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We consider the optical properties of the solar gravitational lens (SGL) treating the Sun as a massive
compact body. Using our previously developed wave-optical treatment of the SGL, we convolve it with a
thin lens representing an optical telescope, and estimate the power spectral density and associated photon
flux at individual pixel locations on the image sensor at the focal plane of the telescope. We also consider
the solar corona, which is the dominant noise source when imaging faint objects with the SGL. We evaluate
the signal-to-noise ratio at individual pixels as a function of wavelength. To block out the solar light, we
contrast the use of a conventional internal coronagraph with a Lyot-stop to an external occulter (i.e.,
starshade). An external occulter, not being a subject to the diffraction limit of the observing telescope,
makes it possible to use small telescopes (e.g., ∼40 cm) for spatially and spectrally resolved imaging with
the SGL in a broad range of wavelengths from optical to mid-infrared and without the substantial loss of
optical throughput that is characteristic to internal devices. Mid-IR observations are especially interesting
as planets are self-luminous at these wavelengths, producing a strong signal, while there is significantly less
noise from the solar corona. This part of the spectrum contains numerous features of interest for exobiology
and biosignature detection. We develop tools that may be used to estimate instrument requirements and
devise optimal observing strategies to use the SGL for high-resolution, spectrally resolved imaging,
ultimately improving our ability to confirm and study the presence of life on a distant world.
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I. INTRODUCTION

Direct observation of exoplanets is a challenging task as
these targets are not self-luminous, they are small, very
distant and are moving in a very highly light-contaminated
environment [1,2]. The thought of resolved imaging of
terrestrial exoplanets elevates this problem to the next level,
requiring prohibitively large telescopes or interferometric
baselines, making the use of conventional astronomical
techniques unsuitable for this purpose [3,4].
The solar gravitational lens (SGL) is the only realistic

means to overcome these challenges. The SGL exists
because the solar gravitational field diffracts electro-
magnetic (EM) waves that travel in solar proximity [5–7].
After passing by the Sun, the wavefront converges towards
the optical axis, an imaginary line connecting the center of
the Sun and that of the source. This region of convergence,
the SGL focal region, is at heliocentric distances beyond
R2
⊙=2rg ≃ 547.8 astronomical units (AU), where R⊙

and rg are the solar geometric and Schwarzschild radii,
correspondingly.
A spacecraft, equipped with a modest telescope and an

occulter to block sunlight, looking back at the Sun from the
SGL’s focal region, in proximity to the optical axis
corresponding to a distant source such as an exoplanet,

will observe the Einstein ring formed around the Sun from
amplified light due to that source [8].
In [6,7,9] we developed a wave-optical treatment of the

SGL by considering diffraction of EM waves in the solar
gravity field. In [10,11] we considered the propagation of
light through the solar corona and found that at infrared
(IR), optical and shorter wavelengths, light is practically
unaffected by the plasma. We described the image for-
mation process for faint sources [12–15] and extended
sources [16,17] at large, but finite distances. As expected,
we found that the SGL acts as a lens with significant
negative spherical aberration, blurring the images of such
extended sources. In [17] we studied photometric imaging
with the SGL for both point and extended sources and
developed analytical expressions for their treatment. We
also addressed the imaging of realistic extended sources
with an optical telescope that is positioned within the image
plane in the SGL strong interference region [18]. This
allowed us to develop robust estimates of the signal-to-
noise ratio (SNR) for imaging of realistic exoplanetary
sources [3,4,18,19].
As a result of these efforts, we now have all the tools

required for the realistic assessment of the SNR that
characterize SGL observations of exoplanets, treating them
as extended, resolved, faint sources located at large but
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finite distance from us. In previous studies, we offered
broadband estimates, treating the optical telescope as a
single sensor. In the present paper, we take the next step and
assess the SNR of the spectrally resolved signal on the
spatially resolved Einstein ring that is seen to appear
around the Sun by the optical telescope. This leads us to
an improved understanding of the relationship between
SNR and spatial or spectral resolution.
In all previous studies, we assumed that the observing

spacecraft is equipped with a telescope carrying a conven-
tional (Lyot-type) internal coronagraph. As it is known,
such a coronagraph is subject to the diffraction-limited
resolution of the telescope. This precludes the use of
modest telescopes with a meter-scale aperture to make
SGL observations in the mid-IR band, as such telescopes
do not have the resolving power to see the solar disk from
the SGL focal region and thus will not be able to use an
internal occulter to block solar light. This is unfortunate,
since the mid-IR, thermal part of the EM spectrum contains
many features of interest that are relevant to life-sign
detection.
In the present study, we address an important alternative

to the internal coronagraph: An external occulter, known as
a starshade, that blocks sunlight while flying in formation
with the SGL observing spacecraft. Such a starshade is not
subject to the diffraction limit of the observing telescope,
and permits the use of smaller telescopes (even telescopes
that are too small to resolve the Einstein ring around the
Sun!) in conjunction with the SGL.
This paper is organized as follows: In Sec. II, we

estimate the anticipated signal while imaging a typical
exoplanet. We describe the Fourier-transformed amplitude
of the EM field, the intensity distribution and power at the
Einstein ring that forms in the focal plane of an optical
telescope. We also address the issue of modeling the
spectral density of the signals. In Sec. III, we evaluate
the stochastic noise contribution of the solar corona. In
Sec. IV we develop our main result, estimating the SNR in
the form of a spectral density, and extend our analysis to
mid-IR wavelengths assuming the use of an external
starshade. We present a summary of our results in
Sec. V and discuss next steps.

II. EVALUATING THE SGL-AMPLIFIED SIGNALS

The subject of our investigation is an Earth-like exopla-
net, as viewed from the focal region of the SGL, starting at
∼548 AU from the Sun, through a thin-lens telescope.
Specifically we consider, as the target of observation, an
exoplanet in a solar system in our galactic neighborhood, at
distances up to ∼30 parsec (pc) from the Sun. The image of
such an exoplanet is projected by the SGL to an image area
several kilometers in size (∼1.3 km for an Earth-like
exoplanet at 30 pc, observed at 650 AU from the Sun).
A telescope in the focal region of the SGL, looking back in
the direction of the Sun, sees a faint Einstein ring form

around the Sun from light reflected and emitted by the
exoplanet.
We begin with a spectral model of light from the

exoplanet, followed by a discussion of the formalism
describing image formation with the SGL.

A. Modeling the spectral signal

To provide estimates for anticipated photon fluxes from
realistic exoplanetary targets when they are imaged with the
SGL, we model the spectral signal using our own Sun and
the Earth as representative cases. Following [3], we con-
sider a planet that is identical to our Earth, orbiting, at a
distance of 1 AU, a star that is identical to our Sun. The total
flux received by such a target is the same as the solar
irradiance at the top of Earth’s atmosphere, given as

I0 ¼ σT4
⊙

�
R⊙

AU

�
2

¼ π

�
R⊙

AU

�
2
Z

∞

0

BλðT⊙Þdλ

¼ π

�
R⊙

AU

�
2
Z

∞

0

2hc2

λ5ðehc=λkBT⊙ − 1Þ dλ ¼ 1; 366.83
W
m2

;

ð1Þ

where we use a blackbody radiation model with σ as
the Stefan-Boltzmann constant, kB the Boltzmann constant
and T⊙ ¼ 5; 772 K being the temperature of the Sun.
Approximating the planet as a Lambertian sphere illumi-
nated from the viewing direction yields a Bond spherical
albedo [3] of 2=3, and the target’s average surface bright-
ness becomes

Bs ¼ 2a
3π

I0 ¼ 88.76
W

m2 sr
; ð2Þ

where we take the Earth’s broadband albedo to be
a ¼ 0.306 and assume a fully illuminated planet at 0 phase
angle.
In a more realistic model of the spectral brightness BsðλÞ

of the exoplanet that includes longer wavelengths, we may
also add the planetary thermal emission,

BsðλÞ ¼
2

3
a

�
R⊙

AU

�
2 2hc2

λ5ðehc=λkBT⊙ − 1Þ

þ 2hc2

λ5ðehc=λkBT⊕ − 1Þ
W

μmm2 sr
; ð3Þ

where T⊕ ¼ 252 K is the effective radiating temperature of
the Earth.1 The resulting photon flux is found, as usual, as
QsðλÞ ¼ ðλ=hcÞBsðλÞ and is shown in (Fig. 1). Integrated
over all wavelengths, we obtain

1See https://en.wikipedia.org/wiki/Effective_temperature.

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYS. REV. D 106, 044059 (2022)

044059-2

https://en.wikipedia.org/wiki/Effective_temperature
https://en.wikipedia.org/wiki/Effective_temperature
https://en.wikipedia.org/wiki/Effective_temperature


Qs ¼
Z

∞

0

dλ
λ

hc
BsðλÞ ¼

4k3ζð3Þ
c2h3

�
2

3
a

�
R⊙

AU

�
2

T3
⊙ þ T3

⊕

�

¼ 4.1 × 1020 þ 7.75 × 1021
photons
sm2 sr

; ð4Þ

where ζð3Þ ∼ 1.202 is the Riemann zeta function. The first
term represents mostly photons in the optical and near IR
part of the spectrum, whereas the second term corresponds
to the much greater number of thermal IR photons.

B. Image formation process with the SGL

Following [3], we consider a light ray with the wave
vector k ¼ ð0; 0; 1Þ. To discuss imaging, we consider the
source plane, image plane, and the optical telescope’s focal
(or sensor) plane, each of them being orthogonal to k. Next,
we introduce two-dimensional coordinates to describe
points in the source plane, x0; the position of the telescope
in the image plane, x0, points in the image plane within the
telescope’s aperture, x, and points in the optical telescope’s
focal plane xi. These are given as follows:

fx0g≡ ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð5Þ

fx0g≡ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð6Þ

fxg≡ðx; yÞ ¼ ρðcosϕ; sinϕÞ ¼ ρn; ð7Þ

fxig≡ðxi; yiÞ ¼ ρiðcosϕi; sinϕiÞ ¼ ρini: ð8Þ

We rely on (5)–(8), but slightly redefining them by
introducing x0 ¼ −ðz̄=z0Þx0

0 that allows us to introduce

x00 ¼ x0 − x0
0 ≡ ρ00n00 ¼ ρ00ðcosϕ00; sinϕ00Þ: ð9Þ

Considering an imaging telescope with d and f being its
aperture diameter and its focal length, correspondingly, we
use the following notations for the two spatial frequencies α
and ηi, and a useful ratio β,

α ¼ k

ffiffiffiffiffiffiffi
2rg
z̄

r
; ηi ¼ k

ρi
f
; β ¼ z̄

z0
; ð10Þ

α ¼ ðαx;αyÞ ¼ αðcosϕξ; sinϕξÞ ¼ αnξ; ηi ¼ ηini;

ð11Þ

where rg ¼ 2GM⊙=c2 is the Schwarzschild radius of the
Sun, k ¼ 2π=λ is the wave number of an EMwave and nξ is
a unit vector in the direction of the light ray’s impact
parameter vector [3,6,20].
With these definitions, the intensity distribution on the

image sensor of a telescope corresponding to a signal
received from an exoplanet is given as

Iðxi;x0Þ ¼
1

z20
μ0

�
kd2

8f

�
2
ZZ

d2x00BsðλÞA2ðxi;x00Þ;

μ0 ¼ 2πkrg; ð12Þ

where in the case of a monopole SGL, the Fourier-trans-
formed amplitude of the EM field Aðxi;x00Þ has the form,

Aðxi;x00Þ ¼ 1

2π

Z
2π

0

dϕξ

�
2J1ðαdûðϕξ;xiÞÞ

αdûðϕξ;xiÞ
�

× exp

�
−iαβρ00 cosðϕξ − ϕ00Þ

�
; ð13Þ

where α and β are from (10) and the normalized spatial
frequency ûðϕξ;xiÞ has the form (see [3])

ûðϕξ;xiÞ ¼ jαþ ηij=2α

¼
�
1

4

�
1 −

ηi
α

�
2

þ ηi
α
cos2

�
1

2
ðϕξ − ϕiÞ

��1
2

: ð14Þ

The integral (12) must be evaluated for two different
regions corresponding to the telescope pointing within the
image and outside of it, as was done in [17]. The principal
technical challenge is the evaluation of the integral (13) that
represents a Fourier-transform of the EM field amplitude.
Equation (13) describes a monopole gravitational lens.

The SGL, of course, has a small but nontrivial quadrupole
mass moment (see details in [20–22]). While the resulting
change in its optical properties has significant conse-
quences when it comes to image reconstruction through
deconvolution, the amount of light from an extended
source, such as an exoplanet, deposited in the SGL image
plane remains approximately the same until and unless the
source’s projected image becomes small enough to be
comparable in size to the caustic pattern projected by the
quadrupole moment. The actual size of the caustic pattern
depends on solar latitude, but even in the solar equatorial
plane, it remains a small fraction of the projected size of an
Earth-like exoplanet at z0 ≲ 30 pc. Therefore, the signal

FIG. 1. The photon flux from an Earth-like planet,
ðλ=hcÞBsðλÞ, measured at the point of emission, according to (3).
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flux remains unaffected, and it is safe to use the monopole
Sun to estimate signal and noise levels.

C. Fourier-transformed amplitude of the EM field

The integral (13) can be evaluated using the method of
stationary phase. With the rapidly varying phase given as

φðϕξÞ ¼ −αβρ00 cosðϕξ − ϕ00Þ; ð15Þ

we compute the first and second derivatives of this
expression,

φ0ðϕξÞ ¼ αβρ00 sinðϕξ − ϕ00Þ and

φ00ðϕξÞ ¼ αβρ00 cosðϕξ − ϕ00Þ: ð16Þ

The phase is stationary when φ0ðϕξÞ¼αβρ00sinðϕξ−ϕ00Þ¼
0. Thus, we have two solutions,

ϕξ − ϕ00 ¼ f0; πg: ð17Þ

With these solutions, we compute the corresponding
expressions for the phase and its second derivative,

fφ0;φ00
0g¼f−αβρ00;αβρ00g and fφπ;φ00

πg¼fαβρ00;−αβρ00g:
ð18Þ

As a result, the integral (13) takes the form

Aðxi;x00Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παβρ00

p ��
2J1ðαdû0ðϕ00;xiÞÞ

αdû0ðϕ00;xiÞ
�
e−iðαβρ00−π

4
Þ þ
�
2J1ðαdûπðϕ00;xiÞÞ

αdûπðϕ00;xiÞ
�
eiðαβρ00−π

4
Þ
�
; ð19Þ

and its square, A2ðxi;x00Þ that is needed in (12), is given as

A2ðxi;x00Þ ¼ 1

2παβρ00

��
2J1ðαdû0ðϕ00;xiÞÞ

αdû0ðϕ00;xiÞ
�

2

þ
�
2J1ðαdûπðϕ00;xiÞÞ

αdûπðϕ00;xiÞ
�

2

þ2 sinð2αβρ00Þ
�
2J1ðαdû0ðϕ00;xiÞÞ

αdû0ðϕ00;xiÞ
��

2J1ðαdûπðϕ00;xiÞÞ
αdûπðϕ00;xiÞ

��
; ð20Þ

where û0ðϕ00;xiÞ and ûπðϕ00;xiÞ from (14) with solutions
for ϕξ from (17) are given as

û0ðϕξ;xiÞ¼
�
1

4

�
1−

ηi
α

�
2

þηi
α
cos2

�
1

2
ðϕ00−ϕiÞ

��1
2

;

ûπðϕξ;xiÞ¼
�
1

4

�
1−

ηi
α

�
2

þηi
α
sin2
�
1

2
ðϕ00−ϕiÞ

��1
2

: ð21Þ

Using the result (21), we recognize that at the Einstein ring,
where ηi ¼ α, the spatial frequencies become û0ðϕξ;xiÞ¼
cos½1

2
ðϕ00−ϕiÞ� and ûπðϕξ;xiÞ¼ sin½1

2
ðϕ00−ϕiÞ�, implying

that for any given ϕi there always will be ϕ00 such that
1
2
ðϕ00 − ϕiÞ is either � 1

2
π or �π. At these points, either

û0ðϕξ;xiÞ ¼ 0 or ûπðϕξ;xiÞ ¼ 0, so that the ratios of
the Bessel functions in (20) reach their largest value
2J1ðxÞ=x → 1. As a result, (20) yields the well-known
expression for the point-spread function (PSF) of the monop-
ole lens (e.g., see [3] and references therein),

PSFðxi;x00Þ ¼ 1

παβρ00
ð1þ sin 2αβρ00Þ

≡ 2

παβρ00
cos2

�
αβρ00 −

π

4

�
; ð22Þ

which represents an approximation of J20ðαβρ00Þ, as it should
be for the monopole gravitational lens [6].

D. Spectral intensity on the image sensor

Expression (12) allows us to compute the power received
from the resolved source. To do that, we introduce a
new coordinate system in the source plane, x00, with the
origin at the center of the directly imaged region:
x0 − x0

0 ¼ x00. As vector x0
0 is constant, dx0dy0 ¼ dx00dy00.

Next, in the new coordinate system, we use polar coor-
dinates ðx00; y00Þ → ðr00;ϕ00Þ. In these coordinates, the cir-
cular edge of the source, R⊕, is no longer a circle but a
curve, ρ⊕ðϕ00Þ, the radial distance of which is given by the
following relation,

ρ⊕ðϕ00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − ρ020 sin2 ϕ00

q
− ρ00 cosϕ

00: ð23Þ

For an actual astrophysical source, Bsðx0; λÞ is, of course,
an arbitrary function of the coordinates x0 and thus the
integral (12) can only be evaluated numerically. However,
we can obtain an analytic result in the simple case of a disk
of uniform brightness, characterized by Bsðx0; λÞ ¼ BsðλÞ.
In this case, we integrate (12),
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Iðxi;x0; λÞ ¼ μ0
BsðλÞ
z20

�
kd2

8f

�
2
Z

2π

0

dϕ00
Z

ρ⊕

0

ρ00dρ00A2ðxi;x00Þ: ð24Þ

Considering only the monopole solar gravitational field, we use (20), and rewrite (24) as

Iðxi;x0; λÞ ¼
BsðλÞ
z20

�
kd2

8f

�
2 μ0R⊕

αβ

×
1

2π

Z
2π

0

dϕ00
( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
ρ0
r⊕

�
2

sin2ϕ00
s

−
ρ0
r⊕

cosϕ00
!��

2J1ðαdû0ðϕ00;xiÞÞ
αdû0ðϕ00;xiÞ

�
2

þ
�
2J1ðαdûπðϕ00;xiÞÞ

αdûπðϕ00;xiÞ
�

2
�

þ 2

αr⊕
sin2
"
αr⊕

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

−
ρ0
r⊕

cosϕ00
!#�

2J1ðαdû0ðϕ00;xiÞÞ
αdû0ðϕ00;xiÞ

��
2J1ðαdûπðϕ00;xiÞÞ

αdûπðϕ00;xiÞ
�)

; ð25Þ

where û0ðϕ00;xiÞ and ûπðϕ00;xiÞ introducted by (21) with the help of definitions (10) and (11) are given as below

û0ðϕ00;xiÞ ¼
�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

cos2
�
1

2
ðϕ00 − ϕiÞ

��1
2

; ð26Þ

ûπðϕ00;xiÞ ¼
�
1

4

�
1 −

ρi
f

�
z̄
2rg

�1
2

�
2

þ ρi
f

�
z̄
2rg

�1
2

sin2
�
1

2
ðϕ00 − ϕiÞ

��1
2

; ð27Þ

both independent of the wavelength. The expression ðρi=fÞ=
ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
is the ratio of the angle corresponding to a particular

pixel on the image sensor θi ¼ ρi=f to the angle corresponding to the Einstein ring θER ¼ ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
.

We observe that the ratios involving the Bessel functions in the expression (25) above are at most 2J1ðxÞ=x ¼ 1, at x ¼ 0.
Given the fact that the spatial frequency α is quite high, for most values of the argument these ratios become negligible. We
also observe that the last term in this expression is at most ∝ 2=αr⊕ ≪ 1, which is negligibly small compared to the first
term in this expression. Thus, the last term in (25) can be omitted with this expression taking the form (see details in [3])

Iðxi;x0; λÞ ≃
BsðλÞ
z20

�
kd2

8f

�
2 μ0R⊕

αβ

×
1

2π

Z
2π

0

dϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s ��

2J1ðαdû0ðϕ00;xiÞÞ
αdû0ðϕ00;xiÞ

�
2

þ
�
2J1ðαdûπðϕ00;xiÞÞ

αdûπðϕ00;xiÞ
�

2
�
; ð28Þ

where we obtained the final form of the equation by
dropping the ðρ0=r⊕Þ cosϕ00 term in the first integral in
(28), as this term, multiplied by the squared Bessel-function
terms that have the same periodicity by virtue of the
dependence of û0; ûπ , on ϕ00, vanishes identically when
integrated over a full 2π period.
The photon count density (per unit time, unit wave-

length, and unit area) that corresponds to (28) can be
readily calculated,

Qðxi;x0; λÞ ¼
λ

hc
Iðxi;x0; λÞ: ð29Þ

This quantity is of primary interest as it forms the basis for
calculating stochastic shot noise, which results from the
quantized nature of light.

E. Evaluating the spectral signals

The aperture of an optical telescope determines its
diffraction limit and, ultimately, its ability to resolve the
Einstein ring and distinguish it from the Sun at various
wavelengths. This is especially important when a conven-
tional internal coronagraph is used in conjunction with a
Lyot-stop [3] (see the discussion in Sec. IVA). For a
d ¼ 1 m telescope, this represents a realistic limit of
λ ∼ 1.2 μm before the telescope can no longer reliably
distinguish the solar disk (and thus make it possible for an
internal occulter to block its light) and the Einstein ring,
viewed from a distance of z̄ ¼ 650 AU. Therefore, we
consider such an instrument only for use in optical and
near-IR wavelengths.
Two representative cases are depicted in Fig. 2 (left),

showing the photon spectral density at two different
wavelengths, λ ¼ 500 nm and λ ¼ 1 μm, in the form of
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a cross sectional view of the Einstein ring, as it appears on
the image sensor in a f ¼ 10 m thin-lens telescope,
according to (28). As expected, at shorter wavelengths
the Einstein ring is much sharper, and the peak photon
count is higher despite the fact that these are higher energy
photons and therefore, there are fewer of them for a given
light intensity.
Nonetheless, the photon counts are very low for the

target considered, an exo-Earth at z0 ¼ 30 pc. As we shall
see in the next section, the photon count due to the solar
corona is much higher, so we are looking at a faint signal on
a bright background. It is for this reason that in all previous
analyses, we considered integrating the signal over the
entire Einstein ring, using the telescope as a “light bucket”,
a single-pixel sensor that traverses the (kilometer-scale)
SGL image plane, sampling it one pixel at a time.
Integrating the signal over the entire Einstein ring yields
the spectral density shown in Fig. 2 (right).
To estimate the photon count a broadband spatially

resolved image, we need to integrate not just over the
Einstein ring but over all wavelengths. Numerical integra-
tion up to λ ¼ 1.2 μm yields a photon count of ∼5.59 × 104

photons per second. This figure is lower than the ∼8 × 104

photons we estimated in previous work; the reason for
this difference is that in these previous analyses, we used
λ ¼ 1 μm as the characteristic wavelength of the broadband
signal, whereas the actual peak of the solar blackbody is
near λ ¼ 500 nm. This skews the result towards fewer
photons of higher energy.

III. NOISE FROM THE SOLAR CORONA

In order to evaluate the feasibility of using the SGL for
imaging and to assess the required light collection (inte-
gration) times and achievable resolution, it is essential to
have a clear and accurate understanding of the amount of
noise that is present in SGL observations. This is especially

important when we consider the possibility of reconstruct-
ing high resolution images of a distant source. Whether the
reconstruction uses details of an observed Einstein ring,
observations of varying light intensity in the SGL image
plane, or a combination of techniques, reconstruction
amounts to inverting the mapping of source light into
the image plane by the SGL PSF or the combined PSF of
the SGL and the observing instrument. This mapping is
encoded in the convolution matrix of the lens (or lens plus
instrument). The process of recovering the original image,
deconvolution, is known to amplify noise disproportion-
ately at the expense of signal. Successful deconvolution,
therefore, requires data to be collected with the highest
SNR possible. The limits on the SNR—limits due to
keeping integration times reasonable, due to limitations
of the image sensor dynamic range, or other factors—
therefore represent the primary constraint on the achievable
spatial and spectral resolution when imaging distant exo-
planets using the SGL.
The Einstein ring, formed by light from the exoplanet

and amplified by the SGL, appears near the solar disk, on
the bright solar corona background. The brightness of the
solar corona dominates over the Einstein ring formed by the
SGL from the faint light of distant, dim objects. Noise due
to the solar corona will always be present due to the
quantized nature of light, in the form of stochastic shot
noise. Even assuming that no systematic noise sources are
present and that the contribution of the solar corona can be
independently measured and removed from any observa-
tion, this noise remains, and it represents the main
limitation on achievable imaging with the SGL.

A. Solar corona model

To model the contribution from the solar corona, we use
a recent model [23] of its surface brightness BcorðθÞ,

FIG. 2. Left: Spectral flux of photons per square micron sensor pixel, at λ ¼ 500 nm (blue dotted line) and λ ¼ 1 μm (red solid line).
We present a cross sectional view, ρi0 ¼ ρi − f

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
, centered on the Einstein ring that is due to an Earth-like planet at a distance of

z0 ¼ 30 pc, as seen on the image sensor of an f ¼ 10 m thin-lens telescope with aperture d ¼ 1 m, placed at ρ0 ¼ 0 at an image plane at
z̄ ¼ 650 AU from the Sun, in accordance with Eqs. (29) and (3). Right: Photon spectral density integrated over the entire Einstein ring.
Note that this computation assumes a resolved Einstein ring, which implies λ ≲ 1.2 μm for a d ¼ 1 m telescope.
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BcorðθÞ ¼ ð10−6 · B⊙Þ
�
3.670

�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
θ0
θ

�
2.5
�
; ð30Þ

where θ ¼ ρ=z̄ and θ0 ¼ R⊙=z̄. The quantity B⊙ is the
brightness at the center of the solar disk. Assuming
the Sun’s temperature2 to be T⊙ ¼ 5; 772 K, we estimate
the solar brightness from Planck’s radiation law,

B⊙ ¼ 1

π
σT4

⊙ ¼
Z

∞

0

BλðT⊙Þdλ

¼
Z

∞

0

2hc2

λ5ðehc=λkT⊙ − 1Þ dλ

¼ 2.0034 × 107
W

m2 sr
: ð31Þ

Substituting this result in (30) yields the known broad-
band corona model [3,4],

BcorðθÞ ¼ 20.03

�
3.670

�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
θ0
θ

�
2.5
�

W
m2 sr

: ð32Þ

Considering the spectral behavior of the solar corona, we
realize that it is not Planckian. Relevant data are scarce,
especially in the infrared domain [24–30]. Nonetheless, the
few data points from available sources suggest a reasonable
approximation in the form of the Planckian spectrum scaled
by the wavelength λ,

Bcorðθ; λÞ ¼
�
10−6

λ

λ⋆ B⊙ðλÞ
��

3.670

�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
θ0
θ

�
2.5
�
;

ð33Þ

where we use λ⋆¼925nm, ensuring that
R∞
0 dλBcorðθ;λÞ¼

BcorðθÞ is consistent with (32). Consequently, we model
the spectral corona brightness as (see Fig. 3),

Bcorðθ; λÞ ¼ 10−12
2hc2

λ⋆λ4ðehc=λkT⊙ − 1Þ
�
3.670

�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
θ0
θ

�
2.5
�

×
W

μmm2 sr
; ð34Þ

where another factor of 10−6 is because we use μm to report
the scale of a wavelength.
The modified spectrum of (34) represents a conser-

vative model for estimating the SGL SNR. Skewing the
model in favor of the infrared part of the spectrum yields a
greater number of photons, hence more shot noise.
Therefore, until and unless a better spectral model for
the corona becomes available, we find this model satis-
factory for the purpose of estimating the SNR of SGL
observations.

B. Spectral signal from the solar corona

As we established, the Einstein ring that forms
around the Sun from light emitted by the exoplanet that
is the observational target appears on the bright back-
ground of the solar corona. Even if we assume that the
corona background can be accurately estimated (or mea-
sured by other instruments) and removed, as light is
quantized into photons, inevitably, there is stochastic noise
in the form of Poisson (approximately Gaussian)
shot noise.
The spectral intensity distribution due to corona light

received on the sensor of an imaging telescope is evaluated
similarly to (12),

Icorðxi; λÞ ¼
�
kd2

8f

�
2
Z

2π

0

dϕ0
Z

∞

θ0

θ0dθ0Bcorðθ0; λÞ

×

�
2J1ðkdûðx0;xiÞÞ

kdûðx0;xiÞ
�

2

; ð35Þ

where θ0 ¼ R⊙=z̄ represents the solar disk, light from
which is assumed to be blocked by an internal coronagraph
or external starshade and where, following [16], we
introduce the corona spatial frequency, αc defined as

αc ¼ k
x0

z̄
≡ k

ρ0

z̄
n0 ¼ kθ0n0; ð36Þ

FIG. 3. The modeled photon spectral flux of the solar corona
(solid red line), ðλ=hcÞBcorðθ; λÞ according to Eq. (34). For
comparison, a Planckian spectrum (dotted blue line) is also
shown, yielding the same integrated broadband intensity as the
model we use.

2See https://en.wikipedia.org/wiki/Sun.
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and using (10) to represent ηi ¼ ηini, we define ûðx0;xiÞ, a
wavelength-independent corona spatial frequency, as

ûðx0;xiÞ ¼ jαc þ ηij=2k

¼
�
1

4

�
θ0 −

ρi
f

�
2

þ θ0
ρi
f
cos2

�
1

2
ðϕ0 − ϕiÞ

��1
2

:

ð37Þ
Considering the expression for ûðx0;xiÞ given by (37)

and taking into account the integration limits for θ0, one can
see that for any pixel with radial position of
ρi ≥ fθ0 ¼ fR⊙=z̄, there will be an area of the corona
with angular position of θ0 such that θ0 ¼ ρi=f, yielding
ûðx0;xiÞ ¼ θ0 cos½1

2
ðϕ0 − ϕiÞ�. As a result, for the value of

the argument ðϕ0 − ϕiÞ ¼ �π, the ratio of the Bessel
function in (35) will reach its maximum value of 1. This
will result in the light present everywhere on the sensor for
pixels with ρi ≥ fθ0. Such a behavior is different compared
to that of the exoplanetary signal that is concentrated in the
immediate vicinity of the Einstein ring, as observed in (26)
and (27).
The photon count density (photons per unit time, per unit

wavelength, per unit area) that corresponds to (35), is
shown in Fig. 4 (left) and it is given by

Qcorðxi; λÞ ¼
λ

hc
Icorðxi; λÞ: ð38Þ

Integrating the corona over the entire Einstein ring yields
the spectral density shown in Fig. 4 (right).

IV. SENSITIVITY AT VARIOUS WAVELENGTHS

Fundamentally, there are two ways to block unwanted
light from the Sun: (i) An internal coronagraph that uses an
internal occulter that is built into the telescope and as such,
is subject to its diffraction limit, and (ii) An external

occulter, also known as a starshade, that is located at a
substantial distance from the telescope, producing an
artificial eclipse.

A. Modeling the internal coronagraph

In the case of an internal coronagraph, diffraction plays a
critical role. An internal coronagraph uses an occulter mask
in the focal plane of its first lens. Such an occulter is subject
to the diffraction limit of the telescope aperture, therefore
there will be significant diffracted light. To prevent this
light from forming a bright Arago spot, a second lens is
used that effectively transforms back the wave front into the
Fourier domain, where a smaller aperture, the Lyot-stop,
filters out this diffracted light by acting as a low-pass filter.
Finally, additional optics refocuses the light onto the
telescope’s image plane. The complexity of the optics
and the inefficiency of the Lyot-stop reduce the trans-
mittance of a coronagraph-equipped telescope to values as
low as 12% [15,31], which may need to be compensated by
some combination of longer integration times or larger
apertures.
For the internal coronagraph to be effective, the sepa-

ration between the solar disk and the Einstein ring must be
consistent with the telescope’s diffraction limit. This pushes
the beginning of the science operations for a meter-class
telescope to heliocentric distances beyond z̄ ¼ 650 AU
(see details in [3,4,18,19]). At those distances, a d ¼ 1 m
aperture telescope can resolve the Einstein ring and dis-
tinguish it from the Sun at the wavelength λ ¼ 1 μm;
however, the same telescope at the same heliocentric ranges
only sees an unresolved blur at λ ¼ 10 μm, as shown in
Fig. 5 (right).
More specifically, resolving the Einstein ring from the

solar disk implies the following condition,

ffiffiffiffiffiffiffi
2rg
z̄

r
−
R⊙

z̄
≳ λ

d
; ð39Þ

FIG. 4. Left: Cross sectional view of the corona photon flux Qcor given by Eq. (38), centered on the Einstein ring,
ρi0 ¼ ρi − f

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
, as seen by a d ¼ 1 m aperture telescope at z̄ ¼ 650 AU from the Sun, in the vicinity of the Einstein ring of

a distant target, at two different wavelengths. Right: Spectral density of the photon count due to the solar corona, integrated over the
Einstein ring. Similarly to Fig. 2, the computation is limited to λ < 1.2 μm, consistent with diffraction limits.
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in fact, ∼2λ=d is needed for reliable operations. Evidently,
larger apertures are essential to operate at longer wave-
lengths. For a given wavelength λ, the size of the optimal
aperture can be estimated from (39) as

d≳ λ
z̄ffiffiffiffiffiffiffiffiffi

2rgz̄
p

− R⊙
; ð40Þ

which suggest that for λ ≃ 1 μm, ideal apertures begin at
d≳ 1.5 m. For λ ≃ 10 μm, this optimal aperture increases
to d ≃ 15 m. As delivering such a large telescope to the
SGL focal region is a complex engineering challenge, this
limitation makes the use of an internal coronagraph for
SGL observations at mid-IR wavelengths less desirable.

B. The case for an external occulter (starshade)

For an external occulter, we need to have a physical
obscuration that blocks the solar disk as seen from all
points over the imaging telescope aperture, namely

D0 − d
zs

≳ 2R⊙

z̄
; ð41Þ

where D0 is the diameter of the external occulter, d is the
telescope’s aperture, and zs is the separation between the
occulter and the telescope.
In comparison with projects that involve the use of a

starshade for exoplanet detection in conjunction with a
conventional space telescope [1,32], the starshade require-
ments of an SGL observatory are unremarkable. The
required contrast ratio, ∼107 at optical wavelengths,
decreasing to as low as 103 in mid-IR, is easily achievable.
The purpose of the starshade is to block light from the Sun,
as opposed to light from the host star. The angular
separation between the Einstein ring and the solar disk
is of Oð0.100Þ. These requirements are easily satisfied by a
starshade of modest size at a distance from the telescope
that is about an order of magnitude smaller than the

currently contemplated starshade-to-telescope distances;
e.g., a 70 m starshade located at ∼5000 km from an
SGL telescope could block the Sun in a configuration with
a Fresnel number of F ¼ ð1

2
D0Þ2=ðλzsÞ ∼ 25 at λ ¼ 10 μm,

sufficient for the efficient rejection of sunlight. Such a
starshade is comparable in size to the solar sails that have
been contemplated as the primary means of propulsion to
deliver a telescope to the SGL focal region in acceptable
time frames. This raises the possibility that perhaps an
appropriately designed, maneuverable solar sail package
might be reused as a starshade during the science phase of
the SGL mission. Recent simulations [33] confirm the
possibility of such a coronagraphic performance of a
starshade (see Fig. 6).
The use of a starshade has other advantages, arising from

the fact that the starshade is not subject to the diffraction
limit imposed by the observing spacecraft’s aperture.

(i) First, is not necessary to wait until z̄ > 650 AU
to begin observations; although the corona is
brighter when the Einstein ring is closer to the
Sun, the starshade reliably blocks light from the
solar disk shortly after the spacecraft passes through
z̄ ¼ 548 AU.

(ii) Second, the starshade can be positioned such that it
blocks all light (including light from the corona)
right up until the inner boundary of the Einstein ring,
reducing the amount of corona noise.

(iii) Third, as we have known all along, as the spacecraft
egresses, the apparent size of the Sun would change,
and this would have to be mimicked in some way by
the occulter. With the starshade, we can simply vary
the distance between starshade and spacecraft so that
it always covers everything inside that Einstein ring.

(iv) Fourth, the modern starshade concepts that were
studied by the exoplanetary community must be able
to accommodate a significant slewing needed to
repoint the pair starshade-observing telescope to
observe a new target, making such concepts tech-
nically challenging. In contrast, in the case of the
SGL, any motion would amount only to a pair of
bore-sighted instruments (i.e., starshade and imag-
ing telescope) slewing in the image plane, which is a
substantially less demanding navigational task.

(v) Fifth, an internal occulter requires complicated
optics reducing optical throughput significantly, to
as little as 12% [15,31]. A starshade may block
sunlight without affecting the signal from the
Einstein ring.

(vi) Lastly, we can conceive of an advanced starshade
design with an occulter that has only an annular
opening, allowing in light only from the very thin
region of the Einstein ring (again keeping in mind
that the starshade is not constrained by the diffrac-
tion limit of the observing telescope, only by the
limits imposed by its “soft” edge), thus not only

FIG. 5. Views by a d ¼ 1 m telescope at 650 AU, with the Sun
blocked out (the size of the solar disk is indicated by the yellow
circle.) Left: the Einstein ring of a point source, at λ ¼ 1 μm.
Right: The completely blurred Einstein ring of the same point
source, viewed through the same telescope at λ ¼ 10 μm.

SPECTRALLY RESOLVED IMAGING WITH THE SOLAR … PHYS. REV. D 106, 044059 (2022)

044059-9



eliminating light contamination by the Sun but also
drastically reducing light contamination from the
solar corona.

Once an external starshade is used, the requirements on
the SGL telescope can be greatly relaxed. The telescope is
no longer required to resolve the Einstein ring from the
solar disk in order for an internal coronagraph to block out
the Sun. Furthermore, at longer wavelengths shot noise
from the solar corona becomes a proportionately less
significant problem, as the number of photons associ-
ated with a given signal power increases linearly with
wavelength.
Using longer wavelengths in combination with a small

telescope implies that no resolved Einstein ring can be seen
anymore: any light that gets past the starshade is blurred
completely by the telescope’s diffraction limit, as shown in
Fig. 5 (right). While its spectral resolution remains unaf-
fected, the telescope can only be used in “light bucket”
mode, moving from pixel location to pixel location in the
image plane, measuring the intensity of received light for
later reconstruction of a spatially resolved image of the
target.

C. Sensitivity at optical and near-IR wavelengths

At this point we are ready to evaluate the sensitivity that
may be anticipated for different observing regimes. As
always, we evaluate the sensitivity by computing the SNR.
To do so, we assume that the unwanted light contamination
from the solar corona can be entirely removed (e.g., by
measuring the solar corona from a different vantage point,
observing the same corona at the same time, with the target
Einstein ring absent). Even in this case, however, there is
nonremovable stochastic shot noise that is calculated as the

square root of the total number of photons (signal plus
light contamination) received. Therefore, we estimate the
SGL SNR as

SNRðx0;xi; λÞ ≃
Qðx0;xi; λÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qcorðx0;xi; λÞ

p ; ð42Þ

where the approximation remains valid so long as
Q ≫ Qcor, which is almost always the case.
To use Eq. (42), it is technically necessary to independ-

ently integrate the quantities in the numerator and under the
square root in the denominator, over the integration time t,
the spectral channel bandwidth λ, and the sensor (pixel)
area A,

SNRðx0;Δt;Δλ;AÞ¼
R t2
t1 dt

R λ2
λ1
dλ
RR

Ad
2xiQðx0;xi;λÞ

½R t2t1 dtR λ2λ1 dλRRAd2xiQcorðx0;xi;λÞ�12
:

ð43Þ

This integration can only be carried out numerically.
However, when the photon flux is constant over the
integration time Δt ¼ t2 − t1, the sensor pixel size
Apix ≃ ΔxiΔyi, centered on xi, is small, and the spectral
channel bandwidth Δλ ¼ λ2 − λ1 centered on λ is narrow,
the integration can be well approximated by simple
multiplication,

SNRðx0;Δt;Δλ; AÞ ¼ SNRðx0;xi; t; λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ApixΔλΔt

q
: ð44Þ

It is, of course, also possible to just integrate over a range of
wavelengths (to obtain a broadband per-pixel SNR for
individual locations in the telescope sensor plane) or over

FIG. 6. Simulation of an external occulter (starshade) with a soft edge. The modeled Gaussian corrugation is ∼10% of the occulter
radius, which is very conservative. A smaller corrugation, which does not decrease transmittance at the Einstein ring, may be applicable.
From [33].

SLAVA G. TURYSHEV and VIKTOR T. TOTH PHYS. REV. D 106, 044059 (2022)

044059-10



the Einstein ring (or parts of the Einstein ring) to obtain a
spectrally resolved SNR for the entire telescope sensor or
for segments of the Einstein ring.
We illustrate these concepts first in Fig. 7 (left), which

shows (42). To calculate the SNR, we assumed a per-pixel
integration time of Δt ¼ 300 seconds; that is to say, the
telescope is expected to collect light continuously at a fixed
location relative to the (moving) exoplanet image for
300 seconds before moving on to the next location.
This integration time is sufficiently short to avoid motion
blur, e.g., due to planetary rotation. (Other effects
due to temporal changes in the planet’s phase [1] or
illumination will be considered in future studies.) For
context, consider that the area of the λ ¼ 1 μm Einstein
ring occupies approximately 4; 900 μm2 in the sensor plane
of this telescope. This result is consistent with our earlier
estimates [19,34], demonstrating the feasibility of
obtaining intermediate-to-high resolution images of exo-
planets in the 5–30 pc range using the SGL and a d ¼ 1 m
telescope.
Further integrating over the entire Einstein-ring yields

Fig. 7 (right). This figures depicts the SNR at various
optical and near-IR wavelengths, assuming that the optical
telescope was used as a single-pixel, spectrally resolved
sensor sampling the SGL image plane at x0.
Conversely, Fig. 8 shows the SNR per pixel after

integrating over all optical and near IR wavelengths up
to λ ¼ 1.2 μm. This would correspond to an observational
scenario that uses details of the Einstein ring to help
reconstruct broadband, spatially resolved high-resolution
images of the source.
Other combinations are, of course, possible, including

integration over both the entire Einstein ring and over all
wavelengths. This scenario, using a d ¼ 1 m telescope with
f ¼ 10 m focal line, imaging the Einstein ring of an exo-
Earth at z0 ¼ 10 pc, from a vantage point at z̄ ¼ 650 AU,

yields the value of SNR ¼ 12.67 after 300 seconds of
integration.
This SNR is sufficient to reconstruct even a color image

of an exo-Earth at a modest resolution. This is shown in
Fig. 9, which shows the result consistent with a cumulative
total integration time of less than 6 months. The post-
deconvolution per-channel SNR of ∼1.05 is consistent with
the semianalytically estimated SNR [4] of

SNRR ≃ 0.891
D

d
ffiffiffiffi
N

p SNRC ¼ 0.90; ð45Þ

where D ¼ 1300 m=128 ¼ 10.15 m is the spacing
between pixels.

D. Observations at longer wavelengths

In the preceding section, we evaluated the use of the SGL
in combination with a meter-class aperture, assuming a
resolved Einstein ring. This scenario allows the use of an

FIG. 7. Left: The per-pixel, per-spectral-channel SNR, for an Earth-like exoplanet at z0 ¼ 10 pc, as seen through a d ¼ 1 m aperture
telescope with f ¼ 10 m focal distance, situated at z̄ ¼ 650 AU from the Sun, through the solar corona, after 300 s of integration time.
Two cases are shown for λ ¼ 1 μm (solid red line) and λ ¼ 500 nm (dotted blue line) normalized to a nominal channel bandwidth of
1 μm. Right: The SNR integrated over the Einstein ring in the visible part of the spectrum. A resolved Einstein ring is assumed, hence
the bandwidth is limited to near-IR, λ < 1.2 μm.

FIG. 8. Broadband SNR in the visible and near-IR band,
200 nm ≤ λ ≤ 1.2 μm, shown over the cross section of a resolved
Einstein ring, over a 300 second integration time using a d ¼ 1 m
telescope, consistent with Fig. 7.
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internal coronagraph or other observational techniques that
rely on sampling parts of the Einstein ring. We observed
that the diffraction limit of such a small telescope confines
us to optical and near IR wavelengths. In particular, at
longer wavelengths, the telescope’s diffraction limit stands
in the way (see Fig. 5) of resolving the solar disk apart from
the Einstein ring that surrounds it, making it impossible to
block light contamination by the Sun using an internal
coronagraph.
Yet as we noted earlier, an Earth-like exoplanet emits

significant power at longer wavelengths, in the mid-IR,
thermal regime (see Fig. 1). Moreover, the solar corona is
significantly quieter at these wavelengths (see Fig. 3),
which should result in a much improved SNR. To sidestep
the need for a telescope with an extremely large aperture,
we consider another possibility—an external starshade
(or, specifically, sunshade).
The spectral sensitivity of the SGL in the mid-IR domain

can be calculated as before, using (35). (One intriguing
possibility that may be within the realm of technical
feasibility is to extend the starshade to also block light
from outside the Einstein-ring, effectively implementing an
“annular coronagraph” concept that we first discussed in
[3]. This approach would amount to reducing the integra-
tion limits in (35) from θ0…∞ to a narrow range centered
on θER ¼ ffiffiffiffiffiffiffiffiffiffiffi

2rg=z̄
p

, characterizing the annular opening in
this starshade concept. The width of the annular opening is
no longer constrained by the imaging telescope’s diffrac-
tion limit either, only by the size of the starshade itself and
the nature of its patterned “soft” edges, which are used to
prevent the appearance of the bright Arago spot that would
otherwise be formed by such a disk-shaped occulter.)
It is interesting that even a simple disk starshade makes

the use of much smaller telescopes feasible even in the mid-
IR band. Fig. 10 demonstrates that even a modest 40 cm can
deliver an SNR that is sufficient for spatially resolved

spectroscopy in a range of bandwidths that is of great
interest to the exobiology community.
The broadband SNR (i.e., for the bandwidth within

0.1 μm ≤ λ ≤ 20 μm) for a range of telescope apertures
looking at an exo-Earth at z0 ¼ 30 pc from an observing
location at z̄ ¼ 650 AU, is shown in Table I. To demon-
strate the potential utility of these observations, we con-
sidered a 40 cm telescope in this configuration. We again
assumed a per-pixel integration time of 300 sec, which,
according to Table I, translates into an effective SNR
of 0.95

ffiffiffiffiffiffiffiffi
300

p
∼ 16.5.

FIG. 9. RGB color observation of an exo-Earth at 30 pc using the SGL in conjunction with a d ¼ 1 m telescope equipped with an
internal coronagraph. Left: the source image at 128 × 128 pixel resolution; Center: the blurred image projected by the SGL into an
image plane at z̄ ¼ 650 AU, with nonremovable stochastic shot noise from the corona at SNR ¼ 12.67, consistent with our solar corona
model at 650 AU with 300-second per pixel, per color channel integration time, or a cumulative integration time of 6 months. Right:
image after deconvolution, at SNR ¼ 1.05 per channel.

FIG. 10. The use of an external starshade allows us to extend
observations beyond that shown in Fig. 7, into the mid-IR
domain. In this domain, the much higher photon count and
comparatively less noise from the corona, offers remarkable
capabilities, including the use of smaller telescopes. Depicted is
the broadband spectral SNR density, using only a 1 sec integra-
tion time and integrated over the telescope sensor, with an
assumed field-of view twice the diameter of the apparent size
of the Sun, using three different aperture sizes: d ¼ 1 m (red solid
line), d ¼ 70 cm (green dashed line) and d ¼ 40 cm (blue dotted
line). Note the wide applicable bandwidth with wavelengths
ranging from UV (100 nm) to mid-IR (20 μm).
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Figure 11 shows the results of this simulation at an image
resolution of N ¼ 128 × 128 image pixel locations. The
original image (using an image of the actual Earth as a
stand-in for the exoplanet) is, as expected, blurred by the
SGL; the middle panel shows the blurred image with
Gaussian noise added at the level of SNRC ¼ 16.5.
Deconvolution yields the image on the right, with
SNRR ¼ 3.04, again consistent with (45). Note that
an observation of 128 × 128 ¼ 16, 384 pixels with
300 seconds per pixel can be accomplished using less
than two months of cumulative integration time.
It is, of course, possible to trade spatial resolution for

spectral resolution. Reduced spatial resolution also allows
for an increase in integration times without concern for
motion blur. Therefore, we anticipate that even with a
modest, d ¼ 40 cm telescope, spatially resolved spectros-
copy of a distant exoplanet with the number of spectral
channels in excess of 100, covering wavelengths from UV
to mid-IR, may be possible if an external starshade is used.

V. CONCLUSIONS AND NEXT STEPS

One of the more significant challenges to using the solar
gravitational lens to image distant, faint targets is the fact
that any light from such targets appears in the form of an

Einstein ring on top of the bright solar corona. For a target
such as an Earth-like exoplanet, despite the significant
light amplification of the SGL, the solar corona remains
brighter than the target’s Einstein ring by several orders of
magnitude.
As the solar corona background is known (in fact, it can

be independently measured, e.g., by nearby spacecraft that
“sees” the same corona but not the Einstein ring of the
intended target) it can be removed. Needless to say, this
implies an observing instrument that has the requisite
dynamic range to detect minute variations of the faint
Einstein ring on top of that bright background. More
importantly, due to the quantized nature of light, removing
the corona background still leaves a nonremovable sto-
chastic noise component; the Poisson “shot” noise.
When a large number of photons are involved, Poisson

noise is indistinguishable from Gaussian noise. As such, its
contribution can be readily estimated dividing the number
of signal photons by the square root of total photons.
Previously, in [3], we estimated the broadband SNR for the
entire Einstein ring of an Earth-like exoplanet.
In the present paper, we extended this work by rigorously

developing estimates of photon count spectral densities at
individual pixel locations in the focal plane of an imaging
telescope. By doing so, we have now developed the tools
that are needed to understand key questions, such as the
achievable spectral resolution of a future SGL instrument,
or the extent to which details of the Einstein ring may be
used to aid or improve image reconstruction.
Our calculations are based on a previously developed

wave-optical treatment of the SGL. To develop the present
results, we treated the Sun as a gravitational monopole. We
ignored contributions from its quadrupole and higher mass
multipole moments. These contributions are important
when it comes to image reconstruction, but they have no

TABLE I. The broadband SNR (i.e., for the bandwidth within
0.1 μm ≤ λ ≤ 20 μm) for a range of telescope apertures d, while
using a starshade to image an exo-Earth at z0 ¼ 30 pc from the
SGL focal region at z̄ ¼ 650 AU.

d SNR in 1 sec

0.4 m 0.95
0.7 m 2.18
1.0 m 3.30

FIG. 11. Observing an exo-Earth at 30 pc via the SGL, using a small, 40-cm telescope in the mid-, or thermal-infrared part of the
spectrum (broadband signal with λ ≤ 20 μm) in conjunction with an external starshade/sunshade that is assumed to block out the Sun.
Left: the source image at 128 × 128 pixel resolution; Center: the blurred image projected by the SGL into an image plane at
z̄ ¼ 650 AU, with nonremovable stochastic shot noise from the corona at SNR ¼ 16.5, consistent with our solar corona model at
300 second per pixel integration time, or a cumulative integration time of 2 months. Right: image after deconvolution. The use of a
starshade makes such a remarkably small instrument (i.e., with aperture of only 40 cm) capable of delivering high-quality spatially or
spectrally resolved images across a broad range of wavelengths.
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impact on the observed brightness of the solar corona, and
negligible impact on the overall brightness of the observed
Einstein ring of an extended body so long as its projected
image is much larger than the quadrupole-induced caustic
pattern in the SGL image plane [20–22]. This condition is
easily satisfied in all the realistic cases that we have
considered (i.e., an Earth-like planet with habitable zone
and within 30 pc from us).
A future SGL mission is expected to bring images with

good spatial and spectral resolution. The results we
presented in this paper allow us to estimate the anticipated
SNR per spectral channel (e.g., to that extent, results shown
in Fig. 10 represent the realistic SNR for imaging with the
SGL, as opposed to those obtained under idealistic, no-
noise, and long integration time assumptions discussed in
[35]). This information is useful for instrument and mission
design; it will also be valuable to evaluate, inform, and
guide prospective science observations.
We also considered using the SGL in the mid-IR band.

This was not previously considered, as a telescope with an
internal coronagraph would have to be unreasonably large
to resolve the solar disk from the Einstein ring at wave-
lengths up to λ ¼ 20 μm. In this case, however, we
considered the use of an external occulter or sunshade,
similar to the starshades that are currently being considered
for exoplanet search campaigns [1]. We found that the
starshade requirements of the SGL are more modest than
these proposed starshades, e.g., [1,36]. As the size of the
required starshade is comparable to that of the solar sail that
is being contemplated as the primary propulsion method for
an SGL mission [15,37], this opens up the possibility that
the solar sail may also double as a starshade.

Once a starshade is used, a much smaller SGL telescope
can deliver useful results across a broad range of wave-
lengths from UV to optical to mid-IR and beyond. The
resulting SNR is quite remarkable, as terrestrial planets are
strong signal emitters in the mid-IR range of wavelengths,
where corona noise is comparatively less. Our simulations
show that, quite remarkably, even a 40 cm aperture tele-
scope is sufficient to recover a good quality, resolved image
of an exo-Earth as far as 30 pc from the Earth. These results
offer strong motivation to study the use navigable star-
shades (and especially, solar sails repurposed as starshades)
as essential components of future SGL missions.
The mission implications of using starshades (single or

multiple) in conjunction with the SGL (that by itself is a
subject of various dynamical motions, see discussion in
[38]) is a novel topic that would have to be investigated.
In particular, specific imaging strategies for prospective
exoplanet targets are yet to be worked out, taking into
account the target system’s dynamics and also the temporal
behavior of the target system and planet. This effort is on-
going and results, when available, will be reported
elsewhere.
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