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In this work, we construct and study the Carter-Penrose diagram for sonic black hole and white hole
analogs as manifested in the analog spacetime embedded inside the flow of hydrodynamic inviscid matter
onto astrophysical rotating black holes. For general relativistic black hole accretion in the Kerr metric, we
show that linear perturbation of the axially symmetric matter flow having certain geometrical configu-
rations leads to the emergence of black-hole-like acoustic spacetime. Such an analog spacetime is shown to
be endowed with one white-hole-like sonic horizon flanked by two black-hole-like acoustic horizons. We
construct the compactified causal structures, i.e., the Carter Penrose diagrams for such emergent spacetime
to study the corresponding horizon effects. For the first time in literature, the Carter-Penrose formalism is
carried out for analog spacetime embedded within a natural large scale fluid flow under the influence of
strong gravity.
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I. INTRODUCTION

In this work, the Carter-Penrose diagram is used to
study the properties of the sonic black hole and white
hole horizons, respectively, for the emergent spacetime
embedded inside the axially symmetric flow of hydro-
dynamic accretion onto astrophysical black holes. Low
angular momentum axisymmetric black hole accretion in
the Kerr metric may manifest multitransonic behavior. In
order to pass through more than one sonic point, accretion
solutions must undergo a shock transition [1–24]. For such
shocked accretion, subsonic flow of hydrodynamic matter
starting from a large distance becomes supersonic after
crossing a sonic point located at a relatively large distance
from the black hole horizon. Such supersonic flow may
then encounter a discontinuous stationary shock and
becomes subsonic again. Shock induced subsonic flow
then passes through another sonic point located at the close
proximity of the horizon. A shocked multitransonic accre-
tion flow, thus, connects four different regions consisting of
two subsonic regions and two supersonic regions from

infinity to the innermost radius up to which the flow
solutions can be extended.
Transonic accretion onto a black hole can be posed as a

two-dimensional dynamical system problem as defined in
dynamical systems theory. Using the structure of dynamical
systems, it is possible to show that a stationary transonic
black hole accretion solution may be realized as a critical
solution on a phase portrait characterized by the flow Mach
number M (defined by the ratio of the dynamical flow
velocity and the characteristic sound speed) and the radial
distance r from the black hole horizon measured along the
equatorial plane of the flow [25–35]. A multitransonic flow
resembles a multicritical phase orbit passing through two
out of three critical points, where the two are saddle type
critical points and the third one is a center type critical point
located in between aforementioned saddle points.
Whether any one-to-one mapping between a critical

point in the M − r phase portrait and the corresponding
sonic point of the flow exists will actually depend on the
geometrical configuration of the accretion flow. Axially
symmetric hydrodynamic accretion in the Kerr metric may,
in principle, be studied for the following three different
geometric configurations of the flow [36–39]:

(i) Flow with constant thickness, where the flow thick-
ness will not vary with the radial distance as
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measured along the equatorial plane of the disc. For
any such flow considered in this paper, correspond-
ing flow variables will be characterized by a sub-
script CH.

(ii) Conical flow, for which the flow thickness is
proportional to the radial distance r, i.e., the ratio
of the flow thickness and the radial distance is
constant for all values of r. The flow geometry is
then characterized by the solid angleΘ subtended by
the disc at the horizon. This configuration is sup-
posed to be the most ideal one to portray a low
angular momentum inviscid disc. For any such
conical flow considered in this paper, corresponding
flow variables will be characterized by a sub-
script CF.

(iii) Flow in hydrostatic equilibrium along the vertical or
the transverse (perpendicular to the equatorial plane)
direction, for which the flow thickness is found to be
a nonlinear function of the local radial distance. The
expression for such flow thickness contains the
expression of the characteristic radial sound speed,
although the Euler equation is not formulated and
solved along the vertical direction. For such flows
considered in this paper, we will only use a model
prescribed by Novikov-Thorne which will be de-
scribed later. Thus corresponding flow variables will
be characterized by a subscript NT.

It has been observed that for general relativistic accretion
flow in the Kerr metric with constant height flow as well as
with conical flow, the critical points in the phase portrait
and the corresponding sonic points coincide, i.e., the value
of the Mach number becomes unity at the critical points.
For flow in hydrostatic equilibrium along the transverse
direction, however, the Mach number becomes less than
unity at the critical point for adiabatic equation of state of
the accreting fluid. Hence, for the stationary definition of
characteristic sound speed cs ¼

ffiffiffiffiffiffiffiffiffiffi
γp=ρ

p
, the sonic point

forms at a distance smaller compared to the location of the
critical point, where γ is the ratio of the specific heats at
constant pressure and at constant volume, respectively
(γ ¼ cp=cv), p and ρ being the pressure and the mass
density of accreting fluid.
The nonisomorphism between the critical and the sonic

points for flow in hydrostatic equilibrium along the trans-
verse direction can be approached in two different ways. In
a conventional approach, one considers the expression of
the characteristic sound speed, following the stationary
definition of the same, and numerically integrates the flow
equation inward (toward the black hole event horizon),
starting from the critical point (using the critical point
conditions) up to the radial distance where the stationary
Mach number becomes unity and designates that radial
location to be the location of the sonic point (see, e.g., [15]
for the detailed description of how one can locate the sonic
point by numerically integrating the corresponding flow

equations). Very recently, in an alternative approach, the
dynamical definition of the sound speed has been found for
general relativistic accretion onto Schwarzschild black
holes, by perturbing the flow equations using a space-
time-dependent stability analysis. The expression of such
effective sound speed differs from the stationary definition
of cs and hence such dynamical sound speed has been
dubbed as the “effective sound speed” ceff . If one considers
the dynamically motivated effective sound speed instead of
the stationary definition of sound speed, the critical and the
sonic points coincide, and this isomorphism due to redefi-
nition of sound speed is evident even from the stationary
analysis of the accretion itself (see, e.g., [24] for further
details).
Accreting black hole systems are quite versatile to study

in the sense that not only are such systems investigated
from the context of astrophysics as well as of the dynamical
systems theory, but also such systems can be considered as
a realistic example of classical analog gravity models. The
analog gravity phenomena is realized by linearly perturbing
a transonic fluid where a black-hole-like analog spacetime
structure with acoustic horizons emerges, where such
analog spacetime structure has a unique correspondence
with a particular transonic flow line of the fluid considered
[40–43]. It has been established that by linearly perturbing
the transonic accretion flow, a black-hole-like emergent
acoustic spacetime can be produced within the accreting
fluid [17,37,44–54]. An accreting black hole system is
considered a unique example of a classical analog gravity
model since both kinds of horizons, the analog (acoustic, or
sonic) as well as the gravitational one, are present in the
same system. The sonic points have usually been identified
with acoustic horizons, and for multitransonic shocked
accretion, the corresponding sonic geometry contains two
black-hole-type acoustic horizons (which actually are two
sonic points of the flow) and a white-hole-type acoustic
horizon formed at the stationary shock location.
For constant height flow as well as for conical flow, the

critical points are designated as the location of the acoustic
horizons, since the critical points and the sonic points
coincide for these flow geometries. For accretion in hydro-
static equilibrium along the transverse direction, however,
there are ambiguities in determining the location of the
acoustic horizons. If one considers the stationary definition
of sound speed, then the sonic points are the acoustic
horizons and not the critical points. On the other hand, if we
chose the dynamical effective sound speed to be the speed
of propagation of the acoustic perturbation traveling inside
the linearly perturbed accretion flow, then the critical point
itself becomes the sonic point and hence the acoustic
horizons are supposed to form at the critical point. It is,
however, to be noted that the definition of effective sound
speed is essentially local, i.e., the expression of such
dynamical sound speed is defined based on its behavior
only at the corresponding critical points and such ceff can
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only be defined globally, on every radial point, by ana-
lytical continuation imposed by the global redefinition. One
thus needs to introduce a more concrete scheme for
identifying the exact location of the acoustic horizon for
analog spacetime associated with accreting black hole
systems, as well as to understand the global structure of
such nontrivial emergent spacetime.
The most common approach to the problem of analyzing

the global structure of spacetime consisting black holes and
white holes, in the context of classical gravity, is to find a
Kruskal-like diagram for the corresponding spacetime
metric. The coordinate transformations needed to write
down the Kruskal-like metric generally involves analytical
continuation, i.e., the spacetime manifold represented by
the complete range of the original coordinates becomes a
subset of the spacetime manifold represented by the new
Kruskal-like coordinates. The uniformity and simple ori-
entation of light cones make a Kruskal-like diagram a very
suitable candidate for analyzing the global causal structure
of such spacetime. But even in the context of classical
general relativity, a spacetime consisting of black holes and
white holes can be specified by a small number of
parameters, thus making the spacetime still much simpler
than that which is created by a compact object.
Thus for this kind of simplistic spacetime one may

consider the possibility of further analytical continuation,
such that, the Kruskal-like spacetime becomes a subset of a
much more general manifold. In order to explore the
possibility one must compactify the infinities of the
Kruskal-like coordinates into a finite region. For example,
just the introduction of a spin parameter in a black hole
spacetime gives way to a rotating black hole spacetime,
which can be described by the Kerr metric. The Kruskal-
like diagram is obviously more interesting than
Schwarzchild black holes, as the rotation of a black hole
becomes responsible for degenerate horizons. But com-
pactifying the Kruskal-like diagram for the Kerr metric and
further analytical continuation gives rise to a much richer
global structure involving infinite numbers of black holes
and white holes in multiple universes connected in a
specific geometrical way. The best tool for the visualization
and interpretation for this kind of compactification is the
Penrose-Carter diagram [55–59], not only for the Kerr or
other kind of black hole spacetimes, but also for cosmo-
logical spacetimes.
Motivated by the aforementioned discussions, in the

present work we propose that construction of a Carter-
Penrose diagram will unambiguously identify the corre-
sponding sonic horizons for accreting black hole systems,
irrespective of the geometrical configuration of the flow.
Furthermore, the novelty of the approach lies in the fact that
the numerical construction scheme for a Carter-Penrose
diagram can be applied to any generic fluid configuration
which is not necessarily a fluid system accreting onto a
black hole. The same numerical method used to construct

the Carter-Penrose diagrams for accreting fluid thus can be
used to probe the causal nature of any kind of stationary
fluid solutions, which may be that associated with usual
condensed matter systems typically used to probe into the
nature of Hawking radiationlike effect from the acoustic
horizons. The condition for the flow to be stationary is
satisfied by a number of analog systems including the
condensed matter example mentioned above. Another
advantage of the method used is that once the trans-
formations necessary to construct the Carter-Penrose dia-
gram for different patches of the whole analog spacetime
corresponding to any stationary flow for any analog system
is specified, the numerical scheme automatically takes care
of the orientation of the patches stacked together, although
once the orientation of the diagram is understood from the
initial plots of the diagram, one has to manually take care of
the displacement of the patches as the inverse trigonometric
functions involved in the transformations are inherently
single valued functions, which superposes one patch on
another if displacement is not manually put. The scheme to
plot the Carter-Penrose diagrams is also capable of taking
care of any discontinuous jump between one subsonic and
another supersonic region, which occurs in any stationary
fluid flow as it continuously connects the two patches on
the two sides of the discontinuity, an interesting feature that
can be extracted about the discontinuous sonic barrier.
In this work we use one model each from two different

kinds of flows as previously mentioned. We first choose the
accretion flow with certain geometry for which the critical
points are the same as the sonic points. In this aspect the
constant height flow and the conical flows are equivalent.
We consider the conical flow since it portrays low angular
momentum flow better in comparison to the constant height
flow. We then find the critical points as well as the critical
point conditions, and construct the corresponding phase
portraits for such a flow. Then we linearly perturb the flow
to obtain the analog spacetime (thus the corresponding
analog metric) and construct the Carter-Penrose diagram
using the metric elements of the acoustic metric to identify
the acoustic black hole horizons at the critical points and
the acoustic white hole horizon at the shock location. We
perform such calculations for both adiabatic as well as for
the isothermal flow.
The other kind of accretion flow that we consider is

accretion in hydrostatic equilibrium along the transverse
direction for functional form of the local disc heights as
introduced by Novikov and Thorne [60] and mention the
fact that the local disc height by Riffert and Herold [61] will
have a similar treatment for reasons that will be clarified in
subsequent sections. We perform the critical point analysis
to find out the critical point conditions and show that the
critical points are not the same as sonic points if one
considers the stationary sound speed. We construct the
corresponding phase portrait to identify the sonic points
and the shock locations for the multitransonic shocked
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flow. We then perturb the flow equations to construct the
relativistic acoustic geometry and find out the expression
for the effective sound speed as defined at the correspond-
ing critical points. Finally we construct the corresponding
Carter-Penrose diagram and establish that the acoustic
horizons are formally located at the critical point of
accretion flow in hydrostatic equilibrium along the vertical
direction if one considers the dynamical definition of the
effective sound speed. Since a Carter-Penrose diagram can
formally identify the location of the horizons, we ensure
that the dynamical definition of effective sound speed is an
important quantity when the critical points and the sonic
points (sonic points defined in terms of the stationary sound
speed) do not coincide for accretion onto a rotating black
hole.
For the first time in literature, the Carter-Penrose dia-

gram has been constructed and used to study the analog
geometry embedded in transonic fluid for any real physical
system whose fluid properties are dependent on underlying
physics. We thus use the Carter-Penrose diagram to study
the emergent spacetime embedded inside transonic accre-
tion onto Kerr black holes.

II. GOVERNING EQUATIONS
FOR POLYTROPIC FLOW AND CHOICE

OF THE FLOW THICKNESS

We consider low angular momentum, inviscid, axially
symmetric, irrotational accretion flow around a Kerr
black hole for two different geometric configurations
of the flow. The background metric and fluid equations
are the same for both of the flow geometries we are
considering. The difference arises from the height pre-
scriptions we consider where one disc has a conical cross
section, i.e., the height linearly rises with the radial
distance and the other one is in hydrostatic equilibrium.
Below the details of the models are specified. Then
critical point analysis and causal structure analysis of
emergent acoustic metrics are performed. In this work we
will be working in the natural units of G ¼ 1, c ¼ 1,
M ¼ 1 for convenience, where G stands for the gravi-
tational constant, c is the speed of light, and M stands for
the mass of the black hole in consideration.

A. Background metric of a Kerr black hole

The background spacetime metric, as proposed by Boyer
and Lindquist [58] at its equatorial plane, can be expressed
in terms of cylindrical coordinates and using the method of
vertical averaging as described in [62]; it can be written as

ds2 ¼ −
r2Δ
A

dt2 þ r2

Δ
dr2 þ A

r2
ðdϕ − ωdtÞ2 þ dz2; ð1Þ

where

Δ¼ r2−2rþa2; A¼ r2þr2a2þ2ra2; ω¼2ar
A

: ð2Þ

Here a ¼ J=M is the Kerr parameter, where J and M
represent the total angular momentum and the total mass of
the rotating black hole, respectively.
In order to analyze the dynamics of the accretion disc

outside the black hole, we must specify the horizon of the
background metric corresponding to the Kerr black hole,
rþ, given by

rþ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
: ð3Þ

B. The Euler equation, continuity equation,
and the equation of state

The energy-momentum tensor for a perfect fluid is
given by

Tμν ¼ ðpþ ϵÞvμvν þ pgμν; ð4Þ

where ρ is the rest-mass energy density of the fluid, so that
ϵ ¼ ρþ ϵthermal, and p is the pressure of the fluid. vμ is the
four-velocity with the normalization condition vμvμ ¼ −1.
In the cylindrical Boyer-Lindquist frame, which is our

choice for the coordinate system, the four velocity compo-
nents can be expressed in terms of the advective velocity u,
which is the three-component velocity in the corotating
frame [63]. Now, the temporal component of four-velocity
vt in terms of u is given by

vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
Bð1 − u2Þ

s
ð5Þ

where B ¼ gϕϕ þ 2λgtϕ − λ2gtt and the specific angular
momentum λ is given by λ ¼ −vϕ=vt. The radial compo-
nent of the four-velocity vr in terms of u is given by

vr ¼ u
ffiffiffiffi
Δ

p

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p : ð6Þ

The fluid equations cannot be analytically integrated if a
barotropic fluid equation is considered. We first demon-
strate the entire work for polytropic accretion and then
summarize the entire work for isothermal accretion where
complexities regarding nonisomorphism of critical and
sonic points do not arise. The equation of state for adiabatic
flow is given by p ¼ kργ where γ is the polytropic index
and k is constant. The sound speed for adiabatic flow
(isoentropic flow) is given by

c2s ¼
∂p
∂ϵ

����
entropy

¼ ρ

h
∂h
∂ρ

; ð7Þ

where h is the enthalpy given by
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h ¼ pþ ε

ρ
: ð8Þ

The continuity equation and the Euler equation are given
by, respectively,

∇μðρvμÞ ¼ 0 ð9Þ

and

∇μTμν ¼ 0: ð10Þ

For adiabatic flow, the Euler equation simplifies as

vμ∇μvν þ
c2s
ρ
ðvμvν þ gμνÞ∂μρ ¼ 0 ð11Þ

where expression of c2s is given by Eq. (7).

C. Choice of disc heights

As mentioned in Sec. I, simplistic accretion disc struc-
ture like a conical disc, where HðrÞ is a linear function of

radial distance, has the property that the critical point turns
out to be also the point where advective velocity is equal to
the sound speed. Thus the critical points in this model turn
out to be the sonic points also. An accretion disc with
constant height also has the same property. But wewill only
consider conical flow as the representative of this kind of
model with isomorphic critical points and sonic points as it
portrays low angular moment accretion most accurately.
The height of a conical disc as a function of radial distance
is given by

HCFðrÞ ¼ Θr ð12Þ

where, as previously mentioned, Θ is the angular span of
the conical structure.
There are three prescriptions for the height function in

hydrostatic equilibrium, for none of which the critical
points and sonic points coincide. The oldest, and most
used expression for the disc thickness for accretion flow
maintained in the hydrostatic equilibrium along the vertical
direction, was provided by Novikov and Thorne [60] as

HNTðrÞ ¼
�
p
ρ

�1
2 r3 þ a2rþ 2a2

r
3
2 þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6 − 3r5 þ 2ar

9
2

ðr2 − 2rþ a2Þðr4 þ 4a2r2 − 4a2rþ 3a4Þ

s
: ð13Þ

It is to be noted that accretion flow described by the
above disc thickness cannot be extended up to rþ. The flow
will be truncated at a distance rT , where

ðrTÞ12ðrT − 3Þ ¼ 2a ð14Þ

which is outside rþ. In reality of course the flow will exist
up to rþ but no stationary integral flow solutions can be
constructed up to the close proximity of rþ for accretion
flow described by the disc height prescribed by Novikov
and Thorne.
Riffert and Herold [61] provided an expression of disc

thickness by modifying the gravity-pressure balance con-
dition of the treatment done in Novikov and Thorne. In the
work of Novikov and Thorne, the vertical component of
gravity was replaced by zRz

0z0 in the vertical component of
the Newtonian gravity pressure balance equation. Riffert
and Herold on the other hand used the Euler equation
directly to find out the gravity pressure balance equation
and the height expression as formulated by them is given by

HRHðrÞ ¼
�
p
ρ

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5 − 3r4 þ 2ar

7
2

r2 − 4ar
1
2 þ 3ar2

s
: ð15Þ

In this case also the flow can only be extended up to rT as
given by (14). We see that both of the disc heights can be

expressed in the form by HðrÞ ¼ ðp=ρÞ1=2fðr; aÞ. The
prefactor in this expression is related to sound speed and
thus these two height expressions are dependent on the flow
variable itself. As will be seen later, this particular form of
both of the disc heights given by Eqs. (13) and (15) is
responsible for the fact that critical points do not coincide
with the transonic points. This particular general form of
the height expression for both of these models is respon-
sible for the fact that they also have the same Mach number
at the critical points. Thus choosing any one of these
models will be sufficient to demonstrate this kind of
nonisomorphism of critical points and sonic points.
More recently Abramowicz, Lanza, and Percival [64]

introduced an expression for the disc thickness, given by

HALPðrÞ ¼
�
p
ρ

�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4

v2ϕ − a2ðvt − 1Þ

s
; ð16Þ

where vϕ and vt are the azimuthal and time component of
the four-velocity of accreting fluid.For this height function,
the steady state accretion solutions can be obtained up o rþ.
It is, however, to be noted that by linearly perturbing the
flow equation for flow thickness (16), the acoustic metric
could not be constructed as of now. Thus we will not be
using this height expression for stationary analysis as it
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cannot be used for later analysis involving an acoustic
metric.
In our present work, we thus use the height function due

to Novikov and Thorne only as a representative of models
where critical points are not transonic points.
Although the complete specification of the accretion

model we will be working with has been presented, we
must clarify that, certain terminology regarding the veloc-
ities and other quantities defined above will be used
throughout this work. The reason is that, a perturbation
analysis will be used to study dynamics of first order
perturbations, which will be performed on steady state
flow. Thus we must use a nomenclature to distinguish
between the steady state and first order flow. We will
frequently denote vμ0, u0 as four-velocity and advective
velocity corresponding to the steady state flow. In general,
we will use the subscript zero to denote the value of any
physical variable corresponding to the stationary solutions
of the steady flow, e.g., p0, ρ0 etc. We will define the first
order perturbation of any physical variable to have a
subscript of one where the perturbation analysis will be
carried out. No use of subscript on any variable in some
equation denotes that the equation is valid in the dynamical
case and the variable is the sum of the steady state part and
the dynamical first order part.

III. DESCRIPTION OF MULTITRANSONIC
ADIABATIC FLOW AS A DYNAMICAL

SYSTEM PROBLEM

In order to represent the problem of stationary accretion
of an ideal fluid following adiabatic equation of state
around a rotating black hole, one must find the specific
form of the governing fluid equations as specified in
Eqs. (9) and (11) for the two height functions as specified
in Eqs. (12) and (13). It will be shown in this section that
solving the problem of stationary accretion, i,e., describing
the dynamics of a compressible astrophysical fluid essen-
tially boils down to solving a set of differential equations
involving the derivative of advective velocity du0=dr and
derivative of dcs0 . The problem can also be dealt with by
solving one differential equation involving the expression
of du0=dr and an algebraic equation simultaneously. This
later approach will be followed in this work. Thus the plan
of work in this section will be as follows.
We will first integrate the general forms of the dynamical

equation and obtain two integrals of motion as one of the
expressions involving the specific energy, denoted by E0,
will be used as the aforementioned algebraic equation. Next
we derive the specific form of the derivative of advective
velocity du0=dr. Here we will see how the analytical
structure of an accreting fluid system can be formulated
as a problem of a dynamical system. The initial condition
relating sound speed and advective velocity of the fluid at
the critical points will also be derived for both kinds of
accretion flows having a conical disc height and disc height

as proposed by Novikov and Thorne. From the critical
conditions, the isomorphism of critical and sonic points for
accretion flow with conical disc and nonisomorphism of
critical and sonic points for accretion flow with disc height
as proposed by Novikov and Thorne will be pointed out. In
the next part it will be demonstrated how multitransonic
solutions of the accretion can be constructed from critical
solutions of the dynamical system of equations for a
specific subset of the parameters of the problem. Once
one obtains the multitransonic solution, the flow line is
determined and we will proceed for the perturbation
analysis in the next section.

A. The first integrals of motion

In order to establish the problem of accretion as a
dynamical system, two first integrals of motion for the
stationary flow are needed. We first deal with the Euler
equation as the height function does not enter in the
equation. Then we differentiate between the conical flow
and Novikov-Thorne type disc when we deal with the
continuity equation.
The conservation of the temporal component of the

simplified version of the Euler equation given by Eq. (11)
leads to the constancy of specific energy of the accreting
fluid E0, given by

E0 ¼
γ − 1

γ − 1 − c2s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

Bð1 − u20Þ

s
: ð17Þ

The second integral of motion obtained by integrating
the continuity equation is the mass accretion rate _M,
although we will later use Ψ instead of _M for simplification
of notation. _M can be expressed as

_M ¼ 4πHðrÞrρ
ffiffiffiffi
Δ

p
u0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u20

p : ð18Þ

The entropy accretion rate _Ξ is proportional to _M and can
be expressed as

_Ξ ¼
�
1

γ

�ð 1
γ−1Þ

4πΔ1
2c

ð 2
γ−1Þ
s

uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
� ðγ − 1Þ
γ − ð1þ c2sÞ

�ð 1
γ−1Þ

HðrÞ:

ð19Þ

We thus have two primary first integrals of motion along
the streamline—the specific energy of the flow E and the
mass accretion rate _M. Even in the absence of creation or
annihilation of matter, the entropy accretion rate _Ξ is not a
generic first integral of motion. As the expression for _Ξ
contains the quantity K ≡ p=ργ, which is a measure of the
specific entropy of the flow, the entropy accretion rate _Ξ
remains constant throughout the flow only if the entropy
per particle remains locally invariant. This condition may

MAITY, SHAIKH, TARAFDAR, and DAS PHYS. REV. D 106, 044062 (2022)

044062-6



be violated if the accretion is accompanied by a shock and
as we will see in the next section, the multitransonic
solution will have a shock present in the flow line.
However, _Ξ is an important quantity needed to distinguish
between flows having different topological structure in
phase portraits for different values of parameters. We
do not study the parametric variation of flows as we
only focus on accretion flow where shock will be present.
Still, _Ξ is required in order to find the expression
of du0=dr.

B. Velocity gradient and derivation of critical
conditions

One obtains two linear equations involving the derivative
of the advective velocity du0=dr and the derivative of
sound speed dcs0=dr by taking derivatives of the two
constants of integration. If the expression of dcs0=dr from
one equation is substituted in the other equation, then one
gets the expression of the derivative of advective velocity.
While taking the derivative of Eq. (19) the two height
expressions given by Eqs. (12) and (13) are used separately.
The expression for the derivative of advective velocity u0

corresponding to the flow with conical height function
turns out to be (see [62])

du0
dr

����
CF

¼ u0ð1 − u20Þ½c2s0 2r2−3rþa2
Δr þ 1

2
ðB0
B − Δ0

ΔÞ�
u20 − cs02

¼ NCF

DCF
:

ð20Þ

The expression for the derivative of advective velocity u0
corresponding to the flow with height function as pre-
scribed by Novikov and Thorne turns out to be (see [24])

du0
dr

����
NT

¼
u0ð1 − u20Þ½ 2

γþ1
c2s0ðΔ

0
2Δ þ f0

f Þ þ 1
2
ðB0
B − Δ0

ΔÞ�
u20 −

cs02
ðγþ1

2
Þ

¼ NNT

DNT
:

ð21Þ

In both equations mentioned above, the numerator is
denoted as N and the denominator as D. One can
thus define some parameter τ such that du0=dτ ¼ N;
dr=dτ ¼ D. In this way the problem of finding all the
time-independent fluid profile of accretion can be posed as
a problem of dynamical systems. Now we will use the tools
of nonlinear dynamics to find the critical points and then
later to draw the critical flows in phase portraits.
The critical points can be obtained by setting

du0=dτ ¼ 0; dr=dτ ¼ 0 simultaneously. Thus the critical
point conditions turn out to be N ¼ 0 and D ¼ 0.
Thus for conical flow, the condition D ¼ 0 at the critical

point yields

u20jr¼rc ¼ c2s0jr¼rc ð22Þ

whereas for flow with height function as prescribed by
Novikov and Thorne, the condition D ¼ 0 turns out to be

u20jr¼rc ¼
c2s0jr¼rc

ðγþ1
2
Þ ð23Þ

or for later convenience we can write

u20jr¼rc ¼
c2s0jr¼rc

1þ β
; where β ¼ γ − 1

2
: ð24Þ

The key point we get from Eqs. (22) and (23) is that the
Mach number, i.e., the ratio of advective velocity and sound
speed, is 1 at the critical point for conical flow. But for disc
height as prescribed by Novikov and Thorne, the Mach
number is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=1þ β

p
at critical points, which is always less

than unity for γ > 1. Thus the critical points and the sonic
points are isomorphic in the case of conical flow, but for
disc height described by Novikov and Thorne, the sonic
and critical points are not isomorphic.
The value of sound speed at critical points can be

obtained from the other critical condition N ¼ 0 and by
substituting the value of sound speed and corresponding
value of advective velocity in Eq. (17), one obtains the radii
of the critical points. The value of the derivative of the
advective velocity at the critical points can also be obtained
and thus along with the locations of the critical points, the
complete set of initial conditions needed to integrate
Eqs. (20) and (21) are obtained. At this point one needs
to specify the parameters of the problem so that the phase
portraits can be plotted by solving the expressions for the
derivatives of advective velocity.

C. Nature of critical points and phase portrait
for multitransonic accretion

The detailed method of obtaining a multitransonic flow
line in the phase portrait from the initial critical conditions
corresponding to conical flow has been described in [51]
and the same method for disc height as prescribed by
Novikov and Thorne has been described in [24]. But in
order to perform perturbation analysis on a certain flow
line, we must first describe the nature of the critical points
and the solutions passing through them, namely the critical
flow lines. Finally we choose a particular flow line
consisting of the critical flow lines such that multitranso-
nicity is achieved.
To numerically obtain phase portraits, Eqs. (20) and (21)

have to be integrated and one needs to specify the
parameters needed to solve this problem which are present
in the equations and in the initial conditions. There are
four parameters given by E0, λ, γ, and a for both kinds of
flows with the conical height function and the height
function as prescribed by Novikov and Thorne. The top-
ology of the flow is dependent on the values of parameters.
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As previously mentioned, we want to focus on the
characteristics of multitransonic accretion in this work.
For the dynamical system corresponding to the models of
accretion we are concerned with, there exists only one sonic
point corresponding to each saddle type critical point. A
physically acceptable transonic solution can be constructed
only through a saddle type critical point, and not through a
center type critical point. Hence the concept of a sonic point
corresponding to a center type critical point is meaningless.
Thus in order to choose a multitransonic accretion flow, we
must choose the parameters such that the dynamical system
corresponding to the flow has multiple critical points and
the critical flows correspond to accretion and not wind.
The numerical plots of the critical flows in the phase

portraits for both kinds of flows with conical height
function and height function as prescribed by Novikov
and Thorne are presented in Fig. 1, such that the chosen
parameters correspond to multicritical accretion for
both flows.
In both figures portrayed in Fig. 1, rout and rin corre-

spond to the outer and inner critical points, respectively,
both of which are saddle type critical points. The critical
point which resides in the middle of the outermost critical
point located at rout and innermost critical point rin is center
type in nature, although not shown explicitly in the plot of
critical flow lines as the point plays no role in a multi-
transonic flow line.

In Fig. 1, the parameters of the problems are chosen such
that the phase portrait corresponds to accretion flow with
multiple critical points. But the presence of multiple critical
points does not itself ensure the presence of multitransonic
flow. From the figures it is clear that a continuous critical
flow through either of the two saddle type critical points in
the phase portrait will not pass through the other saddle
type critical point. One can only choose a multitransonic
flow consisting of the critical solutions if there is a
mechanism that allows a discontinuous jump from the
supersonic critical flow line through the outer critical point
rout to the subsonic critical flow line through the innermost
critical point rout. This discontinuity in an accretion flow
can be physically modeled by a Rankine-Hugoniot type
infinitesimally thin shock. There is a subset of parameters
within the parameter space corresponding to multitransonic
accretion, where shock may occur. In the plot of the critical
solutions in the phase portrait, the parameters are chosen
for both flows in such a way that such a shock occurs. The
fluid elements in the disc accretion flows in hydrostatic
equilibrium irrespective of the height function of the disc,
start far away from the accretor, in this case, the black hole,
along the critical flow line, and move through the outer
critical point rout, continue along the flow line (the blue
solid line passing through rout in the online version of the
figure), and will be supersonic till the flow variables and
thermodynamic variables make a discontinuous jump to

(a) (b)

FIG. 1. (a) Phase portrait for adiabatic flow with conical disc height. (b) Phase portrait for adiabatic flow with height expression
formulated by Novikov and Thorne. Both phase portraits have been drawn for adiabatic accretion with the set of parameter values
E0 ¼ 1.0012, λ ¼ 3.30, and γ ¼ 1.35. For both pictures the blue solid lines correspond to the accretion branch whereas the orange
dashed lines correspond to the wind branch. The innermost critical point is denoted as rin and outermost critical point is denoted as rout.
S1 corresponds to the point in the phase portrait in the accretion branch through the outer critical point where shock may occur and S2
corresponds to the point where shock occurs in the accretion branch through the inner critical point. The same radial distance of S1 and
S2 corresponds to the fact that the shock is infinitesimally thin. The dotted black line joining S1 and S2 corresponds to the discontinuous
jump in the shock location. (b) Phase portrait of flow with height as prescribed by Novikov and Thorne; the Mach number at critical
points are not unity and thus the critical point and sonic points do not coincide for this height prescription. The outer sonic point and the
inner sonic point in the phase portrait corresponding to the flow with height function as prescribed by Novikov and Thorne are,
respectively, M1 and M2.
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another branch (the green dotted line in the online version
of the figure) as a consequence of shock. The discontinuous
jump occurs at S1 where the flow passing through the outer
critical point is supersonic and reaches S2 on the flow line
passing through the inner critical point, where the flow
becomes subsonic again. Then the fluid element eventually
goes through rin. This discontinuity is strictly a disconti-
nuity of the values of the fluid variables and not a
discontinuity present in the physical flow. In this way
the presence of shock makes the fluid element move
through a multitransonic flow line. Thus we not only
choose the parameters to allow multiple critical points
but also to allow multitransonic accretion.
By following the aforementioned scheme, we are able to

choose a multitransonic accretion flow line for each of the
flows corresponding to the conical height function and
height function as prescribed by Novikov and Thorne. The
major difference between the flow lines of the two models
is that whereas the flow achieves transonicity at rout and
again at rin for conical flow, the flow for disc height as
prescribed by Novikov and Thorne does not, as the Mach
number is less than one at rout and rin. For flow with disc
height as prescribed by Novikov and Thorne, a fluid
element of the flow becomes subsonic to supersonic for
the first time at M1 and after it becomes supersonic to
subsonic at the shock location, it becomes supersonic for
the second time at M2 as shown in Fig. 1(b).
Before concluding the discussions about the stationary

solutions of accretion flow, we note that, we have so far
established the nonhomomorphism of critical and sonic
points for flow with disc height as prescribed by Novikov
and Thorne. One can simply assert that the fact that the
critical point and sonic point do not coincide is just a feature
of the height function as prescribed by Novikov and Thorne.
This feature does not necessarily make us question how
correct the definition of sound speed is in a dynamical
context. To answer this question one may try to perturb the
dynamical equations governing the flow and try to find out
how linear perturbation behaves as sound speed at its core is
the speed of propagation of first order perturbation in a
medium. The systematic analysis of perturbations of fluid
equations leads to treating a certain linearly perturbed fluid
variable from the context of analog or emergent gravity. The
perturbation analysis has been performed in the next section
and the connection with analog gravity is established.

IV. DERIVATION OF ACOUSTIC METRIC FROM
LINEAR PERTURBATION OF FLUID EQUATIONS

The nonhomomorphism of critical points and sonic
points established in the previous section does not neces-
sitate one to redefine sound speed as the stationary picture
does not suggest how the acoustic perturbation propagates
in the accreting medium. The motivation of this work will
thus only be clear when one performs a perturbation
analysis of the full spacetime-dependent fluid equations.

In this section we perturb the dynamical equations describ-
ing adiabatic accretion flow in the background metric of a
rotating black hole for conical disc height as well as disc
height as prescribed by Novikov and Thorne. The pertur-
bations yield dynamical equations governing the first order
perturbation of a certain flow variable. Then the acoustic
metric is written by comparing the aforementioned gov-
erning equations with the equation of a massless scalar field
in curved spacetime. The basic methodology of analog
gravity is based on identifying the similar forms of the
governing equation of first order perturbation of a certain
fluid variable and the massless scalar field equation in
curved spacetime. The analogy is subject to certain con-
ditions on the flow which are already fulfilled by our choice
of ideal inviscid fluid. Thus for an acoustic metric describ-
ing the perturbation in the accretion flow with height
function as prescribed by Novikov and Thorne, we show
that, the acoustic black hole horizons are located at the
critical points. To conclude this section we define an
effective sound speed, for which the sonic points turn
out to be critical points.
As our work concerns two disc models, we must

differentiate the two emergent metrices as well.
Although that will be done by the end of this section, it
must be mentioned how the differences in the functional
forms of conical disc height and disc height as prescribed
by Novikov and Thorne are manifested in the perturbation
analysis. If we compare Eq. (12) describing the height
function for conical flow and Eq. (13) describing the height
function formulated by Novikov and Thorne, we see that
the perturbation of flow variable will have no consequence
on the perturbation of conical flow as it is only a function of
radial distance and on the other hand it will be directly
manifested in the perturbation of flow with disc height
prescribed by Novikov and Thorne as it directly depends on
the sound speed, a flow variable, in the case of adiabatic
flow. Thus we will differentiate between the two models
where perturbation of height is introduced in this section
and the parameter distinguishing the two flows will turn out
to be β as defined in Eq. (24) corresponding to only flow
with height function as prescribed by Novikov and Thorne.
We will use the notation β for conical flow also and fix its
value to zero so that the equations describing the pertur-
bations have the same structural form.When wewrite down
the acoustic metric we will use β only for flows with height
function as prescribed by Novikov and Thorne and remove
β from the expression of acoustic metric for conical flow by
setting it to zero.
Now the perturbation on the stationary flow is

done by following standard linear perturbation analysis
[50,52,65,66] where the acoustic spacetime metric for
conical flow was derived. Time-dependent accretion var-
iables, like the components of four-velocity and pressure
are written as small time-dependent linear perturbations
added to their stationary values. Thus we can write
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vtðr; tÞ ¼ vt0ðrÞ þ vt1ðr; tÞ;
vrðr; tÞ ¼ vr0ðrÞ þ vr1ðr; tÞ;
ρðr; tÞ ¼ ρ0ðrÞ þ ρ1ðr; tÞ; ð25Þ

where the subscript 1 denotes the first order small pertur-
bation of some variable about the stationary value denoted
by subscript 0. The second constant of integration from
continuity equation _M or Ψ has the form (see [24,62])

Ψ ¼ 4π
ffiffiffiffiffiffi
−g

p
ρðr; tÞvrðr; tÞHθ ð26Þ

which is the stationary mass accretion rate of the accretion
flow. Thus

Ψðr; tÞ ¼ Ψ0 þ Ψ1ðr; tÞ ð27Þ

where Ψ0 is the stationary mass accretion rate defined in
Eq. (26). The constants can be absorbed in the definition
without any loss of generality. Using Eq. (25) we get

Ψ1 ¼
ffiffiffiffiffiffi
−g

p ½ρ1vr0Hθ0 þ ρ0vr1Hθ0 þ ρ0vr0Hθ1�: ð28Þ

The last term in Ψ1 consists of a term with the perturbation
of angular height function Hθ. We recall HðrÞ as
Hθ ¼ HðrÞ=r. For now, general height function HðrÞ is
used whereas later on we distinguish between conical flow
and disc height proposed by Novikov and Thorne.
For adiabatic flow (8) can be rewritten as

h ¼ 1þ γ

γ − 1

p
ρ

ð29Þ

where the perturbed quantity h1 can be written as

h1 ¼
h0c2s0
ρ0

ρ1: ð30Þ

For adiabatic flow the irrotationality condition is [24]

∂μðhvνÞ − ∂νðhvμÞ ¼ 0: ð31Þ

Now, by using Eq. (31), the normalization condition
vμvμ ¼ −1, and the axial symmetry of the flow, we obtain
quantities needed for further perturbation. From irrotaion-
ality condition Eq. (31) with μ ¼ t and ν ¼ ϕ and with
axial symmetry we have

∂tðhvϕÞ ¼ 0; ð32Þ

and for μ ¼ r and ν ¼ ϕ and using axial symmetry, we
have

∂rðhvϕÞ ¼ 0: ð33Þ

So hvϕ is a constant of motion and Eq. (32) gives

∂tvϕ ¼ −
vϕc2s
ρ

∂tρ: ð34Þ

Using vϕ ¼ gϕϕvϕ þ gϕtvt in the previous equation gives

∂tvϕ ¼ −
gϕt
gϕϕ

∂tvt −
vϕc2s
gϕϕρ

∂tρ: ð35Þ

The normalization condition of four-velocity vμvμ ¼ −1 in
this case can be written as

gttðvtÞ2 ¼ 1þ grrðvrÞ2 þ gϕϕðvϕÞ2 þ 2gϕtvϕvt: ð36Þ

The time derivative of this equation is

∂tvt ¼ α1∂tvr þ α2∂tvϕ ð37Þ

where α1¼−vr=vt, α2¼−vϕ=vt, and vt ¼ −gttvt þ gϕtvϕ.
Replacing ∂tvϕ in Eq. (37) and using Eq. (35) we get

∂tvt ¼
�
−α2vϕc2s=ðρgϕϕÞ
1þ α2gϕt=gϕϕ

�
∂tρþ

�
α1

1þ α2gϕt=gϕϕ

�
∂tvr:

ð38Þ

Using Eq. (25) in Eq. (38) and collecting the linear
perturbation part we get

∂tvt1 ¼ η1∂tρ1 þ η2∂tvr1 ð39Þ

where

η1¼−
c2s0

Λvt0ρ0
½Λðvt0Þ2−1−grrðvr0Þ2�; η2¼

grrvr0
Λvt0

and Λ¼gttþ
g2ϕt
gϕϕ

: ð40Þ

Now we perturb height function and differentiate
between the two models we consider. For conical flow,
HCF ¼ Θr. Thus

ðHθ1ÞCF ¼ 0: ð41Þ

For NT, ðHθ1ÞNT can be written as

ðHθ1ÞNT
ðHθ0ÞNT

¼
�
γ − 1

2

�
ρ1
ρ0

¼ βNT
ρ1
ρ0

ð42Þ

where βNT ¼ γ − 1=2. Here we see that the whole pertur-
bation analysis can be generalized if we define βCF ¼ 0 for
conical flow and continue the analysis with β in general. In
the end we can again put these two different values and
obtain different results for the two models.
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The continuity equation takes the form

∂tð
ffiffiffiffiffiffi
−g

p
ρvtHθÞ þ ∂rð

ffiffiffiffiffiffi
−g

p
ρvrHθÞ ¼ 0: ð43Þ

Using Eqs. (25) and (27) in the previous equation and using
Eqs. (39) and (42) and replacing them in (43) yields

−
∂rΨ1

Ψ0

¼ η2
vr0

∂tvr1 þ
vt0
vr0ρ0

�
1þ β þ η1ρ0

vt0

�
∂tρ1; ð44Þ

and

∂tΨ1

Ψ0

¼ 1

vr0
∂tvr1 þ

1þ β

ρ0
∂tρ1: ð45Þ

Using the two equations given by Eqs. (44) and (45) we can
write ∂tvr1 and ∂tρ1 in terms of partial derivatives of Ψ1 as

∂tvr1 ¼
1ffiffiffiffiffiffi

−g̃
p

H0ρ0Λ̃
½ðvt0ð1þ βÞ þ ρ0η1Þ∂tΨ1

þ ð1þ βÞvr0∂rΨ1�;

∂tρ1 ¼ −
1ffiffiffiffiffiffi

−g̃
p

H0ρ0Λ̃
½ρ0η2∂tΨ1 þ ρ0∂rΨ1� ð46Þ

where Λ̃ is given by

Λ̃¼ð1þβÞ
�
grrðvr0Þ2
Λvt0

−vt0

�
þ c2s0
Λvt0

½Λðvt0Þ2−1−grrðvr0Þ2�:

ð47Þ

Now we first linearly perturb Eq. (43) and then take its
time derivative, which in turn gives

∂tðh0grr∂tvr1Þ þ ∂t

�
h0grrc2s0v

r
0

ρ0
∂tρ1

�
− ∂rðh0∂tvt1Þ

− ∂r

�
h0vt0c2s0

ρ0
∂tρ1

�
¼ 0: ð48Þ

We can write

∂tvt1 ¼ η̃1∂tρ1 þ η̃2∂tvr1 ð49Þ

with

η̃1 ¼ −
�
Λη1 þ

gϕtvϕ0c2s0
gϕϕρ0

�
; η̃2 ¼ −Λη2: ð50Þ

Using Eq. (49) in Eq. (48) and dividing it by h0vt0 yields

∂t

�
grr
vt0

∂tvr1

�
þ ∂t

�
grrc2svr0
ρ0vt0

∂tρ1

�

− ∂r

�
η̃2
vt0

∂tvr1

�
− ∂r

��
η̃1
vt0

þ c2s
ρ0

�
∂tρ1

�
¼ 0 ð51Þ

where we use h0vt0 ¼ constant. Finally replacing ∂tvr1 and
∂tρ1 in Eq. (51) using Eq. (46) one obtains

∂t

�
kðrÞ

�
−gtt þ ðvt0Þ2

�
1 −

1þ β

c2s

���
þ ∂t

�
kðrÞ

�
vr0v

t
0

�
1 −

1þ β

c2s

���

þ ∂r

�
kðrÞ

�
vr0v

t
0

�
1 −

1þ β

c2s

���
þ ∂r

�
kðrÞ

�
grr þ ðvr0Þ2

�
1 −

1þ β

c2s

���
¼ 0 ð52Þ

where kðrÞ is a conformal factor whose exact form is not
required for the present analysis.
Equation (52) can be written as

∂μðfμν∂νΨ1Þ ¼ 0 ð53Þ
where fμν is obtained from the symmetric matrix

fμν ¼ kðrÞ
"
−gtt þ ðvt0Þ2ð1− 1þβ

c2s
Þ vr0v

t
0ð1− 1þβ

c2s
Þ

vr0v
t
0ð1− 1þβ

c2s
Þ grr þ ðvr0Þ2ð1− 1þβ

c2s
Þ

#
:

ð54Þ
Equation (53) describes the propagation of the pertur-

bation Ψ1 in 1þ 1 dimensions effectively. Equation (53)

has the same form of a massless scalar field in curved
spacetime (with metric gμν) given by

∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ ¼ 0 ð55Þ

where g is the determinant of the metric gμν and φ is the
scalar field. Comparing Eqs. (53) and (55), the components
of acoustic spacetime metric Gμν turns out to be

GNT
μν ¼k1ðrÞ

"−grr−ð1− 1þβ
c2s0

Þðvr0Þ2 vr0v
t
0ð1− 1þβ

c2s0
Þ

vr0v
t
0ð1− 1þβ

c2s0
Þ gtt−ð1− 1þβ

c2s0
Þðvt0Þ2

#

ð56Þ
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where k1ðrÞ is also a conformal factor arising due to the
process of inverting Gμν in order to yield Gμν. For our
present purpose we do not need the exact expression for
k1ðrÞ. The suffix “NT” is added because after the derivation
of this acoustic metric, it is convenient to use just one β and
the only flow with disc height as prescribed by Novikov
and Thorne has nonzero β. Thus the above expression can
now be used only to denote the acoustic metric for flow
with height function as prescribed by Novikov and Thorne,
whereas one can put β ¼ 0 to get the acoustic metric for
conical flow which is given by

GCF
μν ¼ k1ðrÞ

"−grr − ð1 − 1
c2s0
Þðvr0Þ2 vr0v

t
0ð1 − 1

c2s0
Þ

vr0v
t
0ð1 − 1

c2s0
Þ gtt − ð1 − 1

c2s0
Þðvt0Þ2

#
:

ð57Þ

From the stationary solution of accretion flow, one
expects the sonic point to be the acoustic horizon of the
analog metric. But the nontrivial structure of the metric
corresponding to flow with disc height as prescribed by
Novikov and Thorne defined in Eq. (56) does not anymore
assure that. Moreover, for both metrics, the particular
coordinate assures that setting Grr ¼ 0 will determine
the condition at acoustic black hole horizon. Thus we
see that the condition at acoustic horizon for conical flow
will be obtained by putting β ¼ 0 in Eq. (54). This yields

grr þ ðvr0Þ2
�
1 −

1

c2s

�
¼ 0 ð58Þ

which in turn yields u0 ¼ cs0 at the acoustic horizon. But
the condition at acoustic horizon for flow with height
prescription as proposed by Novikov and Thorne will be

grr þ ðvr0Þ2
�
1 −

1þ β

c2s

�
¼ 0 ð59Þ

which in turn yields

u0 ¼ cs0=
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
ð60Þ

at the acoustic horizon. For later purposes it will be
convenient to define an effective sound speed

ceff ¼ cs0=
ffiffiffiffiffiffiffiffiffiffiffi
1þ β

p
ð61Þ

for flow with height as prescribed by Novikov and Thorne
and ceff ¼ cs0 for conical flow.

V. CARTER-PENROSE DIAGRAM OF THE
ACOUSTIC METRICS FOR POLYTROPIC

ACCRETION

The redefinition of sound speed as performed in the
previous section was motivated using the local conditions
at black hole horizons. One may formally analyze the
causal structure of the acoustic spacetime of the models to
find the location of the horizon. In this process the global
features of light cones at any point in the acoustic sapcetime
will then justify the redefinition of sound speed anywhere
in the flow and not only at the acoustic black hole horizons.
Thus in this section, we will study the causal structure by
numerically plotting the Carter-Penrose diagram [67] of the
acoustic metric. The method of the Carter-Penrose diagram
is used in general relativity to understand the global
features of complicated black hole spacetimes like Kerr
spacetime and it is also used in cosmology [68]. Here we
will use the Carter-Penrose diagram as it is used in the
context of black hole spacetimes to determine black hole
and white hole regions. The Carter-Penrose diagram of the
analog metric has been done in [69], where constant sound
speed was used and the flow profiles were assumed instead
of being derived from some fluid or any other underlying
set of governing equations. In our analysis, the sound speed
is a local function of radial distance and the flow profile
was solved from the governing equations. The nontrivial
discontinuous transition of the fluid profiles from the
supersonic region to the subsonic region at the shock
location is also the result of the physical process deter-
mined by Rankine-Hugoniot conditions. These kinds of
complexities were not considered previously in the causal
structure analysis of acoustic spacetimes.
In this section we first simplify the metric elements in

terms of stationary fluid variables and then apply proper
coordinate transformations to remove the coordinate sin-
gularities of the metrics. Then those coordinates are further
transformed to compactify the entire analog spacetime.
Next we plot the Carter-Penrose diagram for both the
models, define the boundaries from the point of view of
differential geometry, and then use a causal relation to find
out the features of different regions of the analog spacetime
corresponding to different parts of the fluid flow. From this
analysis the redefinition of sound speed will be justified
globally.

A. Acoustic metric and other preliminaries

From the obtained acoustic metric the line element is
given by

ds2 ¼ Gttdt2 þ 2GtrdtdrþGrrdr2; ð62Þ

where the metric elements Gμν are given by (57) and (56).
The overall factor k1ðrÞ is not explicitly taken into account
as we want to finally focus on a conformally transformed
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metric where this factor can be absorbed with the conformal
factor.
Using Eq. (6) and the contravariant form of Eq. (5), the

metric elements of acoustic matrices turn out to be

Gtt ¼
u20 − c2eff

c2effð1 − u20Þgrr
;

Gtr ¼ Grt ¼
u0ð1 − c2effÞF1ðr; λÞ

c2effð1 − u20Þ
;

Grr ¼
grrF2

1ðr; λÞð1 − c2effÞ
c2effð1 − u20Þ

− F2ðrÞ; ð63Þ

where

F1ðr; λÞ ¼
gϕϕ þ λgϕtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgϕϕ þ 2λgϕt − λ2gttÞðgϕϕgtt þ g2ϕtÞgrr
q ;

F2ðrÞ ¼
gϕϕ

gϕϕgtt þ g2ϕt
: ð64Þ

Thus we see that at a critical point where u20 ¼ c2eff , the
metric element Gtt becomes zero. So we have to transform
the coordinate so that the coordinate singularity is removed.
In the next section, we go through a systematic procedure
such that the singularity is removed from new metric
elements. In this new set of coordinates the spacetime
represented by an acoustic metric extends up to infinity.
Thus we will conformally transform these coordinates such
that the infinite spacetime is mapped into a finite region of
some coordinate space. As mentioned in the Introduction,
this conformal transformation and the corresponding
Carter-Penrose diagram will help one to study the causal
structure of the acoustic spacetime.

B. Kruskal-like coordinate transformation to remove
singularity at critical points

The general transformations that lead to the construction
of Carter-Penrose diagrams in the context of black hole
metrics has been studied in detail in [67,68]. The corre-
sponding transformations in the context of an analog metric
has been derived in [69]. Although we follow the general
outline, the acoustic metric derived by us has the special
feature of sound speed being a function of radial distance r.
Thus the coordinate transformations are more involved and
the procedure is described in this section in details.
First we choose null coordinates to write down the line

element (62). We note that for null or lightlike curves
ds2 ¼ 0, which yields

ðdt − AþðrÞdrÞðdt − A−ðrÞdrÞ ¼ 0 ð65Þ

where

A� ¼ −Gtr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

tr − GrrGtt

p
Gtt

: ð66Þ

So instead of coordinates ðt; rÞ, we choose new coordinates
to be null coordinates ðχ;ωÞ such that

dω ¼ dt − AþðrÞdr; ð67Þ

dχ ¼ dt − A−ðrÞdr: ð68Þ

Using the coordinate transformation introduced in (67), the
line element (62) can be written as

ds2 ¼ Gttdχdω: ð69Þ

After introducing the null coordinates, the next step usually
should be the affine parametrization, which removes the
removable singularity. But one can remove the singularities
ofGtt at the critical points by observing how the divergence
behaves at the vicinity of the horizon. To study this
behavior we expand A−ðrÞ and AþðrÞ up to first order
of ðr − rcÞ. Thus by expanding u0 near rc as

u0ðrÞ ¼ −ceffðrcÞ þ
���� dudr

����
rc

ðr − rcÞ þOððr − rcÞ2Þ ð70Þ

where the negative sign of the effective sound speed implies
the flow is toward the accretor. We also note that from(70),
near rc we can write

u20 − c2eff ≈ −2
�
ceff

du
dr

�
rc

ðr − rcÞ ð71Þ

considering up to the first order term.
Now we expand A−ðrÞ and AþðrÞ up to linear order of

ðr − rcÞ. For that we first note that Gtt ∝ ðu0 − ceffÞ2 is
very small near rc which implies jGttGrr=G2

trj ≪ 1. Thus
we obtain

AþðrÞ ¼
−Gtr þGtrð1 − GttGrr

G2
tr
Þ1=2

Gtt
ð72Þ

≈ −
Grr

2Gtr
ð73Þ

and

A−ðrÞ ¼
−Gtr − Gtrð1 − GttGrr

G2
tr
Þ1=2

Gtt
ð74Þ

≈ −
2Gtr

Gtt
ð75Þ
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¼ 2F1ðr; λÞgrru0ðc2eff − 1Þ
u20 − c2eff

ð76Þ

≈
F1ðrc; λÞgrrðu20c − 1Þ

u00c − ðc0effÞc
1

r − rc
ð77Þ

¼ 1

κ

1

r − rc
ð78Þ

where

κ ¼ u00c − ðc0effÞc
F1ðrc; λÞgrrðu20c − 1Þ : ð79Þ

So, we see that although

χ ≈ t −
1

κ
ln jr − rcj ð80Þ

shows a logarithmic divergence at r → rc, the form of Grr
and Gtr ensures that

ω ¼ tþ
Z

Grr

2Gtr
dr ð81Þ

does not diverge at the critical points as the function inside
the integral is regular there.
Thus we see that near the critical points

e−κχ ∝ e−κtjr − rcj ∝ e−κtðu20 − c2effÞ: ð82Þ

Now one can compare the acoustic null coordinates in this
case with that of the Schwarzchild metric and guess a
coordinate transformation such that the singularity of the
metric element at the critical point is removed. The trans-
formation equations can be given by

UðχÞ ¼ −e−κχ ;

WðωÞ ¼ eκω: ð83Þ

Using this new set of coordinates ðU;WÞ, the line element
can now be written as

ds2 ¼ Gtt
eκðχ−ωÞðu20 − c2effÞ

κ2c2effð1 − u20Þð1 − 2=rþ a=r2Þ−1 dUdW: ð84Þ

Thus at the numerator of the new metric element, the two
factors multiplied together will cancel the divergence at
critical points. Thus these new coordinates ðU;WÞ are
similar to the Kruskal coordinates for the case of the
Schwarzchild metric which removes the coordinate
singularity.
Now we have to compactify the infinite space into a

finite patch of some coordinates. For that, the coordinates
will be ðT; RÞ such that

T ¼ tan−1ðWÞ þ tan−1ðUÞ; ð85Þ

R ¼ tan−1ðWÞ − tan−1ðUÞ: ð86Þ

Just like one would plot r ¼ constant lines in the Kruskal
coordinate plane to get the Kruskal diagram, r ¼ constant,
lines can be drawn in these ðT; RÞ coordinates, and the
resulting diagram would be able to represent causal
structure of the original spacetime in a compactified region.
The resulting diagram in ðT; RÞ coordinates is technically
known as the Carter-Penrose diagram.
Now we write down how the original metric defined in

Eq. (62) is transformed when we express it in terms of T
and R and comment on the structure of the metric. The
metric ds2 in terms of T and R is

ds2 ¼ Ω2ð−dT2 þ dR2Þ ð87Þ

where

Ω2 ¼ −Gtt sec2
�
T þ R

2

�
sec2

�
T − R
2

�
eκðχ−ωÞðu20 − c2effÞ

4κ2c2effð1 − u20Þð1 − 2=rþ a=r2Þ−1 : ð88Þ

We thus see from Eq. (87) that we have finally obtained
the transformations that connect the original metric con-
formally with the two-dimensional Minkwoski metric,
where two metrics G and g on the same manifold M
are said to be conformally connected if there is a positive
definite conformal factor Ω2ðxÞ such that

Gμνdxμ ⊗ dxν ¼ Ω2ðxÞgμνdxμ ⊗ dxν: ð89Þ

This conformal connection of the metric of analog space-
time with two-dimensional Minkowski spacetime will be
the key point to establishing causal significance of inter-
esting features in analog spacetimes presented earlier.

C. Carter-Penrose diagram

In order to draw the Carter-Penrose diagram, the multi-
transonic flow lines chosen previously are used as the
background flow. Then the stationary metric elements are
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generated as a function of the r coordinate, i.e., the metric
elements Gμν are defined numerically on the analog
spacetime in ðt; rÞ coordinates. Then by the prescribed
transformations as formulated in the previous subsection,
r ¼ constant lines are plotted in the ðT; RÞ plane, generat-
ing the Carter-Penrose diagram which transforms the
infinite ðt; rÞ plane into a finite region of the ðT; RÞ plane.
The diagrams are obtained for adiabatic flow with both
conical disc height and height function as prescribed by
Novikov and Thorne. The corresponding plots are pre-
sented in Fig. 2 for both the geometries.
In order to understand the significance of the compacti-

fication which is presented in the Carter-Penrose diagram
and to classify the regions corresponding to the black hole
and the white hole, one must understand the causal
significance of the boundaries of the compactified dia-
grams. Once we define different parts of the boundaries,
which already requires the understanding of the causal
relationship between two points in a spacetime, we will use
the relationships on entire boundaries and see how the
definitions of black hole and white hole regions arise
naturally along with the corresponding horizons.

In order to understand why the compactification makes it
easy to analyze causal structures from the compactified
Carter-Penrose diagrams, we must first state a lemma from
the theory of differential manifolds that relates the behavior
of null geodesics in analog spacetime with the behavior of
null geodesics in Minkowski spacetime. The lemma states
the following [68]:
Lemma.—If two matrices G and g on the same manifold

M are conformally related [as defined in Eq. (89)], then the
null geodesics with respect to metric G are null geodesics
also with respect to the metric g and vice versa.
It was established in Eq. (87) that the analog metric

derived in Eqs. (57) and (56) for the multitransonic
flow chosen previously is conformally flat, i.e., the
resulting analog metric is conformally connected with
flat or Minkowski spacetime. Thus the sound cones in
these compactified diagrams will have the same ori-
entation as light cones in Minkowski spacetime. So the
sound cones in the compactified diagrams at an angle
of π=4 and 3π=4 to the horizontal lines if the scale of
both T and R are the same. This orientation of sound
cones is global.

(a) (b)

FIG. 2. (a) Carter-Penrose diagram for adiabatic flow with conical disc height. (b) Carter-Penrose diagram for adiabatic flow with
height expression formulated by Novikov and Thorne. In both Carter-Penrose diagrams for adiabatic flow, region I marked with blue
solid lines corresponds to the flow outside the outer critical point rout up to infinity, where flow is subsonic. Region II marked with
yellow dashed lines corresponds to the flow inside rout and outside rshock, where flow is supersonic. Region III marked with green dash-
dotted lines corresponds to the flow inside the shock rshock and outside the inner critical point rin, where flow is again subsonic. Region
IV marked with red dotted lines corresponds to the flow inside the inner critical point rin up to the minimum radius where flow can be
extended outside the real Kerr black hole horizon and the flow is supersonic again. All of the lines correspond to r ¼ constant lines in
their corresponding regions expect for the lines at boundaries where the r ¼ constant lines coincide with t ¼ constant lines where the
time values are as specified in the figures. For flow with height functions prescribed by Novikov and Thorne, the r ¼ constant lines
corresponding to usual sonic points are shown.
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The simple orientation of a light cone in a Carter-Penrose
diagram makes it easy to understand how timelike, space-
like, and null vectors will be oriented, as they are just
similar to the definition of vectors in two-dimensional
Minkowski spacetime. The vectors at any point in these
diagrams will be timelike if they are inside the sound cone,
null if they are on the boundaries of the sound cone, and
spacelike if they are outside the sound cone.

With these definitions of the causal nature of vectors in
mind we can now define causal curves in a manifold M.
A curve λðsÞ in any manifold M is a causal curve if for
every point p ∈ λ the tangent vector tμ at that point is
timelike or null. This definition of causal curve enables us
to define the causal future/past of a point p. The causal
future/past of a point p, denoted by J�ðpÞ, is a subset ofM
defined by the following condition:

J�ðpÞ ¼ fq ∈ Mj ∃ future-ðpast-Þ directed causal curve λðsÞ such that λð0Þ ¼ p; λð1Þ ¼ qg: ð90Þ

The causal future/past of a region will be the union of
causal future/past of all the points belonging to the region.
In Sec. V B, we defined the set of transformations that

transform the ðt; rÞ coordinates into ðT; RÞ coordinates.
Thus we get an image of the ðt; rÞ plane in the ðT; RÞ plane.
Denoting this transformation or mapping ψ , we see that the
mapping is injective but not surjective, i.e., the image of the
entire ðt; rÞ plane is a subset of the ðT; RÞ plane, which
represents the two-dimensional Minkwoski plane as can be
seen from the signatures in the metric. Now the boundaries
at infinity have been brought to finite distances and thus the
boundary of this mapping in this finite domain can be
analyzed causally. We define the boundary of the mapping
ψ of the entire analog spacetime M as

∂ψðMÞ ¼ i0 ∪ J þ ∪ J − ð91Þ

where
(1) i0, known as spatial infinity, is the endpoint of the ψ

image of all spacelike curves in (M, g);
(2) J þ, known as future causal infinity, is the endpoint

of the ψ image of all future-directed causal curves in
(M, g);

(3) J −, known as past causal infinity, is the endpoint of
the ψ image of all past directed causal curves in
(M, g).

In order to specify the boundaries of the Carter-Penrose
diagram as shown in Fig. 2, it must be noted that the whole
diagram consists of four regions, denoted by I, II, III, and
IV. Regions I and III are subsonic, keeping in mind that we
do not anymore consider the usual sound speed as defined
in Eq. (7) to separate between the subsonic region and
supersonic region and consider the effective sound speed,
by allowing the phonons to propagate freely in any
direction. Thus both of these regions have future and past
causal infinities as their boundaries. These causal infinities
are numerically generated by setting the time to be very
large positive or negative numbers. The future null infin-
ities for region I and region III are denoted by J þ

I and J þ
III

respectively. Similarly, the past null infinities for region I
and region III are denoted by J −

I and J −
III respectively.

Now the concepts of causal future and past are applied
on the boundaries of the Carter-Penrose diagrams to find
black hole and white hole regions formally. But before we
delve into that an observation from the Carter-Penrose
diagrams should be noted. When we define a region as a
black hole or white hole in analog spacetime, it is done with
respect to either region I or region III. As previously
mentioned, both regions I and III are subsonic, making
them similar to regions of a universe outside any kind of
horizons. But as we see from the Carter-Penrose diagrams,
the two regions are connected by region II. As region II
corresponds to supersonic flow, we can guess that this
region will be a black hole or a white hole. As we will see
next, this region can be denoted as a black hole or white
hole region both, but it depends on the region with respect
to which we define its properties.
Now we focus on the features of region II and region IV.

We find that the intersection of region II with the causal
past of future null infinity of region I is null, i.e.,
II ∩ J−ðJ þ

I Þ ¼ ∅. Similarly we have IV ∩ J−ðJ þ
IIIÞ ¼ ∅.

This property establishes a formal mathematical definition
of a region which can be defined as cut off from
communication from the rest of the universe. As is
intuitively known, the black hole region is characterized
by this property of being cut off from the rest of the
universe. Region II is cut off from region I and region IV is
cut off from region III. Thus region II is a black hole region
as perceived from an observer in region I, and region IV is a
black hole region as perceived from region III. But as
previously mentioned, in the context of analog gravity, this
property of region II does not make it a black hole
universally and it can only be termed black hole from
the point of view of an observer in region I. But the black
hole horizons HBH, the boundary of the black hole region
separating it from the causal past of future null infinity, is a
hypersurface whose definition does not require the speci-
fication of where the observer is located explicitly. Thus
this particular causal boundary which is denoted as a black
hole horizon separates an black hole from its corresponding
universe, or in terms of acoustic geometry with which we
are concerned at this moment, the acoustic horizon is the
barrier between a subsonic and supersonic region where we
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take the definition of effective sound speed as defined in
Eq. (61) into consideration while we define a region to be
subsonic or supersonic. Mathematically, the definition of a
black hole horizon translates to

HBH ¼ ∂BH ∩ ∂J−ðJ þÞ; ð92Þ

where ∂ denotes the boundary of the respective region.
From the definition of the black hole horizon, inspection

of Fig. 2 implies that for both models, there are two black
hole horizons for the individual model we chose. One of
them is the boundary between region I and II, i.e., the outer
critical point rout and the other one is the boundary between
region III and region IV, i.e., the inner critical point rin. This
identification is true for accretion flow with conical height
function as well as flow with height function as prescribed
by Novikov and Thorne. In the case of Carter-Penrose
diagram for conical flow, the boundary of region I
and region II denotes the critical or sonic points which
are the same in this case. But for flow with height
prescription as described by Novikov and Thorne, if the
modified sound speed is not used, then we see that the line
“r ¼ outer sonic point” lies inside region II as has been
pointed out. Thus, in this case, the sonic point does not act
as the deciding boundary of propagation for linear pertur-
bation. Thus the redefinition of effective sound speed is
justified and one can use this definition not only at the
horizon as motivated previously, but also this redefinition
can be done in the entire acoustic spacetime or throughout
the manifold where the flow is defined.
Now we focus on the causal significance of region II as

observed from the point of view of an observer in region III.
We find that the intersection of region II with the causal
future of past null infinity of region III is null, i.e.,
II ∩ JþðJ þ

IIIÞ ¼ ∅. This property establishes a formal
mathematical definition of a region to which the universe
can never communicate. But unlike the black hole, com-
munication can be sent from the aforementioned region to
its corresponding universe. Thus region II intuitively
resembles the definition of a white hole in which no signal
can be sent from the universe, i.e., region III but signals can
reach to region III from region II. Here also the definition of
the white hole horizon HWH as the boundary of the white
hole region separating it from the causal future of past null
infinity does not require the specification of the position of
an observer explicitly. Mathematically, the definition of the
white hole horizon translates to

HWH ¼ ∂WH ∩ ∂JþðJ −Þ: ð93Þ

From our discussion on the definition of a black hole,
we see there is no event in the black hole region which
causally affects any events in the corresponding universe.
In the case of a white hole, there is no event in the
corresponding universe that will ever causally affect any

event inside the white hole. It is evident that if the
definition of modified sound speed is used then the
critical points will act as the acoustic black hole horizon.
The motivation for invoking the Carter-Penrose diagram
techniques to analog spacetime was to establish the
crucial role of critical points, but the role of shock as
a white whole horizon is not a feature that could be
readily anticipated. In [46] Abraham et al. invoked the
techniques of analog gravity to establish that shocks act
as white holes by invoking a certain quantity which goes
to zero at the white hole horizon. Constant height of
accretion disc in Kerr spacetime was used in this work.
Here we conclude the same thing but the connection
between Rankine-Hugoniot conditions and causal feature
of the location of the shock as established from our
analysis with Carter-Penrose diagram can further be
studied.

VI. PHASE PORTRAIT AND CARTER-PENROSE
DIAGRAM FOR ISOTHERMAL FLOW

The problem of nonisomorphism of critical points and
sonic points for adiabatic flow with height function as
prescribed by Novikov and Thorne was solved by
invoking the definition of effective sound speed and
establishing its global significance by causal structure
analysis of a Carter-Penrose diagram. But we found that
not only does this solve the aforementioned noniso-
morphism problem, but it also establishes shock as a
white hole horizon. Thus the causal significance that can
be extracted by analyzing a Carter-Penrose diagram is
independent of the occurrence of any problem and can be
pursued for its own merit to analyze analog spacetime.
Thus the previously used framework on the adiabatic
flow can be used to analyze the analog metric emerging
from the isothermal flow also. In this section we present
the phase portraits for isothermal flow and find that the
problem of nonisomorphism of critical points and sonic
points are not present for isothermal flow. After we
present the stationary solutions and choose shocked
multitransonic flow as before, the framework for
Carter-Penrose diagram is used and the corresponding
diagrams are presented.
Now for isothermal flow, the governing fluid equations

will have the same form as used in adiabatic flow. The
characteristic of isothermal flow will be manifested in the
results by the equation of state, given by

p ¼ c2sρ ¼ R
μ
ρT ¼ kBρT

μmH
ð94Þ

where T is the bulk ion temperature, R is the universal gas
constant, kB is the Boltzmann constant, mH is the mass of
the hydrogen atom, and μ is the mean molecular mass of a
fully ionized hydrogen atom. Now integrals of motions
must be constructed as was done for adiabatic flows.
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A. Phase portrait

The first conserved quantity obtained by integrating
Euler equation (11) turns out to be

ξ ¼ vtρc
2
s ¼ ρc

2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

Bð1 − u2Þ

s
: ð95Þ

The second constant of integration obtained by integrat-
ing the continuity equation has the same form as described
for polytropic accretion, given by Eq. (18).
Now using these two constant of integration, we

can obtain the derivative of advective velocity u0 for
isothermal flow as was done for polytropic flow. The
expression for a derivative of advective velocity corre-
sponding to conical height function given by Eq. (12) turns
out to be (see [62])

du0
dr

����iso
CF

¼ u0ð1 − u20Þ½c2s0 2r2−3rþa2
Δr þ 1

2
ðB0
B − Δ0

ΔÞ�
u20 − cs02

¼ NCF

DCF

����iso:
ð96Þ

The expression of derivative for height function (see
[24]) as prescribed by Novikov and Thorne given by
Eq. (13) is

du0
dr

����iso
NT

¼
u0ð1 − u20Þ½c2s0ðΔ

0
2Δ þ f0

fÞ þ 1
2
ðB0
B − Δ0

ΔÞ�
u20 − c2s0

¼ NNT

DNT

����iso:
ð97Þ

Now we see that for isothermal flow, one does not
anymore have to worry about the issue of sonic points and
critical points not being the same as is evident from
inspection of the denominator of both the derivatives stated
above. Thus we will expect that a Carter-Penrose diagram
will also establish this trivial feature and there is no need to
differentiate between the sound speed and the speed of
propagation of the first order perturbation in the accreting
matter.
We present the phase portraits for isothermal flow

for both the conical disc height and flow with height
prescription as described by Novikov and Thorne in
Fig. 3.
From the family of phase portraits, only critical flows

have been demonstrated in Fig. 3. We will again choose the
accretion flow from well outside the outer critical point,
passing through the outer critical point to the shock,
making a discontinuous jump from the outer accretion
branch to the inner accretion branch and then again
becoming transonic at the inner critical point and flowing
inside it. The purpose of this is again to obtain tran-
sonic flow.

(a) (b)

FIG. 3. (a) Phase portrait for isothermal flow with conical disc height. (b) Phase portrait for isothermal flow with height expression
formulated by Novikov and Thorne. Both phase portraits have been drawn for isothermal accretion with the set of parameter values
λ ¼ 3.68 and a ¼ 3.0. The temperatures are written in the unit of 1010 K. For both pictures the blue solid lines correspond to the
accretion branch whereas the orange dashed lines correspond to the wind branch. The innermost critical point is denoted as rin and
outermost critical point is denoted as rout. S1 corresponds to the point in the phase portrait in the accretion branch through the outer
critical point where the shock may occur and S2 corresponds to the point where the shock occurs in the accretion branch through the
inner critical point. The same radial distance of S1 and S2 corresponds to the fact that the shock is infinitesimally thin. The dotted black
line joining S1 and S2 corresponds to the discontinuous jump in the shock location. For both conical flow and flow with height as
formulated by Novikov and Thorne, the sonic points and critical points coincide in the case of isothermal flow. The two points rin and S2
do not coincide in (a), although it may seem so from the figure as the radial distance between the two is very small.
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B. Linear perturbation scheme for isothermal flow

The perturbation schemewill be the same as the one used
in the polytropic flow and the time-dependent accretion
variables are again small time-dependent linear perturba-
tions added to the time-independent stationary values as
described in Eq. (25).

1. Perturbation of Euler equation or the irrotationality
condition

For isothermal flow, the irrotationality condition turns
out to be [50]

∂μðρc2s vνÞ − ∂νðρc2s vμÞ ¼ 0 ð98Þ

which can be obtained from the equation of state for
isothermal flow along with the two fluid equations.
From the irrotationality condition [Eq. (98)] with μ ¼ t
and ν ¼ ϕ and with axial symmetry we have

∂tðhvϕÞ ¼ 0; ð99Þ
and, for μ ¼ r and ν ¼ ϕ and the axial symmetry, we have

∂rðρc2s vϕÞ ¼ 0: ð100Þ

So ρc
2
s vϕ is a constant of motion and Eq. (99) gives

∂tvϕ ¼ −
vϕc2s
ρ

∂tρ; ð101Þ

which has exactly the same form as Eq. (34), although in
the case of isothermal flow, cs is a constant whereas it was a
function of radial distance in the case of adiabatic flow. As
Eqs. (35)–(40) are derived from Eq. (34), and they are not
dependent on the geometry on the disc, rather on the
background Kerr metric elements, these equations will
remain the same for isothermal flow.

2. Perturbation of continuity equation

In the case of isothermal flow for accretion disc in
hydrostatic equilibrium along the vertical direction, i.e.,
disc with height function as prescribed by Novikov and
Thorne, we have

HðrÞ ¼
�
p
ρ

�1
2

fðrÞ ¼ c2sfðrÞ ¼ FðrÞ ð102Þ

where FðrÞ is purely a function of radial distance as sound
speed cs is a constant in the case of isothermal flow. In the
case of conical flow, the height function is anyway a
completely radial function where height does not depend
on the flow variable. Thus we do not need separate

treatment for perturbation in the case for isothermal flow,
as was necessary for adiabatic flows. Henceforth for the
isothermal case

Hθ1ðrÞ ¼
H1ðrÞ
r

¼ 0: ð103Þ

Thus the perturbed mass accretion rate here will have the
form

Ψ1 ¼
ffiffiffiffiffiffi
−g

p ½ρ1vr0Hθ0 þ ρ0vr1Hθ0� ð104Þ

instead of Eq. (28), which represented this perturbed
quantity in the case of adiabatic flow in hydrostatic
equilibrium.
Using the definition of Ψ and Ψ1 from Eqs. (26) and

(104) in Eq. (43),one yields

−
∂rΨ1

Ψ0

¼ η2
vr0

∂tvr1 þ
vt0
vr0ρ0

�
1þ η1ρ0

vt0

�
∂tρ1; ð105Þ

and taking the time derivative of Eq. (104), one yields

∂tΨ1

Ψ0

¼ 1

vr0
∂tvr1 þ

∂tρ1
ρ0

ð106Þ

instead of Eqs. (44) and (45).
We see that Eqs. (105) and (106) are basically Eqs. (44)

and (45) with β ¼ 0. The reason for this is that there is no
contribution of the first order perturbation of height
function in the perturbation of mass accretion rate in
Eq. (104) as was the case in Eq. (28).
Thus Eqs. (46) and (47) will be applicable for the

isothermal flow with β ¼ 0.
Now putting μ ¼ t and ν ¼ r in the irrotatonality

condition for isothermal flow, i.e., Eq. (98), it is linearly
perturbed and the time derivative is taken. This yields

∂tðρc
2
s
0 grr∂tv

r
1Þ þ ∂t

�
ρc

2
s
0 grrc

2
s0v

r
0

ρ0
∂tρ1

�
− ∂rðρc

2
s
0 ∂tvt1Þ

− ∂r

�
ρc

2
s
0 vt0c

2
s0

ρ0
∂tρ1

�
¼ 0: ð107Þ

which exactly resembles Eq. (48), if h0 in the aforemen-

tioned equation for adiabatic flow is replaced by ρc
2
s
0 for the

isothermal case here. Now using Eq. (49) in Eq. (107), and

dividing the equation by ρc
2
s
0 one yields Eq. (51) again. Thus

using ∂tvr1 and ∂tρ1 in Eq. (51) using Eq. (46) with β ¼ 0

one obtains
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∂t

�
kðrÞ

�
−gtt þ ðvt0Þ2

�
1 −

1

c2s

��
∂tΨ1

�
þ ∂t

�
kðrÞ

�
vr0v

t
0

�
1 −

1

c2s

��
∂rΨ1

�

þ ∂r

�
kðrÞ

�
vr0v

t
0

�
1 −

1

c2s

��
∂tΨ1

�
þ ∂r

�
kðrÞ

�
grr þ ðvr0Þ2

�
1 −

1

c2s

��
∂rΨ1

�
¼ 0 ð108Þ

where kðrÞ is a conformal factor whose exact form is not
required for the present analysis, as mentioned in the case
of adiabatic flow. Equation (52) can be written in the form
of wave equation (53), where in the case of isothermal flow
fμν is given by

fμν ¼ kðrÞ
"
−gtt þ ðvt0Þ2ð1 − 1

c2s
Þ vr0v

t
0ð1 − 1

c2s
Þ

vr0v
t
0ð1 − 1

c2s
Þ grr þ ðvr0Þ2ð1 − 1

c2s
Þ

#
:

ð109Þ

The acoustic spacetimeGμν metric in the case of isothermal
flow thus turns out to be

Gμν ¼ k1ðrÞ
"−grr − ð1 − 1

c2s0
Þðvr0Þ2 vr0v

t
0ð1 − 1

c2s0
Þ

vr0v
t
0ð1 − 1

c2s0
Þ gtt − ð1 − 1

c2s0
Þðvt0Þ2

#

ð110Þ

where k1ðrÞ is the previously mentioned conformal factor
arising due to the process of inverting Gμν in order to
yield Gμν. Again we do not need the exact expression for
k1ðrÞ.

C. Carter-Penrose diagram of acoustic metric
for isothermal flow

The construction of Carter-Penrose diagrams are exactly
the same as described for the case of adiabatic flow. All the
coordinate transformations are the same once one obtains
the acoustic metric for a flow. The effective sound speed is
the same as the usual stationary thermodynamic definition
of sound speed in the case of isothermal accretion. The
qualitative feature for the Carter-Penrose diagram is the
same as what was illustrated in the case of adiabatic flow.
Here also multitransonicity gives rise to a pair of black
holes connected by shock as illustrated in Fig. 4. The
similarity of the qualitative nature of the Carter-Penrose
diagrams invoke similar causal analysis as was done for
adiabatic flow. The difference between the Carter-Penrose

(a) (b)

FIG. 4. (a) Carter-Penrose Diagram for isothermal flow with conical disc height. (b) Carter-Penrose diagram for isothermal flow with
height expression formulated by Novikov and Thorne. In both the Carter-Penrose diagrams for isothermal flow, region I marked with
blue solid lines corresponds to the flow outside the outer critical point rout up to infinity, where flow is subsonic. Region II marked
with yellow dashed lines corresponds to the flow inside rout and outside rshock, where flow is supersonic. Region III marked with green
dash-dotted lines corresponds to the flow inside the shock rshock and outside the inner critical point rin, where flow is again subsonic.
Region IV marked with red dotted lines corresponds to the flow inside the inner critical point rin up to the minimum radius where flow
can be extended outside the real Kerr black hole horizon and the flow is supersonic again. All the lines correspond to r ¼ constant lines
in their corresponding regions expect for the lines at boundaries where the r ¼ constant lines coincide with t ¼ constant lines where the
time values are as specified in the figures.
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diagram of adiabatic flow with height as prescribed by
Novikov and Thorne and isothermal flows for both the disc
heights is that whereas for the former case the sonic points
are not the acoustic black hole horizons; for the later set of
models, the sonic points and the acoustic black hole
horizons are isomorphic. All the conclusions drawn in
the case of adiabatic flow for conical disc height are
although applicable for isothermal flows with both disc
heights as the sonic points are isomorphic with the acoustic
black hole horizons for these cases. Thus we restrain
ourselves from the repetitive analysis and present the
diagrams which are self-explanatory following the discus-
sion of adiabatic flow.

VII. CONCLUDING REMARKS

Accretion flow in hydrostatic equilibrium along the
transverse direction differs from flows with other geomet-
rical configurations in that, for flow in hydrostatic equi-
librium the critical points do not coincide with the
corresponding conventional sonic points. By conventional
Mach number, we mean that the associated characteristic
speed is assumed to be the stationary sound speed defined
by c2s ¼ γp=ρ, whereas for acoustic geometry embedded
within the accretion flow, the speed of propagation of the
linear perturbation is taken to be the dynamical sound speed
and is designated as the effective sound speed ceff as
defined at the critical point. Such a standalone role (in
comparison to the other flow geometries) of the flow in
hydrostatic equilibrium is because of the presence of the
(stationary) sound speed in the expression of the disc
height. The expression for the disc height is obtained by
balancing the gravitational force with the pressure force and
while doing so, a certain set of idealized assumptions have
been made where the derivative of the height function is
approximated to the ratio of the local height to the radial
distance in Newtonian limit. Such approximation is made
since it has not been possible to construct and solve the
Euler equation along the vertical direction (in addition to
the radial Euler equation as defined and solved along the
equatorial plane), and hence the radial sound speed enters
in the expression of the disc height. A disc height obtained
by such set of approximation is not completely realistic but
that is the best one can do for accretion of ideal hydro-
dynamic fluid. For non ideal non hydrodynamic flow,
certain other prescriptions are available which have been
obtained by employing the non-LTE radiative transfer
method or by using the Grad-Shafranov equations for
the magnetohydrodynamics or MHD flow [70–74]. For
our purpose, however, we stick to the ideal fluid for the
sake of Lorentz invariance.
We have demonstrated that an acoustic white hole forms

at the shock location. At the shock location, the dynamical
velocity as well as the characteristic sound speed changes
discontinuously, and hence their space derivatives diverge.
This does not allow us to compute the acoustic surface

gravity at the shock location. Acoustic surface gravity at the
white hole, thus, diverges. That is primarily because of the
fact that the shock has been assumed to have infinitesimally
small (practically zero) thickness. Had it been the case that
we would consider a shock with finite thickness, the
acoustic surface gravity at the acoustic white hole would
be extremely large but finite. Possibilities of having such
unusually large acoustic surface gravity have been dis-
cussed in other contexts. It is to be mentioned that a shock
with finite thickness may have different temperature at its
two sides, leading to the dissipation of energy at the shock
through radiation. Since our analog model requires the fluid
to be nondissipative, we are somewhat compelled to
consider shock with zero thickness only.
Figure 4 depicts the corresponding Carter-Penrose dia-

gram of isothermal accretion of matter flow in hydrostatic
equilibrium along the transverse direction where the disc
height is provided by the work of Novikov and Thorne [60].
It is evident from the figure that there is a lack of continuity
between the region represented by yellow lines and that by
green lines. Such a trend in the causal structure indicates
that the region from the outer sonic point to the shock
location does not cover the entire manifold of analog
spacetime. The shape of the terminal green line represent-
ing the shock location proves that the shock is the boundary
from which all future directed null sonic trajectories in the
region between rout and rsh should escape ultimately to
the subsonic region between rsh and rin. This establishes the
shock to be the white hole with respect to any observer from
the aforementioned subsonic region. The problem with this
interpretation is that the region just outside the green line
representing rsh is not in the manifold, as mentioned. This
is the artifact of the situation that the flow becomes
discontinuous at the shock. This happens because the kind
of shock we consider has zero thickness, i.e., we have not
been able to deal with a shock with finite thickness. It is
expected that a continuous flow, which is a consequence of
the finite width of the shock, will not have the problem of
exclusion of a part of the manifold.
For multitransonic shocked flow, accreting matter first

encounters the outer sonic point, that is, as if it “disappears”
from the “outer acoustic universe” (spacetime spanned from
infinity up to the outer sonic point) once it becomes
supersonic for the first time. It means that once it crosses
the outer acoustic black hole type horizon, i.e., the outer
sonic point, no sonic signal emitted by any observer
comoving with the matter will be able to reach any other
observer situated in between infinity and the outer sonic
point (observer comoving with subsonic flow). Once the
supersonic matter, however, encounters the shock, the
postshock accretion flow resembles matter which has been
“thrown out” to “another universe” through the acoustic
white hole, i.e., the stationary shock. The overall phenomena
is equivalent to disappearance of matter from one universe
through a black hole and reappearance of thatmatter to some
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other universe through a white hole. Such acoustic black-
hole–white-hole combination, thus acts as a sonic analog of
a wormhole. In our next work, we plan to introduce the
properties of such acoustic worm holes in detail.
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