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We study disk galaxies in the framework of general relativity to focus on the possibility that, even in the
low energy limit, there are relevant corrections with respect to the purely Newtonian approach. Our analysis
encompasses the model by considering both a low energy expansion and exact solutions, making clear the
connection between these different approaches. In particular, we focus on two different limits: the well-
known gravitomagnetic analogy and a new limit, called “strong gravitomagnetism,” which has corrections
in c of the same order as the Newtonian terms. We show that these two limits of the general class of
solutions can account for the observed flat velocity profile, which is contrary to what happens using
Newtonian models, where a dark matter contribution is required. Hence, we suggest a geometrical origin
for a certain amount of dark matter effects.
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I. INTRODUCTION

One of the evidences supporting the existence of “dark
matter” comes from the observations of the rotation curves
of galaxies, which are flat: contrary to what is expected on
the basis of Newtonian dynamics [1]. In this context,
Newtonian gravity rather than general relativity (GR) is
used because far from the galactic center (where the flat
behavior is observed), the gravitational field is reasonably
supposed to be weak and stars are not moving at relativistic
speeds. Nonetheless, it was conjectured that GR may have a
role in this context; in particular, the problem of galactic
rotation curves was studied by considering both exact
solutions of GR equations [2–5] and weak-field approx-
imations [6–8]. Indeed, there are general relativistic effects
without a Newtonian analog, such as the gravitomagnetic
effects, deriving from mass currents. In the above-cited
papers, using different approaches, it was suggested that if
these non-Newtonian effects were taken into account, the
impact of dark matter in explaining the observations could
be different.
The purpose of this paper is to focus on the role that

gravitomagnetic and, more in general, post-Newtonian
effects might have in galactic dynamics. In order to trace
the impact of these effects from a very general viewpoint,

we will not resort to a specific galaxy model; but, we will
emphasize the modifications introduced by general relativ-
istic effects starting from very few hypotheses, which
basically refer to the underlying symmetries. In particular,
in Sec. II, we describe how the weak-field approach to the
solution of Einstein’s equations, which leads to the well-
known gravitoelectromagnetic analogy [9,10], can be used
to investigate the possible impact of GR effects on galactic
rotation curves. Subsequently, in Sec. III, we focus on the
exact general relativistic solutions for an axisymmetric
stationary system coupled to dust [5], discussing its physical
properties and the relevant limits. A new weak-field limit of
the general solution that we call strong gravitomagnetism
(SGM) is introduced in Sec. IV C; we suggest that it can
provide an interesting model for disk galaxies. In this
regard, we compare this limit with the Newtonian one
(Sec. IV B) and we highlight the differences; unlike the
Newtonian model, the SGM limit can naturally provide a
flat velocity curve, and the presence of a nondiagonal term
in the metric can reduce the amount of energy density
needed to sustain the motion of the galaxy. Eventually,
in Sec. VI, we consider the rigidly rotating solution; it
coincides with the Balasin–Grumiller model [3], which
recently gained relevance because, starting from this model,
Crosta et al. [4] showed a good agreement between the
model and the GAIA [11,12] data for the Milky Way. We
show that this model, being a rigidly rotating solution,
presents some unphysical features that need to be addressed:
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for instance, the redshift (or blueshift) due to the emission of
photons from the galaxy measured from an asymptotic
inertial observer is linearly increasing. Before starting with
the technical discussion, we point out that the role of
gravitomagnetism, and of the other orders in c−n, is usually
understood in vacuum, i.e., outside of the source. In this
configuration, it makes sense to say that there is a dominant
Newtonian contribution plus corrective terms of higher
order in c−n. What we do here is substantially different,
and the usually adopted expansion in vacuum breaks down.
This is due to the fact that we are not analyzing the
equations in vacuum but “inside” the matter distribution,
i.e., within the galaxy. In Sec. II, we will stress again this
important difference.

II. GRAVITOMAGNETIC EFFECTS IN GALAXIES

It possible to write the solution of Einstein’s field
equations in weak-field and slow-motion approximation
by exploiting a well-known analogy with Maxwell
equations: this is the so-called “gravitoelectromagnetic”
formalism (see, e.g., Ruggiero and Tartaglia [9], and
Mashhoon [10]); accordingly, the line element describing
this solution is

ds2 ¼ −c2
�
1 − 2

Φ
c2

�
dt2 −

4

c
ðA · dxÞdt

þ
�
1þ 2

Φ
c2

�
δijdxidxj: ð1Þ

In the above equation, the gravitoelectric Φ and gravito-
magnetic A potentials, in stationary conditions, are
solutions of the Poisson equations

∇2Φ ¼ −4πGρ; ð2Þ
∇2A ¼ −

8πG
c

j; ð3Þ

in terms of the mass density ρ and current j of the sources.
Notice that, in the gravitoelectromagnetic formalism, in

analogy with the electric potential of a point charge, Φ
differs by a minus sign from the actual Newtonian potential
of point mass M, U ¼ − GM

jxj , which we use in Sec. IV.
Starting from the above potentials, in stationary condi-

tions, we may define the gravitoelectric E and gravitomag-
netic B fields

E ¼ −∇Φ; ð4Þ
B ¼ ∇ ×A: ð5Þ

Using these fields, Einstein’s equations can be written in
analogy to Maxwell’s equations. In addition, the spatial

component of the geodesic equation (up to linear order in jvj
c )

is written in terms of Lorentz-like force acting upon a test
mass m:

m
dv
dt

¼ −mE − 2m
v
c
× B: ð6Þ

This formalism is useful because it allows us to express GR
effects in terms of known electromagnetic ones; for instance,
the Lense–Thirring effect can be explained in analogy with
the precession of a magnetic dipole in a magnetic field (see,
e.g., Iorio et al. [13]). However, this formalism has limi-
tations (for instance, the geodesic equation does not take a
Lorentz-like form in nonstationary conditions, as discussed
by Ruggiero [14]), and we should not forget that it is just an
approximation of the full theory.
In the context of the study of galactic dynamics, Ludwig

[7] considered the set of gravitational equations for a fluid
of stars modeled as dust; in particular, he solved, in
stationary conditions, the momentum equation [Eq. (6)]
and the source equations [Eqs. (2) and (3)] to obtain self-
consistent solutions for v,A, andΦ; and he showed that the
impact of gravitomagnetic effects on the rotation curves is
not negligible.
Without using a specific model for the density profile of

a galaxy, it is possible to deduce that gravitomagnetic
effects may have a relevant impact on the galactic rotation
curves, as discussed by Ruggiero et al. [8]. To this end, we
consider dust particles steadily rotating around a sym-
metry axis and use cylindrical coordinates fr;φ; zg such
that z is the rotation axis; ur, uφ, and uz are the unit
vectors. If Ω ¼ Ωuz is the rotation rate and x is the
position vector of a dust particle, its velocity turns out to
be v ¼ Ω × x; and Ω can be a function of r and z because
axial symmetry is assumed. Accordingly, using a purely
Newtonian model in a stationary condition, the Poisson
equation can be written as

4πGρ ¼ −∇ · ½ðv · ∇Þv�; ð7Þ

where v is the velocity field of the fluid: taking into
account that v ¼ Ωruφ ¼ vuφ, from Eq. (7), we obtain

4πGρ ¼ 2Ω2 þ 2Ω
∂Ω
∂r

r ¼ 2v
r
∂v
∂r

: ð8Þ

In this equation, the matter density ρ is locally related to
the rotation rate Ω and its derivative. If we focus on the
regime where the rotation curves are flattened, because it
is v ¼ Ωr ≃ constant, from Eq. (8), we get ρ ¼ 0; accord-
ingly, using a Newtonian approach, it is not clear how to
link the matter density to the rotation rate in the flat zone.
Things are quite different if we work in a GR context: in

weak-field and slow-motion approximation. Indeed,
exploiting the above described analogy with electromag-
netism, Eq. (8) becomes

4πGρþ 2

c
B · ω ¼ −∇ · ½ðv · ∇Þv�: ð9Þ
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In the above equation, ω ¼ ∇ × v is the Newtonian fluid
vorticity. Accordingly, the coupling between the gravito-
magnetic field and the fluid vorticity modifies the local
relation between the density and the velocity of the fluid.
If we set ρ ¼ ρN in Eq. (8) to denote the density measured
in a Newtonian framework and ρ ¼ ρN þ δρ in Eq. (9),
where δρ is the extra density due to the coupling between
the gravitomagnetic field and the fluid vorticity, we obtain

δρ ¼ −
1

2πGc
B · ω: ð10Þ

This approach shows that, even in weak-field conditions,
neglecting post-Newtonian effects might have an impact
on the estimate of the mass density and, in turn, this could
contribute to a different evaluation of the dark matter
content.
The impact on the evaluation of the matter content

can also be deduced by the extension of the virial theorem
in the gravitoelectromagnetic case, which was studied by
Astesiano [15]:

�Z
ρv2d3x −

1

2

Z
ρΦd3x −

1

8πG

Z
Hd3x

�
¼ 0; ð11Þ

H ≔ ð∂îAĵÞ2 − ð∂îAĵÞð∂ĵAîÞ; ð12Þ

where î; ĵ ¼ fx; y; zg. This result can reduce the amount
of matter needed to sustain a motion with velocity v as
compared to the Newtonian version of the same theorem.
Remarkably, the virial theorem can be written in a more
suggestive way:

�
2

Z
ρv2d3x −

1

8πG

Z
ðE2 þ B2Þd3x

�
¼ 0: ð13Þ

Using the analogy with electromagnetism, we see that the
second term is the total energy stored in the gravity fields.
Therefore, we have the balance equation

2×energyof freedust ðkineticenergyÞ ¼ energyof gravity:

ð14Þ

There is another important effect of the gravitomagnetic
field; in fact, circular orbits in planes orthogonal to the
rotation axis are allowed, thanks to the presence of the
gravitomagnetic force that balances the Newtonian force in
the direction of the rotation axis, which is not possible in
purely Newtonian gravity (see, e.g., Bonnor [16]).
The above arguments do not require a specific model for

the mass distribution, which is of course important if we
want to estimate the order of magnitude of the gravitomag-
netic field. The latter was recently estimated in a paper by
Toth [17]. In order to evaluate the galactic gravitomagnetic

field to estimate its impact on the rotation curves, the author
considered the following gravitomagnetic potential:

A ¼ G
c
J × x
jxj3 ; ð15Þ

which corresponds to the case of a compact source of
angular momentum J. From this potential, it is possible to
obtain the gravitomagnetic field

B ¼ G
c

�
3ðJ · xÞx

jxj5 −
J

jxj3
�

ð16Þ

with its dipolelike behavior. We point out that the grav-
itomagnetic potential [Eq. (15)] is not a solution of the
Poisson equation [Eq. (3)] within the mass distribution but
in vacuum. Consequently, it is hard to accept that the
expression [Eq. (16)] can be used to estimate the galactic
gravitomagnetic field. In addition, in doing so, it is
assumed that the gravitomagnetic field at a given location
is determined only by the internal mass distribution; the
underlying idea is that the gravitational field is determined
by the internal mass distribution only, in analogy with what
happens in Newtonian gravity under suitable symmetry
hypotheses. Actually, things are more complicated when
we are dealing with gravitomagnetic fields in GR; for
instance, the gravitomagnetic field nearby the center of a
rotating mass ring (see Ruggiero [18]) is not null, but it is
given by

B ¼ 2G
cR3

J; ð17Þ

where R is the radius of the ring, and J is its angular
momentum. Or, if we consider a uniformly rotating
hollow homogeneous sphere, the gravitomagnetic field
(see Ciufolini et al. [19]) is

B ¼ 4GM
3cR

Ω; ð18Þ

where M is the mass of the sphere, R its radius, and Ω its
angular velocity. Notice that in the latter case, the corre-
sponding gravitational field is null; this shows that it is not
generally true that gravitomagnetic fields are always
smaller than the Newtonian ones.
Accordingly, we suggest that the estimate of the galactic

gravitomagnetic field obtained by Toth [17] is based on an
oversimplified model, and hence cannot be used as an
argument against the impact of GR on galactic rotation
curves.
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III. THE GENERAL RELATIVISTIC
AXISYMMETRIC STATIONARY SYSTEM

COUPLED TO DUST

Following Astesiano et al. [5], to describe a single disk
galaxy, we consider neutral, stationary, and axisymmetric
dust coupled to Einstein’s equations. Using cylindrical
coordinates ðct; r;ϕ; zÞ with space-time signature
ð−1; 1; 1; 1Þ,1 matter is assumed to flow along the Killing
vectors ∂t and ∂ϕ and, here and henceforth, functional
dependence on the coordinates ðr; zÞ—which are not asso-
ciated to Killing vectors—is allowed only. If ρ denotes the
matter density, the energy momentum tensor is given by

Tμνðr; zÞ ¼ ρðr; zÞuμðr; zÞuνðr; zÞ;

uμðr; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Hðr; zÞp ð1; 0; 0;Ωðr; zÞÞ; ð19Þ

where Ωðr; zÞ ¼ dϕ
dt ¼ uϕ

ut . As shown by Stephani et al. [20],
the solution of Einstein’s equations is completely determined
by the choice of a negative function HðηÞ, on which the
physical properties depend. Afterward, it is possible to
obtain an auxiliary function F ðηÞ using2

F ¼ 2ηþ r2
Z

H0

H
dη
η
−
Z

H0

H
ηdη: ð20Þ

The remaining equations of motion are

F ;rr −
1

r
F ;r þ F ;zz ¼ 0; ð21Þ

Ω ¼ 1

2

Z
H0 dη

η
: ð22Þ

After choosing HðηÞ and the solution of Eq. (21), we can
calculate the metric components as

gtt ¼
ðH − ηΩÞ2 − r2Ω2

H
;

gtϕ ¼ η2 − r2

ð−HÞ Ωþ η;

gϕϕ ¼ r2 − η2

ð−HÞ : ð23Þ

In addition, the remaining metric components

gzz ¼ grr ≕ eΨ ð24Þ

are determined by the following equations:

Ψ;r ¼
1

2r
½ðgttÞ;rðgϕϕÞ;r − ðgttÞ;zðgϕϕÞ;z

− ððgtϕÞ;rÞ2 þ ððgtϕÞ;zÞ2�; ð25Þ

Ψ;z ¼
1

2r
½ðgttÞ;zðgϕϕÞ;r þ ðgttÞ;rðgϕϕÞ;z − 2ðgtϕÞ;rðgtϕÞ;z�:

ð26Þ

Eventually, the matter density is given by

8πGρ ¼ η2r−2ð2 − ηlÞ2 − r2l2

4grr

η2;r þ η2;z
η2

; ð27Þ

where l ¼ H0
H .

Because it will be useful in what follows, we notice that
Eq. (22) corresponds to the two following conditions, with
a little abuse of notation:

H;r − 2ηΩ;r ¼ 0; H;z − 2ηΩ;z ¼ 0: ð28Þ

We suppose that a galaxy has a finite extension: as a
consequence, flatness at space infinity r; z → ∞ is
expected, which means that, in this limit, the metric reduces
to the Minkowski one:

gtt ¼−1; gtϕ ¼ 0; gϕϕ ¼ r2; grr ¼ gzz ¼ 1: ð29Þ

A. The projection along the word lines of the ZAMO

The space-time metric that describes our model of the
galaxy is stationary and axisymmetric; in this case, care
must be paid in choosing suitable observers. In fact, it is
known that the use of static observers at rest as seen from
infinity is not a good choice because these observers are not
defined by local properties of space-time; in addition, they
cannot exist in some regions (see, e.g., Bardeen [21]). So,
rather than referring quantities to a coordinate frame, it is
better to use an orthonormal tetrad carried by the so-called
“locally nonrotating observers” or “zero angular momentum
observers” (ZAMOs) because their angular momentum
vanishes. It turns out that these observers are natural
candidates to analyze physical processes in the simplest
way because their motion compensates, as much as pos-
sible, for the dragging effect due to the angular momentum
of the source [22,23]. Accordingly, we choose the ZAMO to
describe the dust motion. As we said, these observers are
nonrotating, in the sense that they are orthogonal to the
constant time-spacelike hypersurfaces Σt and define a field
of one forms

1For the sake of simplicity, in this section, we use units such
that c ¼ 1.

2Here and henceforth, we use the following notation: for any
function of one argument, like HðηÞ, with a prime, we mean the
derivative with respect to its argument; in addition, we use a
comma to indicate the partial derivative with respect to a given
coordinate.
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n ¼ rffiffiffiffiffiffiffigϕϕ
p dt: ð30Þ

The full orthonormal frame they carry with themselves can
be constructed choosing

eðtÞ ¼ n; eðϕÞ ¼ ffiffiffiffiffiffiffi
gϕϕ

p ðdϕ − χdtÞ;
eðrÞ ¼ eΨ=2dr; eðzÞ ¼ eΨ=2dz; ð31Þ

where, for simplicity, we defined

χ ≡ −
gtϕ
gϕϕ

¼ Hη

ðr2 − η2Þ þΩ: ð32Þ

Actually, χ is the angular velocity of the ZAMO frame as
seen from an asymptotic inertial observer at infinity [22].
Notice that, thanks to the definition in Eq. (32), the ZAMO
consistently satisfies the requirement of zero angular
momentum: gϕϕχ þ gϕt ¼ 0.
The relevant elements of the dual basis are found to be

eðtÞ ¼
rffiffiffiffiffiffiffigϕϕ

p gtt
�
∂t þ

gtϕ

gtt
∂ϕ

�
¼

ffiffiffiffiffiffiffigϕϕ
p
r

ð∂t þ χ∂ϕÞ; ð33Þ

eðϕÞ ¼
1ffiffiffiffiffiffiffigϕϕ

p ∂ϕ: ð34Þ

Using these definitions, the four velocity of the dust
[Eq. (19)] can be rewritten as

u ¼ rffiffiffiffiffiffiffigϕϕ
p 1ffiffiffiffiffiffiffiffi

−H
p

�
eðtÞ þ

gϕϕ
r

ðΩ − χÞeðϕÞ
�
; ð35Þ

On the other hand, the three velocity of the dust
measured by the ZAMO is

vðaÞ ¼ uμeðaÞμ

uμeðtÞμ
: ð36Þ

Using the expressions [Eq. (35)] of the four velocity and the
metric components [Eq. (23)] and taking into account the
orthonormal features of the tetrad, we obtain

vðϕÞ ¼ uμeðϕÞμ

uμeðtÞμ
¼ η

r
≐ v: ð37Þ

As a consequence, we can use v to give a physical meaning
to the mathematical function η: as we are going to show,
this function is simply related to the angular momentum per
unit mass of a dust element.

In addition, we may define

uμeðtÞμ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ≐ γ: ð38Þ

Exploiting the above definitions, it is possible to write the
four-velocity vector of the dust [Eq. (35)] in the very simple
form

u ¼ γðeðtÞ þ veðϕÞÞ: ð39Þ
Because rffiffiffiffiffigϕϕ

p ¼ ffiffiffiffiffiffiffiffi
−H

p
γ, we may write the elements of the

basis tetrad in the form

eðtÞ ¼
ffiffiffiffiffiffiffiffi
−H

p
γdt; eðϕÞ ¼ rffiffiffiffiffiffiffiffi

−H
p

γ
ðdϕ − χdtÞ; ð40Þ

so that the metric turns out to be

ds2 ¼Hγ2dt2− r2
1

Hγ2
ðdϕ− χdtÞ2þ eΨðdr2þdz2Þ: ð41Þ

Notice that, from Eq. (32), we obtain

χ ¼ v
r
Hγ2 þΩ ð42Þ

which can be written as

rΩ ¼ rχ − vγ2H: ð43Þ

This can be seen as a generalization of the usual relation
v ¼ rΩ of Newtonian mechanics, which is restored in the
limit where the effects of χ are negligible and −γ2H → 1.
We notice that rΩ represents the “coordinate velocity,” i.e.,
the velocity of the dust as measured by inertial observers at
rest at infinity.
In addition, we may write the energy momentum tensor

[Eq. (19)] in the form

T ¼ ρu ⊗ u ¼ ργ2ðeðtÞ þ veðϕÞÞ ⊗ ðeðtÞ þ veðϕÞÞ; ð44Þ

from which it is now easy to read the corresponding tetrad
components

TðtÞðtÞ ¼ γ2ρ; TðtÞðϕÞ ¼ γ2ρv; TðϕÞðϕÞ ¼ γ2ρv2: ð45Þ

The Killing vectors ∂t and ∂ϕ define associated conserved
quantities along the flow of the dust:

E ≔ −uμð∂tÞμ ¼
1ffiffiffiffiffiffiffiffi
−H

p ½γ2ð−HÞ þ rvχ�

¼ 1ffiffiffiffiffiffiffiffi
−H

p ½γ2ð−HÞ þ ηχ� ð46Þ

M ≔ uμð∂ϕÞμ ¼
1ffiffiffiffiffiffiffiffi
−H

p rv ¼ 1ffiffiffiffiffiffiffiffi
−H

p η ð47Þ
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The first one E is the energy (per unit mass), whereas the
second one M is the angular momentum (per unit mass),
which gives a physical interpretation to η.

B. Light frequency shift measured from an inertial
asymptotic observer

After having analyzed, using the ZAMO, the features of
the metric that constitute our model of a galaxy, we focus
on what can be measured by asymptotically inertial
observers to investigate galactic dynamics: namely, the
frequency shift of a photon emitted by a particle of dust. To
this end, the following hypotheses are made: (i) the emitters
are supposed to move in (stable) circular geodesics; and
(ii) after the emission, photons propagate along null geo-
desics so that any possible refraction effects are neglected.
In our case, the frequency shift is the sum of the
gravitational and Doppler contributions: in fact, the photon
is emitted from an object moving in a gravitational field.
We assume that a photon is emitted with proper frequency
νe by a dust particle, whereas νd is the frequency measured
by the detector. The frequency shift is measured by the
redshift factor z̃ (negative for a blueshift), which is in
general defined by

1þ z̃ ≔ νe=νd: ð48Þ

The proper frequencies are (see. e.g., Ruggiero et al. [24])

νe;d ≔ −Uμ
e;dkμ; ð49Þ

where Uμ
d is the four velocity of the detector, U

μ
e is the four

velocity of the source, and kμ is the four momentum of the
photon at the respective locations.
Under the assumption that gravitational effects could be

neglected when measuring the frequency shift of light
coming from an external galaxy, the measured redshift z̃
would just be comparable to the pure kinematic Doppler
effect in a Minkowski space-time, corresponding to a
“special-relativistic” velocity vSR of the source, i.e.,

1þ z ¼ 1þ vjjSRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2SR

p : ð50Þ

The vector vSR is assumed to be directed along ∂ϕ, and we
call its projection along the line of sight vSR sin θ.
The general relativistic description leads to a more

general and interesting result. Let us now compare the
accepted special-relativistic (SR) description, which
accounts only for the kinematic Doppler shift, to the
general relativistic description, which instead includes
the gravitational shift effect. The expressions for the red-
shift for the model that we are considering were calculated
by Astesiano et al. [25], and they read

1þz¼

8>><
>>:
SR 1þvSRsinθffiffiffiffiffiffiffiffiffi

1−v2SR
p ;

GR 1ffiffiffiffiffi
−H

p
�
1þ rΩsinθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðγ2HÞ2−ðγ2HvþrΩÞ2cos2θ
p

−ðγ2HvþrΩÞsinθ

�
;

ð51Þ

where π
2
− θ is the angle between ∂ϕ and the emitted photon.

We see that the overall effect depends both on the
kinematical effects v and gravitational ones (γ2ð−HÞ; χ).
The degree of freedom given by the nondiagonal term χ
affects the result, although it is not explicit in the formula.
For example, we remember that rΩ ≠ v when χ is not
negligible [see Eq. (43)].
As a particular application of this result, if the galaxy is

seen edge on (θ ¼ � π
2
), the resulting redshift turns out to be

1þ z̃jj ¼ ðγ ffiffiffiffiffiffiffiffi
−H

p Þ
γ2ð−HÞ ∓ rχ

ð1� vÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; ð52Þ

where the upper and lower signs refer to backward and
forward emissions, respectively. If the galaxy is seen face
on (θ ¼ 0), we obtain the following result:

1þ z̃⊥ ¼ 1ffiffiffiffiffiffiffiffi
−H

p : ð53Þ

The same result is obtained if we are observing a disk
galaxy tilted with a certain angle with respect to the line of
sight and we perform the measurement on the minor axis
(see, again, Astesiano et al. [25]).

IV. SOME RELEVANT LOW ENERGY LIMITS

Here, we want to further investigate the properties of the
general solution studied so far. We expect that a galaxy is a
low energy system: as we said, it is reasonable to suppose
that far from the galactic center, the gravitational field is
weak and stars are not moving at relativistic speeds.
Accordingly, we will expand the coefficients of the metric
[Eq. (41)] in negative powers3 of c and make a comparison
with known limits of the solutions of Einstein’s equations:
this will help us to obtain a physical interpretation for the
functions γ2ð−HÞ and χ that are, respectively, related to the
Newtonian potential and to the gravitomagnetic potential.
The first relevant terms in the low energy expansion of

these functions that we consider are given by

γ2ðr; zÞð−HÞðr; zÞ ¼ Aðr; zÞð0Þc0
þAðr; zÞð−2Þc−2 þOðc−4Þ; ð54Þ

χðr; zÞ ¼ χðr; zÞð−1Þc−1 þ χðr; zÞð−2Þc−2 þOðc−3Þ: ð55Þ

3Hence, physical units are restored throughout this section.
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If, in the above expressions, we consider only theAð0Þ term,
we get the special-relativistic limit, as will be shown in
Sec. IVA; on the other, if we also take into account the
Að−2Þ term, we are led to the usual Newtonian limit, as
discussed in Sec. IV B. Further information is obtained by
considering the effects of the nondiagonal terms, thus
allowing χð−1Þ to be different from zero; in particular, in
Sec. IV C, we propose a more general limit where the off
diagonal terms are of the same order of the Newtonian
effects, which we call the strong gravitomagnetism case:
this model provides a simple explanation of the flat velocity
profile of disk galaxies. Moreover, in this general relativistic
context, it is possible to discuss the mass density needed to
produce a flat velocity profile and compare it to what is
obtained in Newtonian gravity. In Appendix B, we show
that the term χðr; zÞð−2Þ gives rise to the usual gravitomag-
netism, which was discussed in Sec. II. Eventually, in
Sec. VI, we will consider as a particular case the rigidly
rotating model Ω ¼ constant, which was used as a model
for our galaxy in previous publications [3,4].
In what follows, we will discuss the impact of these

limits on the measured redshift. According to the general
expansion given by Eqs. (54) and (55), the form of the
redshift [Eq. (51)] at first order in c becomes

1þ z ¼
	SR 1þ vSR

c sin θ þOðc−2Þ;
GR 1þ rΩ sin θ

c þOðc−2Þ; ð56Þ

where Ω ¼ v
r þ χ at the leading order. Thanks to the above

expressions, it is manifest that, when the off diagonal term
χ is negligible, the general relativistic result coincides with
the special-relativistic one at the first order, with the
identification rΩ ¼ v ¼ vSR.

A. The special-relativistic limit

Setting Aðr; zÞð0Þ ¼ 1 and neglecting the other contri-
butions from the expansions [Eqs. (54) and (55)], we obtain

γ2ð−HÞ ¼ 1; χ ¼ 0: ð57Þ

Hence, taking also into account Eqs. (25) and (26), we get
the special-relativistic limit, i.e.,

ds2 ¼ −c2dt2 þ r2dϕ2 þ dr2 þ dz2: ð58Þ

Of course, this is a limiting case because there is no matter
as the source of the gravitational fields [ρ ¼ 0; see
Eq. (27)]; and then the four vector of the dust u can be
seen as referring to free particles in the metric [Eq. (58)].
In this limit, the parallel and transverse redshifts in

Eqs. (52) and (53) give, respectively,

1þ z̃jj ¼ ð1� v
cÞffiffiffiffiffiffiffiffiffiffiffi

1 − v2

c2

q ¼ � v
c
þ v2

2c2
þOðc−3Þ; ð59Þ

1þ z̃⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2

q ¼ v2

2c2
þOðc−3Þ; ð60Þ

as expected from the usual relations for the Doppler effect.
Therefore, we have a simple relation between the two
redshifts:

z̃jj ¼ � v
c
þ z̃⊥ þOðc−3Þ: ð61Þ

B. The Newtonian limit

In this section, wewill show how to obtain the Newtonian
limit up to order c−2, therefore neglecting post-Newtonian
corrections. Anyhow, the post-Newtonian limit can be
obtained by just adding the appropriate terms in the
expansion [Eq. (54)]. The Newtonian limit is obtained by
taking

γ2ð−HÞ ¼ 1 −
2UðrÞ
c2

þOðc−4Þ; χ ¼ 0; ð62Þ

where UðrÞ is the Newtonian potential; consequently, up to
order c−2, we may write

−HðrÞ ¼ 1 −
2UðrÞ
c2

−
vðrÞ2
c2

þOðc−3Þ: ð63Þ

We get a well-known result: the Newtonian limit is
cylindrically symmetric. Equation (42) gives

Ωr ¼ vþOðc−3Þ: ð64Þ

In this case, the coordinate velocity rΩ equals the velocity
measured by the ZAMO: this is not a surprise because, in
this case, the ZAMOs are the same as the observers at rest at
infinity. Because we already know the function Ω, we can
use it to impose Eq. (22) [or, equivalently, Eq. (28)] to
obtain

∂rU ¼ −
v2

r
; ð65Þ

fromwhich we directly read the condition for circular orbits.
In this context, we can check what happens to the

auxiliary function F , which is defined by Eq. (20). To
this end, we calculate the integrals

c2r2
Z

H0

H
dη
η
¼ −c2r2

Z
H0 dη

η
þOðc−2Þ

¼ −2r2ΩþOðc−2Þ ¼ −2rvþOðc−2Þ; ð66Þ
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−
Z

H0

H
ηdη ¼ −

Z
∂rH
H

vr
c
dr ¼ 0þOðc−2Þ: ð67Þ

Therefore, F ¼ 0 up to order c−2 and automatically solves
Eq. (21). In this case, the gravitomagnetic effects related to
the off diagonal terms of the metric gtϕ are suppressed
because

gtϕ ¼ 0þOðc−3Þ; gtt ¼ −c2
�
1þ 2U

c2

�
þOðc−2Þ;

gϕϕ ¼ r2
�
1þ 2U

c2

�
þOðc−4Þ: ð68Þ

Eventually, these results allow us to obtain from Eq. (25)
the last unknown element of the metric,

eΨ ¼ e2
U
c2
þOðc−4Þ ¼ 1þ 2U

c2
þOðc−4Þ: ð69Þ

With all the ingredients, we can write down the metric
[Eq. (41)]

ds2 ¼ c2
�
−1þ 2U

c2

�
dt2 þ

�
1þ 2U

c2

�

× ðr2dϕ2 þ dr2 þ dz2Þ þOðc−3Þ; ð70Þ

whereas the density [Eq. (27)] is

8πG
c2

ρ ¼ 4
v
c2r

∂rvþOðc−4Þ; ð71Þ

which is in agreement with Eq. (8). The energy and the
angular momentum are

E
c2

¼ 1þ v2

2c2
−
U
c2

þOðc−4Þ; ð72Þ

M ¼ vrþOðc−3Þ ¼ Ω2rþOðc−3Þ: ð73Þ

The above results can be used to get further insight into the
application of a Newtonian approach to the description of
galactic dynamics. In fact, a flat velocity profile in the
Newtonian regime would lead to v ¼ constant,4 as can be
seen from Eq. (52). This cannot be achieved because
imposing the constraint v ¼ constant implies ρ ¼ 0 in
Eq. (71).
The parallel and transverse redshifts in Eqs. (52) and (53)

are, respectively,

1þ z̃jjð�π=2; r; zÞ ¼ ð1� v
cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2

c2 −
2U
c2

q ;

1þ z̃⊥ð�π=2; r; zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2 −
2U
c2

q : ð74Þ

Therefore, we have the same relation as in the special-
relativistic case [Eq. (61)] between the two redshifts:

z̃jj ¼ � v
c
þ z̃⊥ þOðc−3Þ; ð75Þ

As a consequence, we may neglect the frequency shift due
to the gravitational field in the Newtonian approximation.
As it is clear from the above relations, the Doppler effect is
of order c−1, whereas the gravitational shift is of order c−2.

C. The strong gravitomagnetic limit and a proposed
model for disk galaxies

The presence of off diagonal or gravitomagnetic terms in
the metric leads to the “dragging of inertial frames”: a
gyroscope, which defines the orientation of a local inertial
frame, rotates relative to observers at rest at infinity because
the gravitational field of the source drags the space-time
around it. This effect can be explained as the action of the
gravitomagnetic field of the source on the gyroscope spin
(see, e.g., Misner et al. [26], Ciufolini and Wheeler [27],
and Bosi et al. [28]). The analogy can be done with a solid
sphere, rotating in a viscous fluid: because of its rotation,
the fluid is dragged along with the sphere. In order to take
into account this effect, in the low energy expansion
[Eqs. (54) and (55)], we consider a dragging term in
addition to the usual Newtonian potential; in other words,
we take the expansion defined by

γ2ð−HÞ ¼ 1−
2Uðr;zÞ

c2
þOðc−3Þ; χ ¼ aðr;zÞ

r2
þOðc−1Þ;

ð76Þ

and call it the strong gravitomagnetic limit. Accordingly, in
this case, Eq. (42) gives

Ωðr; zÞ ¼ aðr; zÞ
r2

þ vðr; zÞ
r

: ð77Þ

It is interesting to rephrase Eq. (77) in the form

rΩ ¼ rχ þ v ð78Þ

which can be interpreted as a classical velocity-addition
relation: the velocity rΩ measured by inertial observers is
the sum of the velocity v measured by the ZAMO and the
velocity of the ZAMO with respect to inertial observers rχ.

4Remember that, in this case, v equals the coordinate velocity
[see, e.g., Eq. (64)].
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Once again, knowing Ω, we can use it to impose Eq. (22)
and obtain

∂rU þ v2

r
− vr∂r

�
a
r2

�
¼ 0; ð79Þ

∂zU −
v
r
∂za ¼ 0: ð80Þ

It is relevant to emphasize the role of the function a: we
explicitly see from the above equations that when a ¼ 0,
∂zU ¼ 0: hence, the Newtonian potential is cylindrical
symmetric; this symmetry is broken by the presence of this
function.
As for the auxiliary function F defined in Eq. (20), we

calculate the integrals

c2r2
Z

H0

H
dη
η

¼ −c2r2
Z

H0 dη
η
þOðc−4Þ

¼ −2r2ΩþOðc−2Þ; ð81Þ

−
Z

H0

H
ηdη ¼ −

Z
∂rH
H

vrdr ¼ 0þOðc−2Þ; ð82Þ

therefore,

F ¼ −2
a
c
: ð83Þ

Using these relations, we obtain the following expressions
for the metric elements:

gtt ¼ −c2
�
1 −

2U
c2

−
a2

c2r2

�
; gtϕ ¼ −a;

gϕϕ ¼ r2
�
1þ 2U

c2

�
; ð84Þ

with a non-negligible off diagonal term depending on a.
The equation of motion [Eq. (21)] is written in the simple
form:

a;rr −
a;r
r
þ a;zz ¼ 0; ð85Þ

which is exactly the condition for the integration of
Eqs. (25) and (26), which read

Ψ;r ¼
1

2r

�
2r∂r

�
2U
c2

þ a2

c2r2

�
þ a2;z − a2;r

c2

�
þOðc−4Þ; ð86Þ

Ψ;z ¼
1

2r

�
2r∂z

�
2U
c2

þ a2

c2r2

�
−

2

c2
a;ra;z

�
þOðc−4Þ: ð87Þ

They can be directly integrated as

Ψ ¼ 2U
c2

þ a2

c2r2
þ 1

2c2

Z
a2;z − a2;r

r
drþOðc−4Þ; ð88Þ

therefore, the last element of the metric is

grr ¼ gzz ¼ eΨ ¼
�
1þ 2U

c2
þ a2

c2r2
þ 1

2c2

Z
a2;z − a2;r

r
dr

�

þOðc−4Þ: ð89Þ
To obtain the energy density [Eq. (27)] for this model, we
start evaluating the function l and, taking into account
Eq. (63) (which holds true also in the dragging limit thanks
to the definitions [Eq. (76)]), we get

l¼H0

H
¼ ð−HÞ;r

η;r

1

ð−HÞ ¼
−2ηΩ;r

c2η;rð−HÞ ¼
−2ηΩ;r

c2η;r
þOðc−4Þ:

ð90Þ
At order c−2, the relevant terms in the energy density are

8πG
c2

ρ ¼
�
v2

c2
−
c2r2

4
l2

�
η2;r þ η2;z

η2
: ð91Þ

After substituting, we obtain

8πG
c2

ρD ¼ 1

c2

�
4v

v;r
r
þ 2ðv − rv;rÞb;r − r2b2;r

�

×
ðvþ rv;rÞ2 þ r2v2;z

ðvþ rv;rÞ2
; ð92Þ

where b ¼ r−2a; and we used ρD to denote the density
obtained in this dragging limit. It is interesting to evaluate
the difference between this density ρD and the Newtonian
density ρN given in Eq. (71) for the same value of the
velocity v in both models. Because the Newtonian limit is
cylindrically symmetric, we focus on the equatorial plane
z ¼ 0 (where, for symmetry, ∂zv ¼ 0):

8πG
c2

δρ≡ 8πG
c2

ρDðz ¼ 0Þ − 8πG
c2

ρN

¼ b;r
c2

½2ðv − rv;rÞ − r2b;r�: ð93Þ

It is clear that the presence of a nondiagonal dragging term
a greatly affects the density required to sustain the motion.
As we will show in Appendix B, the first term is also
present in the gravitomagnetic limit, whereas the pure
negative term −r2b2;r is a peculiar feature of the SGM limit:
this term can significantly reduce the required mass as
compared to the Newtonian case, where these effects are
not present.
Hence, the analysis of exact solutions leads to the same

conclusion obtained in Sec. II in the weak-field limit:
nondiagonal terms in the space-time metric can lead to a
re-evaluation of the weight of dark matter in galaxies.
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For completeness, we calculate the values of the energy
[Eq. (46)] and angular momentum [Eq. (47)] in this limit:

E
c2

¼ 1þ v2

2c2
−
U
c2

þ av
rc2

þOðc−4Þ; ð94Þ

M ¼ vrþOðc−3Þ: ð95Þ

V. REDSHIFT ANALYSIS OF THE
ROTATION CURVES

Here, we will apply the results obtained so far to show
that it could be possible to propose a SGMmodel for a disk
galaxy that agrees with the current observations of a flat
velocity profile. In doing so, we will point out the effect
of the SGM terms that we discussed in Sec. IV C.
Accordingly, from Eq. (52) for an edge-on galaxy,5 we
obtain

1þ z̃jj ¼ 1� 1

c

�
vþ a

r

�
þOðc−2Þ: ð96Þ

All functions depend on r and z; however, to emphasize the
physical content, wewill restrict the attention to the galactic
plane (z ¼ 0) where, due to the symmetry of the system, we
have

∂zvjz¼0 ¼ 0; ∂zajz¼0 ¼ 0; ∂zUjz¼0 ¼ 0: ð97Þ

From observations based on redshift (or blueshift) mea-
surements, we know that far from the center of the disk
galaxy, we observe a flat velocity profile: accordingly, from
Eq. (96), and taking into account the relation [Eq. (77)],
we get

Ωðr; 0Þ ¼ α

r
þOðc−1Þ; ð98Þ

where α is a constant defined by aðr; 0Þ ¼ rðα − vðr; 0ÞÞ.
As already discussed, a flat velocity profile cannot be
obtained in the Newtonian limit because, in that case,
a ¼ 0; on the other hand, in the SGM limit, this observa-
tional property can be easily obtained, as we have
shown above.
From Eqs. (79) and (80), we get the only condition

Uðr; 0Þ;r ¼ −vðr; 0Þvðr; 0Þr − α
vðr; 0Þ

r
; ð99Þ

or their integrated version

Uðr; 0Þ ¼ −
vðr; 0Þ2

2
− α

Z
vðr; 0Þ

r
dr: ð100Þ

Then, the energy density in this SGM limit ρDðr; 0Þ for the
flat velocity profile is

8πG
c2

ρDðr;0Þ¼
1

c2r2
½ðvðr;0Þ− rvðr;0Þ;rÞ2−α2�þOðc−4Þ:

ð101Þ

Let us now evaluate the transverse redshift given by
Eq. (53); we obtain

1þ z̃⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

c2 −
2U
c2

q ; ð102Þ

exactly as in the Newtonian limit; see Eq. (75). Therefore,
the only knowledge of the transverse redshift is not enough
to discriminate between the Newtonian and the SGM
limits. At order c−2, we can write

z̃⊥ ¼ U
c2

þ v2

2c2
þOðc−4Þ; z̃jj ¼ �1

c

�
vþa

r

�
þOðc−3Þ:

ð103Þ

If we are able to measure both z̃⊥ and z̃jj, we can fix both
U and a as

U ¼ c2z̃⊥ −
v2

2
;

a
r
¼ cz̃jj −

v
c
; ð104Þ

leaving v as the only unknown function that, in turn, can be
found using the equations of motion [Eqs. (79) and (80)]

∂zðz̃⊥Þ ¼ � v
c
∂zðz̃jjÞ; ð105Þ

∂rðz̃⊥Þ ¼ � v
c
∂rðz̃jjÞ ∓ v

cr
z̃jj: ð106Þ

VI. THE RIGIDLY ROTATING CASE

We discuss in some detail the case of constant angular
velocity Ωðr; zÞ ¼ Ω0, which was considered by Balasin
and Grumiller [3] and Crosta et al. [4] as a model for our
galaxy. The first feature is that in this rigidly rotating
solution, the dust fills the entire space-time because the
equations of motion for constant angular velocity of the
matterΩ are not consistent with ρ ¼ 0. This rigidly rotating
case can be seen as a very particular case of the SGM limit
considered before.
Even though, in this case, the functionHðr; zÞ is fixed to

H ¼ −1, the presence of the off diagonal term χ allows for
a nontrivial profile for v; see Eq. (43):

5The extension to the case of generic angle θ is trivial: see
Eq. (56).
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χ ¼ Ω0 −
v
r

1

1 − v2

c2
¼ Ω0 −

v
r
þOðc2Þ: ð107Þ

We note that rigid rotation does not imply r−1v constant
because v is the velocity measured by the ZAMO and Ω0 is
the angular velocity measured from an asymptotic inertial
observer. Using the expressions for H and χ given above,
the redshift given by Eq. (52) takes the simple form

1þ z̃ð�π=2; r; zÞ ¼ 1� r
Ω0

c
þOðc−2Þ; ð108Þ

this linear behaviour is expected for the redshift from a
rigidly rotating system. Such behavior is not reproduced
generally in disk galaxies, except for the inner regions.
For constant angular velocity Ω0, we can perform a rigid

rotation of the coordinates

ϕ0 ¼ ϕ −
Ω0

c
ct ð109Þ

to rewrite the four velocity of the dust given by Eq. (19) as

u ¼ ∂t0 ; ð110Þ

where the rotation is equivalent to impose Ω0 ¼ 0 every-
where in the coordinates ðt; r; z;ϕÞ. Then, restoring the
notation without the 0, the metric [Eq. (23)] is now given by

ds2 ¼ −
�
cdt −

η

c
dϕ

�
2

þ r2dϕ2 þ eΨðdr2 þ dz2Þ; ð111Þ

η;rrþη;zz−
η;r
r
¼0; Ψ;r¼

ðη;zÞ2−ðη;rÞ2
2r

; Ψ;z¼−
η;rη;z
r

:

ð112Þ

Notice that the metric in the form of Eq. (112) is exactly
the one used by Cooperstock and Tieu [2], Balasin and
Grumiller [3], and subsequently by Crosta et al. [4].
The energy density ρðr; zÞ given by Eq. (27) boils

down to

8πG
c2

ρ ¼ e−Ψ

c2
ðη;rÞ2 þ ðη;zÞ2

r2
: ð113Þ

The rigidly rotating dust metric in Eq. (111) in the ZAMO
frame reads

ds2¼−
c2

1−v2

c2
dt2þr2

�
1−

v2

c2

�
ðdϕ−χdtÞ2þðe2Þ2þðe3Þ2:

ð114Þ

As shown by Astesiano [15], we can get physical insight
into this solution: namely, the gravitational potential U due
to the presence of the dust exactly balances the gravitational

potential UC of the noninertial force determined by the
rotation of the reference frame.
Using the formalism introduced in Sec. III A, the

potential is

U ¼ γ
ffiffiffiffiffiffiffiffiffiffiffi
ð−HÞ

p
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1 − v2

c2

q ¼ 1þ 1

2

v2

c2
þOðc−3Þ; ð115Þ

therefore, U ¼ v2

2c2. The balance equation is

U þUC ¼ 0; ð116Þ

where UC ¼ − 1
2
v2

c2. This equality is the reason why gtt ¼
−c2 in Eq. (111); as a consequence, if a light signal is
emitted from a generic element of the galaxy and it is
received from another element, the measured redshift (or
blueshift) is zero: the frequency of light does not
change [15].
Eventually, the conserved quantities given in Eqs. (46)

and (47) read

E ¼ c2; M ¼ rv; ð117Þ

Clearly, the reason why the energy E is equal to c2 is again
the balance [Eq. (116)].
Balasin and Grumiller [3] noted the discrepancy

between the density in the rigidly rotating case and in
the Newtonian case. This is not due to some mysterious
effects but because these two limits (i.e., the rigid one and
the Newtonian one) are different limiting cases of the same
class of exact solutions and they coincide only in a single
point: that is, where r−1v is constant and equal to Ω0. In
fact, in this point, χ ¼ Oðc−2Þ and the densities [Eqs. (113)
and (71)] coincide.

VII. FINAL REMARKS AND PERSPECTIVES

Explaining the observed flat velocity profile in disk
galaxies is one of the most challenging problems in current
astrophysics. Motivated by various suggestions in the
literature, which contributed to focus on the role of general
relativity in this context, we analyzed the impact of post-
Newtonian corrections on the description of rotation
curves.
To begin with, under the hypothesis that the gravitational

field of a galaxy can be considered sufficiently weak in its
outer regions, we started from a well-known low energy
limit and used the gravitomagnetic analogy to show that the
coupling between the fluid vorticity and the gravitomag-
netic field leads to a local relation between density and
velocity, which is different from the Newtonian case; this
suggests that the post-Newtonian corrections might have an
impact on the estimate of the mass density.
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Subsequently, we analyzed the problem in the frame-
work of the exact solutions of Einstein’s equations. In
particular, we considered neutral, stationary, and axisym-
metric rotating dust as the model for a disk galaxy; and we
described the mathematical properties of the corresponding
exact solution. Then, in order to give a physical insight into
this solution, we studied it using the so-called zero angular
momentum observers, which are suitable to analyze physi-
cal processes in presence of the symmetries considered.
Using this formalism, we defined some useful observables,
such as the dust velocity and the conserved quantities; in
addition, we expressed the space-time metric exploiting the
corresponding orthonormal tetrad. However, actual mea-
surements on far away galaxies are not performed by the
ZAMOs but by asymptotic inertial observers that measure
frequency shifts; to this end, we calculated the exact
relations for the frequency shift of light, which can be
used to explore the physical content of the exact solution.
We obtained further insight into the exact solution by

considering some low energy limits, thanks to an expansion
in (negative) powers of c. Besides the trivial special-
relativistic limit, we investigated the Newtonian limit and
what we called the “strong gravitomagnetic limit”; notice
that in this limit, which is naturally obtained from the exact
solution, dragging effects are of the same order as
Newtonian ones. In particular, we showed that in the
Newtonian limit, a flat velocity profile can be achieved
only on the basis of unphysical constraints on the mass
distribution, for which the density should vanish in the flat
region. Things are quite different in the SGM limit, where
dragging effects have an impact on the density profile
required to match the flat velocity profile, which is in
agreement with the analysis performed in the weak-field
limit using the gravitomagnetic analogy. In addition, using
the frequency shift analysis, we showed that a flat velocity
profile cannot be obtained in the Newtonian limit, whereas it
naturally emerges when dragging effects are taken into
account. As a particular case, we discussed the solution
proposed by Balasin and Grumiller [3], which corresponds
to a rigid rotation of the dust, and we pointed out some
unphysical features; for instance, in this solution, the
redshift as seen from an inertial observer is always linearly
increasing; whereas for an observer corotating with the
galaxy, the redshift is zero (see also Astesiano [15]). It is
worth remarking that even though the results we discussed
refer to galaxies, the same system of equations can provide a
good description of other self-gravitating systems in the
universe, such as clusters of galaxies.
Our theoretical analysis, which encompasses both the

weak-field limit of GR and exact solutions, shows that
dragging effects may have a relevant impact in under-
standing galactic dynamics due to the fact that they
introduce an additional degree of freedom with respect
to the Newtonian case. In particular, our work provides a
theoretical background to the recent publications by Crosta

et al. [4] and Ludwig [7], where models based on dragging
effects were successfully used to fit data coming from
galaxies’ rotation curves.
Accordingly, we suggest that a better understanding of

the mass content can be achieved using this approach,
which might shed new light on the role of the dark matter,
for which the origin can partly be geometric.
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APPENDIX A: EXACT SOLUTION FOR
ROTATING DUST

Here, we make a comparison with the notation used in
the book by Stephani et al. [20] (see pages 330–333),
where the general class of exact solutions is given in terms
of different functions. We give the explicit map. Using their
notations, after defining

βa ≡ Ha

Hη
; ðA1Þ

they write down the following two last equations of motion:

W−1
�
ðβWÞ;a þ

�
H
η

��
η2

H

�
;a

�
¼ ϵabγ

;b → Δγ ¼ 0; ðA2Þ

DaW;a ¼ 0; ðA3Þ

where

Δγ ¼ γrr þ
γr
r
þ γzz: ðA4Þ

For the second equation, they state that it is always possible
to choose W ¼ r.
They claim that the full solution is given by choosing a

function γ and an axisymmetric solution of Δγ ¼ 0. Once
ηðHÞ and γðr; zÞ are given, one obtains the function

2ηþ r2β −
Z

η

H
dH; ðA5Þ

from Eq. (A2), and consequently Hðr; zÞ; finally,

Ha ¼ 2ηΩ;a; ðA6Þ

which we wrote in Eq. (22). From our perspective, the
function [Eq. (A5)] is exactly the function F , which is
related to γ through Eq. (A2) or explicitly as

F ;r

r
¼ γ;z;

F ;z

r
¼ −γ;r: ðA7Þ
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Substituting these relations into Δγ ¼ 0 automatically
solves the equations, but the closure of the form gives
the consistency equation

γ;zr − γ;rz ¼ 0;→ F ;rr −
1

r
F ;r þ F ;zz ¼ 0; ðA8Þ

which is exactly the equation of motion [Eq. (21)].

APPENDIX B: MORE DETAILS
ON THE SGM LIMIT

The SGM limit is not equivalent to the standard
gravitomagnetic approach discussed in Sec. II, but it can
be seen as a strong version of it. A simple inspection of the
SGM metric

ds2 ¼ −c2
�
1 −

2U
c2

−
a2

c2r2

�
dt2 − 2adtdϕ

þ r2
�
1þ 2U

c2

�
dϕ2 þ eΨðdr2 þ dz2Þ ðB1Þ

and the gravitomagnetic one in the axisymmetric case

ds2¼−c2
�
1−2

Φ
c2

�
dt2−

4

c
Adϕdtþ

�
1þ2

Φ
c2

�
δijdxidxj;

ðB2Þ

shows the substantial difference: the gtϕ term is of order c0

in the former and c−1 in the latter. In fact, assuming a form
of H as in the dragging limit, and setting a → 2A=c in χ, it
is possible to obtain the standard gravitomagnetism at the
leading order from the general system of equations. This is
the reason why we introduced the strong gravitomagnetism
term. In fact, let us check that with the substitution
a → 2A=c, the density is given by Eqs. (93) and (10) is
obtained at the leading order. Remembering that b ¼ r−2a
and, after the substitution, a → 2A=c, Eq. (92) on the
galactic plane (z ¼ 0) becomes

8πG
c2

ρðz¼ 0Þ¼ 4v
c2

v;r
r
−
4

c3

�
2
A
r3
−
A;r

r2

�
ðv− rv;rÞþOðc−4Þ:

ðB3Þ

The velocity v used in the second part of the work is the
velocity with respect to the ZAMO, whereas in the first
part, it is the coordinate velocity v ¼ rΩ. Therefore, we
must send v → v − 2A

cr to obtain

8πG
c2

ρðz ¼ 0Þ ¼ 4v
c2

v;r
r
−

4

c3
Ar

r2
ðvþ rv;rÞ þOðc−4Þ; ðB4Þ

which means

8πG
c2

δρ ¼ −
4

c3
Ar

r2
ðvþ rv;rÞ þOðc−4Þ: ðB5Þ

Let us check that this coincides with the result of the
application of Eq. (10) in the axisymmetric case. Taking
into account Eq. (B2), we make use of the usual cylindrical
vector bases ur, uφ, and uz to write

A ¼ A
r
uφ; v ¼ vuφ: ðB6Þ

These fields have the following rotors:

B ¼ ∇ ×A ¼ ∇
�
A
r

�
× uφ þ

A
r
∇ × uφ ¼ A;r

r
uz −

A;z

r
ur;

ðB7Þ

ω ¼ ∇ × v ¼ ðrv;r þ vÞuz

r
− v;zur; ðB8Þ

where we used the known fact ∇ × uφ ¼ r−1uz.
Eventually, we get

δρðz ¼ 0Þ ¼ −
1

2πGc
B · ω

¼ −
1

2πGc
Ar

r2
ðvþ rv;rÞ þOðc−2Þ; ðB9Þ

which coincides with Eq. (B5).

[1] L. E. Strigari, Phys. Rep. 531, 1 (2013).
[2] F. I. Cooperstock and S. Tieu, Int. J. Mod. Phys. A 22, 2293

(2007).
[3] H. Balasin and D. Grumiller, Int. J. Mod. Phys. D 17, 475

(2008).

[4] M. Crosta, M. Giammaria, M. G. Lattanzi, and
E. Poggio, Mon. Not. R. Astron. Soc. 496, 2107
(2020).

[5] D. Astesiano, S. L. Cacciatori, and F. Re, Eur. Phys. J. C 82,
554 (2022).

GALACTIC DARK MATTER EFFECTS FROM PURELY … PHYS. REV. D 106, 044061 (2022)

044061-13

https://doi.org/10.1016/j.physrep.2013.05.004
https://doi.org/10.1142/S0217751X0703666X
https://doi.org/10.1142/S0217751X0703666X
https://doi.org/10.1142/S0218271808012140
https://doi.org/10.1142/S0218271808012140
https://doi.org/10.1093/mnras/staa1511
https://doi.org/10.1093/mnras/staa1511
https://doi.org/10.1140/epjc/s10052-022-10506-7
https://doi.org/10.1140/epjc/s10052-022-10506-7


[6] J. Ramos-Caro, C. A. Agon, and J. F. Pedraza, Phys. Rev. D
86, 043008 (2012).

[7] G. Ludwig, Eur. Phys. J. C 81, 186 (2021).
[8] M. L. Ruggiero, A. Ortolan, and C. C. Speake, arXiv:2112

.08290.
[9] M. L. Ruggiero and A. Tartaglia, Nuovo Cimento B 117,

743 (2002), https://www.sif.it/riviste/sif/ncb/econtents/
2002/117/07/article/5.

[10] B. Mashhoon, arXiv:gr-qc/0311030.
[11] GAIA Collaboration, Astron. Astrophys. 595, A1 (2016).
[12] GAIA Collaboration, Astron. Astrophys. 616, A1

(2018).
[13] L. Iorio, H. I. M. Lichtenegger, M. L. Ruggiero, and C. Corda,

Astrophys. Space Sci. 331, 351 (2011).
[14] M. L. Ruggiero, Universe 7, 451 (2021).
[15] D. Astesiano, Gen. Relativ. Gravit. 54, 63 (2022).
[16] W. Bonnor, J. Phys. A 10, 1673 (1977).
[17] V. T. Toth, Int. J. Mod. Phys. D 30, 2150102 (2021).
[18] M. L. Ruggiero, Astrophys. Space Sci. 361, 140 (2016).
[19] I. Ciufolini, S. Kopeikin, B. Mashhoon, and F. Ricci, Phys.

Lett. A 308, 101 (2003).

[20] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed., Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2003).

[21] J. M. Bardeen, Astrophys. J. 162, 71 (1970).
[22] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Astrophys.

J. 178, 347 (1972).
[23] K. S. Thorne, K. S. Thorne, R. H. Price, and D. A.

MacDonald, Black Holes: The Membrane Paradigm (Yale
University, New Haven, CT, 1986).

[24] M. L. Ruggiero, A. Tartaglia, and L. Iorio, Int. J. Mod. Phys.
D 15, 1183 (2006).

[25] D. Astesiano, S. L. Cacciatori, M. Dotti, F. Haardt, and F.
Re, arXiv:2204.05143.

[26] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(Freeman, San Francisco, 1973).

[27] I. Ciufolini and J. A. Wheeler, Gravitation and Inertia
(Princeton University, Princeton, NJ, 1995), Vol. 101.

[28] F. Bosi, G. Cella, A. Di Virgilio, A. Ortolan, A. Porzio, S.
Solimeno, M. Cerdonio, J. Zendri, M. Allegrini, J. Belfi
et al., Phys. Rev. D 84, 122002 (2011).

DAVIDE ASTESIANO and MATTEO LUCA RUGGIERO PHYS. REV. D 106, 044061 (2022)

044061-14

https://doi.org/10.1103/PhysRevD.86.043008
https://doi.org/10.1103/PhysRevD.86.043008
https://doi.org/10.1140/epjc/s10052-021-08967-3
https://arXiv.org/abs/2112.08290
https://arXiv.org/abs/2112.08290
https://www.sif.it/riviste/sif/ncb/econtents/2002/117/07/article/5
https://www.sif.it/riviste/sif/ncb/econtents/2002/117/07/article/5
https://www.sif.it/riviste/sif/ncb/econtents/2002/117/07/article/5
https://www.sif.it/riviste/sif/ncb/econtents/2002/117/07/article/5
https://arXiv.org/abs/gr-qc/0311030
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1051/0004-6361/201833051
https://doi.org/10.1007/s10509-010-0489-5
https://doi.org/10.3390/universe7110451
https://doi.org/10.1007/s10714-022-02947-y
https://doi.org/10.1088/0305-4470/10/10/004
https://doi.org/10.1142/S0218271821501029
https://doi.org/10.1007/s10509-016-2723-2
https://doi.org/10.1016/S0375-9601(02)01804-2
https://doi.org/10.1016/S0375-9601(02)01804-2
https://doi.org/10.1086/150635
https://doi.org/10.1086/151796
https://doi.org/10.1086/151796
https://doi.org/10.1142/S0218271806008899
https://doi.org/10.1142/S0218271806008899
https://arXiv.org/abs/2204.05143
https://doi.org/10.1103/PhysRevD.84.122002

