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We study the critical collapse of a massive complex scalar field coupled minimally to gravity. Taking as
initial data a simple Gaussian pulse with a shape similar to the harmonic ansatz for boson stars,
we obtain critical collapse of type I and II when varying the Gaussian width σ. For σ ≤ 0.5
we find collapse of type II with a critical exponent γ ¼ 0.38� 0.01 and an echoing period
Δ ¼ 3.4� 0.1. These values are very similar to the well-known results for a real massless scalar field.
On the other hand, for σ ≥ 2.5we obtain the collapse of type I. In this case we find that the critical solutions
turn out to be an unstable boson stars in the ground state: all the data obtained from our simulations can be
contrasted with the characteristic values for unstable boson stars and their corresponding Lyapunov
exponents.
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I. INTRODUCTION

Due to the strong field dynamics, critical phenomena
arises in gravitational collapse in the threshold of black
hole formation. In a similar way to phase transitions in
thermodynamics, taking the mass of black hole as an order
parameter, critical gravitational collapse can be classified
as type I or type II. In type I collapse the final black hole
mass has a minimum finite value, whereas in type II
collapse the black hole mass can be arbitrary small.
Historically, M. Choptuik discovered critical phenomena

in gravitational collapse while studying numerically the
gravitational collapse of a real massless scalar field, a result
which was later named critical gravitational collapse of type
II [1]. He found that, for a family of initial data parametrized
by some arbitrary parameter p, the scalar field is completely
dispersed to infinity for p < p�, with p� some critical value,
while forp > p� a black hole is formedwith a finalmass that
follows a power-law scaling relation of the form:

M ∝ ðp − p�Þγ: ð1Þ

The critical solution p ¼ p� that separates both states
exhibits universality, i.e., it does not depend on the way in
which the family is parametrized. Additionally, for different
types of matter the critical solution can have either continu-
ous self-similarity (CSS), or discrete self-similarity (DSS). In
particular, for the case of a real massless scalar field the
critical solutionwas found to haveDSS. This property is best
appreciated in a logarithmic time defined as:

T ¼ − lnðτ� − τÞ; ð2Þ

with τ some measure of time which is usually taken as the
proper time at the origin, and τ� the so-called accumulation
time. In this logarithmic time T the solution is periodic with
periodΔ. This property is known as “scale echoing.” For the
real massless scalar field the critical exponents have been
found to be γ ≈ 0.374 and Δ ≈ 3.445, via both numerical
simulations and semianalytical studies [1–6].
On the other hand, critical collapse of type I was later

discovered by Choptuik et al. while studying the critical
collapse of a Yang-Mills field [7]. In contrast to the critical
collapse of type II, in this case the final black hole mass has
a minimum finite value, and there is a different scaling law
of the form:

τ ∝ −γ ln jp − p�j; ð3Þ

where τ now measures the time that a given solution
remains near the critical solution. Additionally, the critical
solution itself is either stationary or periodic in time.
One can expect type I critical collapse when in the field

equations there exists either a mass or a length scale that is
relevant to the dynamics. On the contrary, when the
equations do not contain a length scale, or when such a
length scale is not relevant, type II phenomena occur. Both
types can coexists in different regions in the parameter
space of initial data, as for example in the case of a real
massive scalar field [8], where the type of critical phenom-
ena depends on the size of the Compton wavelength of the
field when compared to the width of initial data (an
excellent review about these type of critical phenomena
can be found in [9]).
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In this paper we study the critical collapse of a massive
complex scalar field. A previous study was done by Hawley
and Choptuik in [10], showing that the critical solution for
the complex scalar field corresponds to stationary solutions
to the Einstein-Klein-Gordon known in the literature as
boson stars [11–14]. These solutions are determined by
assuming spherical symmetry, and by the requirement that
the metric coefficients must be static, while the complex
scalar field has a harmonic time dependence of the form:

Φðt; rÞ ¼ φðrÞeiωt; ð4Þ

with ω a real valued frequency, and φðrÞ a real valued
function of radius only. Taking the mass parameter of the
complex scalar field asm, the maximum possible mass of a
boson star has been found to be Mmax ≈ 0.633M2

Planck=m,
corresponding to a central value of the scalar field of
φmax ¼ φð0Þ ≈ 0.271, see for example [15,16] (though this
value can change depending on the normalization, see
below for our normalization choice). This central value of
the field separates the boson star configurations into two
branches depending on their stability properties. If φð0Þ <
φmax the boson star is stable under small perturbations,
whereas for φð0Þ > φmax the configurations are unstable.
The lowest energy solution for a boson star for a given
value of φð0Þ, also known as the ground state, has no nodes
in the scalar field. Excited states are classified depending on
the number nodes of the field in the radial direction.
The critical solutions found by Hawley and Choptuik

corresponded to unstable boson stars in the ground state,
and were obtained by perturbing a stable boson star that
interacted gravitationally with a small pulse of a massless
scalar field that acts as the perturbation. In our study we
take a different approach, and we begin with a simple
Gaussian pulse in the complex field with a variable width.
We then evolve this initial data and vary the amplitude of
the Gaussian pulse until a critical solution is found.
Since the mass of the complex scalar field introduces a

scale, we expect our system to display both types of critical
phenomena depending on the width of the initial Gaussian
pulse. In a similar way as in the case of a real massive scalar
field [8], we will explore both types of critical behavior by
changing the width of our initial pulse. Furthermore, if one
performs a linear perturbative analysis for critical phenom-
ena of both type I and II, the critical exponent γ can be
shown to be the inverse of the so-called Lyapunov exponent
χ of the system γ ¼ 1=χ [9].1

For the case of critical collapse of type I, we will
compare our critical solutions with the known solutions
for stationary boson stars. Furthermore, we can also
compare our critical exponents with the Lyapunov expo-
nents for the unstable modes of boson stars. On the other
hand, when the critical phenomena is of type II we limit our
study to finding the critical exponent γ and the echoing
period Δ.
This paper is organized as follows. In Sec. II we discuss

the field equations for a complex massive scalar field as
weel as our initial data. In Sec. III we discuss our numerical
code, gauge conditions and diagnostic tools. Section IV
shows the results of our numerical simulations.

II. COMPLEX SCALAR FIELD

A. The Einstein Klein-Gordon equations

Our matter model consists of a massive complex scalar
field Φ coupled minimally to gravity, which can be
described by the action (in units such that G ¼ c ¼ 1):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
ð∇μΦ∇μΦ� þm2ΦΦ�Þ

�
; ð5Þ

where R is the Ricci scalar of the spacetime and m is the
mass parameter of the complex scalar field (notice that this
fixes our normalization choice). Varying the action with
respect to the metric and the scalar field one obtains the
Einstein field equations:

Rμν −
1

2
gμνR ¼ 8πTμν; ð6Þ

together with the Klein–Gordon equation:

∇μ∇μΦ −m2Φ ¼ 0; ð7Þ

where the stress-energy tensor Tμν for the scalar field is
given by:

Tμν ¼
1

2
½ð∇μΦ∇νΦ� þ∇νΦ∇μΦ�Þ

− gμνð∇αΦ∇αΦ� þm2ΦΦ�Þ�: ð8Þ

In order to study numerically the evolution of the system,
we will use the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation of general relativity [17,18], which
is known to be strongly hyperbolic [19]. Particularly, as we
are only interested in the case of spherical symmetry, we
will use the BSSN formulation adapted to curvilinear
coordinates as described in [20,21]. In spherical symmetry,
we will adopt the line element given by:

1The Lyapunov exponent measures the stability of a system
due to changes in its initial conditions. For close trajectories in
phase space parametrized by t, and initial points separated by an
infinitesimal distance δ, the Lyapunov exponent quantifies their
rate of separation as Fðt; x0 þ δÞ − Fðt; x0Þ ≈ δeχt, with χ the
Lyapunov exponent of the system. For χ > 0 the trajectories
diverge, whereas for χ < 0 they do not.
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ds2 ¼ −α2dt2 þ ψ4ðAdr2 þ r2BdΩ2Þ; ð9Þ

where ðα;ψ ; A; BÞ are functions of ðt; rÞ only, and dΩ2 ¼
dθ2 þ sin2 θdφ2 is the standard solid angle element.
In order to recast the Klein-Gordon equation as a first

order system we define the following auxiliary variables

Π ≔
∂tΦ
α

; χ ≔ ∂rΦ: ð10Þ

With these definitions, the Klein-Gordon equation (7) can
be rewritten as:

∂tΦ ¼ αΠ; ð11Þ

∂tχ ¼ α∂rΠþ Π∂rα; ð12Þ

∂tΠ ¼ α

Aψ4

�
∂rχ þ χ

�
2

r
−
∂rA
2A

þ ∂rB
B

þ 2∂r lnψ

��

þ χ∂rα

Aψ4
þ αKΠ − αm2ϕ; ð13Þ

with K ≔ Km
m the trace of the extrinsic curvature of the

spatial hypersurfaces of constant time.
From the orthogonal decomposition of the stress-energy

tensor:

Tμν ¼ Sμν þ Jμnν þ nμJν þ ρnμnν; ð14Þ

we obtain the energy density ρ ≔ nμnνTμν, the momentum
density Jμ ≔ −Pν

μnλTνλ, and the stress tensor Sμν ≔
Pσ
μPλ

νTσλ, where nμ ¼ ð1=α; 0; 0; 0Þ is the unit normal
vector to the spatial hypersurfaces and Pμ

ν ≔ δμν þ nμnν
is the projection operator. For the complex scalar field we
find in particular:

ρ ¼ 1

2

�
jΠj2 þ jχj2

Aψ4
þm2jΦj2

�
; ð15Þ

Jr ¼ −
1

2
ðχΠ� þ Πχ�Þ; ð16Þ

Srr ¼
1

2

�
jΠj2 þ jχj2

Aψ4
−m2jΦj2

�
; ð17Þ

Sθθ ¼
1

2

�
jΠj2 − jχj2

Aψ4
−m2jΦj2

�
: ð18Þ

B. Initial data

In [10] Hawley and Choptuik showed that the critical
solution for the case of a massive complex scalar field is an
unstable boson star. In their study the critical solution was
obtained by perturbing a boson star in the stable branch
with a real massless scalar field, and tuning the amplitude
of the massless field up to the threshold of black hole
formation. Here we will take a different approach, by
considering as our initial condition a simple pulse of
complex scalar field with the following Gaussian profile:

Φðt ¼ 0; rÞ ¼ Φ0e−r
2=σ2 ; ð19Þ

Πðt ¼ 0; rÞ ¼ iκΦ0e−r
2=σ2 ; ð20Þ

where Φ0; σ; κ are real parameters, and Φ0 is the tuning
amplitude of the initial pulse. In order to find the initial data
for the geometry we assume a conformally flat spatial
metric, so that A ¼ B ¼ 1 in (9), and proceed to solve the
constraint equations. Notice that even though Eqs. (19) and
(20) do not formally represent an instant of time symmetry,
the momentum density Jr is still zero, so the momentum
constraint is trivially satisfied. On the other hand, at t ¼ 0
the Hamiltonian constraint becomes a nonlinear second
order differential equation for the conformal factor ψ of the
form:

∂
2
rψ þ 2

r
∂rψ þ 2πψ5ρ ¼ 0; ð21Þ

with the energy density given by:

ρ ¼ 1

2

�
jΠj2 þ j∂rΦj2

ψ4
þm2jΦj2

�
: ð22Þ

The above nonlinear equation is solved numerically by
using an iterative method. Boundary conditions for Eq. (21)
are obtained from the asymptotically flatness condition,
which implies:

ψðrÞjr→∞ ¼ 1: ð23Þ

In practice, however, we use a Robin boundary type
condition at a finite radius corresponding to the edge of
our numerical grid:

∂rψ ¼ 1 − ψ

r
: ð24Þ

This condition reflects the fact that as r → ∞ we have
ψ → 1þOðr−1Þ. On the other hand, regularity at the origin
implies that ψ must be an even function of r, so that:
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∂rψ jr¼0 ¼ 0: ð25Þ

The initial conditions given by Eqs. (19)–(20) were not
chosen randomly. At t ¼ 0 they are similar to the harmonic
ansatz for boson stars, Eq. (4), with κ taking the role of the
oscillation frequency ω of the boson star, but instead of
using the profile for a stable boson star we use a simple
Gaussian profile. Notice that κ is a free parameter, which
we later choose to be equal to the massm of the scalar field
κ ¼ m for simplicity.

III. NUMERICAL CODE AND DIAGNOSTICS

A. Code and gauge choices

We integrate the Einstein-Klein-Gordon system with
the OLLINSPHERE code, a numerical relativity finite-differ-
ence code suited for spherical symmetry which evolves
the BSSN formulation of the Einstein equations. This
code has been previously used for example in [22,23], but
it has now been updated to include the possibility of fixed
mesh refinement around the origin, so that if the outer
boundary is located at rmax with grid resolution Δr, the
local boundary of the N refinement level is situated at
rmax=2N−1 with resolution Δr=2N−1, and the grid structure
remains fixed during the evolution.
To close the system we also need to specify the lapse

function α. In our simulations we choose for the lapse the
standard 1þ log slicing condition:

∂tα ¼ −2αK; ð26Þ

with K the trace of the extrinsic curvature. We choose for
the initial value of the lapse a precollapsed profile of the
form αðt ¼ 0Þ ¼ ψ−2, with ψ the initial conformal factor.
Also, for simplicity we choose a vanishing shift vector for
all our simulations. Indeed, this choice was already
assumed in the line element (9).

B. Diagnostics

As is usual in the study of critical behavior, the final state
of the evolution is classified depending on the strength of
the initial data. We report our initial amplitude precision in
finding the critical solution via the dimensionless quantity:

δΦ ¼ Φc −Φd

Φd
; ð27Þ

where Φc is the highest amplitude for which the initial data
is dispersed and leaves behind Minkowski spacetime, and
Φd is the lowest amplitude for which a black hole is
formed. The critical value for the amplitude Φ� is a
metastable state which separates the two behaviors

described previously. We have found that in order to obtain
the critical exponents correctly we need an accuracy of at
least δΦ ∼ 10−6, o even higher. This value can be improved
by using a finer grid, and results in less uncertainty in the
value of the critical exponents, and also in a longer
evolutions near the critical solution for type I critical
collapse.
Since we are mostly interested in the subcritical case, for

the supercritical simulations we will not follow the evolu-
tion until the black hole settles down to equilibrium, which
in any case would require a nonzero shift vector. With our
slicing choice, the lapse function at the origin will return to
one if the initial scalar field pulse is dispersed to infinity.
Otherwise, if a black hole is formed, the lapse will collapse
to zero at the origin.
In order to detect when a black hole is formed we will

search at every time step for an apparent horizon. This
procedure is done by looking for a location where the
expansion of outgoing null geodesics becomes zero (see for
example [24]):

1

ψ2
ffiffiffiffi
A

p
�
2

r
þ ∂rB

B
þ 4

∂ψ

ψ

�
− 2Kθ

θ ¼ 0: ð28Þ

Here Kθ
θ is simply the angular component of the extrinsic

curvature with mixed indices.

C. Characterizing type I critical solutions

In Eq. (3) we take τ as the proper time measured by an
observer located at the origin r ¼ 0 at a point in the
evolution when a first apparent horizon is located. As
explained before, the critical solutions of type I for the
complex scalar field should correspond to an unstable
boson star. We should emphasize, however, that our initial
conditions for the complex scalar field given by Eqs. (19)
and (20) with the critical amplitudeΦ�

0 do not correspond to
a boson star at t ¼ 0, unstable or otherwise. This implies
that for our near critical simulations the excess of scalar
field will be radiated to infinity and the remaining content
should approach a boson star in the unstable branch.
Since boson stars do not have a well defined boundary,

one can describe their size by means of the so-called R95 or
R99 radius, which correspond to the areal radius of a sphere
containing 95% or 99% of the total mass MT , respectively.
Furthermore, since the system is not stationary the inte-
grated mass will be a function of Mðt; rÞ. To determine if a
compact object has formed, we inspect the compactness
function defined as:

Cðt; rÞ ¼ Mðt; rÞ
Rðt; rÞ ; ð29Þ

ERIK JIMÉNEZ-VÁZQUEZ and MIGUEL ALCUBIERRE PHYS. REV. D 106, 044071 (2022)

044071-4



where Rðt; rÞ is the areal radius of a sphere at a given time t
and coordinate radius r. We look for the global maximum
as a function of r for every time step. We expect that if a
boson star has formed, there will be a maximummean value
of Cðt; rÞ, plus some small oscillations around it corre-
sponding to perturbations of this star. This behavior will tell
us if a compact object has formed or not, and will also
provide us with an approximate lifetime of the critical
solution obtained.
In Eq. (29) we estimate the mass function Mðr; tÞ of the

configuration by using the Kodama mass [25–28], which is
a quasilocal conserved energy in a spherically symmetric
spacetime. The Kodama vector is defined by:

KA ¼ ϵAB∂BR; ð30Þ

whereR is the areal radius of a sphere at constant t and r, ϵAB

is the totally antisymmetric tensor in the two-dimensional
manifold with coordinates ðt; rÞ, and the indices ðA;BÞ run
over (0,1). The vector KA can be naturally extended to the
four-dimensional manifold by setting to zero the remaining
components. Next, we define the four vector Sμ as follows:

Sμ ¼ TμνKν; ð31Þ

where Tμν is the stress-energy tensor. It is possible to show
that Sμ is a conserved current, so it satisfies the conservation
law:

∂μð
ffiffiffiffiffiffi
−g

p
SμÞ ¼ 0; ð32Þ

In a sphere of radius r at constant t, we can then define a
conserved mass, the so-called Kodama (or Misner–Sharp)q
mass as:

Mðt; rÞ ≔
Z
sphere

Stα
ffiffiffi
γ

p
dx3; ð33Þ

where γ is the determinant of the 3-metric, andwhereweused
the fact that −g ¼ αγ. Using our expression for the spatial
metric this reduces to:

Mðt; rÞ ≔ 4π

Z
r

0

αStr2ψ6A1=2Bdr; ð34Þ

Notice that the above expression allows us to have local
concept of mass as a function of r and t.2

In order to find the total mass of the unstable boson star
corresponding to the critical solution we still need to
estimate its radius R. Notice that we cannot simply
calculate the integral (34) all the way to the boundary
boundary of the numerical grid, since some of the initial
scalar field will be continuously radiated away and should
not be considered as part of the critical solution. To estimate
the radius R we use the fact that stationary boson stars are
well characterized in the literature, and our code is capable

FIG. 1. Scaling of the maximum value of the 4D Ricci scalar for subcritical simulations of a massive complex scalar field, using the
initial data family (19) and (20), with Gaussian width σ ¼ 0.5.

2In spherical symmetry the are other equivalent forms of
calculating a local mass. For example, one can write the radial
metric in terms of the areal radius ra as grr ¼ 1=ð1 − 2mðraÞ=rÞ
and solve for mðraÞ. We prefer the integral above as it depends
directly on the stress-energy tensor and in practice seems to be
less prone to numerical errors.
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of finding those solutions (see for example [29]). For a near
critical simulation we then first obtain the mean value of the
scalar field amplitude at the origin, hΦðt; r ¼ 0Þi. Having
found this mean amplitude, we construct the corresponding
stationary boson star solution with that same amplitude,
and choose R as the R99 radius of that stationary solution.

D. Characterizing type II critical collapse

As the mass of the scalar field introduces a length scale,
following [8] we expect that if σm ≪ 1 we should observe
critical collapse of type II, whereas if σm ≫ 1 we should
find collapse of type I. Finding the value of the critical
exponent γ using the final black hole mass scaling is
somewhat difficult since we would need to follow the black
hole until it reaches an equilibrium configuration, some-
thing that is not trivial to do numerically. Instead, we will
consider subcritical evolutions since in a critical collapse of
type II the maximum value of the 4D Ricci scalar will then
follow the scaling law:

Rmax ≈ jΦ�
0 −Φ0j−2γ; ð35Þ

where the −2 factor in the exponent is there because the
Ricci scalar has units of length−2. Additionally to this
behavior, the discrete self-similarity of the phenomena adds
a fine structure to the scaling law [30], so the Ricci scalar in
fact will behave as:

lnRmax ¼ c − 2γ ln jΦ�
0 −Φ0j þ fðln jΦ�

0 −Φ0jÞ; ð36Þ

with c some constant, and where f is a periodic function
with angular frequency:

TABLE I. Summary of all exponents obtained for cases
σ ≤ 0.5. Up our uncertainties, they are very similar to the values
found in the literature for the case of a real massless scalar field.

σ γ Δð37Þ Δð41Þ
0.2 0.374� 0.001 3.423� 0.026 3.426� 0.026
0.3 0.375� 0.001 3.442� 0.025 3.424� 0.031
0.4 0.376� 0.001 3.493� 0.019 3.442� 0.033
0.5 0.376� 0.001 3.440� 0.021 3.436� 0.059

FIG. 2. Central value of the norm of the complex massive scalar field compared with the real massless case. Plots have been shifted in
time in order to coincide with the real case. As expected, since Δ are very similar to each other, all lines overlap with the real case.

TABLE II. Resolution and position of the outer boundary for
each value of the width parameter σ for our simulations of type I
critical collapse.

σ Δr rmax

2.5 150
2.75 0.1 200
3 250

3.5 400
4 0.15 550

5 400
6 350
7 325
8 0.1 325
9 290
10 225
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ω ¼ Δ=2γ; ð37Þ

whereΔ is the so-called echoing period. To leading order, f
can be approximated by:

fðxÞ ¼ a0 sin ðωxþ φÞ; ð38Þ

with φ some arbitrary phase. The 4D Ricci scalar then
behaves as:

lnRmax ¼ c− 2γ ln jΦ�
0 −Φ0j þ a0 sin ðω ln jΦ�

0 −Φ0j þφÞ;
ð39Þ

where the constants c; a0;φ depend on the form of the
initial data family.
A second method to obtain Δ was described in [31].

Originally, this method was applied to the case of a real
massless scalar field, and uses the fact that critical solution
is periodic in the logarithmic time T. Here we will apply
this method to the case of a complex scalar field by

FIG. 3. Top panel: maximum value of the compactness function for a near critical evolution with σ ¼ 2.5. Bottom panel: norm of the
scalar field at the origin. At very early times we see no indication that a compact object has formed. However, from t ≈ 25 up to t ≈ 225
we can appreciate a clear oscillation around a mean value. Since this is a subcritical case, we see dispersion of the object for t > 225.
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considering the proper time for two pairs of consecutive
local minima of the magnitude of the scalar field kΦk
evaluated at the origin, ðτn; τnþ1Þ and ðτm; τmþ1Þ, which
corresponds to the pairs ðTn; Tnþ1Þ, ðTm; Tmþ1Þ in the
logarithmic time. Assuming now that each pair differs in
half of the period Δ=4, one can solve for the accumulation
time τ� obtaining:

τ� ¼ τnτmþ1 − τnþ1τm
τn − τnþ1 − τm þ τmþ1

: ð40Þ

This procedure also provides us with an estimate of the
echoing period Δ given by:

Δ ¼ 2 ln

�
τ� − τn
τ� − τnþ1

�
: ð41Þ

IV. NUMERICAL RESULTS

All our simulations were performed with fourth order
centered differences in space, and fourth order Runge-Kutta

FIG. 4. Kodama mass for the same simulation of Fig. 3. After obtaining the mean value of the norm of the scalar field at the origin we
find the R99 of the corresponding boson star. We then evaluate the Kodama mass at that radius.

FIG. 5. Fourier transform of the central value of the scalar field for σ ¼ 2.5. Both the real and imaginary parts have a very narrow peak
centered at a frequency ω ¼ 0.7933.
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for the evolution in time. For simplicity, we fix the scalar
field mass to m ¼ 1. Also, for the family of initial data
(19)–(20) we set κ ¼ m ¼ 1 for all cases. The values
chosen for the width parameter σ will be reported below.
The parameter Φ0 is then adjusted until we find the black
hole formation threshold with the desired accuracy.
To reduce the source of errors in our simulations we use

constraint preserving boundary conditions. These have
already been described and used for example in [32,33],
and they help to reduce the errors coming in from the
boundaries by a factor of about 103 when compared with
the standard Sommerfeld (radiative) boundary conditions.
The error introduced by the finite difference method can
also be diminished by using Kreiss-Oliger numerical
dissipation. In all our evolutions we use sixth-order dis-
sipation in order to be compatible with the fourth-order
discretization. The artificial dissipation dampens high
frequency modes that would otherwise spoil the numerical
stability of the near-critical solutions. Resolution also
affects the critical behavior (in particular the precise value
of the critical amplitude Φ�

0), for this reason we will report
relevant quantities for our highest resolution simulations.

A. Type II critical collapse

As already stated before, we expect type II critical
collapse for σm ≪ 1. To check this, we choose σ ≤ 0.5
and proceed to find the critical amplitude Φ�

0 using a
bisection method. Since studying critical phenomena
requires high numerical precision, instead of using many
levels of refinement, which introduce reflections at the
refinement boundaries, we will use just one grid level with
a radial transformation of coordinates from the original
coordinate radius r to a new coordinate r̃ related to r
through:

dr
dr̃

¼ 1

1þ eβr
2þδ

: ð42Þ

With this transformation a uniform grid in r̃ becomes a
nonuniform grid in r. This coordinate transformation was
first used in [34] for studying the critical behavior of scalar-
tensor theories of gravity in the Jordan frame. In Eq. (42), δ
adjusts the resolution near the origin r̃ ¼ 0, while β
measures how fast r̃ approaches r far away. Notice that
as the transformed radial coordinate approaches infinity
r̃ → ∞, we have dr=dr̃ → 1. For our simulations we use
δ ¼ 5 and β ¼ −1, with a grid spacing Δr̃ ¼ 0.005, and
Nr ¼ 2500 points in the radial direction. We also use an
adaptive time step in order to satisfy the Courant-
Friedrichs-Levy (CFL) stability condition. With these
settings we were able to find the critical amplitude with
a precision of δΦ ≈ 10−12.
Figure 1 shows the maximum value of the 4D Ricci

scalar at the origin obtained from subcritical evolu-
tions for the particular case σ ¼ 0.5. From the figure
we can clearly see the expected behavior for type II
critical collapse. Table I shows the critical exponents
obtained for the different values of σ ¼ 0.2, 0.3, 0.4, 0.5.
As we can see, for all these cases fitting the function (39)
results in critical exponents that are very close to those
found in the literature for the case of a real massless
scalar field.
In Fig. 2, for near-critical evolutions we compare the

magnitude of central value of the massive complex scalar
field, with that of a real massless scalar field in logarithmic
time T. The overlap we find is no surprise since the values
of γ and Δ in all cases are very similar to the critical
exponents for the Choptuik solution.

TABLE III. Summary of our numerical results for the critical solutions. SinceΦðr ¼ 0Þ andM have an oscillatory
behavior, we report the mean value with an uncertainty given by the standard deviation. The frequency is obtained
using a FFT applied to the real and imaginary parts of the field at the origin. The critical exponent γ is calculated
using a least squares fit to Eq. (3). We notice that as σ increases, the mass of the critical solution first approaches the
highest possible value for the mass for a boson star M ∼ 0.633, reaching the maximum value for σ ¼ 4.0, while for
higher values of σ the mass decreases again.

σ jΦ̄ðr ¼ 0Þj M̄ ω γ

2.5 0.127� 0.008 0.590� 0.003 0.793� 0.008 5.075� 0.024
2.75 0.115� 0.007 0.606� 0.002 0.804� 0.006 6.884� 0.022
3 0.106� 0.006 0.615� 0.003 0.813� 0.004 9.168� 0.023
3.5 0.092� 0.004 0.629� 0.002 0.833� 0.008 15.592� 0.042
4 0.086� 0.004 0.631� 0.002 0.842� 0.006 20.887� 0.061
5 0.092� 0.003 0.628� 0.002 0.832� 0.008 15.494� 0.023
6 0.098� 0.004 0.623� 0.003 0.826� 0.009 11.567� 0.035
7 0.104� 0.004 0.621� 0.003 0.820� 0.011 9.572� 0.022
8 0.108� 0.005 0.613� 0.004 0.813� 0.012 8.423� 0.023
9 0.112� 0.006 0.609� 0.004 0.810� 0.014 7.608� 0.016
10 0.115� 0.007 0.605� 0.005 0.806� 0.006 7.051� 0.024
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B. Type I critical collapse

As already mentioned, for the case when σm ≫ 1 we
expect to find type I critical collapse. To investigate this, we
start from σ ¼ 2.5 and consider higher values of the
Gaussian width. Once the value of σ has been chosen,
for each case we proceed to find the critical amplitude Φ�

0

with the bisection method. For these simulations we have
used fixed mesh refinement with N ¼ 4 levels. We have
observed that the lifetime of the nearest critical solution
obtained initially increases as σ is increased, reaching its

maximum for σ ≈ 4.0, and then decreases again for higher
values of σ.
To fix the position of the outer boundary, we first

estimate the time of black hole formation tBH using low
resolution runs. We then multiply tBH the asymptotic gauge
speed vg ¼

ffiffiffi
2

p
of the 1þ log slicing condition (as it is

larger than the coordinate speed of light vl ¼ 1). A
perturbation that starts at the origin and bounces at the
boundary will take at least twice this time to return to the
origin (in fact longer since the lapse is smaller than one near

FIG. 6. Comparison of the norm of the complex scalar field of our critical solutions with that of unstable boson stars with the same
amplitude, for the cases σ ¼ 4 (top panel) and σ ¼ 10 (bottom panel). The dots represents the critical solutions, and the solid lines the
corresponding boson stars.
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the origin), so we set the outer boundary at rmax ¼ tBH=
ffiffiffi
2

p
.

The position of the outer boundary rmax, and the resolution
of the base grid Δr, are displayed in Table II. In all these
simulations we use a fixed time step compatible with the
CFL condition.
Figure 3 shows the maximum value of the compactness

function (top panel), and the norm of the complex scalar
field at the origin (bottom panel), for a near critical solution
with initial width σ ¼ 2.5. Since the initial profile consists

of a Gaussian pulse, the scalar field has not agglomerated to
form a compact object. After t ≈ 25 a portion of the scalar
field has been radiated away and the remainder starts to
oscillate around a mean value, indicating that a compact
object has been formed. As this state is unstable, the object
eventually disperses after t ≈ 225. It is important to
mention, however, that for some values of the initial
amplitude Φ0 the scalar field does not disperse completely,
and the remaining bulk oscillates around the origin.

FIG. 7. Mass and oscillation frequency for our critical solutions compared with the curve for stationary boson star solutions. Circles
corresponds to the specific value of σ and the solid line to the known values for stationary boson stars. Top panel: critical solutions for
σ ≤ 4. Bottom panel: critical solutions for σ ≥ 4. We observe that the maximum value for the mass is reached for σ such that
3.5 < σ < 5.

CRITICAL GRAVITATIONAL COLLAPSE OF A MASSIVE … PHYS. REV. D 106, 044071 (2022)

044071-11



This behavior is similar to that observed by Lai and
Choptuik in [35]. In their study, the remaining bulk can
be described as excitations of the fundamental mode of
stable boson stars. However we will leave the study of this
phenomenon for a future work.
In the time interval 25 < t < 225, we obtain the mean

value of the norm of the complex field at the origin, and
then look for the R99 of the corresponding boson star.
Figure 4 shows the Kodama mass for the same subcritical
evolution measured at that radius. Again, we observe an

oscillation around a mean value, and the dispersion of the
object after some time. We can also obtain the oscillation
frequency of the scalar field by applying a fast Fourier
transform (FFT) to the central value of its real and
imaginary parts. Figure 5 plots the frequency obtained
after applying the FFT. We can clearly see a very narrow
peak centered at ω ¼ 0.7933.
We summarize the results for all our simulations in

Table III, where we report the mean value of the norm of the
scalar field at the origin, its oscillation frequency, and the

FIG. 8. Mass and scalar field norm at the origin for our critical solutions compared with the curve for stationary boson star solutions.
Circles corresponds to the specific value of σ and the solid line to the known values for stationary boson stars. Top panel: critical
solutions for σ ≤ 4. Bottom panel: critical solutions for σ ≥ 4.
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Kodama mass of the critical solution. The uncertainty in the
norm of the complex field and its mass are calculated from
the standard deviation, and the uncertainty in the frequency
is reported as half of the peak width in the FFT. The
uncertainty in the critical exponent is obtained from the
method of least squares applied to Eq. (3).
We now turn to the question of whether our critical

solutions do indeed correspond to unstable boson stars as
was found by Hawley and Choptuik in [10], even if our
initial data is very different. As a first comparison, Fig. 6
shows the norm of the complex scalar field for our critical
solution as a function of areal radius for the cases with
σ ¼ 4 (top panel) and σ ¼ 10 (bottom panel), super-
imposed with the norm of the complex scalar field for
an unstable boson star with the same amplitude. We notice
that the critical solutions obtained have no nodes in the
field, so the corresponding boson star is in its ground state.
We can clearly see that the profiles of our critical solutions
follow very closely the expected profile for the boson
stars.
Next, in Fig. 7 we show a plot of the mass vs. the

frequency of oscillation for our critical solutions, corre-
sponding to the data in Table III, compared to the same plot
for boson star solutions (solid lines). We separate the data
into two plots to make more evident the fact that the mass of
the critical solution first increases with σ up to σ ¼ 4, and
then decreases again with higher values of σ. Figure 8
shows a similar plot but now of the mass vs. the central
value of the norm of the scalar field. As can be seen in the
plots, our critical solutions fall directly in the line for
stationary boson stars. Moreover, they are all to the left of

the maximum mass in Fig. 7, and to the right of the
maximum in Fig. 8, which correspond to the unstable
branch for boson stars. The critical solution for σ ¼ 4 is
almost at the maximummass. Figure 9 shows the scaling of
τ, the lifetime of the near critical solutions for the different
values of σ. We can see that the scaling shows good
agreement with Eq. (3), but with different critical exponents
for the different values of σ.
Since the ADM mass of the initial pulse increases

monotonically relative to σ, we could have expected that
the mass of the critical solution approaches asymptotically
the maximum value for boson stars MADM ∼ 0.633, which
separates the unstable from the stable regions, as σ is
increased. But as can be seen from the plots and the data of
Table III, instead we find that for σ ≲ 4 the mass of the
critical solution increases, while for higher values of σ the
mass decreases and moves away from the maximum mass
value. Our data indicates that the maximum possible mass
for a boson star will probably be attained for σ between
3.5 < σ < 5. This behavior is also reflected in the values of
critical exponent γ, which also reaches its maximum value
between 3.5 < σ < 5.
Finally, for boson stars the imaginary part of Lyapunov

exponent λ can be related to the critical exponent γ, by
ImðχÞ ¼ 1=γ (details about the procedure to obtain the
Lyapunov exponents can be consulted in [10]). Figure 10
compares the square of the Lyapunov exponent for boson
stars obtained through a linear perturbation analysis (data
provided by A. Bernal [36]), with the critical exponents
1=γ2 measured in our simulations. We can see an excellent
agreement between both datasets.

FIG. 9. Scaling of the lifetime of near critical solutions for different values of the Gaussian width σ. With the values of σ tested, the
maximum value of the critical exponent γ is reached at σ ¼ 4.
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V. CONCLUSIONS

We performed numerical simulations of a massive
complex scalar field using a numerical code adapted to
spherical symmetry in order to study critical gravitational
collapse. Our initial conditions for the complex field are
somewhat similar to the harmonic boson star ansatz, but
crucially they do not correspond to a stationary boson star
solution.
We find that, depending on the width of initial data, the

critical collapse behaves in two very different ways. For

σ ≤ 0.5 we can measure the 4D Ricci scaling, which is
indicative of type II critical collapse. We obtain values for
the critical exponent γ ¼ 0.38� 0.01 and echoing period
Δ ¼ 3.4� 0.1, which are very similar to those found in the
literature for the case of a real massless scalar field. On the
other hand, for σ ≥ 2.5 we obtain the scaling of the lifetime
of near critical solutions, which is characteristic of type I
critical collapse. For type I collapse we observe that the
critical exponent depends on the initial Gaussian width σ:
as this width increases the critical exponent reaches its

FIG. 10. Comparison of the square of Lyapunov exponent for unstable modes of boson stars. Circles correspond to the 1=γ2 for the
specific values of σ, while the solid lines correspond to the Lyapunov exponents obtained from a linear perturbation analysis of boson
star solutions. Top panel: for σ ≤ 4. Bottom panel: σ ≥ 4.
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highest value for σ ≈ 4, while for higher values of σ the
value of the critical exponent decreases again.
In a similar way to Hawley and Choptuik [10], we also

find that the critical solutions obtained correspond to boson
stars in the ground state in the unstable branch. We validate
our results by contrasting the curves of jΦð0Þj vs. MADM,
and ω vs MADM. Up to our uncertainties we find that our
critical solutions do fall on the curves for unstable sta-
tionary boson stars. Also, for our simulations the maximum
mass of the critical solution is obtained for σ ≃ 4, which
leads us to conjecture that the maximum mass of a boson
star at the boundary between the stable and unstable
branches, M ∼ 0.633, will be attained for σ somewhere
in the range 3.5 < σ < 5.0. Furthermore, we also confirm
that the inverse of the critical exponent γ for our critical
solutions does indeed correspond to the imaginary part of
Lyapunov exponents for unstable boson stars obtained
through a linear perturbation analysis.

One final comment about the transition from type I
critical collapse to type II. Since we have obtained the two
different behaviors by varying the value of σ, we can in
principle study the transition between both types of
collapse by concentrating in the region 0.5 < σ < 2.5.
On the other hand, as can be seen from our plots, for type I
collapse as σ decreases the critical solution moves further
into the unstable branch for boson stars. This raises
the question as to how far down this branch we can go
before transitioning to type II critical collapse. We will
leave a more detailed study of this question for a
future study.
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