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We study the Joule-Thomson expansion in Einstein-Maxwell theory supplemented with the so-called
quasitopological electromagnetism, this in the extended phase space thermodynamic approach. We
compute the Joule-Thomson coefficient and depict all relevant inversion and isenthalpic curves in the
temperature-pressure plane, determining in this manner the corresponding cooling and heating regions. In
contrast with previous related works we show the existence of three branches for the inversion curves which
depends on suitable selections of the parameter space of the theory, thus departing from the usual van der
Waals behavior which exhibits up to two branches.
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I. INTRODUCTION

Black hole thermodynamics have been extensively
studied since the pioneering works of Bekenstein and
Hawking [1–5] and it has been shown to possess funda-
mental connections with classical thermodynamics, general
relativity and quantum mechanics, providing a deep insight
into the understanding of a quantum theory of gravity. In
recent decades, several works have been developed along
these lines establishing a complete theory of black hole
thermodynamics, opening the road for the study of black
holes as thermodynamic systems exhibiting a wide range of
phenomena from which phase transitions and black hole
radiation are specially highlighted [6–8]. The study of
black hole thermodynamics in the presence of a negative
cosmological constant is particularly appealing [9] since its
rich phase structure and its dual description based on the
AdS=CFT correspondence [10]. Hawking and Page [11]
discovered the existence of thermodynamic phase transi-
tions between Schwarzschild anti–de Sitter (AdS) black
holes with large radii and thermal AdS space, which was
demonstrated to be dual to a confinement/deconfinement
phase transition in the boundary conformal field theory
[9,12]. In particular, charged static black holes with the
AdS asymptotic obey an equation of state qualitatively
similar to the van der Waals fluids, and exhibit first-order
phase transitions between small and large black holes
[13–15]. Several works have reported similar behavior
for different charged AdS black hole configurations [16–21].

When considering the possibility of a varying pressure
[22], an identification that follows from a cosmological
perspective since a negative cosmological constant induces
a vacuum pressure, the mass M of the black hole is inter-
preted as the enthalpy H rather than the internal energy U
[19,23,24]. Hence, the natural first law for black holes with
cosmological constant includes besides the electromagnetic
charges and rotation, a contribution arising from the non-
zero energy of the cosmological constant contained in the
volume of the black hole. The interpretation of the mass of
black holes as enthalpy and the inclusion of the cosmo-
logical constant as a pressure have remarkable conse-
quences for black hole thermodynamics, aligning them
much closer with familiar phase spaces of chemical
reactions. Indeed, in the extended phase space in which
we consider the cosmological constant Λ as pressure P,

P ¼ −
Λ
8π

; ð1Þ

where its thermodynamic conjugate variable defines a
thermodynamical volume

V ¼
�
∂H
∂P

�
: ð2Þ

In [22] Kubizňák andMann showed that phase transitions
of charged AdS black holes are similar to those of van der
Waals fluids and that these black hole shares P − V diagram
and critical behavior with the van derWaals system. In recent
years, the P − V behavior of different charged AdS black
holes has been extensively investigated [25–34].
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An interesting process in classical thermodynamics is the
so-called Joule-Thomson (JT) expansion [35]. The Joule-
Thomson effect is an isenthalpic process in which temper-
ature change is produced when a gas is allowed to expand
from a high pressure region to a low pressure region, this
through a valve or porous plugs. As a result it is possible to
obtain heating or cooling effects due to this process, where
both are controlled by an inversion point characterized by
the so-called Joule-Thomson coefficient. This inversion
point is defined as the point where the inversion curves
intersect the isenthalpic curves in the T–P plane. The JT
expansion for black holes was first studied by Ökcü and
Aydıner in [36] for the case of Reissner-Nordström AdS
black holes finding similarities with the van der Waals
fluid. They also presented the inversion curves that separate
heating and cooling regions. The interest in studying the JT
expansion for black holes is due to the fact that Hawking
radiation can be interpreted as an adiabatic expansion even
though there is no porous plug [37]. These studies were
then generalized to Kerr-AdS black holes [38], AdS black
holes with a global monopole [39], to charged AdS black
holes in fðRÞ gravity [40], Lovelock gravity [41], Gauss-
Bonnet gravity [42], Einstein-Maxwell-axion and massive
gravity [43]. All the works show that the inversion curves
in the T–P plane have positive slope only while for the van
der Waals system have both positive and negative slopes.
Some works also investigated this phenomenon in non-
linear electrodynamics systems [44–48] reproducing sim-
ilar behavior. Due to these results, it would be expected that
all AdS spacetimes present a Joule-Thomson related
phenomena. Nonetheless in AdS spacetimes [49,50] there
is no van der Waals like behavior, which can lead to the
absence of Joule-Thomson expansion.
The aim of this paper is to present the study of the Joule-

Thomson effect in quasitopological electromagnetism [51],
a theory that corresponds to a higher-order extension of
Maxwell electromagnetism constructed with the bilinear
invariant F2 ¼ FμνFμν. In [51] the authors presented the
corresponding charged AdS black hole. Although the new
termshave a nonvanishingcontribution to the field equations,
they do not affect the purely electric or magnetic Reissner-
Nordström solutions. However, they affect the dyonic black
hole solution, endowing the spacetime with four black hole
horizons for certain parameter regions. It was also found that
there exist three photon spheres, with one of them being
stable. For black hole solutions, the matter sector satisfies
the dominant energy condition, and also the null and weak
energy conditions, but may violate the strong energy con-
dition. Another remarkable characteristic is that the energy-
momentum tensor of the quasitopological contribution is of
the form of isotropic perfect fluid, with isotropic pressure
being accurately the opposite of the energy density. In this
manner the quasitopological term provides a candidate for
dark energy. In Ref. [52] the authors presented the thermo-
dynamics phase transitions of the solutions.

This work is organized as follows. Section II is devoted
to presenting the black hole solutions of four-dimensional
Einstein gravity minimally coupled to Maxwell and qua-
sitopological electromagnetism and to analyzing their
thermodynamical properties. In Sec. III the Joule-
Thomson expansion is investigated for black holes in
quasitopological electromagnetism. Finally, we conclude
our results and discuss possible future directions in Sec. IV.

II. BLACK HOLE THERMODYNAMICS

The four-dimensional action of the minimally coupled
Einstein-Maxwell-quasitopological electromagnetism is

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
R − 2Λ − α1F2 − α2

�
ðF2Þ2 − 2Fð4Þ

��
;

ð3Þ

where

F2 ¼ FμνFμν;

Fð4Þ ¼ Fμ
νFν

ρFρ
λFλ

μ; ð4Þ
with Fμν the strength of the electromagnetic field.
The Einstein field equations and Maxwell equations are
respectively given by

Rμν −
1

2
gμνRþ Λgμν ¼ Tμν;

∇μF̃μν ¼ 0; ð5Þ
where the energy-momentum tensor of the system is

Tμν ¼ α1T
ð1Þ
μν þ α2T

ð2Þ
μν ;

Tð1Þ
μν ¼ 2FμλFν

λ −
1

2
gμνF2;

Tð2Þ
μν ¼ 4F2FμλFν

λ − 8FμλFλ
ρFρ

σFσ
ν

−
1

2
gμνððF2Þ2 − 2Fð4ÞÞ; ð6Þ

and

F̃μν ¼ 4α1Fμν þ 8α2ðF2Fμν − 2FμλFρ
λFρ

νÞ: ð7Þ

The parameters α1, α2 are coupling constants where α1 is
dimensionless and α2 is of dimension ðlengthÞ2. The related
Hamiltonian is non-negative provided that α1;2 > 0 [51].
Therefore, from here on we assume that α1, α2 are positive.
The equations of motion admit a spherically symmetric
dyonic black hole solution:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ;

F ¼ −a0ðrÞdt ∧ drþ α1Qm sin θdϕ ∧ dθ; ð8Þ

JOSÉ BARRIENTOS and JOSÉ MENA PHYS. REV. D 106, 044064 (2022)

044064-2



where the metric function is given by

fðrÞ ¼ −
1

3
Λr2 þ 1 −

2M
r

þ α31Q
2
m

r2

þ Q2
e

α1r2
2F1

�
1

4
; 1;

5

4
;−

4α1α2Q2
m

r4

�
; ð9Þ

where M is the mass of the black hole, Qe, Qm the electric
and magnetic charges. The electric potential satisfies

a0ðrÞ ¼ −
Qer2

α1ðr4 þ 4α1α2Q2
mÞ

: ð10Þ

It is now possible to write the thermodynamical quantities
related to the black hole [52]. Considering rþ as the largest
root of fðrþÞ ¼ 0 and the negative cosmological constant
as positive pressure P ¼ − Λ

8π then the temperature and the
entropy are

T ¼ 1

4πrþ
þ 2Prþ −

α31Q
2
m

4πr3þ
−

Q2
erþ

4πα1ðr4þ þ 4α1α2Q2
mÞ

;

S ¼ πr2þ: ð11Þ

Black hole mass, electric and magnetic potentials are
given by

M ¼
3α1r2þ þ 8πα1Pr4þ þ 3α41Q

2
m þ 3Q2

e2F1

h
1
4
; 1; 5

4
;− 4α1α2Q2

m
r4þ

i
6α1rþ

;

Φe ¼
Qe2F1

h
1
4
; 1; 5

4
;− 4α1α2Q2

m
r4þ

i
α1rþ

;

Φm ¼ α31Qm

rþ
þ Q2

er3þ
4α1Qmðr4þ þ 4α1α2Q2

mÞ
−
Q2

e2F1

h
1
4
; 1; 5

4
;− 4α1α2Q2

m
r4þ

i
4α1Qmrþ

: ð12Þ

It is then straightforward to verify the first law of
thermodynamics:

dM ¼ TdSþΦedQe þΦmdQm þ VdP: ð13Þ

The Smarr relation breaks because of the dimensionful of
the coupling constant α2. To recover the latest relation we
have to treat α2 as a thermodynamical variable and there-
fore we obtain the first law of thermodynamics as follows:

dM ¼ TdSþΦedQe þΦmdQm þ VdPþΦα2dα2 ð14Þ

and the corresponding Smarr relation

M ¼ 2TS − 2PV þΦeQe þΦmQm þ 2α2Φα2 ; ð15Þ

where Φα2 is the conjugate quantity to α2,

Φα2 ¼
Q2

er3þ
8α1α2ðr4þ þ 4α1α2Q2

mÞ
−
Q2

e2F1

h
1
4
; 1; 5

4
;− 4α1α2Q2

m
r4þ

i
8α1α2rþ

:

ð16Þ

III. JOULE-THOMSON EXPANSION

In this section we study the Joule-Thomson expansion
for the dyonic black hole into the quasitopological electro-
magnetism exposed in the previous section. The Joule-
Thomson effect occurs when in an isenthalpic process, the
temperature changes as the gas expands from the high
pressure section to the low pressure through porous
plugs [36]. The change of temperature with respect to
pressure can be described by the Joule-Thomson coefficient
defined as [53]

μJT ¼
�
∂T
∂P

�
H
¼ 1

CP

�
T

�
∂V
∂T

�
P
− V

�
; ð17Þ

where CP ¼ Tð∂S=∂TÞP is the heat capacity at constant
pressure. The sign of μJT determines whether heating or
cooling will occur. In the JT expansion the change of
pressure is negative but the change of temperature can be
positive or negative. For μJT > 0, one has a cooling region
in the T–P plane whereas μJT < 0 determines the heating
region in the T–P plane. Replacing the thermodynamical
quantities into Eq. (17) one finds

μJT¼
4rþ½8πα1Pðr4þþ4α1α2Q2

mÞ2r4þþ8α21α2Q
2
mð2r2þ−3α31Q2

mÞðr4þþ2α1α2Q2
mÞ−3ðQ2

eþα41Q
2
mÞr8þþ2α1ðr6þ−2α2Q2

eQ2
mÞr4þ�

3ðr4þþ4α1α2Q2
mÞ½8πα1Pðr4þþ4α1α2Q2

mÞr4þ−α21Q2
mðα21r4þ−4α2r2þþ4α31α2Q

2
mÞþα1r6þ−Q2

er4þ�
:

ð18Þ
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The Joule-Thomson coefficient μJT versus the horizon rþ
is shown in Fig. 1 for different values of Qe, Qm (α1, α2)
fixing α1, α2 (Qe, Qm) at P ¼ 1. In both cases exist a
divergent point and a zero point. When the event horizon rþ
is large enough, the JT coefficient is positive and for
decreasing rþ, μJT gradually decreases to zero and goes to
negative. There is a rþ for each case in which the
coefficient μJT diverges. This point is in accordance with

Fig. 2 where one can observe that corresponds to the
points where T ¼ 0. By setting μJT ¼ 0 one can define
the inversion pressure Pi, the particular point in the gra-
dient of pressure of the black hole for which the system
changes from cooling (heating) to heating (cooling), and
then replacing into Eq. (11) for the corresponding Ti one
obtains the following parametric equation for the inversion
curves:

Ti ¼
ð2Q2

e − α1r2þ þ 2α41Q
2
mÞr8þ − 8α21α2Q

2
mðr2þ − 2α31Q

2
mÞðr4þ þ 2α1α2Q2

mÞ
4πα1ðr4þ þ 4α1α2Q2

mÞ2r3þ
;

Pi ¼
3ðQ2

e þ α41Q
2
mÞr8þ − 8α21α2Q

2
mð2r2þ − 3α31Q

2
mÞðr4þ þ 2α1α2Q2

mÞ − 2α1ðr6þ − 2α2Q2
eQ2

mÞr4þ
8πα1ðr4þ þ 4α1α2Q2

mÞ2r4þ
: ð19Þ

FIG. 1. The plot of Joule-Thomson coefficient μJT with respect to rþ at P ¼ 1. On the left, fixed values α1 ¼ 1, α2 ¼ 0.2 for different
values of the charges Qe, Qm were considered. On the right, fixed values Qe ¼ 0.4, Qm ¼ 0.3 for different values of α1, α2.

FIG. 2. The plot of temperature T with respect to rþ at P ¼ 1. On the left, fixed values α1 ¼ 1, α2 ¼ 0.2 for different values of the
charges Qe, Qm were considered. On the right, fixed values Qe ¼ 0.4, Qm ¼ 0.3 for different values of α1, α2.
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Inversion curves for different values of Qe, Qm and α1,
α2 are illustrated in Fig. 3. The inversion temperature
seems to increase monotonically with the inversion
pressure which means the inversion curves are not closed
and there is only one inversion curve in contrast to van
der Waals fluids [36]. However, for some particular
choice of the parameters, Qe ¼ 0.4, Qm ¼ 0.3, α1 ¼ 0.3,
α2 ¼ 0.3, there exist three minimum values of the inver-
sion temperature Tmin

i corresponding to the zero inversion
pressure Pi ¼ 0. This case is shown in Fig. 4 where the
solid line curve represents the red curve on Fig. 3 (right)
which corresponds to Tmin

i ¼ 0.3789897207. Figure 4
(right) also shows the other two branches, the dotted line
and dashed line correspond to Tmin

i ¼ 0.02860806006

and Tmin
i ¼ −0.07596062387 respectively. On the left we

show that the related horizons that satisfy μJT ¼ 0 are
positive and one can verify that for the three cases
the corresponding mass of the black hole is positive.
This behavior is novelty and significantly differs from the
studied black holes [36,38–48] and even from the van
der Waals case. In k-essence models it was reported to
exist two branches, but having negative mass of the
black hole, making the Joule-Thomson expansion breaks
down [43]. The cooling region and the heating region
are located above and below these curves, respectively.
Considering that the Joule-Thomson expansion is an
isenthalpic process, one can plot the isenthalpic curves
in the T–P plane. Taking into account Eqs. (11) and (12),

FIG. 3. Inversion curves Ti − Pi. On the left, fixed values α1 ¼ 1, α2 ¼ 0.2 for different values of the charges Qe, Qm. On the right,
fixed values Qe ¼ 0.4, Qm ¼ 0.3 for different values of α1, α2.

FIG. 4. Left: positive rþ versus inversion pressure for the lower branches. Right: inversion curve Ti − Pi. The values are Qe ¼ 0.4,
Qm ¼ 0.3, α1 ¼ 0.3, α2 ¼ 0.3.
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the parametric equation for isenthalpic process is
given by

T ¼ −
1

2πrþ
þ 3M
2πr2þ

−
α31Q

2
m

πr3þ
−
3Q2

eΦ
h
− 4α1α2Q2

m
r4þ

; 1; 1
4

i
16πα1r3þ

−
Q2

erþ
4πα1ðr4þ þ 4α1α2Q2

mÞ
;

P ¼ −
3

8πr2þ
þ 3M
4πr3þ

−
3α31Q

2
m

8πr4þ
−
3Q2

eΦ
h
− 4α1α2Q2

m
r4þ

; 1; 1
4

i
32πα1r4þ

;

ð20Þ

where Φ½z; s; α� is the Lerch transcendent function.
By considering the mass of the black hole equal to the

enthalpy in the extended phase space [23], the isenthalpic
curves for different values of the mass are plotted in Fig. 5.
The inversion curve intersects the maximum point of the

isenthalpic curves and divides them into two parts, cooling
and heating. For P < Pi, the slope of the isenthalpic curve
is positive and then a cooling happens in the expansion. For
P > Pi, the sign of the slope changes under the inversion
curves and heating occurs.
The characteristic case of three branches that corre-

sponds to Qe ¼ 0.4, Qm ¼ 0.3, α1 ¼ 0.3, α2 ¼ 0.3 is
shown in Fig. 6 where the red and black lines are the
inversion curves. From the blue line to the brown one the
masses of the black hole areM ¼ 0.75, 0.79, 0.80, 0.83 and
0.845, and one can check that the related horizons are all
positive. Some of the isenthalpic curves (blue, green and
yellow) cross the lower branch, but the minimal inversion
temperature is negative. The other two isenthalpic curves
(magenta and brown) possess a maximum and a minimum,
behavior that also differs with respect to the known
literature [36,38–48] and the van der Waals fluids. These
two points where μJT ¼ 0 means that as usual the cooling
process where μJT > 0 occurs above the inversion curve

FIG. 5. Isenthalpic curves for different values of M. Its set Qe ¼ 0.5, Qm ¼ 0.3, α1 ¼ 1, α2 ¼ 0.2 on the left. On the right Qe ¼ 0.4,
Qm ¼ 0.3, α1 ¼ 0.4, α2 ¼ 0.5.

FIG. 6. Isenthalpic curves for Qe ¼ 0.4,Qm ¼ 0.3, α1 ¼ 0.3, α2 ¼ 0.3 for different massesM and the corresponding inversion curve.
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while the warming process where μJT < 0 occurs in the
right side of the inversion curve.

IV. CONCLUSIONS AND FURTHER
DEVELOPMENTS

By considering the cosmological constant as a thermo-
dynamical quantity we have analyzed the Joule-Thomson
expansion; this means the expansion of gas from a higher
pressure section to a lower one by maintaining the enthalpy
(identified as the mass of the black hole) of the process
constant, this in the context of charged AdS black holes in
quasitopological electromagnetism. We have studied the
Joule-Thomson coefficient μJT to determine the cooling and
heating regions. We computed the inversion curves in the
Ti − Pi plane and the corresponding isenthalpic curves.
The inversion curve divides the T–P plane into two regions.
Above the inversion curve we obtained the cooling region
while the region below the inversion curves corresponds to
the warming one.
We have found an interesting and new behavior of the

process with respect to the inversion curves in previous
works. For certain values of the parameters, the inversion
curves possess three branches in contrast to what have been
found in [36,38–48] differing from the case of van der
Waals fluids where two branches exist. The corresponding
horizons to these three branches are all positive while one
of the branches possesses negative inversion temperature,

the latter regarded as nonphysical. Due to the existence of
three branches for some values of the parameters the
isenthalpic curves cross all inversion curves. We found a
process that moves from a cooling region into a heating
region and that then moves to the upper branch where it
again faces a cooling region and passes once again to a
heating phase (see magenta and brown curves in Fig. 6).
It would be interesting to explore the Joule-Thomson

expansion in the extended quasitopological electromagnet-
ism defined in [54] in which a new field is introduced,
represented by a p-form allowing to construct homo-
geneous charged black strings with or without a cosmo-
logical constant in arbitrary dimensions [55]. Given the
similarities between both electromagnetic theories it is
expected to find analogies in the behavior of inversion
and isenthalpic curves as the existence of three branches.
We postpone these studies for future work.
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