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We investigate the behavior of classical closed strings in a gravitational wave burst and discover an
intriguing resonant behavior where the energy absorbed by the strings is crucially dependent on the
amplitude and frequency of the gravitational wave. This behavior can be traced to the well-known behavior
of the solutions to the Mathieu equation.
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I. INTRODUCTION

With the detection of gravitational waves [1] we have
gained a new channel for information from the universe.
Apart from photons and other cosmic ray particles, it is now
possible to gather data from gravitational waves. It is
therefore of utmost importance to understand how gravi-
tational waves are affected by the matter filling the universe
between the place where the gravitational radiation is
generated and us. In this paper, we make a modest
contribution to this investigation by assuming that the
matter consists of classical closed strings and investigating
how this affects the gravitational radiation that reaches us.
This topic has been studied before, in [2–8], where the

interaction between strings and a sandwich wave [9,10], a
gravitational wave where the gravitational background
differs from flat space only in a small region which is
moving with the speed of light in a particular direction, was
investigated. The metric considered was the Aichelburg-
Sexl metric, which arises as the shock-wave metric of a
black hole moving with the speed of light. In this paper, we
instead assume that in the region that differs from
Minkowski space, the metric looks like the metric of a
gravitational wave of fixed frequency ω but where the
amplitude A is modulated by a Gaussian. We find an
intriguing dependence on A and ω where there are regions
in the A, ω moduli space of strongly resonant behavior and
regions with almost no interaction. This could serve as a
means of detecting cosmic strings in the universe through
gravitational wave astronomy.
The paper is organized as follows: In Sec. II we introduce

the equations that we will solve and discuss various gauge
choices. The equations are then solved in flat space
(Sec. III), in a plane gravitational wave background

(Sec. IV), for a delta function, sandwich wave (Sec. V),
and finally for the gravitational wave burst (Sec. VI). A
detailed discussion about the method used to compute the
energy of the string after being hit by the wave is given in
Appendix. We end up with conclusions containing a
discussion of future work.
All plots and numerical computations were performed

using the Julia language [11].

II. THE STRING EQUATIONS

We want to study the behavior of strings when meeting a
gravitational wave burst, which we will describe using the
Brinkman metric [12,13]

ds2 ¼ −2dudvþHðu; x; yÞdu2 þ dx2 þ dy2: ð1Þ

For the metric to be a vacuum solution, the function H has
to satisfy the Laplace equation

ð∂2x þ ∂
2
yÞH ¼ 0; ð2Þ

whereas the u dependence ofH is completely arbitrary. The
standard gravitational waves are described by choosing
H ¼ ðx2 − y2ÞfðuÞ þ 2xygðuÞ. The two terms correspond
to the two polarizations of the gravitational wave and fðuÞ
and gðuÞ are usually chosen to be harmonic functions.
Starting from the Nambu-Goto action [14,15] for a string

in a nontrivial background GMNðXÞ,

S ¼
Z

dτdσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ð∂aXM

∂bXNGMNÞ
q

; ð3Þ

we find the equations of motion

∂að ffiffiffiffiffiffi
−γ

p
γabGMN∂bXNÞ − 1

2

ffiffiffiffiffiffi
−γ

p
γab∂MGNK∂aXN

∂bXK ¼ 0;

ð4Þ
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where γab ¼ ∂aXM
∂bXNGMN is the pullback metric on the

world sheet.
The Nambu-Goto action is reparametrization invariant,

and to solve the equations we need to fix a gauge, i.e., to
choose the coordinates τ and σ on the world sheet. This can
be done so that γτσ ¼ 0 and γττ þ γσσ ¼ 0, so-called
orthogonal or conformal gauge.
With this gauge choice in the gravitational wave back-

ground, the equations that we need to solve are

ð∂2τ − ∂
2
σÞu ¼ 0; ð5Þ

ð∂2τ − ∂
2
σÞx ¼ ∂xH

2
½ð∂τuÞ2 − ð∂σuÞ2�; ð6Þ

ð∂2τ − ∂
2
σÞy ¼ ∂yH

2
½ð∂τuÞ2 − ð∂σuÞ2�; ð7Þ

ð∂2τ −∂
2
σÞv¼

∂uH
2

½ð∂τuÞ2− ð∂σuÞ2�þ∂xHð∂τu∂τx−∂σu∂σxÞ
þ∂yHð∂τu∂τy−∂σu∂σyÞ; ð8Þ

supplemented by the gauge choice

∂τu∂σvþ ∂τv∂σu ¼ H∂τu∂σuþ ∂τx∂σxþ ∂τy∂σy; ð9Þ

2∂τu∂τvþ 2∂σu∂σv ¼ Hðð∂τuÞ2 þ ð∂σuÞ2Þ þ ð∂τxÞ2
þ ð∂σxÞ2 þ ð∂τyÞ2 þ ð∂σyÞ2: ð10Þ

The gauge is implemented by first choosing the τ coor-
dinate proportional to u,

u ¼ λτ; ð11Þ

where λ is an arbitrary constant. With this choice, the
equations that ensure that ∂τ and ∂σ are orthogonal (9) and
of equal length (10) simplify:

λ∂σv ¼ ∂τx∂σxþ ∂τy∂σy; ð12Þ

2λ∂τv ¼ λ2H þ ð∂τxÞ2 þ ð∂σxÞ2 þ ð∂τyÞ2 þ ð∂σyÞ2; ð13Þ

and the equations for the transverse coordinates also
simplify to become

ð∂2τ − ∂
2
σÞx ¼ λ2

2
∂xH; ð14Þ

ð∂2τ − ∂
2
σÞy ¼ λ2

2
∂yH: ð15Þ

It is straightforward to check that (11), (12), and (13)
imply (8).

III. FLAT SPACE

As a warm-up exercise we will solve the equations for
the caseH ¼ 0which is equivalent to Minkowski space. To
begin with, we solve (14) and (15). The simplest way to
find a set of solutions is to separate variables so that if
xðτ; σÞ ¼ TxðτÞSxðσÞ we get

∂
2
τTx

Tx
¼ ∂

2
σSx
Sx

¼ −K: ð16Þ

The 2π periodicity in σ then tells us that we have to choose
K ¼ n2 with n being an integer. The equation for y is
solved similarly. The simplest nontrivial solution in this
family is

x ¼ R cosðτÞ cosðσÞ; ð17Þ

y ¼ R cosðτÞ sinðσÞ; ð18Þ

with R constant. Plugging this into (12) and (13) we get that
∂σv ¼ 0 and ∂τv ¼ R2

2λ. In the more familiar t and z
coordinates, this corresponds to

t ¼ 1ffiffiffi
2

p ðuþ vÞ ¼
�
λþ R2

2λ

�
τffiffiffi
2

p ; ð19Þ

z ¼ 1ffiffiffi
2

p ðu − vÞ ¼
�
λ −

R2

2λ

�
τffiffiffi
2

p : ð20Þ

We see that in general, the z-coordinate changes as a
function of t corresponding to a motion of the center of
mass of the string. However, if we choose λ ¼ Rffiffi

2
p , the z

coordinate is constant and there is no center of mass motion
in the z direction; but a different choice of λ would also
include this possibility.

IV. A STRING IN A PLANE
GRAVITATIONAL WAVE

We now turn to the topic of the motion of the string in a
plane gravitational wave background described by

H ¼ ðx2 − y2ÞA cosðωuÞ; ð21Þ

where A is the amplitude and ω is the frequency of the
wave. The equation for the transversal coordinates now
becomes

ð∂2τ − ∂
2
σÞx ¼ λ2A cosðωuÞx; ð22Þ

ð∂2τ − ∂
2
σÞy ¼ −λ2A cosðωuÞy: ð23Þ

Again we try a separation of variables to find a solution.
This leads to the equations
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∂
2
τTx

Tx
− λ2A cosðλωτÞ ¼ ∂

2
σSx
Sx

¼ −n2; ð24Þ

∂
2
τTy

Ty
þ λ2A cosðλωτÞ ¼ ∂

2
σSy
Sy

¼ −n2; ð25Þ

from which we can extract the equations for Tx and Ty,

∂
2
τTx þ ðn2 − λ2A cosðλωτÞÞTx ¼ 0; ð26Þ

∂
2
τTy þ ðn2 þ λ2A cosðλωτÞÞTy ¼ 0; ð27Þ

and we see that Tx and Ty now satisfy the Mathieu equation

d2wðtÞ
dt2

þ ða − 2q cosð2tÞÞwðtÞ ¼ 0; ð28Þ

with

a ¼ 4n2

λ2ω2
; ð29Þ

q ¼ � 2A
ω2

; ð30Þ

and with the Mathieu functions as solutions.
The behavior of the Mathieu functions depending on the

parameters a and q is quite intricate. As can be seen in
Fig. 1, there are regions in the ðq; aÞ plane where the
solutions, although not periodical, behave nicely and stay
finite for all times. There are other regions where instead
the solutions oscillate uncontrollably as time goes to
infinity. On the borders between these regions, the solutions
are periodic.
We see that the type of solution we get will depend cru-

cially on the amplitude and frequency of the gravitational

wave. If our choice of parameters is such that the solution is
in an unstable region, our string will exhibit resonant
behavior where it will fluctuate with an ever larger
amplitude as well as start moving in the z direction.
To see this, we have to investigate the behavior of the v

coordinate which tells us what the string is doing in the z
direction. For simplicity, we choose n ¼ 1. Starting with
(12) the σ derivative of v is

λ∂σv ¼ 1

4
∂τðT2

y − T2
xÞ sinð2σÞ; ð31Þ

with the simple solution

v ¼ 1

8λ
∂τðT2

x − T2
yÞ cosð2σÞ þ kðτÞ; ð32Þ

where kðτÞ is an arbitrary function. In the case that T2
x − T2

y

is not a constant v depends on σ, and since z ¼ 1ffiffi
2

p ðu − vÞ
this means that the string will oscillate also in the z
direction even if it does not from the beginning. To fix
the unknown function kðτÞwe insert (32) into (13) to get an
expression for the τ derivative of kðτÞ:

dk
dτ

¼ 1

8λ

�
d2

dτ2
ðT2

x þ T2
yÞ þ 4ðT2

x þ T2
yÞ
�
: ð33Þ

It is a nontrivial consistency check that the σ dependence of
this equation drops out. The function kðτÞ encodes the
center of mass motion in the z direction. For instance, if
k ≠ R2

2λ τ, u ≠ v and the center of mass of the string is
moving in the z direction.
If we would like to find the full motion of the string in

this background, we must choose an initial configuration.
We could, for instance, choose the configuration that
we studied in flat space where the string starts out as a
circle with radius R and no motion in the z direction. That
means we have to choose the initial values (for example,
at τ ¼ 0)

Tx ¼ R; ð34Þ

_Tx ¼ 0; ð35Þ

Ty ¼ R; ð36Þ

_Ty ¼ 0; ð37Þ

λ ¼ Rffiffiffi
2

p : ð38Þ

Solving the equations for the fluctuation in the x, y plane,
we find

FIG. 1. The moduli space of the Mathieu equation. The shaded
regions correspond to unstable solutions. The parameters a and q
vary on a straight line for a gravitational wave with arbitrary
frequency ω but with fixed amplitude A.
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TxðτÞ ¼ RCa;q

�
Rωτffiffiffi

2
p

�
; ð39Þ

TyðτÞ ¼ RCa;−q

�
Rωτffiffiffi

2
p

�
; ð40Þ

where Ca;qðxÞ is the even solution to the Mathieu differ-
ential equation normalized so that Cð0Þ ¼ 1, which gives
the full solution

x ¼ RCa;q

�
Rωτffiffiffi

2
p

�
cos σ; ð41Þ

y ¼ RCa;−q

�
Rωτffiffiffi

2
p

�
sin σ; ð42Þ

v ¼ R

4
ffiffiffi
2

p ∂τðC2
a;q − C2

a;−qÞ cosð2σÞ þ kðτÞ; ð43Þ

u ¼ Rffiffiffi
2

p τ: ð44Þ

One can easily convince oneself that C2
a;q − C2

a;−q is not
constant in general and therefore the string vibrates also in
the z direction. Also, for a and q in the unstable region, the
amplitude of the vibrations in the x, y plane increases
without bound.

V. A STRING IN A SANDWICH WAVE

We would like to study the more realistic situation when
the motion of the string starts and ends in Minkowski space,
but there is a short gravitational wave burst during which
the string may gain (or lose) energy from the gravitational
wave. An exactly solvable example is when the gravita-
tional wave is a delta function,

H ¼ ðx2 − y2ÞAδðuÞ; ð45Þ

which is known as the Aichelburg-Sexl metric and the
behavior of strings in this background has been studied
extensively in both the classical [2–4] and the quantum
[2,3,5–7] cases. We do not claim to derive any new results
in this section. Rather, we use some of the techniques
developed here to study a more realistic case in Sec. VI.
In the case at hand, the equations that need to be

solved are

ð∂2τ − ∂
2
σÞx ¼ λ2AδðuÞx; ð46Þ

ð∂2τ − ∂
2
σÞy ¼ −λ2AδðuÞy; ð47Þ

and a separation of variables leads to

∂
2
τTx þ ðn2 − λ2AδðλτÞÞTx ¼ 0; ð48Þ

∂
2
τTy þ ðn2 þ λ2AδðλτÞÞTy ¼ 0: ð49Þ

Integrating these equations from τ ¼ −ϵ to τ ¼ ϵwhere ϵ is
infinitesimal, we find

∂τTxðϵÞ ¼ ∂τTxð−ϵÞ þ λATxð0Þ; ð50Þ

∂τTyðϵÞ ¼ ∂τTyð−ϵÞ − λATyð0Þ: ð51Þ

In particular, if we assume that the string motion before
meeting the wave is given by the flat space solution (17),
for which n ¼ 1, then using the continuity of the string, the
motion after the wave hits is given by

Tx ¼ RðcosðτÞ þ λA sinðτÞÞ; ð52Þ

Ty ¼ RðcosðτÞ − λA sinðτÞÞ: ð53Þ

Integrating the equations for v, (12) and (13), gives

v ¼ R2

2λ
ðð1þ λ2A2Þτ þ λA cosð2τÞ cosð2σÞÞ: ð54Þ

If the string was at rest before meeting the wave, we know
that λ ¼ Rffiffi

2
p . The full solution after meeting the wave is then

x ¼ R

�
cosðτÞ þ Affiffiffi

2
p sinðτÞ

�
cosðσÞ; ð55Þ

y ¼ R

�
cosðτÞ − Affiffiffi

2
p sinðτÞ

�
sinðσÞ; ð56Þ

v ¼ Rffiffiffi
2

p
��

1þ R2A2

2

�
τ þ RAffiffiffi

2
p cosð2τÞ cosð2σÞ

�
; ð57Þ

u ¼ Rffiffiffi
2

p τ: ð58Þ

We recognize that the center of mass of the string has
started moving in the negative z direction with the speed
A2R2

4þR2A2 but it has also started vibrating in the z direction. To
disentangle the motion, it is useful to make a Lorentz
transformation to a frame in which the center of mass of the
string is at rest. In that system

v¼ Rffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þR2A2

2

r
τþ RAffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2A2

2

q cosð2τÞ cosð2σÞ
�
;

ð59Þ

u ¼ Rffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2A2

2

r
τ: ð60Þ
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We find the internal energy of the string by using a
method outlined in Appendix. It involves going to the static
gauge which can be found through a conformal trans-
formation. The outcome in this case is

Eint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2A2

2

r
Ei; ð61Þ

where Ei is the energy of the initial string configuration.
From the point of view of an observer at rest with respect to
the string before meeting the gravitational wave, it looks
like the string has increased its mass (internal energy) and
has started moving in the z direction. The total increase in
energy combines these two effects and is therefore

E ¼
�
1þ R2A2

4

�
Ei: ð62Þ

VI. A STRING IN A GRAVITATIONAL
WAVE BURST

To study a more realistic example, we combine the
previous cases and assume a gravitational wave profile

Hðx; y; ; uÞ ¼ ðx2 − y2ÞfðuÞ; ð63Þ

fðuÞ ¼ A cosðωuÞe−u2

ρ2 ; ð64Þ

where the constant ρwas chosen such that the burst lasts for
approximately ten periods. This is the simplest approxi-
mation of what a real gravitational wave that we observe on
Earth could look like. However, since our calculations are
numerical, there is nothing that prevents us from using an
even more realistic waveform if we would like.
Even though in this case we cannot solve the equations

for the transverse directions analytically, we know that they
have to take the form

x ¼
X∞
n¼−∞

cnðτÞeinσ; ð65Þ

y ¼
X∞
n¼−∞

dnðτÞeinσ; ð66Þ

which, with the function H specified by (63), leads to the
equations

c̈n þ ðn2 − λ2fðuÞÞcn ¼ 0; ð67Þ

d̈n þ ðn2 þ λ2fðuÞÞcn ¼ 0; ð68Þ

for the unknown coefficients, cn and dn. At the same time,
we make the ansatz

v ¼
X∞
n¼−∞

vnðτÞeinσ; ð69Þ

which gives the equations

λnvn ¼
X
k

kðck _cn−k þ dk _dn−kÞ; ð70Þ

for n ≠ 0. From this equation, we find that the higher vn
modes in general get excited. For instance, if c�1 and d�1

are nonzero, we should expect that v�2 ≠ 0. In the previous
section, where we studied the delta function sandwich
wave, the c and d contributions canceled before the arrival
of the wave burst but not after the burst had passed as can be
clearly seen in (57). The center of mass motion in the z
direction is encoded in v0 which, in contrast to the other vn
(n ≠ 0) modes, has to be integrated from

_v0 ¼
1

2λ

X
k

ð_ck _c−k þ _dk _d−k þ k2ckc−k þ k2dkd−k

þ λ2A cos λωτðckc−k − dkd−kÞÞ: ð71Þ

Following a procedure completely analogous to what we
did for the delta function wave burst, we first find a Lorentz
frame in which the center of mass of the string is at rest
followed by a conformal transformation to static gauge. It is
then straightforward to find the energy of the string. We
perform these manipulations numerically and find that the
amount of energy that the string absorbs depends strongly
on the amplitude A and the frequency ω of the wave burst.
What is surprising is that the energy absorbed also depends
on the relative phase of the vibrations of the string and the
vibrations of the gravitational wave. As can be seen in
Fig. 2, for particular choices of the relative phase, the string
might even lose energy. Because of this, it seems reason-
able to average the relative phase: if the gravitational wave

FIG. 2. The energy increases as a function of the relative phase
α of the incoming gravitational wave burst and the string.
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burst would travel through a gas of strings, the relative
phases would be random.
Doing this, we find that the energy absorption is still

strongly dependent on the amplitude A and the frequency ω
of the gravitational wave burst. This is illustrated in Fig. 3
where for a constant A ¼ 1.5 we look at the increase in
energy as a function of ω. Notice that the energy scale is
logarithmic so that at resonance the energy increases by
several orders of magnitude in the resonance region. The
peaks in the spectrum can be matched with the unstable
regions of the Mathieu equation in the a, q plane. For
instance, when the initial string is at rest so that λ ¼ Rffiffi

2
p , and

using a fixed value of A, then changing ω changes a and q
along a straight line in the a, q-plane, as can be seen in
Fig. 1, according to the relation

a ¼ kq; ð72Þ

k ¼ 4n2

R2A
; ð73Þ

q ¼ 2A
ω2

: ð74Þ

Here a ¼ q ¼ 0 corresponds to ω ¼ ∞, but by lowering ω
we move away from the center until we get to the unstable
region. For R ¼ 1 and A ¼ 1.5 (and n ¼ 1) we numerically
find that this happens when ω ≈ 3.33, and continuing to
lower ω we get out of the unstable region at ω ≈ 2.29.
These values agree precisely with the spectrum in Fig. 3,
showing that the resonance has its origin in the behavior of
the Mathieu equation. Changing A we change the slope of
the line a ¼ kq so that for a smaller A the line moves
toward the y axis giving a smaller interval with resonant
behavior, whereas for a bigger A, the line moves toward the
x axis and the resonance bands become broader. It is
interesting to note that the center of the interval does not

change significantly during this since k · q is independent
of A.
On the other hand, choosing a fixed frequency ω at a

value where there is resonance, and plotting the increase in
energy as a function of the amplitude as in Fig. 4, we see
that the absorption increases exponentially after an initial
period of slow increase.
More generally, we give the dependence on both A and ω

in Fig. 5. Notice that the energy scale is logarithmic, so the
increase in energy can be several orders of magnitude.
Finally, it is necessary to discuss the choice of units. One

might expect the string tension to appear, and it does indeed
in the calculation of the energy of the string. However,
since we are only interested in the relative increase in
energy, the string tension actually drops out. For the other
parameters, A has dimension length−2, whereas ω has
dimension length−1. Looking at (72) we see that our
results depend only on the dimensionless combinations
R2A and Rω. Using a string in an initial state with a
different value of Rwould just rescale the values of A and ω
accordingly.

FIG. 3. The energy increase for fixed A as a function of ω. FIG. 4. The energy increase for fixed ω as a function of A.

FIG. 5. The energy increase as a function of the frequency ω
and amplitude A of the gravitational wave burst.
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VII. CONCLUSIONS

We have shown that the behavior of classical closed
strings in a gravitational wave burst is strongly dependent
on the amplitude and frequency of the gravitational wave.
The behavior can be traced to the known behavior of the
Mathieu equation. Our study is restricted to the simplest
possible case where the string fluctuates in the lowest mode
only and the fluctuations are transverse to the direction of
the gravitational wave. In a more realistic situation, the
orientation of the string would be arbitrary and, in general,
more modes would be excited, possibly according to a
Boltzmann distribution. It is interesting to observe that the
presence of a mode in the initial state gives rise, through
(13), to a mode of twice the frequency in the final state.
This could presumably give an even stronger resonance
behavior than the case treated in this paper. Another
straightforward modification would be to modify the wave
form of the gravitational wave burst. In principle, one could
even use the waveform measured by LIGO defined numeri-
cally. We leave all of this for future publications.
We have shown that strings are able to absorb significant

amounts of energy from the gravitational wave. The non-
trivial frequency dependence indicates that this couldmodify
the spectrum of gravitational waves as observed here
on Earth. A fundamental string in flat space would be
expected to have an R of the order of the Planck length
R ∝ lp ¼ 10−35m, and the resonance region ofωwould then
begiven inPlanckunits. Tomove the resonance to a region of
frequencies measurable by LIGO or Virgo (101–104 Hz)
[16,17], one would have to have a string of size R ∝ 10−4m.
This would be possible for cosmic strings with the appro-
priate tension. For fundamental strings, onewouldneed some
other mechanism to make them large. For instance, as
Susskind has pointed out, a highly excited string, on the
verge of becoming a black hole, spreads out to large size
[18,19], thus lowering the resonance frequency, but this
would require a more thorough analysis.
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APPENDIX: CALCULATING THE ENERGY

Here we explain how to find the z velocity and the energy
of the string after meeting the gravitational wave. In all the
cases studied in this article, the form of the solution of the
coordinates u and v can be written as

u ¼ λτ; ðA1Þ

v ¼ λM2τ þMðgðτ þ σÞ þ gðτ − σÞ; ðA2Þ

where M is a constant and g is an arbitrary function.
Through the equations of motion (12) and (13) we can also
compute that

∂τx∂σxþ∂τy∂σy¼ λ∂σv¼Mðg0ðτþσÞ−g0ðτ−σÞÞ; ðA3Þ
∂τx∂τxþ ∂σx∂σxþ ∂τy∂τyþ ∂σy∂σy

¼ 2λ∂τv ¼ λM2 þMðg0ðτ þ σÞ þ g0ðτ − σÞÞ: ðA4Þ
After a Lorentz transformation in the u, v plane with

velocity vz ¼ 1−M2

1þM2 we find

u ¼ λMτ; ðA5Þ
v ¼ λMτ þ gðτ þ σÞ þ gðτ − σÞ; ðA6Þ

which implies that

t ¼ 1ffiffiffi
2

p ð2λMτ þ gðτ þ σÞ þ gðτ − σÞÞ; ðA7Þ

z ¼ −
1ffiffiffi
2

p ðgðτ þ σÞ þ gðτ − σÞÞ: ðA8Þ

We would like to compute the internal energy of the
string using the method described in Chapter 7 of [20]
where in static gauge, in which we will call the world-sheet
coordinates t and s, we can find the energy as

E ¼
Z

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂sX̄Þ2
1 − v̄2⊥

s
; ðA9Þ

where X̄ ¼ ðx; y; zÞ and

v̄⊥ ¼ ∂tX̄ −
∂tX̄ · ∂sX̄
ð∂sX̄Þ2

∂sX̄ ðA10Þ

is the local velocity of the string perpendicular to the string
itself.
To go to static gauge, wemake a conformal transformation

t� s ¼
ffiffiffi
2

p
ðλMðτ � σÞ þ gðτ � σÞÞ; ðA11Þ

and then, inverting the relation�
∂τX̄

∂σX̄

�
¼

� ∂t
∂τ

∂s
∂τ

∂t
∂σ

∂s
∂σ

��
∂tX̄

∂sX̄

�
; ðA12Þ

we can express the integral (A9) in terms of knownvariables.
After a nontrivial calculation, one can show that the internal
energy of the string can be expressed as

E ¼
Z

ds ¼
ffiffiffi
2

p
2πλM: ðA13Þ

Combining this with the boost, the total energy gained by the
string is

Etot ¼
1þM2

2
Ei: ðA14Þ
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