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We investigate the structure and stability of the thermal equilibrium states of a spherically symmetric
self-gravitating system in a D–dimensional asymptotically anti–de Sitter (AdS) spacetime. The system
satisfies the Einstein-Vlasov equations with a negative cosmological constant. Due to the confined structure
of the AdS potential, we can construct thermal equilibrium states without any artificial wall in the
asymptotically AdS spacetime. Accordingly, the AdS radius can be regarded as the typical size of the
system. Then the system can be characterized by the gravothermal energy and AdS radius normalized by
the total particle number. We investigate the catastrophic instability of the system in a D–dimensional
spacetime by using the turning point method. As a result, we find that the curve has a double spiral structure
for 4 ≤ D ≤ 10 while it does not have any spiral structures for D ≥ 11 as in the asymptotically flat case
confined by an adiabatic wall. Irrespective of the existence of the spiral structure, there exist upper and
lower bounds for the value of the gravothermal energy. This fact indicates that there is no thermal
equilibrium solution outside the allowed region of the gravothermal energy. This property is also similar to
the asymptotically flat case.
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I. INTRODUCTION

Since the seminal work of Antonov [1], the thermody-
namical and statistical properties of the self-gravitating
many-particle systems have attracted much attention.
Antonov investigated thermal equilibrium states of the
self-gravitating system surrounded by a spherical adiabatic
wall of radius R in the microcanonical ensemble.1 In
Ref. [1], it has been shown that the Boltzmann-Gibbs
entropy has no global maximum but may have a local
maximum. Furthermore, it has been also shown that the
second variation of the entropy with respect to the distri-
bution function can be positive if the density contrast, which
is given by the ratio between the mass density at the center
and the edge, is greater than 709. This result indicates that
the density contrast must not exceed 709 for the thermal
equilibrium state to be stable. Lynden-Bell and Wood [2]
confirmed and extended the results of [1] in accordance
with Poincaré’s stability criterion [3]. Reference [3] argued
that a series of equilibria can increase the number of unstable

modes only if it passes a turning point [4–7]. They found
the existence of the minimum value of the gravothermal
energy associated with the turning point which is identical
to the critical point found by Antonov in the micro-
canonical ensemble.
This catastrophic instability of the self-gravitating sys-

tems is called the gravothermal catastrophe, which is a
consequence of the negative specific heat of gravity. The
negative specific heat makes the core of the system be
heated when it transfers energy to the surrounding halo.
Once it begins, the energy current carried by particles
continues to be transferred from the core to the halo, and
fragmentation will occur. In the Newtonian case, this
catastrophic instability does not appear if the thermal
energy dominates over the gravitational potential energy
and the confinement is sufficiently effective. This is
because the adiabatic wall puts external pressure on the
system and makes the specific heat positive. This situation
corresponds to the case where the density contrast is
smaller than 709, and it can be realized by increasing
the thermal energy under fixed values of the particle
number and the size of the confining wall.
To perform the relativistic extension, we need to take

into account the contribution of the thermal energy to the
total mass. Thus the increasing thermal energy raises the
compactness of the system defined by the total mass
divided by the radius. In general relativity, the system
cannot avoid gravitational collapse if it is sufficiently
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1In the microcanonical ensemble, the thermal relaxation leads

the extremum Boltzmann-Gibbs entropy state with fixed energy
and particle number in the wall. The adiabatic wall plays a role in
preventing the particles from diffusion.
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compact [8–15]. As a result, the series of equilibria has a
double spiral structure, and the two catastrophic instabil-
ities appear in association with two turning points. For a
relativistic perfect fluid with a linear equation of state, the
dependence of the stability on the number of spacetime
dimensions has been studied in Ref. [15]. In an asymp-
totically flat spacetime, Chavanis concluded that the system
has the critical dimension D� such that the system has a
double spiral structure for D < D� and not for D ≥ D�.
In an asymptotically AdS spacetime, motivated by the
Hawking-Page phase transition, Refs. [16,17] investigated
the stability of self-gravitating radiation and obtained the
same result, i.e., the double spiral structure vanishes above
the critical dimension D�.
Asymptotically AdS spacetimes have also been attrac-

tive in the context of the AdS=CFT correspondence
[18–20] and the gravitational turbulent instability [21].
Since an asymptotically AdS spacetime has a confined
structure, perturbations of matter fields in the spacetime
may not dissipate to infinity. Due to the nonlinearity of the
field equations, they interact with each other and may
form black holes even if the perturbations are arbitrarily
small. Despite many works on the turbulent instability
[22–35], the final fate has not been clarified yet because
the time evolution and final states are dependent on
symmetries, dimensions and boundary conditions of the
spacetime [36,37]. In addition to the case of matter fields,
the stability of the asymptotically AdS Einstein-Vlasov
system is also investigated in Ref. [38,39] (see also
[40,41]).2 However, the conditions of black formation
and the final fate are still not completely clear [36,37].
Since the self-gravitating many-particle system might be
regarded as a macroscopic model for the excitations in an
asymptotically AdS spacetime, the analysis in our paper
might be helpful to guess the final states of asymptotically
AdS spacetimes in general dimensions.
This paper is organized as follows. In Sec. II, we derive

the basic equations for the thermal equilibrium states.
The details of the derivation are shown in Appendix A
and calculations for physical quantities are shown in
Appendix B. We present the results in Sec. III. In
Sec. III A, we show the parameter dependence of the radial
profile of the system. After the brief review on the turning
point method in Sec. III B, we show the main results of the
stability analysis in Secs. III C–III E. Section IV is devoted
to a summary and conclusion.
Throughout this paper, we use the geometrized units in

which both the speed of light and gravitational constant in
D–dimension are unity, c ¼ GD ¼ 1.

II. FIELD EQUATIONS AND
THERMODYNAMICAL QUANTITIES

A. Physical quantities of the self-gravitating system

We consider a self-gravitating system of massive point
particles in a D–dimensional spacetime. For simplicity,
setting the rest mass of each particle to unity, we can
identify the number of particles with the total rest mass.
Focusing on a static and spherically symmetric spacetime,
the metric is given by

gμνdxμdxν ¼ −e2μðrÞdt2 þ e2νðrÞdr2 þ r2dΩ2
D−2; ð2:1Þ

where

dΩ2
D−2 ¼ dθ21 þ sin2θ1dθ22 þ sin2θ1sin2θ2dθ23 þ � � �

þ sin2θ1sin2θ2 � � � sin2θD−3dθ2D−2: ð2:2Þ

Introducing the one-particle distribution function fðxμ; piÞ
in the mean field approximation, the energy-momentum
tensor of this system is written as

Tμν ≔
Z

dVppμpνfðxμ; piÞ; ð2:3Þ

where dVp is the invariant volume element in the momen-
tum space. The on-shell condition p2 þ 1 ¼ 0 leads to

dVp ¼ 2
ffiffiffiffiffiffi
−g

p
δðp2 þ 1ÞθðεÞdDp

¼
ffiffiffiffiffiffi−gp
ε

dpr ∧ dpθ1 ∧ � � � ∧ dpθD−2 ; ð2:4Þ

where δ and θ are the delta function and the Heaviside’s
step function, respectively, and ε ≔ −pt is the energy of the
particle. The energy density and the pressure are defined by
ρðrÞ ≔ −Tt

t and pðrÞ ≔ Tr
r, respectively. We introduce

the quasilocal mass MðrÞ as

MðrÞ ≔ SD−1

Z
r

0

du uD−2ρðuÞ; ð2:5Þ

where SD−1 is the surface area of the D-sphere:

SD−1 ≔
2π

D−1
2

ΓðD−1
2
Þ ; ð2:6Þ

with Γ being the Gamma function. For a given function of
the distribution function as F ¼ F ðfÞ, the current

Fμ½F ðfÞ� ¼
Z

dVppμF ðfÞ ð2:7Þ

carries the density F ðfÞ and we can define the charge F as

2Besides, the stability of the massless Einstein–Vlasov system
with an inner mirror has been investigated in Ref. [41] and
Ref. [40] analyzed the stability of steady states of the spherically
symmetric Einstein-Vlasov system in a flat spacetime.
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F½F ðfÞ� ≔
Z
Σ
dΣμFμ; ð2:8Þ

where Σ is a constant time hypersurface. By substituting
F ðfÞ ¼ f, we can define the number of particles within the
radius r as

NðrÞ ≔ F½F �jF ðfÞ¼f ¼
Z

r

0

du uD−2nðuÞ; ð2:9Þ

where nðrÞ ≔ eμþνNt with Nμ ≔ Fμ½F �jF ðfÞ¼f. We also
define the Boltzmann-Gibbs (BG) entropy as

SðrÞ ≔ F½F �jF ðfÞ¼−fðlog f−1Þ ¼
Z

r

0

du uD−2sðuÞ; ð2:10Þ

where sðrÞ ≔ eμþνSt with Sμ ≔ Fμ½F �jF ðfÞ¼−fðlog f−1Þ.

B. Einstein’s equations

The Einstein’s equations with a negative cosmological
constant Gμν þ Λgμν ¼ 8πTμν reduce to the following
equations:

−16πr2ρðrÞe2ν ¼ ðD − 3ÞðD − 2Þ
þ e2νð−ðD − 3ÞðD − 2Þ þ 2Λr2Þ
− 2ðD − 2Þrν0; ð2:11aÞ

16πr2pðrÞe2ν ¼ ðD − 3ÞðD − 2Þ
þ e2νð−ðD − 3ÞðD − 2Þ þ 2Λr2Þ
þ 2ðD − 2Þrμ0: ð2:11bÞ

Integrating Eq. (2.11a) with the central regularity:
νð0Þ ¼ 0, we obtain

e−2ν ¼ 1 −
kMðrÞ
rD−3 þ r2

L2
; k ≔

16π

ðD − 2ÞSD−1
; ð2:12Þ

where L is the AdS radius defined as

L ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðD − 1ÞðD − 2Þ

2Λ

r
: ð2:13Þ

By using Eq. (2.12), Eq. (2.11b) becomes

μ0 ¼
kðD−3ÞMðrÞ

2rD−3 þ r2

L2 þ 8πr2pðrÞ
D−2

r
�
1 − kMðrÞ

rD−3 þ r2

L2

� : ð2:14Þ

If the central values of the energy density ρc and the
pressure pc do not vanish, we can normalize the physical
quantities by using them together with μc ≔ μð0Þ.
Introducing the typical length scale l ≔ ðSD−1ρcÞ−1=2 and

defining x ≔ r=l, y ≔ μ − μc, ρ̃ ≔ ρ=ρc, ñ ≔ n=nc and
p̃ ≔ p=pc, we obtain the mass and the particle number as

MðrÞ ¼ lD−3
Z

x

0

du uD−2ρ̃ðuÞ;

NðrÞ ¼ lD−3 nc
ρc

Z
x

0

du uD−2ñðuÞ: ð2:15Þ

Then introducing M̃ðxÞ ≔ MðrÞ=lD−3 and ÑðxÞ ≔ NðrÞ=
lD−3, we can rewrite Eq. (2.14) as

y0 ¼
kðD−3ÞM̃ðxÞ

2xD−3 þ x2

λ2
þ 8πwcx2p̃ðxÞ

ðD−2ÞSD−1

x
�
1 − kM̃ðxÞ

xD−3 þ x2

λ2

� ; ð2:16Þ

where λ ≔ L=l and wc ≔ pc=ρc. By numerically solving
Eq. (2.16) together with

dM̃
dx

¼ xD−2ρ̃; ð2:17Þ

we can get a solution. The boundary conditions are given by
yð0Þ ¼ y0ð0Þ ¼ M̃ð0Þ ¼ 0 due to the definition of yðxÞ and
M̃ðxÞ. We note that Eq. (2.16) is valid for D ≥ 3, and the
D ¼ 3 case must be independently treated. We focus on the
D ≥ 4 cases in this paper.

C. Thermal equilibrium states

In the isolated system, the thermal equilibrium states are
given as extremal entropy states with a fixed total mass and
total particle number. Introducing the positive numbers α
and β as the Lagrange multipliers, the condition, which is
called the Gibbs relation, is written as

δSþ αδN − βδM ¼ 0; ð2:18Þ

where S ≔ limr→∞SðrÞ, N ≔ limr→∞NðrÞ and M ≔
limr→∞MðrÞ are the total entropy, the total particle number
and the total mass, respectively. As is shown in A, this
condition leads to the Maxwell-Jüttner (MJ) distribution
function f ¼ expðα − βεÞ in the D–dimensional static and
spherically symmetric spacetime. As is shown in B, for MJ
distribution, performing the integral over the momentum
space, we obtain the energy density, the pressure and the
number density as follows:

ρðrÞ ¼ 2eα
�
2π

z

�D
2
−1
�
D − 1

z
KD

2
ðzÞ þ KD

2
−1ðzÞ

�
; ð2:19aÞ

pðrÞ ¼ eα

π

�
2π

z

�D
2

KD
2
ðzÞ; ð2:19bÞ

nðrÞ ¼ 2eαþν

�
2π

z

�D
2
−1
KD

2
ðzÞ; ð2:19cÞ
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where z ¼ βeμ ≕ βε0. By using the normalized variables,
they are rewritten as

ρ̃ðxÞ ¼ ðD − 1ÞKD
2
ðzÞe−y þ zcKD

2
−1ðzÞ

ðD − 1ÞKD
2
ðzcÞ þ zcKD

2
−1ðzcÞ

e−ðD2−1Þy; ð2:20aÞ

p̃ðxÞ ¼ KD
2
ðzÞ

KD
2
ðzcÞ

e−
D
2
y; ð2:20bÞ

ñðxÞ ¼ KD
2
ðzÞ

KD
2
ðzcÞ

�
1 −

kM̃ðrÞ
xD−3 þ x2

λ2

�−1
2

e−ðD2−1Þy ð2:20cÞ

and

wc ¼
KD

2
ðzcÞ

ðD − 1ÞKD
2
ðzcÞ þ zcKD

2
−1ðzcÞ

; ð2:21Þ

where zc ≔ βeμc , which is the inverse temperature includ-
ing the effect of the lapse function at the center. Therefore
the parameter zc corresponds to the redshift factor at the
center and it characterizes the relativistic effect of the
system. We can also rewrite M̃ðxÞ and ÑðxÞ as

M̃ðxÞ ¼
Z

x

0

dzzD−2ρ̃ðzÞ; ÑðxÞ ¼ zcwc

Z
x

0

dzzD−2ñðzÞ

ð2:22Þ

because nc=ρc ¼ nc=pc · pc=ρc ¼ zcwc is satisfied.
Normalizing the physical quantities by the particle number,
we obtain

Ẽ ≔
E
N

¼
R
dxxD−2ρ̃

zcwc

R
dxxD−2ñ

− 1; ð2:23aÞ

L̃D−3 ≔
LD−3

N
¼ λD−3

zcwc

R
dxxD−2ñ

; ð2:23bÞ

r̃D−3 ≔
rD−3

N
¼ xD−3

zcwc

R
dxxD−2ñ

; ð2:23cÞ

where E ≔ M − N is the energy except for the rest mass of
the particles, which is called the gravothermal energy.

III. RESULTS

A. Parameter dependence of the profile

Figure 1 shows the energy density profile as a function
of x for each parameter set ðzc; λÞ in the D ¼ 5 case.
Figure 1(a) indicates that the system becomes more
compact as λ decreases. This is because the AdS potential
works as a wall for the particles and the AdS radius λ
characterizes the size of the system. Figure 1(b) indicates
that the system becomes more compact as zc increases. As
mentioned above, since the parameter zc characterizes the
central redshift factor, it can be regarded as an indicator of
the significance of the relativistic gravitational effect in the
system. That is, in the low temperature limit zc → ∞, the
Newtonian limit can be realized. Actually, the compactness
parameter, which is also an indicator of the relativistic
effect, gets smaller as zc increases as is shown in Fig. 2(b),
and the relativistic effect of the system gets weaker.
Figure 2 also shows that the total mass is constant for

x ≫ λ because M̃x=x2 ∼ x−2. In a D-dimensional space-
time, the compactness parameter behaves as M̃x=xD−3 ∼
xD−3 and the total mass becomes constant (see Fig. 3 for the
D ¼ 10 case). These results reflect the confined structure of
the self-gravitating system in the asymptotically AdS
spacetime due to the AdS potential. Actually, both the
total mass and the total particle number diverge for Λ ¼ 0
without an artificial wall, which is shown numerically in
Ref. [39] for theD ¼ 4 case. For x≪1, dρ̃=dx∼dy=dx¼0

and M̃ðxÞ ∼ xD−1 for x ≪ 1, so that the compactness
parameter behaves as M̃ðxÞ=x2 ∼ x2 independently of the
number of dimensions.

B. Turning point methods and parameter sets

Since the Einstein’s equations (2.16) and (2.17) are
uniquely determined by the parameters ðzc; λÞ, they give a
sequence of the solutions as a two parameter family of
ðzc; λÞ. In order to investigate the thermodynamical stability
of each solution, we regard ðẼ; L̃Þ as a parameter set

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

1.5

2

2.5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

(b)

FIG. 1. The parameter dependence of the energy density for D ¼ 5. (a) λ dependence for zc ¼ 1 and (b) zc dependence for λ ¼ 1.
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specifying an equilibrium solution. Defining γ ≔ log L̃
and considering solutions with a fixed value of γ, these
solutions reduce to a one-parameter family. Introducing the
sharpness parameter σ ≔ − log ρ̃ðλÞ as the remaining one
parameter, the physical quantities listed in Eq. (2.23) can be
expressed by Ẽ ¼ ẼðσÞ, L̃ ¼ L̃ðσÞ and r̃ ¼ r̃ðσÞ. By using
these values, we can define

ðĒ; β̄Þ ¼
�
λD−3ẼðxÞ
ÑðxÞ2 ;

βÑðxÞ
λD−3

�����
x→∞

ð3:1Þ

for each value of γ, and of course, Ē and β̄ are parametrized
by σ, i.e., ðĒ; β̄Þ ¼ ðĒðσÞ; β̄ðσÞÞ. For a fixed value of γ,
the series of equilibria draws a one-parameter curve in
the ðĒ; β̄Þ space.
The series of equilibria (3.1) specifies the thermody-

namical stability of the self-gravitating system, and the
stability can be checked through the turning point method
[3–5]. According to the turning point method, the stability
of the system with a fixed total particle number can change
at points where the curve is vertical in the ðĒ; β̄Þ space.
These points are called turning points. The turning point
method also says that the series of equilibria gets more
unstable if it passes the turning point in the counterclock-
wise direction.

C. Double spiral structure and the catastrophic
instabilities

Figure 4 shows the inverse temperature β̄ as a function
of the gravothermal energy Ē of the series of equilibria with
γ ¼ 2.7 for the 4-dimensional case, and the sharpness
parameter σðĒÞ is also plotted. The curve has a double
spiral structure and we call the spiral in the high energy
region “hot spiral” and one in the low energy region “cold
spiral,” respectively. It would be noted that a similar
structure also appears in the case of self-gravitating
particles inside an artificial wall with a vanishing cosmo-
logical constant [12,13]. The structure implies that the
system has two catastrophic instabilities due to the negative
specific heat of gravity. Since each spiral is spiraling in the
counterclockwise direction toward the center, the series of
equilibria gets more unstable every time it passes a turning
point. As is shown in Fig. 4(b), the sharpness parameter σ
increases toward the center of each spiral and the particle
distribution gets sharper. The two spirals are characterized
by the total mass compactness M=L. Since we can rewrite
M=L ¼ N=Lð1þ NĒ=LÞ ¼ e−γð1þ e−γĒÞ, given a fixed
value of γ, we can say the system is more compact for a
larger value of Ē. Based on this fact, we can understand the
physical meaning of the instability on each spiral. On the
cold spiral, the compactness of the system is relatively
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FIG. 2. The parameter dependence of the compactness parameter forD ¼ 5. It behaves as M̃ðxÞ=x2 ∼ x2 for x ≪ 1 and M̃ðxÞ=x2 ∼ x−2

for x ≫ λ. (a) λ dependence for zc ¼ 1 and (b) zc dependence for λ ¼ 1.
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FIG. 3. The parameter dependence of the compactness parameter forD ¼ 10. It behaves as M̃ðxÞ=x7 ∼ x2 for x ≪ 1 and M̃ðxÞ=x7 ∼ x−7

for x ≫ λ. (a) λ dependence for zc ¼ 1 and (b) zc dependence for λ ¼ 1.
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small. That implies particles can take energy away from
the central region and the system causes a gravothermal
catastrophe corresponding to the Newtonian one. By
contrast, the compactness of the system is relatively large
on the hot spiral. This behavior is peculiar to the relativistic
system and it indicates the hot spiral reflects the strong
nonlinear gravity. If the gravity is sufficiently strong, the
system cannot support the configuration of the particles and
experiences a catastrophic gravitational collapse.
The double spiral structure ensures the existence of

another instability. As is clear from the figures, the existence
of the two spirals delimits the possible parameter region of Ē
in a finite region. The fact tells us that no equilibrium
solutions exist outside the region, which is called the “strong
instability” in contrast with the weak instability associated
with a turning point. Therefore, both cold and hot spirals
ensure two kinds of catastrophic instability.

D. Configuration of curves and parameter
dependence for 4 ≤ D ≤ 10

In the case of 4 ≤ D ≤ 10, the curve for thermal equi-
librium states also has a double spiral structure. Figure 5
shows the inverse temperature β̄ðĒÞ and the sharpness
parameter σðĒÞ for γ ¼ 2.65 in the 5-dimensional case.
The embedded figures in Fig. 5(a) are enlarged figures of the
cold and hot spirals. We can see that both of spirals are
counterclockwise toward the center. Therefore, as in the
4-dimensional case, the system gets more unstable as the
state approaches the center of each spiral. The parameter
γ ¼ log L̃D−3 denotes the rest mass compactness of the
system. In the dilute limit, i.e., γ → ∞, the hot spiral moves
to the right infinitely, and the series of equilibria has only the
cold spiral. In the dilute limit, the gravitational interaction
becomes relatively less effective, and the Newtonian
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FIG. 4. Figure 4(a) shows the series of equilibria and Fig. 4(b) shows the sharpness parameter σðĒÞwith γ ¼ 2.7 in theD ¼ 4 case. We
can see that the curve has a double spiral structure and σ increases from the middle to the both sides. The parameter Ē oscillates along the
curve toward the both ends, and the curve forms spirals. (a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness parameter: σ ¼ σðĒÞ.
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FIG. 5. The inverse temperature and the sharpness parameter for a series of equilibrium states in the 5-dimensional case. We set
γ ¼ 2.65 and the curve has a double spiral structure as in the 4-dimensional case. (a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness
parameter: σ ¼ σðĒÞ.
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approximation would be valid. Then only the Newtonian
catastrophic instability is realized on the cold spiral.
Let us consider how the configuration of the curve

changes as γ decreases. Two spirals approach each other as
γ decreases (schematic figures are shown in Fig. 6), and the
cold spiral intersects with the main part of the curve
between the two spirals. In this process, a set of stationary
points for Ē and β̄ on each spiral approaches a common
single point, and they merge at the “merge point” γm ≃
2.2525 (see Figure 7). Figure 8 shows the configuration of
the curves in the ðĒ; β̄Þ and ðĒ; σÞ planes for γ ¼ 2.2525.
For a value of γ smaller than γm, the curve of equilibria
reconnects and separate into two sequences as shown in
Fig. 9. We can see that one of sequences forms a loop
and the other does not. As γ gets even smaller, the sequence
without a loop vanishes and the series of equilibria
consists of only one loop (see Figs. 10 and 11). We call

(a) (b)

FIG. 6. Schematic figures for the transition of configuration of the double spiral structure. The series of equilibria has no intersection in
the ðĒ; β̄Þ plane for relatively large γ. As γ decreases, the cold spiral moves to the right in the ðĒ; β̄Þ plane, and it intersects with the main
part of the curve between the cold and hot spirals. (a) Large γ and (b) Small γ.
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FIG. 8. The curves of equilibrium states in the ðĒ; β̄Þ and ðĒ; σÞ planes for γ ≃ 2.2525. The cold and hot spirals merge at this point.
(a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness parameter: σ ¼ σðĒÞ.

FIG. 7. Schematic figures for the series of equilibria at the
merge point. At the merge point, a set of stationary points for Ē
and β̄ on each spiral contract to a common single point. The
numerical result corresponding to the merge point is shown
in Fig. 8.
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(a) (b)

FIG. 10. Schematic figures around the loop point γl. The sequence without loop structure shrinks and vanishes at this point. After the
loop point, the other sequence shrinks until it reaches to the vanishing point γv. (a) Separated sequences and (b) A loop structure.
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FIG. 9. The curves of equilibrium states in the ðĒ; β̄Þ and ðĒ; σÞ planes for γ ≃ 2.25. In this parameter region, the series of equilibria
separate into two pieces and two curves exist in ðĒ; σÞ and ðσ; β̄Þ planes. (a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness
parameter: σ ¼ σðĒÞ.
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FIG. 11. The curves of equilibrium states in the ðĒ; β̄Þ and ðĒ; σÞ planes for γ ≃ 2.23. The series has only the sequence with a loop.
(a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness parameter: σ ¼ σðĒÞ.
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this point the “loop point” and the value of γ is γl ≃ 2.2343.
If we continue to make γ smaller, the sequence with a loop
shrinks and vanishes at the “vanishing point” γv ≃ 2.1369.
At the vanishing point, the series of equilibria becomes
just a point. Therefore the thermal equilibrium state exists
only at a unique gravothermal energy Ē� ≃ 18.17. For
γ > γv, the system has no thermal equilibrium states, and
strongly unstable.
In the 4 ≤ D ≤ 10 case, the behaviors of the series of

equilibria are qualitatively similar to the 5-dimensional
case. The series of equilibria has a double spiral structure
and three critical points of γ. Therefore, the system has
weak and strong instabilities associated with the turning
points on both cold and hot spirals. In any case, the
catastrophic instabilities are caused by the negative specific
heat of gravity.

E. Configuration of curves and parameter
dependence in D ≥ 11 case

For D ≥ 11, the behavior of the series of equilibria is
dramatically different from the case for 4 ≤ D ≤ 10.
Figure 12 shows the inverse temperature β̄ðĒÞ and
the sharpness parameter σðĒÞ for γ ¼ 2.6 in the
11-dimensional case. We cannot see any spiral structures
and stationary points disappear. This result implies the
system does not have any weak instabilities due to the
negative specific heat. In this case, the system has neither
merge point nor loop point while it has a vanishing point
around γv ≃ 2.2271.
Similar critical behaviors have been reported for the

systems confined by an artificial adiabatic wall [16,17,42].
In our case, particles are confined by not an adiabatic wall
but an AdS potential. We found that the critical dimension
is exactly the same as the system confined by an adiabatic
wall. The system still has the strong instabilities associated
with the endpoints of the curve. This behavior is also
qualitatively similar to the system with an adiabatic wall.

IV. CONCLUSION

We have analyzed the structure and stability of the
thermal equilibrium states of a self-gravitating system
in a D–dimensional asymptotically AdS spacetime. The
thermal equilibrium can be realized because of the
confinement of the AdS potential and we use the turning
point method to investigate the stability. We con-
cluded that the properties of the stability are qualitatively
similar to the relativistic system confined by an artificial
wall [12,13,16,17].
In a D–dimensional spacetime, the equilibria can be

parametrized by two parameters contained in the solution
for the Einstein’s field equations. Thus the series of
equilibria draws a two-dimensional surface in the space
of the rest mass compactness parameter γ, the gravothermal
energy Ē and the inverse temperature β̄. Given a fixed value
of γ, the series reduces to a one-dimensional curve in the
ðĒ; β̄Þ plane. As a result, the curve has a double spiral
structure for 4 ≤ D ≤ 10 while it does not have any spirals
for D ≥ 11.
For 4 ≤ D ≤ 10, the system has two weak catastrophic

instabilities corresponding to two spirals. The cold spiral,
which is located in the lower energy region, implies the
gravothermal catastrophe associated with the fragmentation
of the system. The other spiral called a hot spiral, implies
the catastrophic gravitational collapse. These properties
indicate the existence of the strong instability since the
allowed region of gravothermal energy is bounded by the
turning points. For 4 ≤ D ≤ 10, the configuration of
the curve in the ðĒ; β̄Þ plane is dependent on the value
of γ, and there are three critical points γm, γl and γv. For
γ > γm, the series of equilibria has a double spiral structure.
Two spirals approach each other as γ gets smaller. When the
value of γ gets smaller than γm, the curve separates into two
sequences of equilibria. One of sequences vanishes at
γ ¼ γl. Then, the series consists of only one loop for
γl < γ < γv and there is no equilibrium states for γ > γv.
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FIG. 12. The inverse temperature and the sharpness parameter for a series of equilibrium states in the 11-dimensional case for γ ¼ 2.6.
The series does not have any spiral structures. (a) Inverse temperature: β̄ ¼ β̄ðĒÞ and (b) Sharpness parameter: σ ¼ σðĒÞ.
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For D ≥ 11, the system has no weak instabilities but
strong instabilities corresponding to the endpoints of the
curve in the ðĒ; β̄Þ plane. Since the curve does not have any
spiral structures, the system has neither the merge point
nor the loop point. The series of equilibria shrinks as γ
decreases and vanishes similarly to the cases for
4 ≤ D ≤ 10, and therefore it has a vanishing point γv as
a critical point.
At the end, we conclude that the many-particle system

has parameter regions with stable configuration. These
configurations might well describe final fates of the
turbulent instability in asymptotically AdS spacetimes.
It should be noted that, however, the solutions of the
many-particle system are not necessarily corresponding to
stability islands discussed in Refs. [36,37] because the
system should be regarded as a macroscopic model after
the non linear turbulent phenomena. Apparently, we
need further investigations to clarify implication of our
results in the turbulent instability in asymptotically AdS
spacetimes.
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APPENDIX A: DERIVATION OF THE
THERMAL EQUILIBRIUM

In this appendix, from the extremal entropy condition
(2.18), we first derive the thermal equilibrium condition
for the distribution function f with the following general
expression of the entropy:

S½SðfÞ�≔
Z
Σ
dΣμSμ; Sμ½SðfÞ� ¼

Z
dVppμSðfÞ: ðA1Þ

Then we show that the condition for the BG entropy leads
to the MJ distribution.

1. Coordinate systems in the momentum space

First, let us introduce the local inertial frame whose
metric components are related to gμν given in Eq. (2.1) by

ημ̂ ν̂ ¼ Lμ
μ̂Lν

ν̂gμν; ðA2Þ

where ημ̂ ν̂ ¼ diagð−1; 1;…; 1Þ and

ðLμ
μ̂Þ ¼ diag

�
e−μ; e−ν;

1

r
;…;

1

r sin θ1 sin θ2 � � � sin θD−3

�
:

ðA3Þ

In this frame, the invariant volume element in the momen-
tum space is written as

dVp ¼ 2δðp2 þ 1Þθðε̂ÞdDp

¼ 1

ε̂
dpr̂ ∧ dpθ̂1 ∧ � � � ∧ dpθ̂D−2 ; ðA4Þ

where ε̂ ≔ −pt̂. The variation of the distribution function f
is taken as a function of pμ̂, that is, pμ̂ is fixed in the
variation.
For convenience, we also introduce the coordinates

ðε; J;ψ1;ψ2;…;ψD−3Þ in the momentum space as follows:

pθ̂1 ¼
ffiffiffi
J

p

r
cosψ1;

pθ̂2 ¼
ffiffiffi
J

p

r
sinψ1 cosψ2;

..

.

pθ̂D−3 ¼
ffiffiffi
J

p

r
sinψ1 sinψ2 � � � sinψD−4 cosψD−3;

pθ̂D−2 ¼
ffiffiffi
J

p

r
sinψ1 sinψ2 � � � sinψD−4 sinψD−3; ðA5Þ

where J is the square of the total angular momentum. The
volume element is written as

dVp ¼ J
D−4
2

2rD−2ε̂
dpr̂ ∧ dJ ∧ dΩD−3 ðA6Þ

and the relevant domain for pr̂ and J is given by
fðpr̂; JÞj −∞ < pr̂ < ∞; 0 < J < ∞g. Regarding ε̂ as
an independent variable, the invariant volume element is
given by

dVp ¼ J
D−4
2

rD−2

�
ε̂2 −

�
1þ J

r2

�
−1
2

�
dε̂ ∧ dJ ∧ dΩD−3; ðA7Þ

and the relevant region is given by fðε̂; JÞj1 < ε̂ < ∞;
0 < J < r2ðε̂2 − 1Þg due to the on-shell condition, where
we multiplied the factor two for the degeneracy of the
sign of pr̂.

2. Variation of physical quantities

Since the system is isolated, we fix the total mass and the
total particle number. For this purpose, we calculate the
variation of such quantities and the entropy in f → f þ δf.
Hereafter, the subscript E denotes the equilibrium state,
such as μE, νE, and ρE, and we consider the perturbation
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around it, that is, μ ¼ μE þ δμ etc. with respect to the
perturbation δf.
The perturbation of ν, say δν, is determined by

Eq. (2.11a) through the energy density as follows:

d
dr

ðrD−3e−2νEδνÞ ¼ 8π

D − 2
rD−2δρ; ðA8Þ

where the perturbation of the energy density is given by

δρ ≔ ρ½f þ δf� − ρ½f� ¼
Z

dVpε̂
2δf: ðA9Þ

Therefore, the perturbation δν is not independent of δf
through the Einstein’s equations. However, it is convenient
to formally treat them as independent perturbations in the
following calculations.
The perturbation of F½f� defined by Eq. (2.8) is

δF ≔ F½f þ δf� − F½f�

¼
Z

dΓ ε̂δðeνF Þ

¼
Z

dΓ eνε̂

��
Fδνþ ∂F

∂f
δf

�
þOðδf2Þ

	
; ðA10Þ

where dΓ ≔ dD−1xdVp ¼ dr ∧ ðrdθ1Þ ∧ � � � ∧ ðr sin θ1×
sin θ2 � � � sin θD−3dθD−2Þ ∧ dVp is the measure in the
phase space.

3. Derivation

Up to the first order, the equilibrium condition (2.18)
becomes

Z
dr rD−2

Z
dVp



eνε̂

�
Sδνþ ∂S

∂f
δf

�

þ αeνε̂ðfδνþ δfÞ − βε̂2δf

�
¼ 0: ðA11Þ

Introducing

s� ≔
∂S
∂f

þ α − βε ¼ ∂S
∂f

þ α − β̂ ε̂ ðA12Þ

with β̂ ≔ eμβ, thermal equilibrium condition (A11) is
rewritten as

Z
dr rD−2

Z
dVpðSδνþ s�δf þ αfδνÞeνε̂

þ
Z

dr rD−2βðeμþν − 1Þ
Z

dVpε̂
2δf ¼ 0: ðA13Þ

The second term becomes

Z
dr rD−2βðeμþν − 1Þ

Z
dVpε̂

2δf

¼
Z

dr βðeμþν − 1Þ ðD − 2Þ
8π

d
dr

ðrD−3e−2νδνÞ

¼ −
ðD − 2Þβ

8π

Z
drðμ0 þ ν0Þeμ−νrD−3δν

¼ −β
Z

dr rD−2eμþνðρþ pÞδν; ðA14Þ

where we used the conservation of the energy-momentum:

μ0 þ ν0 ¼ 8π

D − 2
re2νðρþ pÞ: ðA15Þ

Then the condition (A13) becomes

Z
dr rD−2

Z
dVpðHδνþ s�δfÞeνε̂

− β

Z
dr rD−2eμþνðρþ pÞδν ¼ 0; ðA16Þ

where H ¼ S þ αf.
We use the identity for G ¼ Gε; J:

Z
dVp

∂G
∂ε

����
J
ðptÞiðprÞj

¼ −i
Z

dVpGðptÞi−1ðprÞj

− ðj − 1Þe−2μþ2ν

Z
dVpGðptÞiþ1ðprÞj−2: ðA17Þ

The proof of this identity is given in Appendix A 4.
Substituting ði; jÞ ¼ ð1; 2Þ into Eq. (A17), we obtain

ρþ p ¼ −
Z

dVpptptf þ
Z

dVpprprf

¼ e−2ν

Z

dVpðprÞ2f þ e−2μþ2ν

Z
dVpðptÞ2f

�

¼ −e−2ν
Z

dVpðptÞðprÞ2
∂f
∂ε

����
J

¼ eμ
Z

dVpε̂prpr ∂f
∂ε

����
J
: ðA18Þ

Therefore,

βðρþ pÞ ¼ βeμ
Z

dVpε̂prpr ∂f
∂ε

����
J

¼
Z

dVpprprβε
∂f
∂ε

����
J
: ðA19Þ
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Since

∂S
∂ε

����
m;J

¼ ∂S
∂f

∂f
∂ε

����
J
¼ ðs� − αþ βεÞ∂f

∂ε

����
J
; ðA20Þ

βðρþ pÞ ¼
Z

dVpprpr

�
∂S
∂ε

����
J
þ α

∂f
∂ε

����
m;J

− s�
∂f
∂ε

����
J

�

¼ e−2ν
Z

dVpðprÞ2
∂H
∂ε

����
J
−
Z

dVpprprs�
∂f
∂ε

����
J
:

ðA21Þ

Substituting ði; jÞ ¼ ð0; 2Þ into Eq. (A17), we obtain

βðρþ pÞ ¼ e−μ
Z

dVpε̂H −
Z

dVpprprs�
∂f
∂ε

����
J
: ðA22Þ

Therefore, Eq. (A16) becomes

0¼
Z

drrD−2
�Z

dVpðHδνþ s�δfÞeνε̂− βeμþνðρþpÞδν
	

¼
Z

drrD−2
Z

dVp

�
ε̂δfþprpreμ

∂f
∂ε

����
J
δν

�
eνs�: ðA23Þ

Since δf and δν are dependent variations, above condition
for an arbitrary variation leads to the condition s� ¼ 0, i.e.,

∂S
∂f

þ α − βε ¼ 0: ðA24Þ

For the BG entropy, the condition becomes − log fþ
α − βε ¼ 0, which leads to the MJ distribution function.

4. Proof of Eq. (A17)

Using the coordinates with Eq. (A7), the left-hand side of
Eq. (A17) becomes

Z
dVp

∂G
∂ε

����
J
ðptÞiðprÞj ¼

Z
dε ∧ dJ ∧ dΩD−3

J
D−4
2

r2ðD−2Þ

�
ε2 − ε20

�
1þ J

r2

��
−1
2∂G
∂ε

����
J
ðptÞiðprÞj: ðA25Þ

Since

∂

∂ε

����
J

��
ε2 − ε20

�
1þ J

r2

��
−1
2ðptÞiðprÞj

�

¼ ejð−μþνÞ ∂
∂ε

����
J

�
ð−εÞi

�
ε2 − ε20

�
1þ J

r2

��j−1
2

�

¼ ejð−μþνÞ
�
−ið−εÞi−1

�
ε2 − ε20

�
1þ J

r2

��j−1
2

− ðj − 1Þð−εÞiþ1

�
ε2 − ε20

�
1þ J

r2

��j−3
2

�

¼
�
ε2 − ε20

�
1þ J

r2

��
−1
2½−iðptÞi−1ðprÞj − ðj − 1Þe−2μþ2νðptÞiþ1ðprÞj−2�; ðA26Þ

integrating by parts, we get Eq. (A17). ▪

APPENDIX B: THE INTEGRATION OVER THE
MOMENTUM SPACE

We derive the explicit expressions for the physical
quantities by performing the integration over the momen-
tum space. In order to simplify the integrations, we trans-
form the integral variables as J → s ≔ J=Jmax, where
Jmax ≔ r2ðε̂2 − 1Þ is the upper bound for the integration
of J. In the coordinate system ðε̂; s;ψ1;ψ2;…;ψD−3Þ, the
invariant volume element is rewritten as

dVp ¼ s
D−4
2ffiffiffiffiffiffiffiffiffiffi

1 − s
p ðε̂2 − 1ÞD−3

2 dε̂ ∧ ds ∧ dΩD−3; ðB1Þ

where 1 ≤ ε̂ < ∞ and 0 ≤ s ≤ 1. If the distribution function
takes the form f ¼ fðε̂; JÞ, the energy density is given by

ρðrÞ ¼
Z

dVpε̂
2fðε̂; JÞ

¼ SD−2

Z
∞

1

dε̂
Z

1

0

ds
s
D−4
2 ðε̂2 − 1ÞD−3

2ffiffiffiffiffiffiffiffiffiffi
1 − s

p ε̂2f; ðB2Þ

and the pressure becomes

pðrÞ ¼
Z

dVpðpr̂Þ2fðε̂; JÞ

¼ SD−2

Z
∞

1

dε̂
Z

1

0

ds s
D−4
2

ffiffiffiffiffiffiffiffiffiffi
1 − s

p
ðε̂2 − 1ÞD−1

2 f: ðB3Þ
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For the MJ distribution function fðε̂Þ ¼ expðα − zε̂Þ, by
using

Z
1

0

ds
s
D−4
2ffiffiffiffiffiffiffiffiffiffi

1 − s
p ¼

ffiffiffi
π

p
ΓðD−2

2
Þ

ΓðD−1
2
Þ ;

Z
1

0

ds s
D−4
2

ffiffiffiffiffiffiffiffiffiffi
1 − s

p
¼

ffiffiffi
π

p
ΓðD−2

2
Þ

2ΓðDþ1
2
Þ ; ðB4Þ

we obtain

ρðrÞ ¼ SD−1eα
Z

∞

1

dε̂ðε̂2 − 1ÞD−3
2 ε̂2e−zε̂; ðB5aÞ

pðrÞ ¼ SD−1

D − 1
eα

Z
∞

1

dε̂ðε̂2 − 1ÞD−1
2 e−zε̂: ðB5bÞ

Introducing the modified Bessel function of the second
kind Knz:

Knz ¼
ffiffiffi
π

p ðz
2
Þn

Γðnþ 1
2
Þ
Z

∞

1

dtðt2 − 1Þn−1
2e−zt; ðB6Þ

the energy density and the pressure become

ρðrÞ ¼ 2eα
�
2π

z

�D−2
2

�
D − 1

z
KD

2
ðzÞ þ KD−2

2
ðzÞ

�
; ðB7aÞ

pðrÞ ¼ eα

π

�
2π

z

�D
2

KD
2
ðzÞ: ðB7bÞ

For the particle number, we can rewrite its density as

nðrÞ ≔ e−μþν

Z
dVpεeα−βε

¼ eαþν 2π
D−1
2

ΓðD−1
2
Þ
Z

∞

1

dε̂ðε̂2 − 1ÞD−3
2 ε̂e−zε̂

¼ 2eαþν

�
2π

z

�D−2
2

KD
2
ðzÞ; ðB8Þ

where we used

Z
∞

1

dε̂ðε̂2 − 1Þn−1
2ε̂e−zε̂

¼ 1

2nþ 1

Z
∞

1

dε̂
d
dε̂

ððε̂2 − 1Þnþ1
2Þe−zε̂

¼ 1

2nþ 1
½ðε̂2 − 1Þnþ1

2e−zε̂�∞1

þ z
2nþ 1

Z
∞

1

dε̂ðε̂2 − 1Þnþ1
2e−zε̂

¼ Γðnþ 1
2
Þffiffiffi

π
p ðz

2
Þn Knþ1ðzÞ: ðB9Þ
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