"qﬁVcV“qﬁ - %k“kbRadbeV"qﬁVeqﬁVCV“(ﬁ. (38)

According to Appendix A, for the convenience of calculations, the expression of H,(fkm under the first-order

approximation of the matter fields perturbation can finally be simplified as two parts,
Gl G1)1 G1)2
HG ="+ G, (39)

where the first part is

HE =2 (D) (k19,3 ¢><Df¢)<kbkCRm;~> + 5 (DD PV, V") (KA Ry, )
— S (DG pV B KK Ry ) = 5 (KIV Vo V") (Re)
45 (DT DGV 4 ) (KA Ry ) ~ % (D149, 949" $) (KR, )
S (V9 GV, V) (Re) + 3 (V749,787 (R, (40)
and the second part is
HIZY =3 (D) (L) D D)k VR ) =5 (C0) (D BDh) (R, (1)
[

For the expression of H,((fz) in Eq. (36), this part only approximation of the perturbation process. Considering any

contains all total derivative terms that come from the
derivation of the Lagrangian with respect to the
Riemann curvature. However, we cannot directly calculate

the result from the original expression of 1 i %) because this
expression is surprisingly complex after expanding all total
derivative terms. Therefore, a useful identity should be

further introduced to simplify the calculative process to

(G2)

deduce the final expression of H;; ™ under the linear order

two-form tensor X?2, one can demonstrate that the identity
can be written as

/EkaaX”b —,Ck/ékale“b. (42)

Using the identity of Eq. (42) and Leibniz’s law, the

expression of H,((fz) can be decomposed into four parts,

which can be formally written as
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/ eH\ = 2 / eH\G! — / eH\ " 4 £, / eH? 1 L, / eH\S" (43)

The first part of Eq. (43) is given as

—L2 / eH\ N = 2 / <—%va¢va¢vbvb¢ + %vaqsv,,vaqsquﬁ - %kakbmdva(/)vbvd(pvcf/) N AV AV AVAVY)
+ %k“ AVAVFAVAVA v %k“ 'YV, V . pVp — %k“ AVAVA VRV vir %k“ AVAVAVIAV

+ %k‘l VARV %k“ RV AVA VAV %kakbzczdvbvawcwd(p
1 bjycyd 1 b d
KRV PV PV T yp+ KR ILT PV,

:—E%/épwz, (44)

where the entropy density of the second part of the Wald entropy in Eq. (17) has been used in the last step.
The second part on the right-hand side of Eq. (43) can be written as

/ H / (kaVL kb>vd( vc¢vbva¢vd¢ + va¢vbvc¢vd¢ + vc¢vb¢vdva¢ - va¢vb¢vdvc¢

+ 9eaVa VoV VD = 9uaV PV, 0V Ve — 9,V ipV iV VD + 9,V PV 19V Ve
= 9eaVaPVehV VD + 9uaV PVLV VD + 9op ViV aV PV = 9,V PV iV PV P
+ 9eaVoVahV VP = §uaVi V.V VD = 9oy ViV oV VP + 9,V iV V pVE P
= 9eaVodVVupVeh + 9o ViV ViV + guaVipV V pVh = g, ViV V pVE P
+ gadgchve¢ve¢vaf s gadgcbve¢ve¢vaf s gadgc'bve¢v_fve¢vf ¢+ gahgcdvefﬁvaeébvf b).
(45)
According to the result in the first part of Appendix B, the integrand is equal to zero under the first-order approximation of

the matter fields perturbation. Therefore, the second-part on the right-hand side of Eq. (43) does not contribute to the final

result of H,((fz) under the linear order approximation, i.e.,

/ eH\9? ~ 0. (46)

The specific expression of the integrand in the third part on the right-hand side of Eq. (43) is given as

1
H?™ = 2 (VI (Y VYV Vi + VeV Vop Vo + Vd V¥,V o

= VepVdV Vi + 9aV PV, ¢V VD = 9.aV 1V 1,9V VP

= 9apV PVabV VP + 9op VoV iV VP = 90aV PV, V VP

+ 9eaVaPVV VD + gup Ve ViV 9V = g, ViV 4V pV<

+ 9aaVo VeV VD = gaViV iV VP = g ViV PV VP

+ 9ebVaVadV VD = §uaVypV VOV + 90y ViV V pV P

+ 9eaVePVeVudVeh — gV iV NV VD + 9ea9apV VPV NV

— 9e69aaV e DV DV N P = 9eagay VOV (N oV G + 901,90aV PV N OV ). (47)

According to the result in the second part of Appendix B, the expression of Eq. (47) under the linear order approximation of
the perturbation process can finally be simplified as
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G2)3 1 aey L o ¢
H 2 == (L3) (Do) (Dadh) (VUE) + 5 (L3) (DepD* ) (V°Le). (48)
The specific expression of the integrand in the fourth part on the right-hand side of Eq. (43) is expressed as

1
H?" = 2 (VU (Y VYV Vi + VeV, VoV + Vd ViV, b

= VeV dV Vi + 90aV PV dV VD = 9.aV 1V, 9V VP

= 9abpV PVadV VP + 9op ViV aV VP = 90aV V)V VP

+ 9eaVaViV VD + gV ViV VP — 9p ViV 4V pVP

+ 90aVoV PV VD = 9eaV ViV PV — 9 VaV PV HVE P

+ 9esVaVa@V VP = §uaVohV NV dVP + i VapV . V.oV

+ 9caVdV ViV — g, ViV V Ve + gcdgahve¢ve¢vaf ¢

- gcbgadve¢ve¢vaf¢ - chgahv%vaefﬁvf(ﬁ + gcbgadve¢vae¢vf¢)' (49)
According to the final result of the third part in Appendix B, the remainder terms of H,(i,;m under the first-order
approximation are given as

Hi = %(k“lbv V,$)(D:pDih) (B ) + %(D@¢D;¢)(vmvm¢)(3@f')

= (D@qsvamqsvm@w@f ) =5 <kazbvavb¢><vm¢vm¢><3%>

+ ; (D3D:9, V") (BT - 1( D149, 9,77 ) ()
- E (vmgbvmgbvnvnql)) (Béé) + 5 (Vnz¢vnvln¢Vn¢) (Bé?z)' (50)

Furthermore, the evolution of the determinant of the induced metric on any cross section of the event horizon along the
future direction can be calculated as

L7 =07 ~Ole). (51)

It is shown that the evolution of the induced metric is a first-order quantity based on the assumption that the expansion does
not exist in the background spacetime. From Eq. (50), utilizing Leibniz’s law, while using the second identity in Egs. (25)
and (51), the expression of the fourth part on the right-hand side of Eq. (43) under the first-order approximation can be
further calculated as

Ly / eH / eoH\* / eLH O ~ / eL H\G

1 S 1, .
= [ €| WD DT R ) 5 (D BD )Ty V) (AR )

+ 3 (D' BDIV $V B KK Ry ) + 5 (VY1) (V"8 ) (R
= S (DDA TP KK Ry ) + 5 (DT 9,9 0" ) (K Ry )
3 (VI G9,97) (R) = 5 (V"99,9, V") (Rs) | (52)

Integrating Eq. (40) on the cross section of the event horizon and combining this integral with Eq. (52), one can see that
these two terms will cancel each other out,
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/ eHS' 4 L, / eH\%* ~ 0. (53)

Besides, from the expressions of Egs. (41) and (48), utilizing Eqs. (27) and (51), the integral form of the second part in
Eq. (39) on the cross section and the third part of Eq. (43) can be simplified as

[t o [ = [ 00 GOT0R ) = LG D1 (D) (V)
-5 (0D D) IRD) + 3 LA DV 9 (V)|

=23 [ e (Eh DO T30 - S L DD T (54)

Therefore, the integral form on any slice of the event horizon of the first two terms in Eq. (34) under the first-order
approximation of the matter fields perturbation can finally be written as

[ 4 P =2 [ elow + L L0 DO 11) - O IDHTT)] . (59

According to the final result in Appendix C, Eq. (37) is equal to zero under the first-order approximation of the matter
fields perturbation, i.e.,

Pl
H?Y ~0. (56)

It means that the third part on the right-hand side of Eq. (34) does not affect whether the Wald entropy satisfies the linearized
second law.

According to Appendix D, Eq. (38) under the linear order approximation can finally be written as

1 5 1 .
H? =2 Di(R) (DT ) (Ve Vep) + 5 (R (DT ) Dy (V opV°¢p)

+ 3 (R) (Ve Ve ) (D Deh) = 5 (D) D (KK R V4V )

N =

3 (KK R 1, V<4 ) (D D) — (Ru) (T V) (K19, ¥ )
1

(LiRi) (Vo pVeP) (199 1b) + (K419V Y 1p) (DIh) (D" h) (KK Ry 7

+

N — N

(KKPKV R 1347) 1V 4)) (D7) (D' ). (57)

The first three terms of Eq. (57) can be further simplified as

. 1 . 1 R
ED}(Rkk)(Df $)(VepVP) + 2 (Ru) (D! $)D3(V V) + 5 (Ru)(Veh Vo) (DD )
1 .

= 3 D;[Ru(V49.) (D)) (58)
The fourth and fifth terms in Eq. (57) are calculated as

1, : : . : .
=3 (DD (KK R VBV ) = 5 (KK Ry VGV ) (D Deh) = = 5 Del(KR R VAV ) (D). (59)

044072-14



GENERALIZED ENTROPY INCREASE AT LINEAR ORDER IN ...

PHYS. REV. D 106, 044072 (2022)

If we assume that the event horizon of black holes in the general second-order scalar-tensor gravity is compact, the surface
term of the integral on the cross section of the event horizon does not contribute to the final result. It means that two results
of Egs. (58) and (59) are both neglected directly. The sixth and seventh terms of Eq. (57) are further simplified as

—(Ri) (Vo Vep) (k19 Y yp) _%(ﬁkRkk)(ve¢ve¢)(ldvd¢) = (L10)(VpVeP) Ly (1°V 4p)

The last two terms of Eq. (57) are
(k1Y ¥ 40) (D) (D" p) (K"K R 1)
= —(LiBy) (DY) (DP$) L, (1V o) -
=3[} B DB P )1V

According to two results in Eqgs. (60) and (61), the integral of H;;

£ 3(L30) (VY 0) (149 19)

~ 0 2 0(V.0V*9) (") (60)
3 (KRR R 1) (V,1) (D) (D)
2 (£3B,3) (%) (DF ) (1)
(61)

(42) on the cross section of the event horizon under the first-

order approximation of the perturbation process can be written as

JE

- / [;Ba,xmqs)(z)%)(zcchb)

~ SOV HVD (19 ) (62)

Finally, combining Eqs. (55) and (56) with Eq. (62) and supplementing the coefficient 1/4 on two sides of the equation,
while according to the equation of motion in Eq. (8) and the null energy condition in Eq. (28), we have

1
‘Ci(SWZ + Sct) = _Z/ €Hy = —271'/ €Ty <0,

where
Sa=g | ELB) D DD B)Tite) - (L) (D5 4De) (V'

Equation (63) indicates that the second-order Lie derivate
of the second part of the Wald entropy with the correction
terms is always negative under the first-order approximation
of the matter fields perturbation, and the sign of inequality is
contributed only by the null energy condition of the total
stress-energy tensor. According to our discussion under
Eq. (33), this result indicates that the first-order Lie derivative
of the second part of the Wald entropy with the correction
terms is always positive during the perturbation process. It
means that the entropy of black holes that consists of the
second part of the Wald entropy and the correction terms will
always increase during the perturbation process. In other
words, the second part of the Wald entropy does not obey the
linearized second law directly, and the second part of the
Wald entropy with correction terms will collectively meet
the linearized second law. Besides, the second part of the
Wald entropy comes from the nonminimal coupling term in
the Lagrangian that describes the interaction between the
double dual of Riemann curvature and the scalar field. If the

(63)

N

le) + By (D' $)(DP ) (1°V ) = O(V V< $) 1V uh)]. (64)

|

nonminimal coupling term is involved in the Lagrangian of
any gravitational theory, the Wald entropy of black holes in
the gravitational theory must not satisfy the linearized second
law. And the correction terms in Eq. (64) should be added to
the expression of the Wald entropy at least so that the
modified Wald entropy obeys the linearized second law
during the perturbation process. On the other hand, this result
also shows that when any nonminimal coupling term that
describes the interaction between gravity and any matter field
is involved in the Lagrangian of the gravitational theory, the
Wald entropy does not generally satisfy the linearized second
law. Moreover, we should further reconstruct the expression
of the entropy of black holes that meets the linearized second
law all the time.

IV. CONCLUSIONS

Although it has been shown that the Wald entropy
always satisfies the first law of black hole thermodynamics
in any diffeomorphism invariant theory of gravity, whether
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the Wald entropy meets the second law of black hole
thermodynamics all the time during a physical dynamical
process has not been generally demonstrated. Since an
appropriate scheme to quantize gravity has not been
proposed until now, we have not been able to study the
self-interaction of gravity and the interaction between
gravity and any kinds of matter fields under the quantum
scale directly. Therefore, the low-energy efficient gravita-
tional theory that corresponds to the original gravitational
theory should be constructed first to investigate these two
types of interactions at the quantum level. Furthermore, the
properties of the two types of interactions can be studied
approximately, respectively, through the corresponding
efficient theory. When considering the low-energy efficient
theory of a quantum gravitational theory with the self-
interaction of gravity or the interaction between gravity and
any matter field, some quantum correction terms corre-
sponding to different types of interactions under the
quantum scale are introduced in the expression of the
Lagrangian. According to the definition of the Wald
entropy, these quantum correction terms, especially those
describing the self-interaction of gravity and the non-
minimal coupling interaction between gravity and the
matter fields, will substantially modify the expression of
Wald entropy. Since the Wald entropy generally satisfies
the first law of black hole thermodynamics in any diffeo-
morphism invariant theory of gravity, we expect the Wald
entropy in any gravitational theory also meets the second
law all the time. However, before finding a general method
to study the second law of black hole thermodynamics,
when any gravitational theory contains arbitrary types
of nonminimal coupling interaction, we need to verify
whether the Wald entropy of black holes in these gravi-
tational theories still meets the second law of thermody-
namics one by one.

Considering a situation where the self-interaction of
gravity is contained in the gravitational theory, some
high-order curvature correction terms are added to the
Lagrangian in the corresponding low-energy efficient
gravitational theory. However, for this situation, when
considering the perturbation process by the matter fields
minimally coupling to gravity, it has been generally
demonstrated that the Wald entropy does not meet the
linearized second law during the perturbation process.
Furthermore, the general expression of the entropy of
black holes, which can be written as the Wald entropy
with some correction terms, always obeying the linearized
second law in any high-order curvature gravitational theory,
has been obtained. However, unlike the first situation, the
second law of black holes in the gravitational theory with
the nonminimal coupling interactions, which describe the
interaction between gravity and any matter fields, has not
been sufficiently investigated. Recently, a general second-
order scalar-tensor gravity has been proposed, and the
Lagrangian of the theory can be expressed as a linear

combination of four components. In the four components,
there are three types of nonminimal coupling terms. The
three nonminimal coupling terms are the nonminimal
coupling term that represents the interaction between the
Einstein tensor and the scalar field, the nonminimal
coupling term that describes the interaction between the
double dual of the Riemann tensor and the scalar field, and
the Gauss-Bonnet combination. According to the defini-
tion, the three nonminimal coupling terms will substantially
contribute to the expression of the Wald entropy, and the
Wald entropy can also be written as a linear combination of
four parts because the Lagrangian is a linear combination of
four components. To investigate whether the Wald entropy
of black holes in the general scalar-tensor gravity obeys the
linearized second law and whether each part in the Wald
entropy satisfies the second law under the linear order
approximation of the perturbation process need to be
examined separately. If one of the four parts does not
obey the linearized second law, the Wald entropy of black
holes in the gravitational theory does not generally satisfy
the linearized second law. And we need to reconstruct the
new expression of the entropy of the black holes such that it
meets the linearized second law all the time during the
perturbation process. In previous work, we have demon-
strated that the Wald entropy in Horndeski gravity satisfies
the linearized second law. It indicates that the first part of
the Wald entropy always obeys the linearized second law.
Since the third part of the Wald entropy is contributed by
the third component in the Lagrangian that only contains
the Ricci scalar, the third part of the Wald entropy will
degenerate into the Bekenstein-Hawking entropy that
automatically satisfies the second law according to the
area theorem. However, the fourth part of the Wald entropy
contributed by the Gauss-Bonnet combination does not
obey the linearized second law because the entropy of black
holes in Gauss-Bonnet gravity that meets the linearized
second law is JM entropy. Therefore, it implies that even
without considering the second component of the
Lagrangian, the entropy of black holes satisfying the
linearized second law contributed by the first, the third,
and the fourth components of the Lagrangian can no longer
be written as the Wald entropy. Therefore, to obtain the
entropy of black holes in the general second-order scalar-
tensor gravity that always obeys the linearized second law
during the perturbation process, we only need to investigate
whether the second part of the Wald entropy satisfies the
linearized second law. If it does not obey the second law, we
need to figure out how to correct the second part of the
Wald entropy such that the expression of the modified
entropy meets the linearized second law.

First, a quasistationary accreting process should be
introduced to examine whether the second part of the
Wald entropy satisfies the linearized second law. This
process describes that additional matter fields minimally
coupling to gravity outside black holes pass through the
event horizon and fall into black holes. It means that the
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accreting process can perturb the spacetime geometry of
black holes. Moreover, we require that black holes will
settle down to a stationary state after the accreting process
and that the additional matter fields should always satisfy
the null energy condition. Besides, to ensure that any tensor
field is smooth near the Killing horizon, we also assume
that a regular bifurcation surface exists in spacetime. From
the three assumptions and the Raychaudhuri equation, to
examine whether the second part of the Wald entropy
satisfies the linearized second law, we should check
whether the second-order Lie derivative of the second part
of the Wald entropy is always negative during the pertur-
bation process. The results show that the second-order
Lie derivative of the second part of the Wald entropy with
some correction terms is always negative, and the sign of
inequality only comes from the null energy condition of the
additional matter fields. In other words, the second part of
the Wald entropy with correction terms increases with the
perturbation process. It indicates that the second part of the
Wald entropy needs to be corrected to satisfy the linearized
second law. On the other hand, this result also implies that
for any gravitational theory, when the nonminimal coupling
term, which describes the interaction between the double
dual Riemann curvature and the scalar field, is contained in
the Lagrangian of the gravity, the Wald entropy should be
further corrected to satisfy the linearized second law.
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APPENDIX A: CALCULATION H'\S" UNDER THE
LINEAR ORDER APPROXIMATION

In this appendix, we would like to calculate H,(gl) in

Eq. (35) to obtain the expression under the first-order
approximation of the matter fields perturbation. In previous
research work, we have shown that on the background
spacetime, two null vectors k* and [ in the coordinates
{k, 1, y¢} satisfy the following two identities [26]:
kbvbl‘l >~ 0, Vakb >~ 0 (Al)
Equation (A1) means that the two quantities K’V [ and
V .k, are both first-order quantities during the perturbation

process. In the following calculation, we will directly use

the results in Eq. (A1) to evaluate the expression of H,(il)

under the first-order approximation. To clearly represent
the order of each tensor after contracting with the two null
vectors k¢ and [, we will introduce two kinds of brackets
with subscript n, i.e., (), or ], (n =0, 1), where n =0
represents a background quantity in the two kinds of
brackets and n =1 represents a first-order quantity in
the two kinds of brackets. Besides, to simplify the calcu-
lation and the expression of the equation, we first combine
some terms in Eq. (35) according to the symmetry of the
Riemann curvature tensor and further calculate the expres-
sion of these terms under the linear order approximation.
The specific calculation process is as follows.
The first four terms in Eq. (35) can be calculated as

1 1
- Z kakbvc¢vdva¢ve¢Rbcde + Z kakbva¢vdvc¢ve¢Rbcde

F RRTGGTT PR, ~ KKV GV GTTGR

1 . 1
= ) kakbvc¢vd¢veva¢Rbfghycf J’dg }’eh - B kakbva¢vc¢vevd¢Rbgfhycf }’dg YEh

1 1
+ ) Ve¢Vdva¢vf¢k“kbkcldegch}’ng’fh - ) Vaqﬁvdveqﬁqu’zk“kbkc ldegch?’eg?’fh

1

1

2
1

. 1 .
- 5 ve¢vd¢vaa¢ka kP ke ldegchyeg}/fh + 5 va(pvdqﬁvaegbkakhkc ldegchye'qyfh
1
+5 veql)vbvaql)vfd)ka kbkc ldchdhyegyfh - 5 vaql)vbveqﬁquﬁkakhkc ldchdhye'qyfh

: 1
- ) Ve¢vb¢vaa¢kakbkcldchdh}’ng’fh + B va¢vb¢vae¢kakbkc ldchdh)’ngfh

1 1
+ Evg¢vbva¢ve¢kakbkckdlelfRCfdh}/gh - 5Vaqﬁvbvg(ﬁve(ﬁk“kbkckdlelchfdh}/gh

1

1
-5 V,dVopV N (kK kKU R gy + 5 V. VoV NV ke kK kIR g g1y

(A2)
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The first term of Eq. (A2) is

1 ) 1, . P 5
Ekakhvc¢vd¢vevufﬁRbfghYLdegYeh ) (DL¢)0(Dd¢)oDe(£k(/’)1 (kthz-Zza)l ~0. (A3)
The second term of Eq. (A2) is
1 1 S .\
—5kakbvafﬁvcfﬁvevd‘ﬁRbgfh?CdegYeh ) (£k¢>1(kbRb82@)1 (DeDd¢)o(DC¢)o ~0. (Ad)
The third term of Eq. (A2) is
1 : 1, 5
5Ve(f’vdva(ﬁquﬁkakbkcldech’Eg)’ﬂl = 5 (De(f’)o(kaldvdvaﬁb)o(Djﬁb)o(kbchbec}')1 ~ 0(6)- (AS)
The fourth term of Eq. (A2) is
1 . 1 N 5 .
~3 VapV iV PV 1 pk k" k1 Rygery Iy = — 2 (L) (19N Vo) (DT ) o (K"K Ryyp.7) , = 0. (A6)
The fifth term of Eq. (A2) is
1 1 . .
- 5 ve¢vd¢vaa¢kakbkc ldegchyegyfh =~ 5 (De¢)0(ldvd¢)0Df(£k¢) 1 (kbchbécf’>1 ~0. (A7)
The sixth term of Eq. (A2) is
1 1 P
Eva¢vd¢vae¢kakbkcldegchyegyfh = ) (£k¢)1(ldvd¢)0(DfDeéb)o(kbkCRbec})1 ~0. (A8)
The seventh term of Eq. (A2) is
1 , 1, 2 X
zve¢vhva¢vqf¢kukbkc ldchdhyegyfh = 5 (De¢)0(£%¢)l (Df¢)0(kL ldRcédf)() ~ O(E) (Ag)
The eighth term of Eq. (A2) is
1 apbycid eq,,fh 1 2 Vi cyd
_Eva¢vhve¢v_f¢k k7kel chdiﬂ’ = —E(ﬁkfﬁ)]D (£k¢)l<D ¢)o(k ! Rcéd}”)g ~0. (AlO)
The ninth term of Eq. (A2) is
1 | N
- 5 ve¢vb¢vaa¢kakbkcldchdhyegyfh =~ 5 (De¢)0(’ck¢) lDf(£k¢) 1 (kcldRcédf)() ~0. (Al 1)
The tenth term of Eq. (A2) is
1 i 1 PR .
E vagbvbd)vaedﬂcakbkc ldchdhyegyfh = 5 [(£k¢)1]2(Df De¢)0(kL ldRcEdj’)Q ~0. (A12)
The eleventh term of Eq. (A2) is
1 _ | X
5vg¢vbvu¢ve¢kakhkLkdlelchfdh},gh =3 (D)o (L3p), (1°V o) (kK I R f45), = 0. (A13)
The twelfth term of Eq. (A2) is
1 , 1 . )
- Eva¢vbvg¢ve¢k“kbk‘ KUUR gy = = 2 (Ligp), DI(Lyp), (1V o) (kKU R . 145), = 0. (A14)
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The thirteenth term of Eq. (A2) is
1 i | P )
_Evy¢vh¢veva¢kakbkckdlelchfdhygh = —E(D%)o(ﬁkﬁlﬁ% (k1Y V 00)o (K kY R fa5), = 0. (A15)

The fourteenth term of Eq. (A2) is

1 1 A

5va¢vb¢vevg(pkakbkckdlelchfdh}/yh = B [(Ek(ﬁ)1]z(lgvevgfﬁ)o(kckdlchfdg)1 ~0. (A16)
Therefore, the first four terms under the first-order approximation are expressed as

labcd e 1ab d\7jc H\7€ labcde lah d t\7e\J¢

_Zk k°V ¢v va¢v ¢Rbcde +Zk k va¢v \ ¢v ¢Rbcde +Zk k°V ¢v ¢v va¢Rbcd6_Zk k Va¢v ¢v \ ¢Rbcde

3 (D*B) (K15 7 ) (D ) KRRy ) + 5

S (DXL (DT ) (KR 7). (A17)

The fifth, sixth, seventh, and eighth terms of Eq. (35) are further given as

i KKV, pV APV NV PRy — % KKV PNAPY N PRy gy + }1 kKb Ve PV VPR, + i KKV PV T PR e

1 1
= E kakbva¢vc¢vmvm¢Rbgdh76dygh - E va¢vd¢vmvm¢kakbkcldegchygh

1 X 1 :
+ 5 ve¢vf¢vm Vm¢kbkc Rh_gchyegyfh - E va¢vh¢vm Vm¢ka kb ke ldchdh },gh

1 :
+ 5gaevgqbvbgbvmvmg{)k“kbkckdlelchfdhygh. (A18)

The first term of Eq. (A18) is

1 , 1 N
5 kakhva¢vc¢vmvm¢RbgdhyCquh = E (£k¢) 1 (kbRbé)l (DL¢)O (vmvm¢)0 ~0. (Alg)
The second term of Eq. (A18) is
1 1
= 3 Vel V¥ T PR LR = == (L) (17 4h)o (VP B)o (Rig) 0. (A20)
The third term of Eq. (A18) is
1 : | .
5ve¢vf¢vmvm¢kbkcRbgchyeyyfh = E (D8¢D'f¢vmvm¢)0(khkLRbécj")1 ~ O(G) (A21)
The fourth term of Eq. (A18) is
1 i 1 )
=3 VeV VPR LR i = =3 [(£4h) P (V0 V"B (K 1R ) 0. (a22)
The fifth term of Eq. (A18) is
1 mp1.brcrdif h 1 g m crdif
_zvg¢vb¢vmv ¢k kkel Rcfdhyg = _E(Dq(l))ﬂ([’kqﬁ)l(vmv ¢)O(k kel Rcfdf])l ~0. (A23)

So the fifth, sixth, seventh, and eighth terms of Eq. (35) under the first-order approximation are written as
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%k‘* KN VAPV NV PR, — %k‘* KEVEPVAPY NV PRy ge + %k‘* kP VPV VAGR,, + %k‘* KEVEPVEPY VI Ry

~

(D2PDI PV, V") (KK R ,5.5).

N[ =

The ninth, tenth, eleventh, and twelfth terms of Eq. (35) are calculated as

(A24)

— KT SN PVGR, - KRG GV DRy~ RN VTG PRy — L KRGV DR

= KRRV T IV Vb 4 5V 0V GRRK LRy — 2 5 V9 VR Ry

1 1
+ 3 V.V V,, V" Pk kP kIR .4 + 3 ngﬁvbquﬁvmqﬁkbkckdlchfdhygh.

The first term of Eq. (A25) is

S KRR,V 0 GV = =3 (£4), (K Ri)y (VY97 0.
The second term of Eq. (A25) is

SV T VPR Ry = 2 (L)) (19,5 VD)o Ri) = .

The third term of Eq. (A25) is

1 . 1 . -
—EVe(ﬁvamfﬁvmfﬁkbk‘Rbgch}’eg}’fh = —E(D€¢vam¢vm¢)0(kbkCRbéC})1 ~ O(e).

The fourth term of Eq. (A25) is
1 1
5Va(ﬁvbvm(ﬁvm(ﬁkukbkcld&d =3 (L), (K°V VN ) (kIR 4) = 0.

The fifth term of Eq. (A25) is

1
5 ngﬁvhVm¢vm¢khk”kdlchfdhy-‘/h =

SN

(D)o (k"N N V" )1 (K KV R g5), 0.

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

So the ninth, tenth, eleventh, and twelfth terms of Eq. (35) under the first-order approximation of the perturbation can be

given as

TN

~ —

(D2PVIV,, pV" ) (KK R 5, 7).

M| —

The thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (35) are

KRV T T PR, + KRV GTIT (B R s~ KRNV VNPT R L KNPV GT AT G R

(A31)

%k“ KAV V1 pV PRy — %k“ KEVAVEPV 1V PRy + ik" KV GV 1V PRy, + %ka KNPV V! PR e

1 1 1
= E kakbRbevdva(pvc(ﬁvC(ﬁyde - E vdva¢vnz¢vm¢kakbkcldec + 5 vae¢vm¢vm¢kbchbgchyegyfh

- % YV, V.V, V" pkk k1R g — %vagqbvmd)vmqbkh KK Ry gy
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The first term of Eq. (A32) is
SRR,V V0 BV = DL, (KR, (VehVe)y =0, (433)
The second term of Eq. (A32) is
2 VAV GV RN R, = =3 (1YY ) (V9" o(Ru)y ~ Ofe). (A34)
The third term of Eq. (A32) is

1 ' P
5vae¢vm¢vm¢kbchbgch7€gyfh = (DfDe(j)Vm(j)V’"(p)o(khkCRb@CJ,)l ~ O(e). (A35)

N =

The fourth term of Eq. (A32) is

1

1 N
_Evbvaqsvmd)vmqﬁkakbkcldRcd = - (‘Czqﬁ)l(Dé¢De¢)O(kcldRcd)O + (£z¢)1(£k¢)1 (levegl))o(kcldRcd)O

2
1 N
~ 1 (£39), (DD )y (1R ) ~ Ofc). (A36)
The fifth term of Eq. (A32) is
1 i 1 N .
- 5 thggbvmqﬁvmqbkhkL kdlchfdh]/gh = — 5 (khvbvg¢vm¢vm¢)l (kc kdlfRLfd?))] ~0. (A37)

Therefore, the thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (35) under the linear order approximation can
finally be written as

1 1 1 1
1 kakbvdva¢vf¢vf¢1ebd ~7 kakbvdvc¢vf¢vf¢1ebm + 1 k“kbvevagﬁquﬁvfd)Rbe + 1 k“kbvevcd)quﬁvfd;Rbme

—_

L (K1 ) (Vo VD) (i) + 5 (D D5 V7 ) RPA Ry 7) 5 (C30) (D DF ) KPR, (A38)

The seventeenth, eighteenth, nineteenth, and twentieth terms of Eq. (35) are

- ik“k”vdgbvaaq’)vf DR,y — %kﬂkhve(;sv VYV PRy, + % kK kPN APN NGV R — %kukhveqbvacwf DR e

= SRR, T TV 4 5V sV, VPR R, — 2 09,0V GRR Ry
1 1
3 ViV VbV DK KV Ry = 5 VoV oV VKK R 1 (A39)
The first term of Eq. (A39) is
1 1 .
- 5 kakbRbevcva¢vc¢vd¢yde == E (kavcvad)vcd))l (kbRb[i)l (Dd¢)0 ~0. (A4O)

The second term of Eq. (A39) is

1

%vd¢vmva¢vm¢kakhkcldRhc =1V ) (k*V , V.V )1 (Rir); = 0. (A41)

O]
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The third term of Eq. (A39) is
1 1, 5
_5vf¢vmve¢v’n¢kbkCRbgchyegyfh = —5(Df¢vmve¢vm¢)o(kbkCRbécj)1 ~ O(e). (A42)

The fourth term of Eq. (A39) is

1 1
E vb¢vmva¢vm¢kakbkcldRcd = E (‘Ck¢)1 (kavmva¢vm¢)l (kcldRcd)O ~0. (A43)
The fifth term of Eq. (A39) is
- % VoV, V V" PPk kU R gy = % (L) (Vu VIV ) o (KkUF R 1 g5), = 0. (Ad4)

So the seventeenth, eighteenth, nineteenth, and twentieth terms of Eq. (35) under the first-order approximation can be
written as

_ L apryagy VoV PR,y — % K kbVegN NPV PRy, + % K kAN VPV PRy gy — %kakbveqsv VPV PR g

N
—_

=~ (DIV, V'V P) (K kR 7). (A45)

The twenty-first and twenty-second terms of Eq. (35) are
RO GV VPR 1~ KR VTV PR = 3 (Vo V0,V (Ric) ~ Ole). (Ad6)

The twenty-third and twenty-fourth terms of Eq. (35) are

1

1 : 1
Z kakhvf¢vgvf¢vg¢Rab + Zkukhv'f¢vgv/'¢vg¢Rab = (Vm¢vnvm¢vn¢)0(Rkk)l ~ 0(6) (A47)

N |

Combining with the above results, for the convenience of calculation, we will decompose the expression of H Ef,fl) under

the first-order approximation of the matter fields perturbation into two parts, i.e.,

H = HG + HG, (Ad8)
where
H = (D) (K199 ,9,8) (D §) (KR ) + 3 (D*BDI GV, V") K Ry ) — 5 (D' GVIT 607 ) (KR 7)
1 1, 5 1, - R
3 (k19N V(N V" $) (Ri) + 3 (D' D)V, pV" h) (K"K Ry 7) = 3 (DI ¢V, VepN"h) (K kR ,5.7)
1 1
- z (vm¢vm¢vnvn¢) (Rkk) + 5 (vm¢vr1vm¢vn¢) (Rkk)’ (A49)
and
| 5 1 R
" =3 (D) (L3) (D D) (K VR ) = 5 (L3) (DF $Dep) (K 1Reg). (A30)
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APPENDIX B: SIMPLIFICATION OF RELEVANT
TERMS IN H\” UNDER THE LINEAR ORDER
APPROXIMATION

In the second appendix, we mainly focus on the three

integrands, H,ifz)z, H,({fm, and H,(sz)ét, in the last three

integrals of Eq. (43) to calculate the expressions of the three
integrands under the first-order approximation of the
perturbation process. Similar to the calculation procedure
in Appendix A, we still first combine relevant terms
according to the symmetry of the Riemann tensor to reduce

|

[NSR

the complexity of the calculation in this appendix. In the
following, we will divide the content of this appendix into
three parts to calculate the three integrands under the linear
order approximation of the matter fields perturbation,
respectively.

In the first part, we simplify the integrand H,((fz)z in the
second integral of Eq. (43) to obtain the final expression
under the first-order approximation of the perturbation. The
specific expression of H ]({(]{}2)2 has been given in Eq. (45).
The first four terms of Eq. (45) can be calculated as

(TR V(Y T,V V) — 5 (KR TV, 9, V.9 )

— S VRV 0,5V, ) + 3 (VR (V9,49 )

1

= =5 KRy IV (V VNV hVag)] (7 VKT =

1
E [ka kb legva (vf¢vbva¢vd¢)] (ygevekd)

1 1
+ E [kayef}/gdvf(vd¢veva¢vb¢)] (7/gcvckb) + 5 [kakblc}/gfvb (va¢vcvf¢vd¢)] (ygevekd)

1 , 1 :
+ 5 [kukb lLygfvc (va¢vbvf¢vd¢)] (ygeVekd) - 5 [kayefygdvf(Va¢vevd¢vb¢)] (},yCVL kh)

1 ' 1 :
+ 5 [kakb lcygf vb (vf¢vc¢vdva¢>] (ygevekd) + 5 [kakblcygfvc‘(qusvbd)vdvaqﬁ)} (7gevekd)

1

- 5 [kayef}/gdvf(vd¢ve¢vbva¢)] (ygcvckb>
!

2

The first term of Eq. (B1) is

1

The second term of Eq. (B1) is

1
2

1
- E [ka k? lc}/gfvb (va¢vc¢vdvf¢)] <7ge Vekd)

1
[kakblc}’gfvc(vafﬁvbfﬁvdvbflm (r7.Vek?) + 5 [kayef?’gdvf(va¢ve¢vbvd¢)](VQCVckb)-

[ka kb lcygfvc (vf¢vb va¢vd¢>] (7gevekd) =

1 .
2 [kakblc}/gfvb (vacva¢vd¢)] (7gevekd) = - E (kbvbvf(ﬁ)l (ka lcvcva¢)0<vd¢) (vfkd)l

(B1)

(D) (KR, 9,9,0), (V) (V7K
1 5
3 (D) (K1Y, Y )y (Y, V), (VD) 0. (B2)
S0 V30),(£39), (V) (VTR

1 N
2 (D), (KR 1T T, 7,), (Fh) (VT ),
— 5 (D30),(£30), (V.Y i) (V) 0. (B3)
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The third term of Eq. (B1) is

ST 1,0V (T V98] VR) = 3 (DD D (L) (V) (VIRY)
£ 3D (KT VY, (V) (VA?),
£ (Dh)yDF (L) (VaVh) (V) 0,
The fourth term of Eq. (B1) is
SRRy S0, (V95 BV )17 VoK) = 3 (L3, (9. T2 (Vo) (VoK)
b3 () (1,9 Ve (V) (Vo)

The fifth term of Eq. (B1) is
1 1 N
5 [kakb legva (va¢vbvf¢vd¢)] (7gevekd) =5 (ka lcvcva(ﬁ)ODé (‘Ck(ﬁ)l (vd¢)(vekd)l

(L) (K1Y Y, Vo) (Vag) (VEKT),

l\)\»—l\il'—‘

The sixth term of Eq. (B1) is
1 A .
) [ka}/efygdvf(va¢vevd¢vb¢)](ygcvckb) = (£k¢)1 (DeDefﬁ)o(vb(ﬁ)(vckbh

(L4)1 (DDyD )y (V) (VERD),

NI*—*I\)\P—‘I\)l'—‘

The seventh term of Eq. (B1) is
1 o 1 R
SRV (V VT o))V K) = 2 Dal(Lah), (V) (K VaV ) (V)

(Dsh)o (K 19V, V . p)o Dy (Lih), (B,

+

NI»—‘[\)|>—‘NI>—‘N|H

(Deh)o(K1V, NV p)o(L7h), (HVoky),

(D)o (1°Vep)o(Ligh), (W VCky), 0.
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(L), (1 chéqb)o(kbvbvdqb)l(vékd)l ~0

(Lx)1De (L), (1°V V 4p) (Vek), 0.

(Lip)1(DeDep)o(VEV, ) (VEK); 0.

(Doh)o(IV )0 (KK"V, V3V ), (B,
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The eighth term of Eq. (B1) is

SRRV (V 9,V V(7 V) = 3 (9Tl (Lah) (K9 0,h) (VR
+ 3 (D)o (K 1V, D (L), (D),
— S DRIV, (L3), (VoK)
43 (Dep)o(La) (KIV V9 1) (VPR 0.
The ninth term of Eq. (B1) is

ST 1, Y (T V9,98 VR) = =3 (D D) (De DML (B,
£ 3 (DF D)D)y (£30), (P V),
2 (D)o (DF Do)y D (L), (B,
3 (D7)y (D D)o (C3), (U V),

1 - . .
- 5 (Dd¢)0(De¢)o(kavévbva¢)1 (32113)1
1

+ — (DZI¢)O(Dé¢)0(khkavévhvu¢)1 (lfvflkf)l ~0.

2
The tenth term of Eq. (B1) is

S KRV, TV 90 )] VoK) = =3 (C30), (Vo (V) (V4R
S (L) R0,V (VaV) (VoK)
— S (LB} V)oK,V Vo) (V2K 0.
The eleventh term of Eq. (B1) is
KRy T (VoY 5|7 VoK) = =5 (KIV Y )y (Lah)y (T eh) (VPR
~ S (LB (KLY T, (9 Vh) (VoK)
S L) P(9.9,9,0) (VIk), 0.

The twelfth term of Eq. (B1) is

1 N R
5 [kayefygdvf(va¢ve¢vbvd¢)} (},gcvckb) = %DE (£k¢)1 (De¢)0(vbvi¢) (vckb)l

+ 5 (L4)1(D: D% )y (V, Vop) (VER),

+ 5 (Lk) (Dep)o(VEV, Vi) (VEK) = 0.

N = N =
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So the first four terms of Eq. (45) under the linear order approximation are expressed as

(TR (V9,09 1) ~ 5 (TR V9,V 1) — 3 (KT R) TV 9, V,9,19)

| =

= (KOVkD) T (V, $V, 4V, Vo p) .

N[ =

The fifth, sixth, seventh, and eighth terms of Eq. (45) are

1 1
Y (kavckh)vd(gcdvu¢vb¢veve¢) + E (kavckh)vd(gadvcd)vb¢veve¢)

[\S]

S (TR0, Va9 °9) = 5 (K VRV, VY V. V)

2
= SRV, (Vg W,V VR) + 3 KT (T, V9,91 VK

+

[k V ¢ (VaV sV, V" )] (1. V k)

= =

2
1
- E [kayefvf(vaqﬁveqﬁvmvmqﬁ)} (},chde) +
1 .
+ 3 (k27" V3 (V sV ypV , V)] (v9, Vo k9).

The first term of Eq. (B15) is

LRIV (T V9, V)] (1o, VoK) = 3 (C30), (9 )y (V9o (B ),
+ 5 (L) (K1Y, NV ) (Vi V' $)o(B),
+ 5 (Lip) 1V ) (k"V,V, V), (B?;) | ~ 0.

N = N =

The second term of Eq. (B15) is

1 1 5
SRV VBV, )| (1 VK ) = 5 (KET Vo £a), TV )o(B2),
+

L) (K19,9,,)0 (V, V), (BE),

>
3 (L)Y, 7) (B, =0

The third term of Eq. (B15) is

S KV (Vo V¥, 974)] (1ca VoK) = =3 DLy (D)o (V. V) (B0),

a % (Lx) 1 (D?Dep)o (Vi VD)o (B2),

— S (L), (DT ) D (V, 97 (B2), 0.

The fourth term of Eq. (B15) is
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1
E [ku%]fvf(vuqﬁvb(ﬁvmvm¢)] (ngkah) =

Do (Lih) i (V¥ V") (VR
(Le), (Ve VoV, V") (VER?),
(L)1 De (V. V" 9)o(Vip) (VERY), 0. (B19)
The fifth term of Eq. (B15) is
ST OV B9 VIR = 3 DL (V9 Do (V) (V7K
+5(Dyh) Do (L) (Vi Vi) (BTY),
(D)o (L3h), (Vi Vi) (1997 ky),

(D)o (V) [Lu(V, V)], (V k), = 0. (B20)

N|~NI~N\»—

So the fifth, sixth, seventh, and eighth terms of Eq. (45) under the linear order approximation are

1 1
- E (kavckb)vd(gcdva¢vb¢veve¢) + E (kavckb)vd(gadvc¢vb¢veve¢)

1 1
+ 5 (V)T (g V0V V) = 5 (VR V9, TV 1V p) = 0. (B21)
The ninth, tenth, eleventh, and twelfth terms of Eq. (45) are

1
(kuvckb)vd(gcdva¢vbve¢ve¢) - 5 (kavckh)vd(gztdvc¢vbve¢ve¢)

| =

S VRV 0, V9 TV ) 5 (VR V0,V V)
1
kblcvb( a¢vcvh¢vh¢) (yfevekf) + Ekbygfvb (vf¢vdvh¢vh¢> (ygevekd)
1 .
k¢ khlL ‘(va¢vhvll¢vh¢) (yfevekf) + Ekayefvf(vad)vevmqﬁvm(ﬁ) (ydcvckd)

Ky V (Vi V,,V" ) (9 VR, (B22)

l\)l'—l\J\'—‘l\)I'—‘l\)l'—

The first term of Eq. (B22) is
1 1 N 1 N
) k kP 1V, (V ,pV VN ) (ervekf) ) (L2),(I°V V¢V $)o(B%:), — B (Li), (KP1°V N N,V ) (B),
1 N
) (Lip), (K2 1V N,V V) (B ), ~ 0. (B23)
The second term of Eq. (B22) is
1 1 A 1 .
KLV (VY VD) (9 TK) =D (L) (VaVa V' D) (V) 45 (D300, (K0, VW V') (B°),
1 5 1 -
3 (D3) (KR, VY,V 0), 19V k) 45 (D30), (K V9,6V, V"), (BT,

1 .
_5(Dj'¢)0(khkdvdvh¢vbvh¢) ((1°V/ &)y 0. (B24)
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The third term of Eq. (B22) is
1 1 N
- 5 kakblcvc'(va¢vhvh¢vh¢) (yfevekf) = - 5 (kalcvc'va¢)0(kbvhvh¢vh¢)l (Be?f)l
1 N
=3 (L) (P IV, 9,0 )y (B,
1 .
) (L) (K21 ,N 1V N ) (B2 ), ~ 0. (B25)

The fourth term of Eq. (B22) is

1 . N . 1 N .
5kayefvf(vaqjvevmd)vmqﬁ)(ydcvckd) =5 De(Lrh) 1 (VV,@V"9)o (B ), +5(£k¢)1(DeDéqubvmﬁb)o(Bceh

(L) (VEV V") (BE:), ~0. (B26)
The fifth term of Eq. (B22) is

1 1 5 1 .
) k' Vi (VY 9V"h) (9. Vk) = — 5 D3 (L)1 (Vo VgV ) (V/ k), = 5 (L) (VV,p ViV g) (V&)

1 ,
— 3 (L) (V9,099 9) (VT ), 0. (B27)
Therefore, the ninth, tenth, eleventh, and twelfth terms of Eq. (45) can be expressed as

(kavckb)vd(gc'dva¢vbve¢ve¢) - % (kaVckb)vd (gadvc¢vbve¢ve¢)
— S (RVRN) Vg,V GV BVD) + 5 (VR VGV V) 0. (B28)

| =

The thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (45) are

1 1
5 (kavckb)vd(gcdvbva¢ve¢ve¢> + 5 (kavckb)vd(gadvbvcd)ved)ved))

1

[\

3 (TR0, V. 9°9) = 5 (VR V0,V V0 V)

[\

= SRR (0 0,8V, 00 ) (1o, VR ) = 5 Ko7V, (V¥ 1V, 9" (7 )
SRR, (V9 BV, 09 ) (7 Vky) = KT (VY 9, V) (V)

2RIV (V9 V) (5 VR, (829)
The first term of Eq. (B29) is

SRR (9,9, 9,5V ) 1 V) =

+ = (k“I°V .V ) (k"N .9V, V" ) (B?;) 0. (B30)

The second term of Eq. (B29) is
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1 "
—5khYgfvh(vdvfébvh(/)Vhﬁb)(}’”evekd) === (k'V,ViVe) (Vi V") (BY),

+ 5 (K k", V Vo) (Vg Vi) (1°VPk, ),

(VaVeth) (KN, V V" ), (VEKT),

(VaVed) (kbvh¢vbvh¢)l (vékd)l ~0. (B31)

N — = o] = M| —

The third term of Eq. (B29) is

—_—

1

5kakhlclvc'(vbvu¢vh¢vh¢)(yfevekf) = (kakhlcvcvbva¢)] (vh¢vh¢)0(3é5)l

2
+=(L39),(I°V NV, V") (B?2),

+5 (Li) (IV1pV VD)o (B ), = 0. (B32)

N = N =

The fourth term of Eq. (B29) is

1 1 . .
_Ekayefvf(veva¢vn1¢vm¢) (ydCVde) = _E(kavevéva¢)l(vm¢vm¢)0(Bcﬁ)l
1 N .
3 D (L), (VEV V™ h)o (B ),

1 N .
- 5D2(5k¢)1 (VupVeV"h)o(B:); =0. (B33)

The fifth term of Eq. (B29) is

1 1 n 1 R
Ek”Ygfvf(vaad)vmqﬁvméb)(chvckb) Ii(k'lvevgvaﬁbh (VupV" )0 (B), —E(k“ka@VbVagb)l (V") (19Vk,),
1 ar 1 R
+§D5(£k¢)1 (VeV,upV"h)o(B), —5(5%45)1 (VeVad V") (19VCk,),
1 7 1 R
+§D/3(£k¢)1 (VupVeV" ) (B), —E(ﬁifﬁh (VudVe V") (19Vky), ~0.
(B34)

So the thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (45) under the linear order approximation are given as

1 . 1
=5 (KR geaVy V.V gV P) + 5 (kYK )V (90aV 1, VPV pV D)

(K9R) V0,9V V) — 3 (KR V0,V 9, V9 0. (B35)

N[ =

+
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The seventeenth, eighteenth, nineteenth, and twentieth terms of Eq. (45) are

1
(kavckb)vd(gcdvb¢veva¢ve¢) - E (kavckb)vd(gcbvd¢veva¢ve¢)

1 1
- E (kavckb)vd(gadvb¢vev(?¢ve¢) + 5 (kavckb)vd(gcbvd¢vevc¢ve¢>

1 i ) 1
= 5 kbvb (ku I vc¢vhva¢vh¢) (yeva kf) + 5 kbygfvb (vd¢vhvf¢vh¢) (yqe Vekd>

N[ =

- % kakblcvc(vb¢vhva¢vh¢> (yfevekf) + % kayefvf(ve¢vmva¢vm¢) (ydCVde)

1
- E kaygfvf(vb¢vznva¢v’n¢) (ygcvckb>'
The first term of Eq. (B36) is

1 1 N
_5kbvb(kalcvc¢vhva¢vh¢)(yefvekf) Y (KP1V Y p), (k*V, VoV ), (B2,

1 5
- E (lcvc¢)0(kakbvhvhva¢vh¢)1 (Beé)l

1 N
D) (lcchb)o(k“kbvhvaqbvbvhgb)1 (B%;); ~0.

The second term of Eq. (B36) is
D6(£k¢)1 (thafﬁvhéb)o(B&e)l

(L29), (ViVopV')o(1°VEk, ),

(Vap) (K, V, V.0V ) (VKT

N =

1
) kb}’gf v, (vd¢vhv f¢vh¢) (79 e Vekd) -
+

+= (V) (K*V,V:pV, V) (VPk?) | 0.

S e S

The third term of Eq. (B36) is

1 : N
~3 KRV (Vg ViV VD) () Voky) = =5 (R IV V)0 (Y, V V" ) (B ),

(£k¢)l (kalcvcvhvaqbvh(ﬁ)O(Béé)l

= N = N =

The fourth term of Eq. (B36) is

—_—

1 R N
5 kayEfvf(veqsvmvaqsvmqﬁ) (ydCVde) = (DéDe¢)0(kavn1vu¢vm¢)l (Bcﬁ)l

2
+ 5 (D30h)o(k*VPV,,V V" §), (B ),

N = N =

+ = (Dsh)o (kN ,V (V" ) (B:) | 0.

The fifth term of Eq. (B36) is
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SRV DBV, VB (TR = =3 (F,8) (K, V07 ), (VR
S (V) (K9,9,4979), (VR?),
S (Vo) (9, 9,V 99), (Vok?), 0. (B41)
So the seventeenth, eighteenth, nineteenth, and twentieth terms of Eq. (45) can be expressed as

1 1
(kavckb)vd<gcdvb¢veva¢ve¢) 5 <kavckb)vd(gcbvd¢veva¢ve¢) - E (kavckb)vd(gadvb¢vevc¢ve¢)

N[ =

5 (k“VCkb )V 9, VapV V. pVh) = (B42)

[\.)

The twenty-first and the twenty-second terms of Eq. (45) are

S (RVE) V1040, TV 7 G) 5 (KVR) V10,0,V BV /)

= S LT, VY, V) (B, =0 (B43)
The twenty-third and the twenty-fourth terms of Eq. (45) are

(kavckb)vd(gadgcbv d)vf e¢vf¢) (kavckb>vd(gabgcdv ¢vf e¢vf¢)

N[ =

- _5 [‘Ck(vmqﬁvnvm(pvnqs)]l(Bé??)l ~0. (B44)

Therefore, according to the above results, the integrand H,(sz)z in the second integral of Eq. (43) is vanishing under the
linear order approximation of the perturbation, i.e.,

G2)2
H,(ck ) ~0. (B45)

In the second part of Appendix B, we would like to calculate the integrand H 222)3 in the third integral of Eq. (43) to obtain

(G2)3

the expression under the first-order approximation. The specific expression of H;, " is given in Eq. (47). Following the
calculation method in Appendix A, the first four terms of Eq. (47) are further calculated as

1
— SRV (T G,V 1)+ 5 (TR (TG0, 0,0V ) + 3 (K1) (V9 1V, V)
— S RV (VYY)

C30), (D)oY )oKV, 1°), 3 (L1h)y De L)) (V)oK 1),

N[ =

[\.)\»—tl\”'—‘l\)l»—il\)\'—‘ /-\

(Deb)ol L) (1D, V)oKV )y + 3 (L) TV e)o (KT )y = 5 (C3), (De)ol D)o (F8),
(L)1 De (i), (Da)o () + 5 (L D L)y (Deh)o(VE)y = 3 (L) DDy (T)y
— 5 (L30), (1Y 4h)o(D2p)o (1. V*K*), +%(£k¢)1(kcldvcvdfﬁ)o(Défﬁ)o(lavéka)

(L20) (D) (D) (VIIE) ~ Oe).
(B46)

l\)\'—

(Lx#)1 1V ap)oDo (Lyh), (1,VK), _%[(£k¢)1]2(ldvévd¢)0(luv2ka)l
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The fifth, sixth, seventh, and eighth terms of Eq. (47) are

(k" VUK (9aaV PV V. Ve P) — L 5 KV (9:aV VPV VD)

N =

(kadl“)k‘(gabV VPV VeP) + (k” VA (9epVapVap V.V P)

l\)

L (L) (DT T KV, + (L) PV, 97 0)o (Vo)
1 .,
+ 5 (Lr)1 (D)o (V, V") (1,Vk), ~ 0.
The ninth, tenth, eleventh, and twelfth terms of Eq. (47) are
S KU (5, 9 BV, T VD) + 5 (V1N (0,07 o,V

(k” VA (9upV pVaV pVh) + 5 (KVU)K (9, V upV oV pV )

—_— N =

S (DK T pV0), (KT ), = 5 (L) (K9, 0,0979), (VL)

1 .
5 (£k¢)l(vévnz¢vm¢)0(laveka)l =
The thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (47) are

1
(kbvdla)kc (gadvbvc'¢ve¢ve¢) - 5 (kbvdla)kc (gc'dvhva¢ve¢ve¢)

1
- E (kbvdla)kc (gabvdvc¢ve¢ve¢)

= 3 Do(Lh), (T, V)oKV, 1), +

| =

(K"K (gepVaV oV V)

D) (T V) (1,VE K, =

5 (L3#)(DopVEp) (VEL) ~ Ofe).

The seventh, eighteenth, nineteenth, and twentieth terms of Eq. (47) are

1 1 .
= S KV (G, VTV VD) + 5 (R VU (90 VsV T V)

3 (VUK (0. V9 T $V) = 3 (V1K (5, V.V V)
1 5 1 .
= E(E k)1 (V" PV, Vo) (kY 19), +5(£k¢)1(k“VmVagbV’"qS)l(Vcle)o

1 R
_(D $)o(k"V VgV h) 1 (1, Vo)) =
The twenty-first and twenty-second terms of Eq. (47) are

i 1
(kbvdla)kc (nggabve¢ve¢vaf¢) - E (kbvdla)kc(gcbgadve¢ve¢vaf¢) =0.

| =

The twenty-third and twenty-fourth terms of Eq. (47) are

2 (khvdla)kL (gcdgabv ¢vae¢vf¢) (kbvdlu)kc (gcbgadv d)va ¢vf¢) =0.
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So Eq. (47) under the first-order approximation can finally be written as

G2)3

HIP = =2 (G0) (D) (D) (V'E) + 3 (C28) (Do Do) (VL) (Bs3)

The third part of this appendix focuses on the simplification of the integrand H 2?2)4 under the first-order approximation
of the perturbation. Using the same calculation method in the first two parts of this appendix, the first four terms of Eq. (49)
can be further calculated as

%(kbwmkf(v 99 HV) + 5 (V1N (V9,9 1)
3 (VI (V, 9,0V, V)~ 5 (VK (T 9,0V, )
(K19 Vo )o(Deh)o (D), (BTN, 5 (DYoo (kY TV 1), (B,
%(ﬁmﬁ) (Det)ol"T395), (B), + 3 (L), (V) (D; Do) (B,
%(zdw) (£30), (D)o (°VK)y = 5 (L4 (R, ¥ (D)oK, ),

N 1 N
-5 (ldvd¢)0(£k¢)l (k*VVag) 1 (V)1 + 5 [(Lep)i ] (Ve Vap)o(1°VEke )
1
=3 (KPV,9,0) (D D) (BT) ~ Ofc). (B54)
The fifth, sixth, seventh, and eighth terms of Eq. (49) are

1
(kbvdl“)kc(gadchﬁvbgbv Vep) =5 (KVANK (9:aV ah VoV V)

N =

— S RV (g, VTV VP) + 5 (V1N (0, TV V.V )
1 5 1
(L V(T B)o( ), + 5 (Deh)o (D) (V9" 8)o (BT,
S D DoV V) (VEk), = 5 (DehDy) (9,97 ) (BT ~ O(c). (B55)

The ninth, tenth, eleventh, and twelfth terms of Eq. (49) are

1
— S RV (g, VT,V V5) + 3 (V1K 5,5V, V)
+§<kbwza>kc<gabv IV D) = (V1)K (9, V VY09
= V)oKV, V), (B, ~ 5 (Deho(V V.V ), (B,

(DepV;V,,pV"$) (BT ) ~ Ofe). (B56)

Nl —

2
1 N
+ 3 (Li)1(VeV,, V") (1°VCk, ) ~ —
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The thirteenth, fourteenth, fifteenth, and sixteenth terms of Eq. (49) are

S (V1K (0,9, GV BVD) = 3 (V1K (5,9, V9 °)
— S KR, 9 VBT VD) + 5 (V1N (0, YV V. 9)
= SRV, )0 (T o (B) +%(D;Dm%(vmqﬁvm@ow@%l S DL L) (V) (VR ),
= =3 (K19, 9,0) (V9" $) (B2) + 3 (DD V") (BT) ~ Oe) (B57)
The seventeenth, eighteenth, nineteenth, and twentieth terms of Eq. (49) are
— S RV (9, BV f9G) + 3 (V1)K (9, V.V V)
b3 (TR0, V9 T VD) ~ 3 (V1)K (5, V.V )
= S (L (VL0 B)o(B), — 5 (D38) (VT eV 8)o (BT,
43 (9,9, 89°9), (D (V%K ), = =3 (DY, VeV ) (BT) ~ Ofc). (B58)
The twenty-first and twenty-second terms of Eq. (49) are
(V1K 0,45V BV V) = 3 (V1K (520900 V V)
= 3 (74,09, 9")o(B), ~ Oe). (B59)
The twenty-third and twenty-fourth terms of Eq. (49) are
— S VI (0409 BV (T V) + 3 (V1K (5130004 V97 )
= (VY V,pV)(B ), ~ Ole). (B60)
So the remainder terms of H'\o>"* under the first-order approximation are
HG =2 (I, 9,0)(DdDih) (BT) + 3 (DeD;h)(V,, V") ()
— S (D, 97 (B _va Vo) (VYD) (B) + 5 (DD, 9" ) (B
S DV VeV ) (BT) — L (V0,0 ) (B) + 5 (V49,479 (). (B61)

APPENDIX C: SIMPLIFICATION OF H,(:,’:l) UNDER THE LINEAR ORDER APPROXIMATION

In this appendix, we hope to simplify Hgil) to obtain its expression under the first-order approximation of the

perturbation. The specific expression of H,i",f]) is given in Eq. (37). The first term of Eq. (37) is

(R)o[Li(VpVeP)]y (Lyp); = 0. (C1)

o0 | =—

%k“kbRVCqﬁVavc(ﬁquﬁ =
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The second term of Eq. (37) is

1
S KRR VPV NPV =

The third term of Eq. (37) is

%k“k}’RV“zﬁvcvaqﬁvhqﬁ -

The fourth term of Eq. (37) is

1<dedfzf> (L) PRIV + 5 (L) (R e} D L),
S (LB D (L) (D B)o(Rez)y + 5 (L) DF (L) (KR, (V)
[(Lr) > (L), (I°V R, ), _%(£k¢)1(kblfvbvfd))o(leve¢)0(kcdecd)1

(L) (DT B (K Ry )y + 5 (L) (KI5, 7 o (Do (KR,

[\.)|>—A[\)|>—‘N|’—‘[\)|

(Lep)1 (L)1 (D $)o (1R ) 0. (C2)

(R)o(Ly), (Deéb)oDa-(ﬁk(ﬁ)l ~0. (C3)

FN

1 1
= SRR BV G, = =5 (Rl L), (VT g = 0. (c4)

The fifth term of Eq. (37) is

—k“kbRadch’Ivcvdd)Vbcﬁ -

The sixth term of Eq. (37) is

(Ly) 1D (Lih)  (19V 4h) o (KR )y + (KR o) [(Lap) |2 (19V Ve ),

— (L), (KUY, b (1Y, p)o(Rue)y = (Lah) 1 (1Y . )o(L3h), (KU Ry,

— [(Lrp) (K1Y )0 (kY R yp)y = (L)) (KPR y5), (Dagh)o( D2 Dgp)

~ (L) PV b))y + (k1R ea)o(Ladh) 1 (D7) DY (Ligh),

+ (Ria)1 (L1p) (D) (197 V yp) 0. (Cs)

kakbRach¢vdvd¢vb¢ = (kbRbé)l(Ekqb)l(Déqs)O(vdvdqﬁ)O - (kcldRcd>O[(£k¢>1]2(veve¢)0

The seventh term of Eq. (37) is

—%kakbRchdvacbvm .

The eighth term of Eq. (37) is

- <£k¢)1(Rkk)l(ldvd¢)0(veve¢>0 ~0. (Co)

SN PO, (VR )y =5 (L) (DP9 (Ryi) [P ),
(L)1 (D (Ryi) (D)o (B), = 3 (L), (L), (V)oK Ry )
(L) PRIV PR Rop)y ~ 5 (R ), (L1b)1 (£39), (D),

(KR 1), () (K90, (D )y = 5 (L) (9o (KUY 1 9,8) Ru),

[\.)lr—[\.)lb—tl\”’—‘l\)lh‘

[(Lxp) 1 (k°VEV ), (1R ge)o +%(thﬁ)l(ldVd¢)o(kCRce)1Dé(Ek¢)1 =0. (C7)

K k"R gV (pVIVDYp = [(Li) 1] (ReaVIVEP) 2 0. (C8)
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The ninth term of Eq. (37) is

SRR, TG T G o=~ (L) D L)y (D)o KPR )+ 5[ PV Tk VRIR ),
3 (B D (L) (D)oK T R )y = (L) (V5T D)o (D) (KR ),
3 (k) (K Ry (D) (D DY)+ 3 (L18), (G30), (90 ) (1K1 R ),
L) PV V) (KK R )y 3 () (DB DM L)y (KUR,5),
S 1CB)PDT DG (KR 1)+ 5 (L) (V) (DT DBy (KK Ry ),
(L) (L30), (D7) (KUY gy + 5 (L) (R0 0,0) D)o (KR R g,
S (L) (V) D™ (L) (KK Rega), =S PP L)y (R Rog)y =0

(©9)

The tenth term of Eq. (37) is

SRR RV GV VG = = S[(Lh) PRV ) (KRBT Rage )y = S [(C1h) P L), (K1Y Ra),
—§<ck¢>1m<ck¢>l<zeve¢>o<k0kdszcfdg> 436D (L) (DI K 1R 1),

—%(ﬁkfﬁ)l(k”Rheaa)l(D%) (DED)g+ 5 (Lagp) 1 (L3)1 (V1) (kKT R )

(L
1 g 7 cqd 1 g dv7f b

2 (£ (DY) D (L), (1R ), = (Cat) (D) (VT V) (KK Ry ),
%m«m (D DF )y (1R ), 5 e (VoD DF )y (KA Ry ),

3 (L) (K19, )o (D)o (K VR R i), + 5 (L (E30), (D)o (K1 R,

1 ) 1 )
=5 (L)1 (I°V. ) DY (Li) (kKR 1q5), + > [(Lip) ] (1°VOV . p)o (kKU R p45) ~O.
(C10)

Therefore, based on the above results, under the linear order approximation of the perturbation, the integrand, H ,(;,’ZU, can be
neglected, i.e.,

1
H?Y ~0, (C11)

APPENDIX D: SIMPLIFICATION OF H ,(5:2) UNDER THE LINEAR ORDER APPROXIMATION

In the final appendix, we would like to calculate H,(iz) under the first-order approximation of the perturbation. The

concrete expression of H ,({(,/:2) has been given in Eq. (38). The first term of Eq. (38) is

1 1 1
S KKV VRV pVp) = 5 KKK LY (0 (RY Y p) + 5 KKK 12V (Vo (RV Vo p)

~ KR V(R4 ). (1)
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The first term of Eq. (D1) can be further calculated as

SRRPRET 4 (RV b ) = 5 (L) P LLR), (19 -+ 5 (L1b)y (R)o (30, (14

/-\

1
2
+ Kﬁk‘ﬁ) ] (R )o(kcldvcvd@oﬁo-

N[ =

The second term of Eq. (D1) can be further calculated as

SRR LN 9 RV, ) = 3 [(Lah) PV R, + 3 (L) P RY(K Y 9,8

L
2
1
T3 [(Le) > (k1IN 4V p)o(R)g = 0.
The third term of Eq. (D1) can be further calculated as
1 , 1 R 1 N
- Ek“kbi"dva(f’vd(vaqbvcﬁb) =5 [(Lih)1*(Dep)o(D°R) — 3 (Lip)1 D (Lig) 1 (D h)o(R)g
1 N
) (L)1) (D Deep)o(R) 0.
So the first term of Eq. (38) under the first-order approximation can be simplified as
— SRV (RY V) = 0

The second term of Eq. (38) is

KKV YV (RpgV V) = =k Kk 1N (Y (R Vpp VD) = kK k1N 1V 4 (R V 5 p V)
+ k k<IN pV 4 (Vo pR .V p)
—kkP k19N ,pV R 1,V , Ve p — k2 kP k€ 19V ,pR 4,V N,V b
— kkPk 19V ,pR 4,V , pV Ve p — kKL k€ 19V ,pV 4R .V , )V b
— kkP k€ 19V ,pR .,V ;N ,p Ve — kKL K19V ,pR . NV, pV NV b
+ kK y IV V y R VP + KKy N (N BV RV
+ kkbyIN .V RV V.

The first term of Eq. (D6) is

_kakbkcldva¢chdevb¢ve¢ = [(£k¢)1]3<kdlelfvdRef)o =+ [<£k¢)1]2(kckdlfvdRcf)1(leve¢)0
— [(Lx) P (k1V Ryz )o(DPp)g ~ 0

The second term of Eq. (D6) is

—kkPk 1N PRV Yy pVp = [(Lip) 1] (L3) IV Rep)g + (Lah) 1 (L3h) (Vo p)o (kY Ry ),

— (L) (L) (D)o (1R gz ) 2 0.

The third term of Eq. (D6) is

_kakbkcldva¢Rdevb¢vcve¢ = [(£k¢)1]2(kclevcve¢)0(kdlfRdf)() - [(£k¢>1]2Dé (£k¢)1(ldeé)0

(L) P(L36), (1 Ry ) 0.

The fourth term of Eq. (D6) is
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—kkP k19N ,pV 4R NV, pV e p = —[(ﬁkfﬁ)1]2(kCldVdRC@)0(D@¢)O I [(Ekcﬁ)1]2(leVe¢)0(kadlfoRcd)1
+ [(Lip) ] (K1 V Ry, )y 0.

The fifth term of Eq. (D6) is
—k kPR 1IN (PR NV gV oy V= [(Li)]7 (kY Ryp) o (k1Y V) g = (Lyp) (KP19V 1V ) o(DPp) o (kRez)
+ (Riw) 1 (L), (leved))o(kblfvaeqb)o ~0.

The sixth term of Eq. (D6) is

_kakbkcldva¢Rcevb¢vdve¢ = _[(£k¢)l]z(ldvdvé(ﬁ)ﬂ(kCRcé)l + [(‘Ck(ﬁ)1}2<lelfvae¢)0(Rkk>l
+ Lk P (k1Y NV ) (KU R 4p)y .

The seventh term of Eq. (D6) is

k*kby<iN .V Ny RV = (£k¢)1(Dé¢)oDa(£k¢)1(R@21)o — (L), (19V 4p)oD* (L)1 (k°Rez),
- [(£k¢)1]2Dé(£k¢)1(ldeé)O ~0.

The eighth term of Eq. (D6) is
K kP y <IN @V ViRV p = [(Lidh) 1 (VER: V) ~ 0.
The ninth term of Eq. (D6) is
KKy IN (pVpR VgV h = [(Lidh) 1 (Re. VEVEh) 0.
So the second term of Eq. (38) can finally be written as
kKN (V¢ (RpqV pVep) =~ 0.
The third term of Eq. (38) is

kakbva¢vc(Rcdvb¢vd¢) = _kakbkcldva¢vc (Rbevd¢ve¢) - kakbkcldva¢vd (Rbevc¢ve¢>
+ kakbyCdva¢vd(Rbevc¢ve¢)

(D10)

(D11)

(D12)

(D13)

(D14)

(D15)

(D16)

= kK19 YV Ry, V 4V — Kk K 19R VoV V Ve — kKK 1R,V oV 4V Ve

— KKK 1INV Y 4R,V oV p— KK KE 19N R,V NV
- kakb ke ldva¢Rbevc¢vdve¢ + kukbyCdva¢vdee vc¢ve¢
+ k¢ kbyCdva¢Rhe vdvc'¢ve¢ + kakbyCdva¢Rhe vc¢vdve¢'

The first term of Eq. (D17) is

_kakbkcldva¢chbevd¢ve¢ = [(£k¢)1]2(kdkclfvdRcf)1(leve¢)0 - (£k¢)l<kckbchb€')l(ldvdgb)O(Dégb)O
+ (Lxp)1 (KKK 4Ry ) (15V o) o (FV yp) = 0.

The second term of Eq. (D17) is

KRR,V (Y NV Ve = (KU Ry )y (L) PRI,V )y + (Ria)y (L) (KUY, V1) (1°V o)
— (K Ree), (L4h)s (RO 19V, Y p)o (D )y = .

The third term of Eq. (D17) is
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—kk k1R NV (N 4V VP = —(Lip) D* (L1p) 1 (19V 1) o (K°Rez) ) + (L) (RPN, 1) (1Y o) (Rik )
+ (Lx@) 1 (L79) (1Y ) o (KU Ry ) 0.

The fourth term of Eq. (D17) is

KRR N Y Ry TV = ~[(L4p) P (K 1V 4R o (DP Py + [(La) PV o (K KV R )
+ [(Lep) P (k1Y 1Ry, )y 0.

The fifth term of Eq. (D17) is

_kakbkcldva¢Rbevdvc¢ve¢ - [(‘de))1]2(kclevechﬁ)O(kdlfRdf)o - (‘Ck¢)1(kbldvdvb¢)0(DE¢)O(kCRcé)1
+ (Lxp) 1 (IV)o (K UV 1V ) o (Rie )1 = 0.

The sixth term of Eq. (D17) is

_kakbkcldva¢Rbevc¢vdve¢ = _K‘quﬁ)l]z(ldvdvé¢)0(kCRc@)l + [(‘ck¢>1]2(kclevevc¢)0(kdlfRdf)0
+ (L PV VNV ) o (Rix), 0.

The seventh term of Eq. (D17) is

kK Y IN (N Ry V BV = —(Lip) 1 (1°V 1) o (D? ) o (K KV Ry ) 1 + (Ligh), (Dééb)o(D‘?ff’)o(kbv}Rba)l
— [(Lx#) 1 P (D)o (k1Y e R )y = O.

The eighth term of Eq. (D17) is

k*kPy<IN (R, V 4V VP = (ﬁkfﬁ)l(D"?Cb)o(DéDé(ﬁ)o(thb})] — [(Lip) P (D?Dsp)o (k1R 1),
— (L)1 (1°V )0 (D*Deh)o (Ryi)y = 0.

The ninth term of Eq. (D17) is

k*kPy<IN RV PV Vi = (£k¢)l(Dé¢)0(DéD&¢)0(kbRb21)l — (L), (D*¢)oDs(Lip), (kIR ),
- (£k¢)l(Dé¢)0(ldvévd¢)0(Rkk)l ~0.

So the third term of Eq. (38) under the linear order approximation can be given as
k“kbva(j)vc (Rcdvb¢vd¢) ~0.

The fourth term of Eq. (38) is

(D20)

(D21)

(D22)

(D23)

(D24)

(D25)

(D26)

(D27)

_kukhva¢vc (Rcbvd¢vd¢) = kK"K ldvc(Rbdved)ved)) + kakbkcldva(ﬁvd(Rbcveqsveqﬁ) - kukhyCdva¢vd(Rhcve¢ve¢)

=kkPk 19V ,pV R gV .V P+ kO kP k€ 19R 4N oV NV ,pVE p
+ kP k1R ,yV .V .V Ve + kK kE 19V YV 4 (R, V oV D)
- kakbyCdva¢vd(Rhcve¢ve¢)'

The first term of Eq. (D28) is
k kP kC 19V (Y Ry gV pVp = (L) [’Ck(kblded)]l(ve(pved))O ~0.

The second term of Eq. (D28) is

044072-39

(D28)

(D29)



XIN-YANG WANG and JIE JIANG PHYS. REV. D 106, 044072 (2022)

kakbkcldedva¢vcve¢ve¢ = _[(£k¢)1]2(kclevcved))O(kdlfRdf)o - (£k¢)l(‘C%Cﬁ)l(levegb)O(kdlfRdf)o

+ (L1) 1D (Lr) 1 (D°)o (kIR 4) ~ 0.

The third term of Eq. (D28) is

KRRV RygV oV o pV N = —[(Li) 1P (KUY NV op)o (KU Ryp) o — (L)1 (L3h) 1 (1Vep)o (K'Y Ry ),

+ (L490) 1D (Ly) 1 (DPh)o (kIR ) ~ 0.

The fourth term of Eq. (D28) is

kakbkcldva¢vd(Rbcve¢ve¢) = (£k¢)l (kbkcldvdec)l (Ve¢ve¢)0 + (£k¢>l <Rkk)1 [ldvd(ve¢ve¢)]0 =

The fifth term of Eq. (D28) is
—kkPyeIN PV 4 (R VPV ) = —(Lih) (KPVERy )1 (Ve V) — (Lih)1 (K" Ry ) DY (V. pVeh)
So the fourth term of Eq. (38) under the first-order approximation of the perturbation can be written as
KKV PV (R V V) = 0

The fifth term of Eq. (38) is

%kukbani’vb(Rvd(f?vd(f’) == (L) (LiR),(V Vi), +%(R)O(£k¢)l[£k(vd¢vd¢>]l ~

N[ =

The sixth term of Eq. (38) is

—KIKEV (pV (R VIV D) = —kkeV (VR VeV b — kKR N o pV VeV b
— Kk R,V . pVpV VY b,

The first term of Eq. (D36) is

KRN BV R VPV = ~[(Lih) P (VIR 1)~ (Lih), (kYR 5), (Dp)y(DP ),
= 2[(La) P UK IV Ry, (9 ,0), + 20( L), (K, Ry) (DI,
£ 2(L1)y (KK, R 3), (1Y 1), (D),
— (L) (KKK Re,), (199, 8) (11 ) =

The second term of Eq. (D36) is

—kk RV VNPV p = —[(Lyh) P (kI NV o) o (kU R g ) + [(Lih) 2 D? (L)1 (1R g )
— (Lo )1Dd(£k¢)1<Dé¢>o(Réa)o + (L49) 1 D (L) (1°V 4p) o (kR 5
— [(Lkp) P (L2p) IV R p) o = (Lip) 1 (KPU N,V 1) o (1°V o p) o (Rik)

— (Lx)1 (L2h), (1°V o) (kU Ryyp)y 4 (L) (KP1V N 4h) o (D? ) (K R 2 )

+ (L1)1 (L3), (D)o (1R 5) =~ O.

The third term of Eq. (D36) is
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~K KRV pVPV V= ~[(L4h) P (K1Y V)0 (KU Ryp)y + [(Lip) 2D (Lidh) (1R )
— (L), DU(L1h) (DPh)o(Ry)o + (L) D¥ (Lych)y (199 4p)o (K Reo)
— (L) P (L3h), (U R )y = (Lach) s (RPVV, Y 1) (1Y ) (Rig),
— (L) (L3), (1Y p)o (KU Ry ) + (Ligh) (K 19V, N 4h)o (D)o (K Reo)
+ (L1)1 (L3), (D?h)o(1'R go)g = 0. (D39)

So the sixth term of Eq. (38) under the first-order approximation of the perturbation is
—kkbV V(R VPV p) ~ 0. (D40)
The seventh term of Eq. (38) is

KOV Y (Rop VIV D) = KKKV yp, (Ri gV V) — KKK (o Ry V $VY )
+ K,y IV PV 4 (Rpec VPV @)
= kORI ypV Ry VPV p — KKK IOV ypR oV VeV
— KUK o pR oy VPV VY b — KKK 1IN ypV 4R s VPV
— KUK o pR oV VeV b — KKK LIV R e VeV 1V
+ kY IN (VR VPV + KKy N 1Ry V VPV
+ KKy IV (PR VPV VI . (D41)

The first term of Eq. (D41) is

—k KKV PV Rypoqf VPV = (L) [P (KKK BTN Regan) (PN 1)y = (Lagh)y (K°k 1V R )1 (D)o (D p)g
+ (L) P (KRN R o 1) (D™ h)g
- (£k¢)l (kbkckdlfvdefcrh)l(leveqﬁ)O(Dfnqs)O ~0. (D42)

The second term of Eq. (D41) is

—k KK 1IN ypRpafV VPV b = —(Ly) DI (Lich), (I°V o p)o (kKU R f45); — (£k¢)1D}(£k¢)1(D%)o(kcldchdg)o
+ (L) (L70), (V1) o (KK IOT" R gy ) o + (Licth) (L), (DIh)o (K IV Ry 1) = 0.

(D43)
The third term of Eq. (D41) is
_kakbkcldva¢Rbedfve¢vcvf¢ = [(Ekd))1]2(kclfvcvf()b)o(kdkelglhRdgeh)o + [(ﬁk(p)l]zDg(‘de))l(kdlelfRdeff])()
- (£k¢)1Df(£k¢)1(D%)o(kcldchd})o
— (L)1 (K 1V, V ) o(DIh) o (k kU R p45), = O. (D44)

The fourth term of Eq. (D41) is

—kk k1IN (N 4Ry VPNV p = (L), (k”kcl"VdR,,gc,;)l(D-‘7¢)0(Dﬁ¢)0 + 2[(Lx) P (kkUIUN (R eqz)y (DY),
- Kﬁkqﬁ)1}3(kdkelflglhvhRdfeg)o ~0. (D45)

The fifth term of Eq. (D41) is
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_kakbkcldva¢Rbecfvdve¢vf¢ = [(Ekff’)1]2(levev%)o(kckdlchfdg)1 - (£k¢)1(ldvdvfd’)o(D%)o(kbch A)l

bgef

- [(Ekqﬁ)1}2(kclfvac¢)()(kdkelglhRdgeh)o
+ (Lx) (K1Y N yp)o (D)o (k kU R 445), ~ 0.

The sixth term of Eq. (D41) is

—K K1Y (P Rpecy VPV AV P = [(Lih) P (KK Repag) (19 V) = (Lah), 10V ) (D)o (KK R 15,7,

- K‘de))1}2(kclfvac¢)o(kdkelglhRdgeh)o
+ (L) (K2 1V Ny p)o (D)o (kU R 145), ~ 0.

The seventh term of Eq. (D41) is
kakbyCdva¢vdeecfve¢vf¢ = _(£k¢)l<kbv§Rbéfg)1(DE¢)O(D}P¢)O + (£k¢)l(ldvd¢)0(Df¢)0<kbkcv§Rbfc_2})1

+ [(Li) P (DT 9)o (K IIVIR, i) = [(Lxp)y (1Y o) (kKU VIR ),
+ [(Lrp) (D)o (K IIVIR ) — (L) i (K1Y VIR 3, )y 0.

The eighth term of Eq. (D41) is

kU kPyIN (PR etV VPV p = —(Ligh), (D'%gb)O(DéDa(ﬁ)O(thb&fé)1 + (Lip)1 (D)o DT (Lih), (kcldRcdg%)o
+ [(Ekqb)1]2(DfDé¢)o(kcldRC@d})o + <£k¢)1(ldvd¢)o(DfDéff’)o(kbkCRb@cf)1

= (L), (I°V )0 DY (Ly) (k°kV Reyag), = [(Lip) 2D (Lyh), (k1°V R yey)y =

The ninth term of Eq. (D41) is

kakb7Cdva¢Rbecfve¢vdvf¢ = —(£k¢)1(Dféb)o(DéDa@o(kbRbfa@)l + (ﬁkﬁb)l(D§¢)0Df(£k¢)1(kcldchdf)o
+ (Lk¢)1(D‘%)o(ldvj.vdﬁb)o(kbkCRbgcf)1 + [(‘Ck(p)I]Z(D}lDéqb)O(kcldRcdéf)o
= [(Led)1PDILi) (K 1V Raerg)g — (L)1 > (1°VIV o )o (KK VR p45), = 0.

So the seventh term of Eq. (38) under the first-order approximation is
—kKPV V(R g5 VPV ) =~ 0.
The eighth term of Eq. (38) is
TRRIT GV RV, §9,0) = LKK VG RV fV ) — KRRV V(R o)
- %k“kbkcldVC(RVaqﬁVh@quﬁ.
The first term of Eq. (D52) is

FERTTGTARY V) = G (L) P DRI(D Pl + 3 D (C4)s (Ca), (Do (Rl
4 (L) DA L) (D) (R)y 0.

The second term of Eq. (D52) is
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(D47)

(D48)
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(D49)
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(Ds1)
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- % kkP k1IN (N 4(RV ppV op) = — % (L), P17V 4R)g = = [(Lip) P (R)o (K1Y 4V )

1
"3
— L C) PRI,V )y (R)y = 0.

The third term of Eq. (D52) is

~  FRIEY(RY 0,0V = = (L) P9 a)o(LR), = 5 (R (L30), (L) (V)
— L (RI(L) (L30), 1V 1), = 0.
So the eighth term of Eq. (38) under the linear order approximation is
%k”kbchﬁVC(RVagbeqﬁ) ~0.
The ninth term of Eq. (38) is
— SR PV (R, 0 o) = =3 KK VG0 Ry VoV ) + 5 KRN (R V)
SRR Ry V)V
= SRR AT RN VD~ SRR AT PR Y VD
- %k“k"ycdchﬁRbevuqﬁvdV% + %k‘*k”k"ldvaqﬁvd&equﬁveqﬁ
+ %k“kbkcldvaqﬁRceVdVb(f)Ved) + %k“kbkcldva(j)RcengdeV@gb
+ %k“kbkcldVCRbeVaq’zVeszdqb + %k“kbkcldeeVCVaq&V%quﬁ
+ %k“k”k"ldRheVaqﬁVCV“qﬁquﬁ.
The first term of Eq. (D57) is

SRR TG R, TV =
1 5 .
T3 [(Lxp) J* (D7 ) (K 1V iR q), = O.

The second term of Eq. (D57) is

1 . . 1 .
_Ekakhycdchstevdvaqﬁveqﬁ = =5 (K"Ry3) (D*¢)o (D’ )oDa(Lih) + 3 (Rix)1(17Vah)o (D! §)o Dy (L)

+5 (K1R.q), (Lah)1 (D §)oD; (Lah), 0.

N = DN =

The third term of Eq. (D57) is

1 1 o 1 .
) ke kPy AN RNV (pV VO = — 3 (Lih)1(Dath)o(D* D)o (k"Ry5); + 5 (Lip)1 (D! $)oD3(Lip) 1 (k1R )

1

+ 5 (Ru)1 (D), (197 Va)o((Lih), 0.

044072-43

(Li) 1 (1°Vag)o (D)o (K°kVoRy. )y — % (Lih), (K2V;Ryz) (DEh)o(DI ),

(D54)

(D55)

(D56)

(D57)

(D58)

(D59)

(D60)



XIN-YANG WANG and JIE JIANG PHYS. REV. D 106, 044072 (2022)

The fourth term of Eq. (D57) is

kakbkczdv AV VA v e [

/—\

k)12 (k1 4R ) o (DA )y — % (L) 2 (1°V o p)o (kK UV R ),

l\JI'—‘

[(Ly) P (KU1UV Ry, ), = 0. (D61)

I\JM—

The fifth term of Eq. (D57) is

1 1 1 5
E kakbkcldva¢Rcevdvb¢ve¢ - 5 K‘de’) 1}2(kdlfRdf)0<kclevevc¢>0 + 5 (£k¢)l (kbldvdvb¢)0(De¢)0(kCRC€')1

S R (L) (V)oY V), 0. (D62)

The sixth term of Eq. (D57) is

1 1 . 1
Ekakbkcldva¢Rcevb¢vdve¢ = 5 [(’Ck(rb)l]z(ldvdve(p)o(kCRcé)l - E [(£k¢)1]2(kclevevc¢)0(kdlfRdf)o
1
= S [(£) PV )y (Ree)y = . (D63)
The seventh term of Eq. (D57) is
1 1 1 .
SRRV Ry VoV GV = =S [(Lxp) P KKV T Rep) (1) + 5 (L) (KT Ry ), (1Y 4h)o( DT )
1
3 (Lx)1 (LR ) (Vo p)o(U'V ) 0. (D64)

The eighth term of Eq. (D57) is

1 1 1 R
SRR VR,V NV VGV atb = =3 (L), (£30), (Vo (KIH Rag)y + 5 (L3), (V. )o(DT Do (KR ),

S GV ) (Ris), =0, (D65)

The ninth term of Eq. (D57) is

1 5 1
E kakhkCldeevaqsvcve(ﬁvdq5 = ) D¢ (£k¢)1 (ldvd¢)0(chc@)l - E (£k¢)l (khlfvbvf¢)0(leved))O(Rkk)1

| =

(£
— S ) (L30), (Y )y (K1 Ry ) 0. (D66)

So the ninth term of Eq. (38) under the first-order approximation is

1
S KKV PV (RyaV oV p) = 0. (D67)
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The tenth term of Eq. (38) is

— SRR GV (R V,899) = ~ S KR 1 VG (R, V) + 5 KT (R ¥ V)

+ % kk k19N (R 1V VD)V 1
= SRR AT RNV~ SRR AT PR, Y V)
- %k“k}’ych"qﬁRaequﬁvdve(ﬁ + %k“k”k"ldvaqﬁvdeechﬁVeqﬁ
+ %k"kl’kc 1Y R,V V. pVep + %kakbkczdvaqubechsvde
+ %k“kbkc 19V R, N, VPV b + %k“k”kcldRachVbqbVeqdeqﬁ
+ %k“k”k" 1R,V ypV VPV 1. (D68)

The first term of Eq. (D68) is

1 . 1 . .
—Ek“kbycdchﬁVdRaengﬁVegﬁ = (£k¢)1(ldvd¢>0(Df¢)o(kbkcv}Rbc)1 ) (£k¢)1(De¢)0(Df¢)o(ka}Rbé)1

1
2
+ 5 (L) (D)o (k1V R 4)g = 0. (D69)

The second term of Eq. (D68) is

1 1 5 5 |
) KKy VPRV Vi p VD = — 5 (kbRb})1 (D¥¢)o(D! $)oDe (L) + B D*(Li9)1 (Ru)1 (1Y ap)o (Deh)o

£ 3 (KPR ol L) (DB Do Lig) = . (D70)

The third term of Eq. (D68) is

1 1 S 1 .
) kkPy AN PR NV ypV VNV = — B (L), (kbRbEJ)l (D@Cb)o(DeDd(ﬁ)o + B (Lrd), (Df¢)0(kcldRcd)on(£k¢)1
1 .,
T3 (Rii)1 (L)1 (D1 )y (19V;V yh) = . (D71)
The fourth term of Eq. (D68) is
1 1 N 1
zkakbkcldva¢vdeevc¢ve¢ = E [(£k¢)l]z(kcldvdRcé)O(De¢)0 - 5 K‘Ckgb)1]2(leve¢>0<kckdlfvacd)1
1
S (L) P 1V Ry ), 0. (D72)
The fifth term of Eq. (D68) is
1 1 . 1 5
Ek“kbkcldvaff’Rbevdvcﬁbvefﬁ ) [(ﬁkﬁb)1}2(kclevevc(ﬁ)o(kdldef)o + B (Lx)1 (k219N 4V ,h) o (D? ) (kR 2 )
1
=5 (L) (V) (K1Y 9,5) (R), 0. (D73)

The sixth term of Eq. (D68) is
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(L)1 (19 Veh)o (kR 2)y — % [(Lep)i P (K 1V NV p)o (KU Ry ),

| =

%k“kbk“ldva(/)Rbevcd;VdVeqﬁ =
1 .
) [(ﬁkﬁb)ﬂz(lelf Vevf¢)o(Rkk)1 ~0. (D74)
The seventh term of Eq. (D68) is

1 1 : 1 .
SKE KUV R Ny VPV ap = ) [(Lxd) i (K KUV R ), 1V o p)g + 3 (Lx)1 (K kY Ry3), (19V,40)o (DY )

1
) (Li) 1 (LiRpie) 1 (1°V ) (U yp) = 0. (D75)
The eighth term of Eq. (D68) is
1 1 : 1 5
EkakbkcldRaevcvbeved)vd(ﬁ =73 (ﬁkff’)l(£i¢)1(lgve¢)o(kdlfRdf)o + ) (‘Ck¢)1(ldvd¢)O(Df¢)O(kCRcf)1
1
=5 (L) (I°V.)o (M V s) o (Ri )y 0. (D76)
2
The ninth term of Eq. (D68) is
1 1 R 1
Ek“kbkcldRaengbVCVeqﬁVdgb =3 (Li)1D* (L) 19V 4h)o (kR ez )y — B (‘Ck(:b)l(kblfvbvf¢>0(leve¢)0(Rkk)1
1
=5 (Lxd)1 (£7), (1°Ve)o (KU Ry )y 0. (D77)
So the tenth term of Eq. (38) under the first-order approximation is
1
- Ek“kbchbVC(RadVbqﬁVd(ﬁ) ~0. (D78)
The eleventh term of Eq. (38) is
SRR GV (R ¥ 9 8) = SRR ST Ry V V) = 3 KRR LY V(R Y V)
(D79)

_ %k“kbk"ldvc (R, V. SVP)V 1.

The first term of Eq. (D79) is
1 . 1 . 1 .
5kakh},cde¢vd(Rahve¢ve¢) = Ekakb7/cd(va’Rah)quﬁveqﬁveq5 + 5 k“thahych‘(de(VeqSVeq&)

1 . 1 o
= EDf(Rkk)l (Djd’)o(veﬁbveﬁb)o ) (kaRaB)1 (Bdb)l (Daff’)o(ve(f’ve(f’)o

3 (RN (38, (D7)y (V<9 by — 5 (K Ray)y (B), (D;30), 9V,

+

N = N~

(R (Ve ), (D)o TV D)o + 5 (R (DT 4)oD3 (V. V),

2 D (R ) (D) (V. V) + 5 (R (DT ) Dy (V¥ ) ~ Oe). (D80)

The second term of Eq. (D79) is
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1 1 1
) kP ke 19N (N 4 (Rp V V4 p) = — 3 (L) (KK 19V 4Ry, ) | (VPN h) o — 3 (L), (Rig), [V 4 (V Ve )] =
(D81)

The third term of Eq. (D79) is

— SRRPREIT (R T VD)V ap = =3 (LiRus )y (Ve D1V = 5 (R [ VeV ) (199

-
2 (LR (V¥4 9) (1Y) ~ Ofc). (D82)

So the eleventh term of Eq. (38) under the linear order approximation can be written as

1 1 . 1
Ek“k”VcrﬁV”( wVapVip) = *D +(Ry) (DY ) (V. ¢V ) + 2(Rkk)(Df $)D;(V.pVeph) _E(EkRkk)(ve¢ve¢)(ldvd¢)'
(D83)

The twelfth term of Eq. (38) is
SRRV Raan VPV ) = =3 KK VGV (Roy V957 ) + SRR ET Ry V9 )
- % KKK 1N (R 1o VOV )V 4
=— % kK Kby APV (R e s VPV ) + %k“k”k“ldeVdeech"f/)Vf ¢
+ %k”k”k"ldVagbRbecfvdVeqﬁVf o+ % kP k1 g )Ry VPV N
- %kakbkczdchaebfve¢vf'¢vd¢ + % KKK LR 10V VGV GV 4

1
+ S KKV R 1V PV $V i (D84)

The first term of Eq. (D84) is

SRR VG (R VGV ) = =5 (D)o D (KRR ey V0 ), + 5 (D)o (KR 3 V9V ), (B,
— S (DR R VBT ), (1V k), + 5 (D)oK R V4 ), (B2,
~ S DR R VG, (1V k),
=3 (D )DL (KK Ry VY ) ~ OLc). (DS5)

The second term of Eq. (D84) is

1 R s R
S KRRV oV aRpeef VPV b = S (Lih) 1 (RKVNV aR 55)  (DIP)o (D" D)o = (L)1 (K RV V 4R o)y (D)o

!

2
1

+ E [(‘Ckgb)l]% (kdke lflglhvhRdfeg)o ~ (. (D86)

The third term of Eq. (D84) is
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SRRPRELT Ry VGV p = — (L) PV T0)o (KR Regag), + 3 (L) (1947 )y (D)o (KA ),
43 (L) POV T (KR 1),
— 3 (L) RV, (D)o (KK R ), 0. (087)
The fourth term of Eq. (D84) is
SRR PRy VPV = = (L) PR Ry, (0909, + 3 (L) (VT (D )y (KK Ry ),
(BN 7 )y (KK R ),
— S ) (Y T 8)o (D)o (KR Rey), . (D88)

The fifth term of Eq. (D84) is

1
5 kakbkcldchaeb.fve¢vf¢vd¢ - [(£k¢)l] (kckdke lglhvechdh)l (lfo¢)0

1
2
_|_

N =

(KKK R y503)  (1V 4o (DI (D' ),
- (£k¢) 1 (kbkckdlfvdefcg) 1 (leve¢)0(D§¢)0
(KKK R 1503) (1 1) (D7) (D p) ~ Oe). (D89)

1R
M| —

The sixth term of Eq. (D84) is
1 , 1 R ,
Ek“kbkL R 4oV VOV PV yp = 5 (Lip) DI(Lyh)  (1°V o) o (kKU R p45),
+5 D (L49), (19,490)o (D)o (KPR 5. 7)

(Lxp)1 (L)1 (VY 1) (KK R gge)

N|'—‘NI>—‘NI>—‘

=5 (L3)1 IV op)o (DIp)o (K kV R 1 43), = 0. (D90)
The seventh term of Eq. (D84) is
1 1 .
5kakbkcldRaebfve¢vcvf¢vd¢ =73 (Lip) 1 DI(Lip) (1°V o) o (KK VR pa5),
+5 D'?(ﬁk(ﬁ)l (ldvdéb)o(D%)o(kbkCRhgc})]

(Lx)1 (Lih)y (MY 1) (KK VTR gy, )

N|'—‘va—‘l\) —_

=5 (L3) (1°V . p)o (D)o (kKU R p4g), = 0. (D91)

So the twelfth term of Eq. (38) under the first-order approximation is given as

1 1,
SRR GV (R0, VPT) = = 3 (D) D (KRR 3 VBV ) 43 (RRPRT R 1) (199,,) (DI (D). (D92)

o
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The thirteenth term of Eq. (38) is

1 1 1 R
TR RV GV VI = = (R (L) PEV, )y + 5 (Rl(Li) (D Dep)y 0. (D93)

The fourteenth term of Eq. (38) is
SRR, BTV D = (KW Ry ) (L) POV ) — (L) (R0, 1), (V.o (R,
F (L RV, 1)y (Do (K Rea), + 5 (L) (D Dao(K 1R, ),
43 (L)1 (V)o (D Dap)y Ry — 5 (L4 (D B)o( DDy (R c), =0, (DOA)
The fifteenth term of Eq. (38) is
KRR VYV = (L) PRV )oK Rap)y = (L2 (1, 9,8), 1V, h)o (Ri)

(L) (RO 19V, V) (DI D)o (KR ), +1{<ck¢> P(K IR,y (D Dah),

[\)|>—A —

(Li) (K"R,z), (D) )o(D*Dyp)y + 5 <£k¢> (R (19V 49p)o(D? D)o ~ 0. (DI5)

The sixteenth term of Eq. (38) is

1 1 .
KRRV VPV = (R (T VD) (KT Ty + 5 (Ris) (Ve B)o(D*Dep)y ~ Oe). (DI6)

The seventeenth term of Eq. (38) is

1 . .
_EkakbRadbevd¢ve¢vcvc¢ = [(£k¢)1]2(kclfvcvf¢)0(kdke lglhRdgeh)() + (kaldvavd¢>0 (Dg¢)0(Dh¢) (kbk Rbgch)
. 1 .
- 2(£k¢) 1 (kblevhve¢>0(Dg¢)0<k6kdlchfd§)1 - 5 (kakbRaebfve¢vf¢)1 (DCDE¢)O
. - 1 . N
= (K119,V. 1) (D) (D) (KK Ry ) = (KRR ey 9 $V/ ) (D D) ~ Oe). (D97)

Therefore, the expression of H,(c(lliz) under the linear order approximation of the perturbation can finally be obtained as

HU =2 (ROV 3R (DY) (VY ) + 5 <Rkk><Df¢>Df<ve¢ve¢>+§<Rkk><ve¢ve¢><DfD@¢>

l\)l'—‘

[\)|>—-NI>—I\JI»—

(DEP) Dy (kKPR ooy VPV p) — 3 (kakbRaebfvefﬁvff/J))(DéDa(ﬁ) — (Ri) (V. Vep) (k“19V YV yp)
(LiRi) (Ve V) (199, 100) + (k19 V1) (D) (D ) (KPK°R, 5. ;)

+ 5 (KKPKV R 1) (19 1) (DOp) (D ). (D98)
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