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The geometric optics approximation provides an interpretation for eikonal correspondence that, in black-
hole-containing spacetimes, connects high-frequency black hole quasinormal modes with closed photon
orbits around said black hole. This correspondence has been identified explicitly for Schwarzschild,
Reissner-Nordström, Kerr, and Kerr-Newman black holes, the violation of which can be a potential hint
toward physics beyond General Relativity. Notably, the aforementioned black hole spacetimes have
sufficient symmetries such that both the geodesic equations and the master wave equations are separable.
The identification of the correspondence seems to largely rely on these symmetries. One naturally asks how
the eikonal correspondence would appear if the spacetime were less symmetric. For a pioneering work in
this direction, we consider in this paper a deformed Schwarzschild spacetime retaining only axisymmetry
and stationarity. We show that up to the first order of spacetime deformations the eikonal correspondence
manifests through the definition of the averaged radius of trapped photon orbits along their one period.
This averaged radius overlaps the potential peak in the master wave equation, which can be defined up to
the first order of spacetime deformations, allowing the explicit identification of the eikonal correspondence.
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I. INTRODUCTION

The recent direct detection of gravitational waves emit-
ted from the mergers of binary black holes is a tremendous
achievement in modern physics [1–4]. It allows us to probe
strong gravity regimes, e.g., the vicinity of black holes,
through entirely different ways than traditional electromag-
netic observations [5]. In particular, the gravitational wave
signals at the postmerger phase, i.e., the ringdown signals,
can be a promising tool to explore black holes, or even to
test the underlying gravitational theories [6]. During the
postmerger phase, the two objects in the binary have
already merged and formed typically a final black hole.
Before the newly formed black hole settles into its sta-
tionary configuration, the distortions in its shape relax
under a certain characteristic pattern, a superposition of
sinusoidal oscillations with exponentially decaying ampli-
tudes known as the quasinormal modes (QNMs) [7–9].
Black hole QNMs have complex-valued frequencies, with

the real parts describing the oscillations and the imaginary
parts corresponding to the decay. One important feature of
the black hole QNM spectrum that cements it as a powerful
tool to test gravitational theories is that in General Relativity
(GR) QNM spectra satisfy the black hole no-hair theorem.
More explicitly, the spectra only depend on themass, charge,
and spin of the black hole, no matter what mechanism
triggers the distortions in the first place. Various works have
been devoted to the testing of GR orKerr hypothesis through
black hole QNMs [10–31], although still no evidence of
physics beyond GR has been found [32,33].
Another equally important achievement in modern

physics is the first observational image of M87*, the
supermassive black hole at the center of the M87 galaxy,
released from the Event Horizon Telescope Collaboration
[34]. The released image can already resolve a bright ring
encircling a dark spot, which indicates a spacetime region
with a tremendously strong gravitational field. The black
hole shadow image is completely due to the gravitational
lensing effects near the black hole and thus can also be a
potential tool to probe black hole spacetimes [35]. In
particular, on the image plane, somewhere near the bright
ring, there is a critical curve around the dark spot, and the
observation of this curve, theoretically speaking, requires
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perfect resolution. The critical curve is essentially the
impact parameter of the photon region around the black
hole, in which photons can undergo spherical motions
due to strong lensing effects [36]. The critical curves in
black hole shadow images only carry information about
the black hole geometry and do not depend on the
details of the astrophysical environment. Therefore, the
critical curves in shadow images have been widely inves-
tigated for various black hole models [37–60]. Recently,
some works have been devoted to testing spacetime
symmetries or some putative principles using black hole
images by looking for unique features on the critical curves
[61–65].
The above aspects of black holes, i.e., the black hole

QNMs and the shadow images, although seemingly differ-
ent, are intimately related. In Ref. [66], Ferrari and
Mashhoon identified an analytic relation between the
high-frequency QNMs, or eikonal QNMs, and the spherical
photon orbits for several kinds of black holes, such as the
Schwarzschild, Reissner-Nordström, and slowly rotating
black holes. The validity of this relation stems from the
geometric optics approximation of waves propagating
around a black hole [67], which can be described as
scattering processes [68]. In Ref. [69], the eikonal corre-
spondence was generalized to stationary, spherically sym-
metric, and asymptotically flat spacetimes with arbitrary
dimensions. The real parts of QNM frequencies can be
formally related to the orbital frequency on the spherical
photon orbits, and the imaginary parts can be identified as
the Lyapunov exponent on the orbits [70]. Investigating this
correspondence in Kerr spacetimes with an arbitrary spin is
not a trivial task. In Ref. [71], the eikonal correspondence
of Kerr black holes has been identified for equatorial orbits
(l ¼ jmj) and polar orbits (m ¼ 0), where l is the multipole
number and m is the azimuthal number of the modes. Later
on, taking advantage of the separability of geodesic
equations and master wave equations of Kerr spacetimes,
the eikonal correspondence of Kerr black holes for arbitrary
spins and modes has been fully explored [72] (see also
Ref. [73] for a more recent investigation on Kerr-Newman
spacetimes). In addition, since the critical curves in the
shadow images of black holes are determined by the impact
parameter of spherical photon orbits around black holes, it
is not surprising that the eikonal QNMs can also be related
to the shadow cast by the black hole. The correspondence
between these two seemingly different contexts has
recently gained several interests [74–79] due to its possible
future astrophysical implications [78,80]. In particular, the
violation of eikonal correspondence can be a smoking gun
of physics beyond GR [26,81–86]. More explicitly, this
correspondence can be violated when gravitons effectively
pick up some nonminimal couplings with other degrees of
freedom [81,82,84–86] or when nonminimal matter cou-
plings are directly imposed in the theory [26,83]. These two
scenarios are clear features of non-GR physics and can be
tested via the eikonal correspondence.

It should be emphasized that the explicit identification of
the eikonal correspondence discussed previously relies on
the symmetry of the black hole spacetime under consi-
deration. For example, for static and spherically symmetric
black holes, the master wave equation can be simplified
via suitable field redefinitions and separations of variables.
The QNMs for these cases are typically described by a
Schrödinger-like equation, in which the effective potential
directly determines the QNM spectrum after imposing
proper boundary conditions. Because of the spherical
symmetry of the spacetime, the spherical photon orbits
have a unique radius, forming a shell around the black hole,
i.e., the photon sphere. In the eikonal limit, the peak of the
effective potential in the master wave equation is precisely
at the photon sphere, naturally leading to the eikonal
correspondence. For Kerr and Kerr-Newman black holes,
the general identification of the eikonal correspondence
performed in Refs. [72,73] takes advantage of the sepa-
rability of geodesic equations and the master wave equa-
tions in the eikonal limit. The separability of geodesic
equations is tightly related to the existence of the Carter
constant, which corresponds to an additional hidden
symmetry of the spacetime.
Based on these results, one naturally asks how the

eikonal correspondence would manifest in a black hole
spacetime with fewer symmetries where neither the geo-
desic equation nor the wave equation is separable? In this
paper, in a first step toward addressing this question, we
will demonstrate how to identify the eikonal correspon-
dence in the scenario where a Schwarzschild spacetime
picks up a general axisymmetric stationary deformation.
The challenges of this work are twofold. First, due to the

arbitrary spacetime deformations, the master wave equation
cannot be recast as a Schrödinger-like form. However, it has
been shown recently in Ref. [87] that a Schrödinger-like
expression for the master equation could be attainable if the
deformations on the original separable equations are small.
This method allows us to compute the shift to the QNM
spectra induced by deformations to the Schwarzschild
spacetime. Second, the radial and the polar sectors of
geodesic equations, in general, cannot be decoupled. The
identification of constant radial motions is only possible for
very limited orbits (see also Ref. [88] for relevant discus-
sions). In this work, we will show that if the orbits on the
deformed photon sphere are periodic and form limit cycles
one can define an averaged radius for these orbits and identify
them as the peak of the effective potential in the master wave
equation, leading to the eikonal correspondence.
This paper is outlined as follows. In Sec. II, we first briefly

review the geometric optics approximation in generic
curved spacetimes, then take a general spherically symmetric
spacetime as an example to demonstrate its eikonal cor-
respondence. In Sec. III, we introduce the deformed
Schwarzschild spacetime considered throughout this paper.
In Sec. IV, we approximate the massless Klein-Gordon
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equation and recast the master wave equation as a
Schrödinger-like form by the method proposed in
Ref. [87]. Section V is devoted to obtaining the eikonal
expressions of the master wave equation. Then, in Sec. VI,
we investigate the photon geodesic equations in this space-
time and establish the eikonal correspondence, starting with
the simplest circular photon orbits, then the polar orbits, and
eventually generic orbits with arbitrary inclinations. The
identification of the eikonal correspondence for some
specific metrics will be given in Sec. VII to support our
results. We finally conclude in Sec. VIII. We would like to
mention that throughout this paper the comma and ∂

represent partial derivatives interchangeably for conven-
ience, while primes and dots represent derivatives with
respect to the radial coordinate r and the affine parameter
λ, respectively.

II. GEOMETRIC OPTICS APPROXIMATION

In this section, we will first briefly review the geometric
optics approximation (sometimes called the eikonal
approximation) in generic curved spacetimes. It will be
shown that the equations of motion for test fields in the
eikonal limits are identical to those of freely moving
photons. This property holds for both electromagnetic
fields and scalar fields and is expected in general for
various types of fields.
The geometric optics approximation essentially requires

the wavelength scale of the test field to be much smaller
than any other length scale in the system. In this limit, the
equations of motion for most test fields can be expressed in
the form [89]

∇α∇αA ¼ 0; ð2:1Þ
where ∇α denotes the covariant derivative defined in the
spacetime. The field A represents the test field. In the
eikonal approximation, the left-hand side of Eq. (2.1)
would typically dominate over other terms that could
appear in the system (e.g., field mass, spacetime curvature,
and field spin). Therefore, the fieldA described in Eq. (2.1)
is not necessarily a scalar field. It can also be Maxwell
gauge fields or fields with different spins. In the eikonal
approximation, their evolution equations can be expressed
as Eq. (2.1).
The test field function can be further decomposed as

A ¼ jajeiS; ð2:2Þ
where the amplitude jaj and the phase S are functions of
spacetime coordinates. The phase S varies on the scale of
field wavelength, while the amplitude is slowly changing.
Then, one defines thewave vector kμ¼∂μS. Equation (2.1)

at the leading order and the next-to-leading order in the
eikonal limit can be written as

gμνkμkν ¼ kμkμ ¼ 0; ð2:3Þ

2kμ∂μ ln jaj þ∇μkμ ¼ 0; ð2:4Þ

respectively. The leading-order equation (2.3) is equivalent
to the geodesic equations for null rays:

kμ∇μkν ¼ kμ∇μ∇νS ¼ kμ∇ν∇μS ¼ kμ∇νkμ ¼ 0: ð2:5Þ

Therefore, in the eikonal limit, thewave solution of Eq. (2.1)
naturally corresponds to the light rays propagating in the
spacetime.
It is well known that black hole QNMs can be treated

naively as test fields scattered around black holes.
Therefore, based on the geometric optics approximation,
the eikonal modes can be interpreted as wave packets
localized near the spherical photon orbits. As mentioned in
the Introduction, this correspondence between eikonal
black hole QNMs and photon orbits has been well under-
stood for Schwarzschild black holes and several black hole
spacetimes beyond Schwarzschild that preserve spherical
symmetry. The eikonal correspondence for rotating black
holes is much more nontrivial and was just fully uncovered
in recent years; e.g., see Refs. [72,73] for the investigation
on Kerr and Kerr-Newman black holes, respectively.

A. Eikonal correspondence:
Spherically symmetric black holes

In this subsection, we briefly review how the correspon-
dence between eikonal black hole QNMs and the photon
orbits manifests for a spherically symmetric black hole. The
discussion strictly follows that in Ref. [82].
We first consider the single wave equation, which

generally describes a test field ψ propagating in a spheri-
cally symmetric spacetime,

ψ ;yy þ ðω2 −UÞψ ¼ 0; ð2:6Þ

where ω is the frequency and U ¼ UðyÞ is the effective
potential that depends only on a radial coordinate y. The
primedenotes partial derivatives. In the followingdiscussion,
wewill assume that the potential is real valued and has only a
single peak. Also, the effective potential is assumed to vanish
near two asymptotic regions y → �∞. Asmentioned before,
the wave function can be parametrized as

ψðyÞ ¼ jaðyÞjeiSðyÞ=ϵ̄; ð2:7Þ

where ϵ̄ tracks the order of the eikonal approximation. By
inserting thewave function (2.7) into thewave equation (2.6),
we get

jaj;yy þ
i
ϵ̄
ð2S;yjaj;y þ jajS;yyÞ −

1

ϵ̄2
jajS2;y

þ ðω2 −UÞjaj ¼ 0: ð2:8Þ
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In the leading order of the eikonal approximation, the above
equation reads

−
1

ϵ̄2
S2;y þ ω2 −U ¼ 0: ð2:9Þ

Although the frequency ω and the potential U do not
explicitly depend on ϵ̄, they can be expressed in terms of
eikonal expansion. Only the leading-order terms of them are
considered in Eq. (2.9). After taking the derivative with
respect to y, we have

2

ϵ̄2
S;yS;yy þ U;y ¼ 0: ð2:10Þ

One can see from Eq. (2.9) that the leading eikonal order of
ω2 is real, meaning thatω is either real or purely imaginary at
the leading eikonal order. We shall focus on the scenario
where ω is real in the leading eikonal order because this is
typically the case for, e.g., Schwarzschild black holes.
Because the boundary conditions for black hole QNMs

are Sðy → �∞Þ ¼ �ωy, there must exist a location ym
where the phase function S takes its minimum value, i.e.,
ðS;yÞm ¼ 0, where the subscript m means that the quantity
is evaluated at ym. According to Eq. (2.10), this location ym
is precisely the peak of the potential U. The real part of
QNM frequencies can therefore be obtained by evaluating
Eq. (2.9) at the potential peak,

ωð0Þ
R ¼

ffiffiffiffiffiffiffi
Um

p
; ð2:11Þ

where the superscript (0) indicates the leading eikonal order
of the subject, in this case, ω.
Let us now consider the imaginary part of QNM

frequencies, which requires the calculations at the next-
to-leading eikonal order. Taking the imaginary part of the
next-to-leading eikonal order of Eq. (2.8), we have

1

ϵ̄
ð2S;yjaj;y þ jajS;yyÞ þ 2ωð0Þ

R ωð1Þ
I jaj ¼ 0; ð2:12Þ

where the superscript (1) indicates the next-to-leading
contribution. Evaluating this equation at the potential peak
ym, we get

1

ϵ̄
ðS;yyÞm þ 2ωð0Þ

R ωð1Þ
I ¼ 0: ð2:13Þ

The second derivative of the phase function can be obtained
by taking the Taylor expansion of Eq. (2.9) near ym. We
have

1

ϵ̄
ðS;yyÞm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU;yyjm

2

r
; ð2:14Þ

and in conjunction, the imaginary part of QNM frequencies

ωð1Þ
I ¼ −

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU;yyjm
2Um

s
: ð2:15Þ

It should be noted that Eqs. (2.11) and (2.15) can also be
obtained using the Wentzel-Kramers-Brillouin (WKB)
approach, which is a powerful semianalytic method to
calculate QNM frequencies [90–92]. The geometric optics
approximation is perfectly within the range of validity of
the WKB method.
According to Eqs. (2.11) and (2.15), one can determine

the eikonal QNM frequency by the value and the second
derivative of the potential at the potential peak. The well-
known eikonal correspondence between black hole QNMs
and the photon sphere around black holes is directly related
to the fact that the potential peak ym in the eikonal limit is
precisely at the photon sphere [69]. For example, the
effective potential for the Schwarzschild black hole can
be written as

UðyðrÞÞ ¼
�
1 −

2M
r

�
lðlþ 1Þ

r2
þOðl0Þ: ð2:16Þ

In the eikonal limit, we have ϵ̄l ¼ Oð1Þ, so the first term on
the right-hand side of Eq. (2.16) dominates the remaining
terms.Thepeakof the potential (2.16) is on r ¼ 3M, which is
precisely at the photon sphere rph around the Schwarzschild
black hole. The right-hand side of Eqs. (2.11) and (2.15) can
be related to the orbital frequency Ωph and the Lyapunov
exponent γph on the photon sphere, respectively [69],

ωð0Þ
R ¼ lΩph; ωð1Þ

I ¼ −
1

2
jγphj; ð2:17Þ

where

Ωph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrphÞ

p
rph

; γ2ph ¼ −
1

2

�
r2fðrÞ

�
fðrÞ
r2

�
;rr

�
ph

;

ð2:18Þ

and fðrÞ≡ 1–2M=r. This correspondence does not just hold
for Schwarzschild black holes. It also holds for chargedblack
holes and even for several black hole spacetimes in theories
beyond GR, although some exceptions have been found in
the literature [26,81–84,86].
Having shown that the waves naturally behave like

photons in the eikonal limit and that this property manifests
naturally as the correspondence between QNMs and photon
spheres for spherically symmetric black holes, one may
then ask how this correspondence appears if the black hole
is less symmetric. For Kerr black holes, one even has to rely
on the separability of both the geodesic equations and the
wave equations to identify the correspondence [72]. What
if the black hole is deformed such that the geodesic
equations and the wave equations no longer separate?
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Can one still define an effective potential and its peak
properly? If so, would the peak correspond to some
generalized spherical photon orbits? We will investigate
these issues in the rest of this paper.

III. DEFORMED SCHWARZSCHILD SPACETIME

We consider a deformed Schwarzschild spacetime whose
deformations satisfy the following assumptions:

(i) The deformations are small; i.e., they can be para-
metrized by a small dimensionless parameter ϵ.

(ii) The deformed Schwarzschild spacetime is stationary
and axisymmetric.

(iii) No frame-dragging deformations appear. The frame-
dragging deformations would induce frequency
shifts to QNMs, similar to the eikonal correspon-
dence investigated in Ref. [66], where Schwarzs-
child spacetimes are extended to slowly rotating
ones. Therefore, we will not consider frame-
dragging deformations in this paper.

We express the deformed Schwarzschild metric using the
standard Schwarzschild coordinates ðt; r; θ;φÞ,

gtt ¼ −
�
1 −

2M
r

�
ð1þ ϵAjðrÞ cosj θÞ;

grr ¼
�
1 −

2M
r

�
−1
ð1þ ϵBjðrÞ cosj θÞ;

gθθ ¼ r2ð1þ ϵCjðrÞ cosj θÞ;
gφφ ¼ r2 sin2 θð1þ ϵDjðrÞ cosj θÞ;
gtr ¼ ϵajðrÞ cosj θ; gtθ ¼ ϵbjðrÞ cosj θ;
grθ ¼ ϵcjðrÞ cosj θ; grφ ¼ ϵdjðrÞ cosj θ;
gθφ ¼ ϵejðrÞ cosj θ; ð3:1Þ

where M is the black hole mass and the dummy index j
stands for summations running upward from j ¼ 0. The
deformed spacetime remains stationary and axisymmetric;
i.e., the metric does not depend explicitly on ft;φg. The
metric deformations in each component of the metric are
expanded as a series of cos θ, with each term in the series
weighted by a radial function. More specifically, the radial
functions AjðrÞ, BjðrÞ, CjðrÞ, and DjðrÞ appear in the
diagonal components of the metric, while ajðrÞ, bjðrÞ,
cjðrÞ, djðrÞ, and ejðrÞ appear in the off-diagonal compo-
nents. All these radial functions, roughly speaking, have to
vanish at r → ∞ in order to satisfy the asymptotic flatness
condition. However, they can be Oð1Þ near the event
horizon. The parameter jϵj ≪ 1 is dimensionless, and its
smallness implies that the deformations are small. In this
paper, we will only consider expansions up to the first order
of ϵ. Finally, we exclude the frame-dragging terms, i.e., the
gtφ component, in the deformations, as we mentioned at the
beginning of this section.

The metric (3.1) contains several off-diagonal compo-
nents. One may wonder whether the metric can be
diagonalized via some coordinate transformations. Here,
we will quickly show that these off-diagonal components
render the spacetime noncircular and cannot be removed by
coordinate transformations. For the discussion on non-
circular spacetimes and their observational implications, we
refer the readers to Refs. [93–96].
Following the definition in Ref. [97] (Sec. 6.3.4), an

axisymmetric and stationary metric satisfies the circularity
condition if there exist coordinate transformations that
render the metric coefficients gtr, gtθ, grφ, gθφ zero. We
follow the calculations of Ref. [93] by first defining the
1-forms associated with the two Killing vectors:

k ¼ gtμdxμ; η ¼ gφμdxμ: ð3:2Þ

The circularity of the metric is identical to the following
integrability conditions:

k ∧ η ∧ dk ¼ k ∧ η ∧ dη ¼ 0: ð3:3Þ

We find that

k ∧ η ∧ dk¼ gttgφφ

�
∂gtθ
∂r

−
∂gtr
∂θ

�
dt ∧ dr ∧ dθ ∧ dφ

þ gφφ

�
gtr

∂gtt
∂θ

− gtθ
∂gtt
∂r

�
dt ∧ dr ∧ dθ ∧ dφ;

ð3:4Þ

and

k∧ η∧ dη¼ gttgφφ

�
∂gθφ
∂r

−
∂grφ
∂θ

�
dt∧dr∧ dθ∧ dφ

þgtt

�
grφ

∂gφφ
∂θ

−gθφ
∂gφφ
∂r

�
dt∧ dr∧ dθ∧ dφ:

ð3:5Þ

Up to the first order in ϵ, the above equations can be
expressed as

k ∧ η ∧ dk ≈ ϵr2sin2θf0bjcosjθ

− ϵr2fsin2θ

�
aj sin θ

dðcosjθÞ
d cos θ

þ b0jcos
jθ

�
;

ð3:6Þ

k ∧ η ∧ dη ≈ −2ϵr2f cos θ sin θdj cosj θ

þ 2ϵfr sin2 θej cosj θ

− ϵr2f sin2 θdj sin θ
dðcosj θÞ
d cos θ

− ϵr2f sin2 θe0j cos
j θ; ð3:7Þ
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where fðrÞ ¼ 1–2M=r and primes denote derivatives with
respect to r. Equations (3.6) and (3.7) are generically not
zero. Therefore, the deformed Schwarzschild metric (3.1) is
not circular. The off-diagonal components could have
physical consequences.

IV. KLEIN-GORDON EQUATION

In this paper, we consider massless scalar waves propa-
gating in the deformed Schwarzschild spacetime (3.1). The
consideration of different kinds of fields (vectors, massive
scalars, etc.) does not change the results because of the
geometric optics approximation. The wave equation is
governed by the massless Klein-Gordon equation

□ψ ¼ 0: ð4:1Þ

Because there are two Killing vectors ∂t and ∂φ, the wave
function as well as the wave equation can be decomposed
as

□ψ ¼
Z

∞

−∞
dω

X∞
m¼−∞

eiðmφ−ωtÞD2
m;ωψm;ωðr; θÞ; ð4:2Þ

such that each Fourier mode of the wave function satisfies

D2
m;ωψm;ω ¼ 0: ð4:3Þ

Here, m and ω represent the azimuthal number and the
mode frequency, respectively.
In the original Schwarzschild spacetime, the Klein-

Gordon equation is separable. More explicitly, using
Legendre functions as angular bases, the Klein-Gordon
equation can be separated into a radial equation and an
angular equation. The radial equation can be further recast
into a Schrödinger-like form with an effective potential.1

However, once including general deformations, the
deformed Schwarzschild spacetime (3.1) does not allow
for separable solutions to the Klein-Gordon equation due to
the generic fr; θg dependence in the operator. Recently, a
projection method has been proposed [87] to deal with an
“almost” separable system deformed from a separable one.
The nonseparability of the system is solely contributed by
small spacetime deformations. In such cases, one can
obtain the ϵ-order correction terms on top of the zeroth-
order radial equation and reshuffle them into a modified
radial equation that encodes the QNM frequency shifts due
to metric deformations up to the first order. The method has
been applied in Ref. [98] to consider the QNMs of tidally
deformed spacetimes.
Up to the first order of ϵ, the operator can be written as

D2
m;ω ¼ D2

ð0Þm;ω þ ϵD2
ð1Þm;ω; ð4:4Þ

where the zeroth-order operator reads

D2
ð0Þm;ω ¼ −

�
ω2 −

m2fðrÞ
r2 sin2 θ

�
−
fðrÞ
r2

∂rðr2fðrÞ∂rÞ −
fðrÞ

r2 sin θ
∂θðsin θ∂θÞ: ð4:5Þ

The first-order operator is

D2
ð1Þm;ω ¼ m2fðrÞ

r2 sin2 θ
ðAj −DjÞ cosj θ −

fðrÞ
r2

ðAi − BjÞ cosj θ½∂rðr2f∂rÞ� −
f2

2
ðA0

j − B0
j þ C0

j þD0
jÞ cosj θ∂r

−
f
r2

ðAj − CjÞ cosj θðcot θ∂θ þ ∂
2
θÞ −

f
2r2

½ðAj þ Bj − Cj þDjÞ∂θ cosj θ�∂θ −
2iωf
r

aj cosj θðr∂r þ 1Þ

− iωf∂raj cosj θ −
2iω
r2

bj cosj θ∂θ −
iω

r2 sin θ
bj∂θðcosj θ sin θÞ −

imf
r2 sin2 θ

½2dj cosj θf∂r þ ∂rðfdjÞ cosj θ�

þ imf
r4 sin3 θ

ejðj cosj−1 θ sin2 θ þ cosjþ1 θÞ − 2imf
r4 sin2 θ

ej cosj θ∂θ

þ f
r2
½∂rðfcjÞ cosj θ∂θ þ 2fcj cosj θ∂2rθ� þ

f2

r2 sin θ
cj∂θðcosj θ sin θÞ∂r: ð4:6Þ

Note that the summations over j are implicitly assumed in each term in Eq. (4.6).
To proceed, we adopt the ansatz

ψm;ω ¼
X∞
l0¼jmj

Pm
l0 ðxÞRl0;mðrÞ ð4:7Þ

1For the Schwarzschild metric, it corresponds to the Regge-Wheeler equation with spin s ¼ 0.
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for the wave function and operate it using the operator
(4.4). Note that we have defined x ¼ cos θ for simplicity.
The associated Legendre functions Pm

l ðxÞ are the angular
basis of the zeroth-order operator (4.5). More explicitly, at
the zeroth order, the master equation for wave functions
satisfying Eq. (4.7) can be factorized into a series of radial
differential equations, each containing a particular mode of
multiple number l in that ansatz. Once the deformations are
included, the master equation becomes nonseparable as it
can no longer be factorized into equations of particular
modes. However, since the off-diagonal terms, i.e., modes
with multiple numbers l different from that of the zeroth-
order terms, say, l0, are only of order ϵ, one can project out
the off-diagonal terms and focus only on the corrections on
the zeroth-order equation [87].
The procedure that we have just mentioned above can be

illustrated explicitly as follows. We first rewrite the ansatz
(4.7) as

ψm;ω ¼ Pm
l0
ðxÞRl0;mðrÞ þ ϵ

X
l≠l0

Pm
l ðxÞRl;mðrÞ; ð4:8Þ

where it is made explicitly that the off-diagonal terms
(l ≠ l0) are of order ϵ. Inserting Eq. (4.8) into the operator
(4.4) and keeping terms up to OðϵÞ, we get

D2
m;ωψm;ω ¼ ðD2

ð0Þm;ω þ ϵD2
ð1Þm;ωÞ½Pm

l0
ðxÞRl0;mðrÞ�

þ ϵ
X
l≠l0

D2
ð0Þm;ω½Pm

l ðxÞRl;mðrÞ�: ð4:9Þ

Note that the associated Legendre functions Pm
l ðxÞ are the

angular basis of the operator D2
ð0Þm;ω; i.e., they are eigen-

functions of the last term of the operator (4.5). The
projection method is performed by taking an inner product
with a Pm

l0
ðxÞ:

Z
1

−1
dxPm

l0
ðxÞD2

m;ωψm;ω

¼
Z

1

−1
dxPm

l0
ðxÞðD2

ð0Þm;ω þ ϵD2
ð1Þm;ωÞ½Pm

l0
ðxÞRl0;mðrÞ�:

ð4:10Þ

Note that the off-diagonal terms in Eq. (4.9) have been
projected out because Pm

l ðxÞ with the same m are orthogo-
nal. For simplicity, we replace the notation l0 in Eq. (4.10)
with l from now on.
By the normalization condition

Z
1

−1
dxPm

l ðxÞPm
k ðxÞ ¼ N lmδlk;

where N lm ≡ 2ðlþmÞ!
ð2lþ 1Þðl −mÞ! ; ð4:11Þ

the zeroth-order operator in Eq. (4.10) can be written as

1

N lm

Z
1

−1
dxPm

l ðxÞD2
ð0Þm;ω½Pm

l ðxÞRl;mðrÞ�

¼
�
−ω2 þ f

r2
lðlþ 1Þ − f

r2
∂rðr2f∂rÞ

�
Rl;m: ð4:12Þ

By inserting fðrÞ ¼ 1–2M=r, one gets the Regge-Wheeler
equation with spin s ¼ 0, namely, the master equation for
massless scalar fields propagating in the Schwarzschild
spacetime.
For the first-order operator, we find it convenient to

define the following coefficients:

ajlm ¼ m2

N lm

Z
1

−1

xjðPm
l Þ2

1 − x2
dx; ð4:13Þ

bjlm ¼ 1

N lm

Z
1

−1
xjðPm

l Þ2dx; ð4:14Þ

cjlm ¼ 1

N lm

Z
1

−1
xjPm

l ½ð1 − x2Þ∂2x − 2x∂x�Pm
l dx; ð4:15Þ

djlm ¼ 1

N lm

Z
1

−1
Pm
l ð1 − x2Þð∂xxjÞð∂xPm

l Þdx; ð4:16Þ

ejlm ¼ −1
N lm

Z
1

−1
dxxjPm

l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂xPm

l ; ð4:17Þ

fjlm ¼ 1

N lm

Z
1

−1
dxðPm

l Þ2
�

xjþ1ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p −
ffiffiffiffiffiffiffiffiffiffiffiffi
1−x2

p
∂xxj

�
; ð4:18Þ

gjlm ¼ m
N lm

Z
1

−1

xjðPm
l Þ2dx

1 − x2
; ð4:19Þ

hjlm ¼ m
N lm

Z
1

−1

ðPm
l Þ2dx

ð1 − x2Þ3=2 ½jx
j−1ð1 − x2Þ þ xjþ1�

þ 2m
N lm

Z
1

−1

xjPm
l ð∂xPm

l Þdxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p : ð4:20Þ

By using integrations by part, it can be shown that these
coefficients satisfy the following relations:

2ejlm þ fjlm ¼ 0; hjlm ¼ 0: ð4:21Þ

Also, we have

cjlm ¼ −lðlþ 1Þbjlm þ ajlm;

d0lm ¼ 0;

ajlm ¼ bjlm ¼ cjlm ¼ djlm ¼ gjlm ¼ 0 if j is odd ð4:22Þ

and
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ejlm ¼ fjlm if j is even: ð4:23Þ

The identity (4.23) and the first identity of Eq. (4.21) directly imply ejlm ¼ 0 if j is even.
With the above coefficients, the first-order operator can be expressed as

1

N lm

Z
1

−1
dxPm

l D
2
ð1Þm;ω½Pm

l ðxÞRl;mðrÞ�

¼ f
r2

�
ajlmðAj −DjÞ − cjlmðAj − CjÞ −

djlm
2

ðAj þ Bj − Cj þDjÞ þ ejlm∂rðfcjÞ − igjlm∂rðfdjÞ
�
Rl;m

−
f
r2
bjlmðAj − BjÞ∂rðr2f∂rÞRl;m −

f2

2r2

�
bjlmr

2ðA0
j − B0

j þ C0
j þD0

jÞ þ 4igjlmdj þ
4iωr2bjlmaj

f

�
∂rRl;m

−
iωfbjlm

r
ð2aj þ ra0jÞRl;m: ð4:24Þ

Again, the summations over j are implicitly assumed, and the prime denotes the derivatives with respect to r.

A. Effective potential

As we have mentioned, at the zeroth order, the master
equation can be written as a Schrödinger-like form, which
contains an effective potential. It can also be done in the
presence of spacetime deformations if only taking ϵ-order
effects into account. After recasting the master equation
into the Schrödinger-like form and determining the effec-
tive potential in the presence of deformations, we can
directly compare how the deformations modify the effec-
tive potential and, in turn, the QNMs themselves.
To rewrite the master equation into a Schrödinger-like

form, we define the tortoise radius r� that satisfies

dr
dr�

¼ fðrÞ
�
1þ ϵ

2
bjlmðAj − BjÞ

�
: ð4:25Þ

Then, we redefine a new radial wave function Ψl;m relating
to the original radial wave function Rl;m as

Rl;m ¼Ψl;m

r

�
1þ ϵ

4
bjlmðAj−BjÞ−ϵ

Z
dr

ZlmðrÞ
4r2

�
; ð4:26Þ

where

ZlmðrÞ≡ bjlmr
2ðA0

j − B0
j þ C0

j þD0
jÞ

þ 4igjlmdj þ
4iωr2bjlmaj

f
: ð4:27Þ

The master equation can then be rewritten in the
Schrödinger-like form

∂
2
r�Ψl;m þ ω2Ψl;m ¼ VeffðrÞΨl;m; ð4:28Þ

where the modified effective potential reads

VeffðrÞ ¼ lðlþ 1Þ f
r2

þ f
r
df
dr

½1þ ϵbjlmðAj − BjÞ� þ ϵ

�
f
r2

�
ajlmðAj −DjÞ − cjlmðAj − CjÞ −

djlm
2

ðAj þ Bj − Cj þDjÞ

þ ejlm∂rðfcjÞ
�
þ 1

4r2
d
dr�

�
bjlmr

2
d
dr�

ðAj − Bj þ Cj þDjÞ
�
−
bjlm
4

d2

dr2�
ðAj − BjÞ

�
: ð4:29Þ

Note that only the coefficients ajlm, b
j
lm, c

j
lm, d

j
lm, and e

j
lm

appear in the effective potential VeffðrÞ. In addition,
although the right-hand side of Eq. (4.24) depends on
the frequency ω, the effective potential (4.29) does not. It is
then clear from Eq. (4.29) how the deformation functions in
the metric modify the effective potential of the master
equation. Finally, we would like to mention that grθ, i.e., the
metric function cjðrÞ, is the only off-diagonal metric

component that enters the effective potential. However, it
does not mean that other off-diagonal metric components
are not physical. In fact, as we have shown in Sec. III, the
deformed spacetime is noncircular due to the presence of
the metric functions in other off-diagonal components.
Therefore, these off-diagonal metric components cannot be
removed by simply using coordinate transformations. It just
happens that they do not contribute to the effective potential
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due to our neglect of higher-order deformation effects. Note
that, although the metric functions that encode the space-
time deformations can be quite arbitrary, in the rest of this
paper, we will assume the deformations to be mild enough
such that the effective potential (4.29) still has a single peak
for simplicity.

V. EIKONAL LIMIT

As we have mentioned, the correspondence between
eikonal QNMs and photon geodesics, in particular, the
photon sphere around black holes, is tightly related to the
fact that in the eikonal limit the peak of the effective
potential is located precisely at the photon sphere. In the
previous section, we have obtained the effective potential
for the radial master equation of QNMs. It allows us to
examine how the peak of the effective potential would be
altered in the presence of spacetime deformations.
In the case of static and spherically symmetric space-

times, the effective potential contains only the multiple
number l, not the azimuthal number m. Therefore, the
eikonal limit corresponds to the limit where l goes to
infinity (l ≫ 1). However, in the presence of spacetime
deformations, the effective potential depends on m, and
thus the behaviors of high-frequency modes could be
different for different values of m. In this section, we will
first focus on two special cases, jmj ¼ l and m ¼ 0, then
discuss how the effective potential would behave in the
eikonal limit for these cases separately. The general
discussions on arbitrary m will be presented at the end
of this section.

A. jmj= l
We first consider the case with jmj ¼ l. Note that the

associated Legendre functions withm ¼ l can be expressed
as

P0
0 ¼ 1;

Pl
lðxÞ ¼ ð−1Þl ð2l − 1Þ!

2l−1ðl − 1Þ! ð1 − x2Þl=2; for l ≥ 1: ð5:1Þ

On the other hand, for the case with m ¼ −l, we have

P−l
l ðxÞ ¼ ð2l − 1Þ!

2l−1ðl − 1Þ!ð2lÞ! ð1 − x2Þl=2: ð5:2Þ

Using the above expressions, one can directly compute the
coefficients ajll, a

j
l−l, b

j
ll, b

j
l−l, c

j
ll, c

j
l−l, d

j
ll, and d

j
l−l. When j

is even, i.e., when j equals 2k with k being non-negative
integers, these coefficients are

a2kll ¼ a2kl−l ¼
lð2lþ 1ÞClþk

k

2C2lþ2k
2k

; ð5:3Þ

b2kll ¼ b2kl−l ¼
ð2lþ 1ÞClþk

k

ð2lþ 2kþ 1ÞC2lþ2k
2k

; ð5:4Þ

c2kll ¼ c2kl−l ¼
lð2lþ 1Þð2k − 1ÞClþk

k

2ð2lþ 2kþ 1ÞC2lþ2k
2k

; ð5:5Þ

d2kll ¼ d2kl−l ¼ −
2klð2lþ 1ÞClþk

k

ð2lþ 2kþ 1ÞC2lþ2k
2k

; ð5:6Þ

where Ca
b ≡ a!=½b!ða − bÞ!� is the combination number.

When j is odd, these coefficients are identically zero.
As for the coefficients ejll and e

j
l−l, one can use Stirling’s

approximation to get their asymptotic expressions in the
eikonal limit (l ≫ 1),

ejll ≈ ejl−l ≈
2ð2kþ 1Þð2kÞ!

4kþ1k!
l−k; ð5:7Þ

when j is odd (j ¼ 2kþ 1), and ejll ¼ ejl−l ¼ 0 when j
is even.
According to the above expressions, in the eikonal limit

(l ≫ 1) for the case with jmj ¼ l, the dominant coefficients
are a0ll and a0l−l, approximated as

a0ll ¼ a0l−l ≈ l2: ð5:8Þ

Therefore, in this case, the effective potential (4.29) can be
approximated as

VeffðrÞ ≈ l2
f
r2
½1þ ϵðA0 −D0Þ�: ð5:9Þ

Notice that only the deformation functions with j ¼ 0 in
the gtt and gφφ components dominate the effective potential
of eikonal modes with jmj ¼ l.

B. m = 0

For the case with m ¼ 0, the associated Legendre
function reduces to the Legendre function Pl. In the large
l limit, we have

Plðcos θÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πl sin θ
p cos

��
lþ 1

2

�
θ −

π

4

�
þOðl−3=2Þ:

ð5:10Þ

Plugging the formula above into coefficients, when j is
even (j ¼ 2k), we have

bjl0 ≈
1

4k
C2k
k ; ð5:11Þ

cjl0 ≈ −
1

4k
C2k
k l2; ð5:12Þ
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djl0 ≈
k
4k

C2k
k ; ð5:13Þ

while when j is odd (j ¼ 2kþ 1), these coefficients are
identically zero. Clearly, in the eikonal limit, the coeffi-
cients cjl0 with even j dominate over the coefficients bjl0 and
djl0 because cjl0 scale quadratically while bjl0 and djl0 scale
linearly in l.
The estimation of the coefficients ajl0 can be achieved by

identity cjlm ¼ −lðlþ 1Þbjlm þ ajlm. It can be directly seen
from Eqs. (5.11) and (5.12) that the coefficients ajl0 are
subdominant compared with cjl0.
Finally, the estimation of the coefficients ejl0 seems more

involved. At this point, we will only exhibit that the
coefficients ejl0 are also subdominant compared with cjl0.
We shall only focus on the cases in which j is odd
(j ¼ 2kþ 1) because ejl0 ¼ 0 for even j. We can write

jejl0j ¼
2

N l0

				
Z

1

0

dxx2kþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
PlðxÞ∂xPlðxÞ

				
≤

2

N l0

Z
1

0

dxx2kþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
jPlðxÞjj∂xPlðxÞj

≤
4

N l0π

ffiffiffiffiffiffiffiffiffiffi
lþ 2

3

lþ 1
2

s Z
1

0

dx
x2kþ1

ð1 − x2Þ1=4

¼ k!Γð3=4Þ
πΓðkþ 7=4Þ

ffiffiffiffiffiffiffiffiffiffi
lþ 2

3

lþ 1
2

s
ð2lþ 1Þ: ð5:14Þ

During the above estimation, we have used the improved
version of Bernstein’s inequality [99,100]

jPlðxÞj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πðlþ 1=2Þ

s
1

ð1 − x2Þ1=4 ;

for l ≥ 0 and x ∈ ½−1; 1�: ð5:15Þ

To estimate the derivative of Legendre polynomials, we
have used the following inequality [101]

jð1 − x2Þ∂xPlðxÞj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π
ðlþ 2=3Þ

r
;

for l ≥ 0 and x ∈ ½−1; 1�: ð5:16Þ

In the eikonal limit, the right-hand side of the inequality
(5.14), which acts as an upper bound of jejl0j, scales asOðlÞ.
Therefore, in this limit, the coefficients ejl0 are subdominant
compared with the coefficients cjl0 that scale as Oðl2Þ. As a
consequence, in the eikonal limit, the effective potential for
QNMs with m ¼ 0 can be approximated as

VeffðrÞ ≈ l2
f
r2

�
1þ ϵ

X∞
k¼0

1

4k
C2k
k ðA2k − C2kÞ

�
: ð5:17Þ

C. Generic m

For generic cases with arbitrary m, we may utilize the
classical limit of the 3-J symbol, i.e., the integration of the
products between three arbitrary spherical harmonics Ylm,
Ysms

, and Y�
ðlþδlÞðmþmsÞ over a 2-sphere, to generate the

coefficients in the potential [102],

lim
l→∞

Z
YlmYsms

Y�
ðlþδlÞðmþmsÞdΩ

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

4π

r
dsms;δl

�
π

2

�
dsms;δl

ðcos−1 αÞ; ð5:18Þ

where Ylmðθ;φÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þðl−mÞ!
4πðlþmÞ!

q
Pm
l ðcos θÞeimφ is the

spherical harmonics, Ω is the measure over a 2-sphere,
dsms;δl

ðβÞ≡ R
Y�
sms

RðβÞYsδldΩ is the Wigner d matrix with
a pitch R of angle β, and α≡ ð2mþmsÞ=ð2lþ δlþ 1Þ is
the cosine of the rotation angle that will be related to the
inclination angle of the corresponding orbit.
By relating xj to Ysms

and fixing δl ¼ ms ¼ 0, the
coefficient bjlm turns out to be 1; 0; ð1 − α2Þ=2; 0;
3ð1 − α2Þ2=8…, for j ¼ 0; 1; 2…, with the generating
function GðzÞ ¼ ð1 − ð1 − α2Þz2Þ−1=2. Thus, we obtain
the generic formulas of the coefficients,

að2kÞlm ≈ l2α2ð1 − α2Þk4−kC2k
k 2F1

�
1; kþ 1

2
; kþ 1; 1 − α2

�
;

bð2kÞlm ≈ ð1 − α2Þk4−kC2k
k ;

cð2kÞlm ≈ að2kÞlm − l2bð2kÞlm;

dð2kÞlm ≈ ð1 − α2Þk−14−kC2k
k ðk − kð2kþ 1Þα2Þ;

eð2kþ1Þlm ≈ ð1 − α2Þk4−k−1C2kþ2
kþ1

�
ðkþ 1Þ2F1

�
−
1

2
; kþ 1

2
; kþ 1; 1 − α2

�
−
1 − α2

2 2F1

�
1

2
; kþ 3

2
; kþ 2; 1 − α2

��
;

ð5:19Þ
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where F is the hypergeometric function. Coefficients of
opposite parity (odd for a ∼ d and even for e) vanish exactly.
The formulas above match the leading-order coefficients

obtained in previous subsections but not the higher-order
ones such as c2ll or ejl0 since the approximation deployed
in this subsection contains oð1Þ subtraction when con-
verting Ys0 to xj. Nonetheless, we are certain that only ajlm

and cjlm survive the eikonal limit regardless ofm since they
are the only terms of order l2 in m ¼ 0∨� l cases
discussed previously, or when α is away from 0 (m ¼ 0)
and 1 (jmj ¼ l).
For completeness, let us write down the effective

potential for eikonal QNMs of arbitrary m,

VeffðrÞ ≈ l2
f
r2

�
1þ ϵ

X∞
k¼0

ð1 − α2Þk4−kC2k
k

�
α22F1

�
1; kþ 1

2
; kþ 1; 1 − α2

�
ðA2k −D2kÞ

þ 1 − α2

2kþ 2 2F1

�
1; kþ 1

2
; kþ 2; 1 − α2

�
ðA2k − C2kÞ

��
; ð5:20Þ

where we have applied the identity α22F1ð1; kþ 1
2
; kþ 1;

1 − α2Þ þ 1−α2
2kþ2 2

F1ð1; kþ 1
2
; kþ 2; 1 − α2Þ ¼ 1.

VI. EIKONAL CORRESPONDENCE WITH
PHOTON ORBITS

Roughly speaking, the correspondence between eikonal
QNMs of spherically symmetric black holes and the photon
sphere originates from the location of the peak of the
effective potential in the master equation for eikonal
QNMs, which is at the photon sphere around the black
hole. In this section, we will extend the investigation to the
deformed Schwarzschild black hole (3.1). We will first
consider circular photon orbits, in which photons undergo
planar motion parallel to the equatorial plane θ ¼ π=2. It
turns out that these orbits still exist in this spacetime, and
there is a correspondence between these circular orbits and
the eikonal QNMs with jmj ¼ l. Then, we will consider
polar orbits that are nearly circular, i.e., with slightly
varying radii. However, these orbits are periodic and cross
the poles (jxj ¼ 1) repeatedly. We will show that, the same
as the cases for generic orbits, the peak of the effective
potential coincides with the averaged radius of these nearly
circular orbits along one complete period.

A. Circular photon orbits

We first reconsider the deformed Schwarzschild metric
(3.1) and rewrite it in the following form:

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gφφdφ2

þ 2gtrdrdtþ 2gtθdθdtþ 2grφdrdφþ 2gθφdθdφ

þ 2grθdrdθ: ð6:1Þ

According to Eq. (3.1), the diagonal components of the
metric have nonvanishing zeroth-order parts, i.e., the
Schwarzschild metric, plus the first order terms in ϵ. On
the other hand, the off-diagonal parts are OðϵÞ by
themselves.

Then, we consider the geodesic equations of massless
particles moving in the spacetime (6.1). The axisymmetry
and stationarity lead to two constants of motion,

E ¼ −gtt_t − gtr _r − gtθ _θ; ð6:2Þ

Lz ¼ gφφ _φþ grφ _rþ gθφ _θ; ð6:3Þ

where E and Lz are the energy and the azimuthal angular
momentum of particles. The dot denotes the derivative with
respect to the affine parameter λ. The above equations can
be solved to get

_t ¼ −
Eþ gtr _rþ gtθ _θ

gtt
; ð6:4Þ

_φ ¼ Lz − grφ _r − gθφ _θ

gφφ
: ð6:5Þ

Expanding up to the first order in ϵ, the constraint equation
of photon geodesics can be written as

E2

gtt
þ L2

z

gφφ
þ grr _r2 þ gθθ _θ

2 þ 2grθ _r _θ ¼ 0: ð6:6Þ

The circular orbits are defined by photons moving at a
constant radius r and on a fixed plane parallel to the
equatorial plane.2 These photon orbits are then associated
with _r ¼ ̈r ¼ _θ ¼ θ̈ ¼ 0 for all affine time λ, thus satisfying
the following constraint equation

1

gtt
þ b2

gφφ
¼ 0; ð6:7Þ

2In general, these photon orbits are not on the equatorial plane
because the spacetime is equator reflection asymmetric.
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where b≡ Lz=E is the impact parameter of the photon
orbits.
Using the geodesic equation

d
dλ

ðgμν _xνÞ ¼
1

2
ð∂μgαβÞ_xα _xβ; ð6:8Þ

requiring _r ¼ _θ ¼ ̈r ¼ θ̈ ¼ 0, and taking its radial and
polar angle components, we get

1

g2tt
∂rgtt þ

b2

g2φφ
∂rgφφ ¼ 0; ð6:9Þ

1

g2tt
∂θgtt þ

b2

g2φφ
∂θgφφ ¼ 0: ð6:10Þ

In principle, one can obtain the associated radius r, the polar
angle θ, and the impact parameter b of the orbits by
simultaneously solving Eqs. (6.7), (6.9), and (6.10). Now,
we will show that the radius r of these orbits must be at the
peak of Eq. (5.9), i.e., the potential corresponding to the
eikonal QNMs with jmj ¼ l. It can be done without having
explicit forms of the deformation functions AjðrÞ andDjðrÞ.
We first start with Eq. (6.10). In the presence of

spacetime deformations, Eq. (6.10) implies that circular
orbits would lie on planes with θ ¼ π=2þOðϵÞ.3 By
eliminating b2 in Eqs. (6.7) and (6.9), one finds that the
radius r of circular photon orbits can be determined by

∂r

�
gtt
gφφ

�
¼ 0; ð6:11Þ

which, up to the first order in ϵ, can be written as

∂r

�
fð1þ ϵA0Þ
r2ð1þ ϵD0Þ

�
≈ ∂r

�
f
r2
ð1þ ϵA0 − ϵD0Þ

�
¼ 0: ð6:12Þ

Note that no θ dependence appears in the equation because
ϵ cos θ ∼Oðϵ2Þ and sin θ ≈ 1þOðϵ2Þ, as the only terms
depending on θ, receive no correction. According to
Eq. (6.12), one sees that the radius of circular photon
orbits follows the same equation that determines the peak of
the effective potential (5.9). Therefore, the correspondence
between eikonal QNMs with jmj ¼ l and circular photon
orbits holds for deformed Schwarzschild black holes.

B. Polar orbits

After constructing the correspondence between
eikonal QNMs and circular photon orbits for deformed
Schwarzschild black holes, we then switch gear and
consider the polar photon orbits and see whether an analog
correspondence for these orbits also exists. The discussion

about photon orbits with arbitrary inclinations will be
exhibited later.
It is well known that the spherical photon orbits around

Schwarzschild black holes are always perfect circles. More
explicitly, each of them is a light ring with a radius r ¼ 3M,
the union of which forms a photon sphere. After the
spacetime is deformed, most of the circular orbits would
become neither circular nor planar, except for the special
orbits that remain parallel to the equatorial plane, i.e., the
orbits discussed in the previous subsection. For those orbits
that receive noncircular deformations, since the spacetime
deformations are OðϵÞ, the deviations of the orbits from
circular and planar motions also remain OðϵÞ. For these
generic “light rings” with nonzero inclination angles to the
axis of spacetime symmetry, the light ring radius should
pick up a nonconstant deformation. Therefore, the corre-
spondence between the potential peak of the QNMs, which
is a constant for a particular mode, and the light ring radius
seems ill defined. Nevertheless, let us proceed and solve the
orbit, in the hope of finding a correspondence that permits
physical interpretations.
Let us consider the geodesic equations for polar orbits

first. Natural conditions would be _r ∼OðϵÞ as we focus on
orbits around the photon sphere, and Lz ∼OðϵÞ. Therefore,
Eqs. (6.4), (6.5), and the constraint equation become

_t ¼ Eþ gtθ _θ
−gtt

; ð6:13Þ

_φ ¼ Lz − gθφ _θ

gφφ
; ð6:14Þ

0 ¼ E2

−gtt
−
A2 _θ2 þ L2

z

gφφ
þOðϵ2Þ; ð6:15Þ

where A≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gθθgφφ − g2θφ

q
is the area element of θ, φ, and

is everywhere semi-positive-definite. For the polar orbit to
cross the poles (gφφ ¼ 0) at a finite _θ, in addition to the
vanishing of Lz, the following condition A2 ¼ OðgφφÞ
around the poles is also mandatory,4 indicating that g−1φφA2

receives Oðϵ2Þ corrections everywhere. Unfortunately, _φ
could be large, and extra care must be taken. We now turn
our attention to the r component of Eq. (6.8):

d
dλ

ðgrr _rÞ ¼
E2

2gtt
∂r ln

				 gttgθθ

				 − d
dλ

��
grθ − grφ

gθφ
gφφ

�
_θ

�

þ
�
gtθ∂r ln

				 gtθgtt
				þ gtr∂θ ln

				 gttgtr

				
�
_t _θþOðϵ2Þ:

ð6:16Þ

3Only deformations of odd parity along θ contribute. 4The condition ensures the topology of S2.
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As we have just mentioned, these deformed light rings
do not have a constant radius r. However, these orbits have
to be periodic as they pass through the poles and can be
regarded as a class of limit cycles in the phase space. It
allows us to integrate Eq. (6.16) along a closed loop for one
period in λ direction, i.e.,

H
dλ ¼ H

_θ−1dθ. For detailed
reasons shown later along with the discussion for generic
orbital inclinations, only the first term on the right-hand
side of Eq. (6.16) dominates the integration. Therefore,
we get

oðϵÞ ∝
Z

2π

0

dθ∂r ln

				 gttgθθ

				
¼

Z
2π

0

dθ∂r

�
f
r2
ð1þ ϵðAj − CjÞcosjθÞ

�

∝ ∂r

�
f
r2

�
1þ ϵ

X∞
k¼0

1

4k
C2k
k ðA2k − C2kÞ

��
; ð6:17Þ

where the dummy index j stands for summation over all
non-negative integers. Note that the integration runs from
θ ¼ 0 to θ ¼ 2π, meaning that the trajectories go back and
forth through the two poles. According to Eq. (6.17), one
sees that the integrated equation, up to OðϵÞ, is equal to the
equation that determines the peak of the effective potential
(5.17). Later in the next subsection, we will show explicitly
that the peak of the effective potential can be interpreted as
an averaged radius of deformed light rings along a period.

C. Orbits with generic inclinations

Methods in the last subsection can also be applied to
general cases with Lz ≠ 0. The only difference is that the
orbits no longer pass the poles, sparing us from dealing
with coordinate singularities. Again, let us consider the r
component of Eq. (6.8),

d
dλ

ðgrr _rÞ ¼
E2

2gtt

�
ð1þKÞ∂r ln

				 gttgφφ

				 −K∂r ln

				 gttgθθ

				
�

þ
�
gtθ∂r ln

				 gtθgtt
				þ gtr∂θ ln

				 gttgtr

				
�
_t _θ

þ
�
gθφ∂r ln

gθφ
gφφ

þ grφ∂θ ln
gφφ
grφ

�
_θ _φ

−
d
dλ

ðgrθ _θÞ; ð6:18Þ

with K≡ E−2gttgθθ _θ
2 ¼ −1 − L2

zE−2gttg−1φφ. As we argued
before, light rings have to be periodic and thus correspond
to a class of limit cycles. Let us focus on the Lyapunov
exponent of a limit cycle r� on a θ section,



d
dλ

ðgrr _rÞ
�

¼ h∂rFðr�; θÞðr − r�Þi

¼ ∂rF0ðrPÞhr − r�i þ oðϵÞ
¼ ∂rF0ðrPÞhr − rPi þ ϵhF1ðrP; θÞi þOðϵ2Þ;

ð6:19Þ

where h i≡ H
_θ−1dθ is the integration over one revolution,

with r, r�, and _θ considered functions of θ; Fðr; θÞ
represents the right-hand side of Eq. (6.18); Fn is the
nth-order term of F in ϵ with F0 independent of θ; and rP is
the photon sphere radius of a Schwarzschild black hole.
The first equality defines the Lyapunov exponent of the
deformed limit cycle Λ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂rFðr�; θÞ
p

, while the third is
the ϵ expansion of F. The second equality comes from the
largeness of the background Lyapunov exponent, sug-
gesting OðϵÞ proximity of the deformed limit cycle to
the Schwarzschild one. Therefore, we may utilize back-
ground θ to determine r�, rendering the last three terms on
the right-hand side of Eq. (6.18) oðϵÞ after tracing over one
revolution.5 The integrated equation can be interpreted as
determining up to OðϵÞ the averaged photon ring radius if
the orbit is closed radially up to oðϵÞ.
The orbit up to Oð1Þ can be characterized by its

inclination angle δ as

K ¼ −ð1 − x2Þ−1ðsin2 δ − x2Þ; ð6:20Þ

_x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2ðsin2 δ − x2Þ

−gttgθθ

s
; ð6:21Þ

with x ¼ cos θ, and the integration of Eq. (6.18) over one
period is

oðϵÞ ¼
Z � sinδ

∓sinδ

�
ð1þKÞ∂r ln

				 gttgφφ

				−K∂r ln

				 gttgθθ

				
�
dx
_x

∝
X
k

s2k4−kC2k
k

�
ð1− s2Þ2F1

�
1; kþ 1

2
;kþ 1;s2

�

× ∂rðA2k −D2kÞ þ
s2

2kþ 2 2F1

�
1; kþ 1

2
;kþ 2;s2

�

× ∂rðA2k −C2kÞ
�
þ ∂rðfr−2Þ; ð6:22Þ

with s≡ sin δ. Comparing the equation above with
Eq. (5.20), we notice that the equations derived from two
different approaches coincide if we identify s2 ¼ 1 − α2.
Thus, cos−1ðm=lÞ corresponds to the inclination angle of the

5Two of these terms are the noncircularity introduced in
Sec. III. The suppression of the noncircularity can be understood
as the irrelevance of the wave function deformation at linear
order.
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orbit, and the potential peak to the averaged photon ring
radius.
Having formulated the correspondence between the peak

of the eikonal effective potential and the averaged photon
ring radius, we can use the results of Sec. II A, i.e.,
Eq. (2.17), to formally build the eikonal correspondence
between eikonal QNMs and the deformed photon sphere in
the deformed Schwarzschild spacetime.

VII. EXAMPLES

In the previous sections, we have identified the corre-
spondence between eikonal QNMs and trapped photon
orbits in a deformed Schwarzschild spacetime (3.1). The
correspondence can be identified through the definiton of
averaged photon ring radius. In this section, wewill provide
some simple examples to support our general results.

A. Spherically symmetric deformations

The first example for demonstrations is the eikonal
correspondence in a Schwarzschild spacetime with spheri-
cally symmetric deformations. Such deformations belong
to the axisymmetric deformations of Eq. (3.1), with A0ðrÞ
and B0ðrÞ the only nonvanishing deformation functions. In
this case, the expressions of the eikonal effective potential,
i.e, Eqs. (5.9), (5.17), and (5.20), all reduce to

VeffðrÞ ≈ l2
f
r2
ð1þ ϵA0Þ: ð7:1Þ

The peak of the effective potential is uniquely defined. For
the trapped photon orbits, the spherical symmetry of the
spacetime implies that the trapped photon orbits are always
circular with radius determined by ∂rðgtt=r2Þ ¼ 0. One can
see that the peak of the effective potential (7.1) is precisely
at the trapped photon orbits. In fact, this correspondence
can be identified in a similar manner for general spherically
symmetric spacetimes, as we have already mentioned
in Sec. II.

B. Supertranslated black hole

The second set of examples we consider are two
stationary axisymmetric black hole metrics that are diffeo-
morphic to the Schwarzschild black hole, commonly
referred as soft-hair black holes. Given the coordinate
transformations, it is rather straightforward to derive the
averaged photon ring radius and to test the correspondence
by verifying the peak of the QNM potential.

1. Compère-Long-Iofa type

The first set of coordinate transformations is proposed by
Compère and Long, later modified by Iofa (CLI) to focus
on axisymmetric cases [103,104]. The CLI transformation
is particularly interesting since only θ is transformed,

sin θS ¼ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
CðθÞ
KðrÞ

�
2

s
−
CðθÞ
KðrÞ cos θ; ð7:2Þ

where θS denotes the polar angle of the original
Schwarzschild coordinates, KðrÞ satisfies dKðrÞ=dr ¼
KðrÞ=½r ffiffiffiffiffiffiffiffiffi

fðrÞp � [104], CðθÞ≡P
k C̃k cos2k θ≡P

k C̃kx2k

is the deformation function, and C̃k are constant coeffi-
cients in the expansion. We neglect odd-parity deforma-
tions as they do not contribute to the QNM potential.
Naively, under CLI transformation, only QNM waveforms
are deformed. The potential should remain the same up to
Darboux transformation, allowing us to put the projection
method to test.
Expanding the metric up to the first order of CðθÞ, we

can identify the deformation functions used in Eq. (3.1)
through the relations [104]

AjðrÞ ¼ BjðrÞ ¼ ajðrÞ ¼ bjðrÞ ¼ djðrÞ ¼ ejðrÞ ¼ 0;

CjðrÞ ¼
8

KðrÞ
X
k

kC̃k½2kδ2kj − ð2k − 1Þδ2k−2j �;

DjðrÞ ¼
8

KðrÞ
X
k

kC̃kδ
2k
j ;

cjðrÞ ¼ −
4rffiffiffiffiffiffiffiffiffi

fðrÞp
KðrÞ

X
k

k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

x
C̃kδ

2k
j ; ð7:3Þ

where δ is the Kronecker delta and the factor kx−1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

of cj transforms the parameter ejlm to djlm.
Plugging these relations into the effective potential

(4.29), we get

VeffðrÞ ¼ lðlþ 1Þ fðrÞ
r2

þ fðrÞ
r

dfðrÞ
dr

þ ϵ
2fðrÞ
r2

×
X
k

C̃k

�
4k
K

M1ðkÞ þ ∂r

�
r

ffiffiffi
f

p
K

�
M2ðkÞ

�
; ð7:4Þ

where

M1ðkÞ≡ −a2klm þ 2kc2klm − ð2k − 1Þc2k−2lm

þ 2k − 1

2
d2klm −

2k − 1

2
d2k−2lm ;

M2ðkÞ≡ d2klm − kð2kþ 1Þb2klm þ kð2k − 1Þb2k−2lm : ð7:5Þ

Using integration by parts, we find M2ðkÞ ¼ 0. We also
find M1ðkÞ ¼ 0 for all sets of ðk; l; mÞ. Therefore, the
effective QNM potential of CLI metric does not receive
corrections from soft hairs up to the first order of CðxÞ. The
QNM results reduce to Schwarzschild ones, and the peak of
the effective potential in the eikonal limit is at r ¼ 3M. As
for the trapped photon orbits, since CLI transformation acts
on θ alone, the photon sphere or any sphere of a constant
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radius would remain a sphere of the same radius [64]. As a
result, the correspondence is clearly identified.

2. Bondi-Metzner-Sachs type

The previous example serves as a proving ground for
QNM. Here, we test the other side of the relation by
considering another transformation proposed by Bondi, van
der Burg, Metzner, and Sachs [105–107],

δv ¼ CðxÞ; δr ¼ x∂xCðxÞ − ð1 − x2Þ∂xxCðxÞ;
δθ ¼ −r−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
∂xCðxÞ; ð7:6Þ

where v ¼ tþ r� is the advanced time.6 For our purposes,
we have imposed the axisymmetry. Following the protocol,
the deformation functions for CðxÞ≡P

k C̃kx2k are

AjðrÞ¼
f0ðrÞ
fðrÞ

X
k

kC̃k½ð2kþ1Þδ2kj − ð2k−1Þδ2k−2j �;

CjðrÞ¼−DjðrÞ¼
1

r

X
k

2kð2k−1ÞC̃kðδ2k−2j −δ2kj Þ: ð7:7Þ

To be concise, we only show relevant functions. Pluging
them into Eq. (5.20), the deformation to the effective
potential of eikonal QNMs is

δVeff ¼
l2

r4
X
k

kC2k
k ð1−α2Þk
22k−1

C̃k

×

�
4ðr−2MÞ
1−α2

α22F1

�
1;k−

1

2
;k;1−α2

�

−2ð2k−1Þðr−2MÞα22F1

�
1;kþ1

2
;kþ1;1−α2

�

þð2k−1Þðr−MÞþ2M−
2ðr−MÞ
1−α2

�
: ð7:8Þ

For the first few k, the location of the potential peak

will be shifted by C̃1

2
ð3α2 − 1Þ, 3C̃2

4
ð1 − α2Þð5α2 − 1Þ,

15C̃3

16
ð1 − α2Þ2ð7α2 − 1Þ, 35C̃4

32
ð1 − α2Þ3ð9α2 − 1Þ, etc.

We now have one side of the correspondence. Let us
derive the other side directly through the coordinate
transformation. After applying Eq. (7.6), the photon sphere
is slightly shifted to r ¼ 3M þ x∂xCðxÞ − ð1 − x2Þ∂xxCðxÞ.
After fixing C ¼ x2k and averaging over the background
trajectory, the averaged photon ring radius becomes7

3M þ s2kð2kð1 − s2Þ − s2ÞΓðkþ 1
2
Þffiffiffi

π
p

s2ΓðkÞ ; ð7:9Þ

where Γ is the Euler Gamma function and arcsin s is the
inclination angle of the photon ring. One may verify that
this formula indeed generates the sequence in the last
paragraph after identifying s2 as 1 − α2.

VIII. CONCLUSIONS

Based on the geometric optics approximation in generic
curved spacetimes, the eikonal black hole QNMs are tightly
related to the spherical photon orbits around the black hole.
The violation of this eikonal correspondence can be a
smoking gun of physics beyond GR. It is thus timely to
understand how the eikonal correspondence could be
broken in different circumstances.
It should be emphasized that the explicit identification of

the eikonal correspondence for nonrotating black holes and
rotating black holes (Kerr and Kerr-Newman spacetimes) in
the literature substantially relies on the symmetries of the
spacetime. One symmetry gives rise to the separability of
master wave equations, and another gives rise to the
separability of geodesic equations. However, there is no
theoretical evidence that these symmetries are still pre-
served when going beyond GR. Therefore, to better under-
stand how to utilize the eikonal correspondence for testing
black hole models and gravitational theories, a thorough
understanding of how to identify the correspondence in
black hole spacetimes without sufficient symmetries is
required.
In this work, we identify the well-defined eikonal

correspondence for a Schwarzschild spacetime with a
generic axisymmetric stationary deformation, neglecting
frame-dragging effects. Although neither the master wave
equations nor the geodesic equations are separable, the
assumption that the spacetime deformations are small, i.e.,
only taking the ϵ-order contributions into account, allows
us to build the correspondence. Specifically, with this
assumption, the radial part of the QNM master equation
can be decoupled from the angular part and recast into a
Schrödinger-like form. The effective potential (4.29) in the
equation has a well-defined peak, which differs slightly
from r ¼ 3M due to the spacetime deformations. On the
other hand, we find that the trapped photon orbits in the
deformed Schwarzschild spacetime do not have a constant
r in general, even though circular orbits still exist and are
parallel to the equatorial plane. The periodicity of the
trapped photon orbits allows us to define the averaged
radius of the orbits along one period. It turns out that in the
eikonal limit the peak radius of the effective QNM potential
is identical to the averaged radius of the trapped photon
orbits. The conclusion is valid for orbits with arbitrary
inclinations.

6The deformation to the tortoise coordinate can be neglected as
its effect on QNM potential is Oðϵ2Þ.

7As argued previously, the trajectory deformation itself enters
at Oðϵ2Þ.
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The spacetime deformations we consider in this paper,
although already very general, do not break the axisym-
metry of the spacetime. It will be interesting to see whether
a similar sense of eikonal correspondence can be identified
or not when axisymmetry is broken. In addition, the
assumption of the Schwarzschild spacetime as the reference
for the order analysis is just for simplicity. Our ultimate
goal is to understand the eikonal correspondence of a non-
Kerr spacetime, with either small or moderate deformations
from the Kerr metric. Similar to nonspinning black hole
spacetimes, Kerr spacetimes have separable geodesic equa-
tions. Their spherical photon orbits do have constant radii
when expressed in some proper coordinates. Therefore, our
results that the eikonal correspondence can be identified
through the definition of the averaged radius of trapped
photon orbits in deformed Schwarzschild spacetimes may
also give some hints when considering deformed Kerr

spacetimes. The eikonal correspondence can also be helpful
in the gravitational waveform modelings of black hole
mergers [108]. We hope to address these issues elsewhere
in the future.
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