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We present a new method designed to avoid numerical challenges that have impeded calculation of the
Lorenz gauge self-force acting on a compact object inspiraling into a Kerr black hole. This type of
calculation is valuable in creating waveform templates for extreme mass-ratio inspirals, which are an
important source of gravitational waves for the upcoming Laser Interferometer Space Antenna mission.
Prior hyperbolic partial differential equation (PDE) formulations encountered numerical instabilities
involving unchecked growth in time; our new method is based on elliptic PDEs, which do not exhibit
instabilities of that kind. For proof of concept, we calculate the self-force acting on a scalar charge in a
circular orbit around a Kerr black hole. We anticipate this method will subsequently facilitate calculation of
first-order Lorenz gauge Kerr metric perturbations and self-force, which could serve as a foundation for
second-order Kerr self-force investigations.
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I. INTRODUCTION

Gravitational wave observations by the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) and
Virgo have significantly enhanced astrophysics research
[1–5]. Expansion of the current-generation network is under-
way through inclusion of the Kamioka Gravitational Wave
Detector [6,7] and likely future inclusion of LIGO-India [8].
Recently, the gravitational wave community has directed
further attention toward the next generation of detectors.
Among the most valuable of these future detectors is the
Laser Interferometer Space Antenna (LISA) [9], which will
probe millihertz gravitational waves for the first time.
Exploring this region of the gravitational wave spectrum
is expected to unveil new sources, such as supermassive
black hole binaries and extreme mass-ratio inspirals
(EMRIs). EMRIs involve a stellar-mass compact object
(mass μ ∼ 10 M⊙) slowly inspiraling into a massive black
hole (mass M ∼ 106 M⊙). Here we focus on theoretical
EMRI calculations with applications to gravitational wave
astronomy. If quantitative EMRI models are able to achieve
sufficient accuracy and realism, LISA observations of
EMRIs will successfully probe strong-field gravity with
unprecedented precision [10]. This work investigates and
overcomes technical obstacles that have inhibited prior

inclusion of certain valuable EMRI features in theoretical
models.
General relativity is the prevailing theory to describe

compact binary systems like EMRIs. Successful identifi-
cation of a valid and/or suitable approach follows from
analysis of appropriate properties of the two-body system.
The three main approaches are post-Newtonian theory [11],
numerical relativity [12], and black hole perturbation
theory [13]. Post-Newtonian theory is favorable for large
separations. Numerical relativity is favorable for compa-
rable masses with small separations. Black hole perturba-
tion theory is favorable for extreme mass ratios with
small separations. We use “favorable” because there are
regions of overlap in parameter space between different
approaches, but for some systems there may only be one
viable approach. EMRIs are an example of a such a system;
the mass ratios are sufficiently extreme to defeat numerical
relativity (mass ratio ϵ≡ μ=M ∼ 10−5), and the late phase
of the inspiral is too relativistic for post-Newtonian theory.
Therefore, black hole perturbation theory seemingly is the
only favorable option to accurately describe EMRI dynam-
ics (other EMRI frameworks, such as effective one-body
theory [14,15], adopt appropriate results from black hole
perturbation theory). With the black hole perturbation
theory approach, the larger binary component provides
the leading term in an expansion of the spacetime metric in
powers of the small mass ratio (ϵ); higher-order terms
describe dynamical two-body interactions.
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In applying black hole perturbation theory to develop
comprehensive EMRI waveform templates, perhaps the
single most important quantity to calculate accurately is the
waveform phase. During the sustained inspiral, approx-
imately ϵ−1 ∼ 105 rad of phase accumulate through merger.
To achieve accurate parameter estimation and precisely test
general relativity, the phase evolution will need to be
calculated to within an absolute error significantly smaller
than ∼1 rad. Phase calculations follow from determining
the small body’s orbital motion throughout the inspiral. The
self-force [16–18], a mechanism where the small body’s
gravitational perturbation backreacts onto itself, drives
orbital decay. Therefore, the accuracy of self-force calcu-
lations used during orbital evolution will determine the
crucial phase accuracy. To achieve LISA-motivated accu-
racy goals, the conservative part of the self-force needs to
be calculated through first order in ϵ [19], while the
dissipative part of the self-force needs to be calculated
through second order in ϵ [20].
The need for second-order calculations presents consid-

erable challenges. One manifestation of general relativity’s
nonlinearity is how the second-order metric perturbation is
sourced by products involving the first-order metric per-
turbation and itself (and its derivatives). Considering that
the first-order metric perturbation becomes infinite
approaching the small body, great care must be applied
in constructing and implementing a well-behaved second-
order source. Recently, a decade of dedicated effort has
culminated in the earliest (and, as of now, only) second-
order EMRI model [21–23]; facing seemingly atrocious
complications associated with the second-order self-
force problem, that second-order effort considered the
Schwarzschild quasicircular case to maximize simplicity
(presumably). One feature that may have aided successful
second-order calculations was usage of the Lorenz gauge,
where challenges related to the second-order problem are
better understood [24–26]. These second-order calculations
require, as input, an accurate first-order metric perturbation
(and derivatives) in a sufficiently regular gauge such as the
Lorenz gauge. For Schwarzschild metric perturbations, the
first-order Lorenz gauge problem has been conquered by
performing a tensor spherical harmonic decomposition
[27–43]. Achieving accessibility of Lorenz gauge metric
perturbations in more realistic and/or comprehensive sce-
narios would be a considerable advancement. One example
of a more realistic/comprehensive scenario is when the
bodies (one or both) are spinning. Spin for the larger body
is achieved by calculating perturbations of Kerr spacetime.
Unfortunately, past efforts to calculate the first-order
Lorenz gauge Kerr self-force have faced technical chal-
lenges and were not entirely successful.
The Lorenz gauge Kerr perturbation equations are not

known to be directly separable into multipole modes.
Accordingly, past work has approached the problem of
Kerr perturbations in Lorenz gauge by separating the ϕ

dependence into m-modes and solving hyperbolic partial
differential equations (PDEs) involving t, r, and θ deriva-
tives. Although this strategy is enticing, it was not entirely
successful because instabilities affecting the m ¼ 0 and
m ¼ 1modes caused the numerical solution to growwithout
bound proportionally to time [44]. Lorenz gauge approaches
seems to transcend specific numerical methods, appearing
with u-v coordinates [30], t-r� coordinates [44], and gauge
driver methods [45]. Recently, a technique based on ortho-
gonalization in solution space has been successful in taming
these numerical instabilities for the Schwarzschild case, and
it is plausible that this technique will also be successful for
Kerr [46,47]. In thiswork,we introduce and implement a new
method that avoids problematic instabilities by entering the
frequency domain and solving elliptic PDEs with r and θ
derivatives.
Rather than grappling with nonseparable PDEs (as we

are proposing), many popular approaches to the Kerr
perturbation problem have begun with the separable
Teukolsky equation [48,49]. The Teukolsky approach
has been particularly fruitful for radiation gauge metric
perturbations [50–62], for which the Kerr first-order self-
force has been calculated in a variety of configurations [63–
70]. However, radiation gauges are not especially well
behaved, which may be why existing second-order EMRI
models have not used radiation gauges; although, ongoing
developments toward radiation gauge based second-order
calculations are being made [71,72]. Recently, a promising
Teukolsky based approach for vacuum Lorenz gauge metric
reconstruction was discovered [73]; such a method may
become the best of both worlds upon future generalization
to nonvacuum scenarios. Although this work pursues a
non-Teukolsky based approach, we believe these alternate
pathways toward second-order Kerr perturbations will lead
to valuable cross-verification of results in the future.
The new method we present and implement here is

designed to calculate Kerr perturbations directly in Lorenz
gauge while avoiding problematic instabilities encountered
in prior work. Our method leverages the two Kerr Killing
vectors by separating the ϕ and t variables. Entering the
frequency domain is a key element of our strategy; the
associated elliptic PDEs do not involve instabilities like
those encountered in the prior hyperbolic PDE formulation
[44]. As proof of concept, we first apply our method to
calculate the self-force on a scalar charge in a circular
equatorial orbit around a Kerr black hole. The case
involving Lorenz gauge Kerr metric perturbations will be
pursued in subsequent work. It is somewhat strange to
approach the Kerr scalar self-force in the frequency domain
via PDEs because, unlike the gravitational case, the scalar
field equation is directly separable into spheroidal harmon-
ics [74–78] as the s ¼ 0 instance of the Teukolsky equation
(or as follows earlier work [79]). Nevertheless, by abstain-
ing from full separation of variables we support subsequent
investigation of Lorenz gauge Kerr perturbations via

THOMAS OSBURN and NAMI NISHIMURA PHYS. REV. D 106, 044056 (2022)

044056-2



elliptic PDEs. Prior self-force calculations based on hyper-
bolic PDEs have routinely used the scalar case for develop-
ment of techniques [69,80–90]. Our formulation of the
scalar field equation in Kerr spacetime in terms ofm-modes
closely follows that of Dolan et al. [89] (except we enter the
frequency domain), see Sec. II. For self-force regularization
we adopt the effective source method [81–84,88,91], see
Sec. III. Our numerical approach is based on a finite
difference representation of the elliptic PDE as a matrix
equation, see Sec. IV. Our results are consistent with prior
Kerr scalar self-force calculations, see Sec. V; in those
comparisons our methods are distinguished by their pur-
poseful applicability to Kerr gravitational perturbations in
Lorenz gauge.

II. ELLIPTIC PDE REPRESENTATION OF THE
KERR SCALAR FIELD EQUATION

We consider a scalar field Φ governed by the massless
Klein-Gordon equation in Kerr spacetime

gαβ∇α∇βΦ ¼ −4πρ; ð2:1Þ

where ∇α denotes a covariant derivative, ρ is the scalar
charge density, and gαβ is the inverse Kerr metric with mass
parameter M and specific angular momentum parameter a.
We adopt Boyer-Lindquist coordinates (t, r, θ, ϕ). The
scalar charge density describes a point charge with spatial
position (rp, θp, ϕp) and four-velocity uα

ρ ¼ q
ut

ffiffiffiffiffiffi−gp δðr − rpÞδðθ − θpÞδðϕ − ϕpÞ; ð2:2Þ

where g ¼ − sin2 θðr2 þ a2 sin2 θÞ2 is the Kerr metric
determinant and q is the scalar charge. Generally, rp, θp,
and ϕp might all depend on time. For simplicity, we
specialize to circular equatorial motion by requiring
rp ¼ r0, θp ¼ π=2, and ϕp ¼ Ωt. The relationships
between ut, Ω, and r0 follow from standard geodesic
analysis involving constants of motion [92]

Ω ¼ 1

aþ
ffiffiffiffiffiffiffiffiffiffiffi
r30=M

q ; ð2:3Þ

ut ¼
aþ

ffiffiffiffiffiffiffiffiffiffiffi
r30=M

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r30=M − 3r20 þ 2a

ffiffiffiffiffiffiffiffiffiffiffi
r30=M

qr : ð2:4Þ

In this treatment the sign of a determines whether the spin
and orbital angular momentum are aligned or antialigned
(a > 0 is prograde, a < 0 is retrograde). We only consider
orbits with r0 greater than or equal to the radius of the
innermost stable circular orbit, rISCO [93],

0 ¼ 1 −
6M
rISCO

þ 8a

ffiffiffiffiffiffiffiffiffiffi
M

r3ISCO

s
−

3a2

r2ISCO
; ð2:5Þ

where rISCO ≤ 6M for prograde orbits and rISCO ≥ 6M for
retrograde orbits.
Our approach involves separating the ϕ and t variables

Φðt; r; θ;ϕÞ ¼ 1

r

X∞
m¼−∞

Ψmðr; θÞeimΔϕðrÞeimðϕ−ΩtÞ; ð2:6Þ

where Ψm represents an m-mode of the scalar field and we
have assumed circular motion (although, noncircular
motion may be similarly accessible, see Sec. VI for
discussion). Following Dolan et al. [89], we have intro-
duced what is effectively a height function ΔϕðrÞ to the
azimuthal coordinate to address singular behavior near the
event horizon

ΔϕðrÞ ¼ a
rþ − r−

ln

�
r − rþ
r − r−

�
; ð2:7Þ

where r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are the inner (−) and outer (þ)

horizons of the Kerr black hole. One benefit of this ϕ
transformation involves simplification of boundary con-
ditions imposed near r ¼ rþ, see Sec. IV B. Enforcing
orthogonality of the sinusoidal azimuthal harmonics pro-
vides the inverse relation

Ψmðr; θÞ ¼
r
2π

e−imΔϕðrÞ
Z

2π

0

Φðt; r; θ;ϕÞe−imðϕ−ΩtÞdϕ:

ð2:8Þ

Substituting Eq. (2.6) into Eq. (2.1) reveals how each Ψm is
governed by a PDE involving r and θ derivatives

□m ≡ −m2Ω2 þ 4am2ΩMr
Σ2

−
ðr2 þ a2Þ2

Σ2

∂
2

∂r2�

−
2iamrðr2 þ a2Þ − 2a2Δ

rΣ2

∂

∂r�
−

Δ
Σ2

�
∂
2

∂θ2

þ cot θ
∂

∂θ
−

m2

sin2 θ
−
2M
r

�
1 −

a2

Mr

�
−
2iam
r

�
;

ð2:9Þ

□mΨm ¼ Sm; ð2:10Þ

where Δ≡ r2 − 2Mrþ a2, Σ2 ≡ ðr2 þ a2Þ2 − a2Δ sin2 θ,
Sm is an appropriately defined m-mode of ρ, and r� is the
tortoise coordinate

dr�
dr

¼ r2 þ a2

Δ
; ð2:11Þ
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r� ¼ rþ 2M
rþ − r−

�
rþ ln

�
r − rþ
2M

�
− r− ln

�
r − r−
2M

��
:

ð2:12Þ

Although differential operators involving □ often refer to
hyperbolic PDEs, our □m is an elliptic PDE operator
(notice that the coefficient of ∂

2=∂r2� has the same sign
as the coefficient of ∂2=∂θ2).
Before pursuing numerical solutions for Ψm and calcu-

lating the self-force, we must confront the need for local
regularization. Approaching the small body, each m-mode
diverges logarithmically. While certain dissipative aspects
of the self-force can be inferred from asymptotic fluxes, this
infinite local behavior obscures the self-interaction that
uniquely enables determination of the conservative part of
the self-force. We adopt the effective source method to
overcome this obstacle.

III. REGULARIZATION VIA THE EFFECTIVE
SOURCE METHOD

Our regularization method is based on the decomposition
of Φ into singular and regular pieces defined by Detweiler
and Whiting [94]

Φ ¼ ΦS þΦR: ð3:1Þ

Here we provide a qualitative summary of certain relevant
features ofΦS and ΦR; see [18] for a thorough presentation.
ΦS is an inhomogeneous solution of the scalar field equation
with a vanishing self-force contribution. Therefore,ΦR must
be a homogeneous solution of the scalar field equation that is
entirely responsible for the self-force Fself

α ,

Fself
α ¼ q∇αΦR; ð3:2Þ

where the gradient is evaluated at the position of the small
body.Naturally,we seekΦR as ameans to calculateFself

α . The
key to finding ΦR is to first find ΦS and Φ. For ΦS to
simultaneously satisfy the inhomogeneous field equation and
cause no force on q, it requires an inherently local definition.
This local character precludes any sort of numerical approach
that would pursue a global boundary condition to determine
ΦS or ΦR directly. Rather, ΦS is accessible through a local
expansion [95–98]

ΦS ∼
A1

s
þ A2 þ A3sþ A4s2 þOðs3Þ; ð3:3Þ

where s is some appropriate measure of distance from the
small body, and each coefficient Aj characterizes features
such as howΦS depends on the direction of approach toward
the small body. In a coordinate representation (which is
convenient in numerical applications), quantifying direc-
tional dependence and/or distance involves mathematical

ingredients such as r − r0, θ − π=2, and ϕ − Ωt. Physically,
ΦS mimics a tidally distorted Coulomb potential (according
to the small body’s local rest frame).
In practice, expansions of ΦS are truncated at a certain

order; we useΦP
ðnÞ to represent our truncated approximation

of the singular field

ΦP
ðnÞ ¼ ΦS þOðsn−1Þ; ð3:4Þ

where n is the truncation order. This produces an approxi-
mation of the regular field ΦR, which is accessible to
calculate Fself

α

ΦR ≡Φ −ΦP
ðnÞ: ð3:5Þ

Besides targeting a certain n, which does influence prac-
tical numerical features, there is considerable ambiguity in
deciding how to truncate the expansion that determines
ΦP

ðnÞ. Two distinct versions of ΦP
ðnÞ may be equally valid if

their difference is negligible compared to the truncation
error. This ambiguity can be leveraged in pursuit of
desirable properties. Although ΦS is defined locally,
ΦP

ðnÞ may be numerically accessible globally if it is

designed to avoid a vanishing denominator. Similarly, it
is convenient to define ΦP

ðnÞ so that ϕ − Ωt appears solely
within smooth periodic functions. These favorable proper-
ties are realized by the implementation of ΦP

ðnÞ designed by
Wardell and co-workers [91,99,100] that is used in this
work. Our adopted ΦP

ðnÞ has a truncation order of n ¼ 4,

which is sufficient for ΦR to exhibit a smooth gradient at
the position of the small body.
Although Eq. (3.5) defines ΦR, it is not practical for

numerical calculations because both terms are singular.
However, the effective source method provides ΦR as a
solution of the scalar field equation with a well-behaved
source derived from ΦP

ðnÞ. Here we illustrate the effective

source method from a viewpoint where the ϕ and t
variables have already been separated. Consider definitions
of ΨP

m and ΨR
m that respectively follow from substituting

ΦP
ð4Þ and ΦR into Eq. (2.8)

Ψm ¼ ΨP
m þΨR

m: ð3:6Þ

Knowing thatΨm is governed by the elliptic PDE defined in
Eq. (2.10), we seek a field equation governing ΨR

m

□mΨm ¼ □mðΨP
m þ ΨR

mÞ ¼ Sm: ð3:7Þ

Because ΨP
m is known from a local expansion, we interpret

its contribution as affecting the source governing ΨR
m

□mΨR
m ¼ Sm −□mΨP

m ≡ Seffm ; ð3:8Þ
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where Seffm is known as the effective source (or perhaps an
m-mode of the effective source). Although ΨP

m is infinite,
Seffm is finite everywhere because ΨP

m approximately sat-
isfies Eq. (2.10) such that the Dirac deltas cancel.
Equation (3.8) alone is not sufficient to determine the
self-force because ΨR

m does not satisfy a predictable
boundary condition. However, Ψm does satisfy a well-
defined boundary condition as the retarded solution.
Therefore, we seek ΨR

m only in a localized region surround-
ing the small body and we adjust our calculation to find Ψm
elsewhere. Consider a worldtube around the small body
with bounds rA < r0 < rB and θA < π=2 < θB (ϕ bounds
would not be helpful in describing each m-mode).
Depending on position relative to the worldtube, our
comprehensive strategy involves

□mΨm ¼ 0; outside worldtube;

□mΨR
m ¼ Seffm ; inside worldtube;

ΨR
m ¼ Ψm − ΨP

m; across worldtube: ð3:9Þ

Equipped with each ΨR
m , the self-force follows from

applying Eq. (2.6) to reconstruct ΦR as a sum over m and
calculating the gradient of each m-mode evaluated at the
particle

Fself
α ¼

X∞
m¼0

Fm
α ;

Fm
α ≡

�
q∇αðΨR

m=rÞ; m ¼ 0

2qRe½∇αðΨR
meimΔϕeimðϕ−ΩtÞ=rÞ�; m > 0:

ð3:10Þ

In practice, the sum is truncated after a finite number of m-
modes. The effective source implementation we have
adopted accommodates m ≤ 20. With an effective source
expansion characterized by n ¼ 4, truncating the sum over
m introduces an error for the conservative part of Fself

α of
size ∼m−4

max; this might seem to imply a negligible error
with our mmax ≃ 20, except we find that an especially large
coefficient amplifies this truncation error to what would be
a limiting factor. Thankfully, usage of m-mode regulari-
zation parameters [98] strengthens our accuracy by accel-
erating convergence, see Sec. V.

IV. NUMERICAL TECHNIQUES

A. Second-order finite difference method

We calculate numerical solutions of Eq. (3.9) through a
second-order finite difference method. Our discretized
numerical domain is a rectangular grid with fixed Δr�
and Δθ. The worldtube is centered at r ¼ r0 and θ ¼ π=2.
Through numerical experimentation we find that a world-
tube diameter of 15M (according to r�) and polar width of

π=3 are favorable to minimize steep gradients near the
small body. We determine Δr� and Δθ in part by ensuring
that an odd number of spaces span the worldtube. Besides
the obvious polar domain, 0 ≤ θ ≤ π, we introduce asymp-
totic r� boundary positions, rmin� ≤ r� ≤ rmax� , sufficiently
distant that radiative boundary conditions are approxi-
mately valid. Because Δr� was determined according to
the worldtube diameter, we require that an integer number
of worldtube diameters fit between rmin� and rmax� so that
resolution improvements can be accommodated with fixed
domain boundaries. Additionally, we fix the ratio of r� and
θ grid spacings at Δr�=Δθ ¼ 45M=π (determined through
experimentation) to reduce degrees of freedom when
conducting resolution tests. As Eq. (3.9) suggests, we
aim to solve for two different types of fields; the
retarded field Ψm outside the worldtube and the regular
field ΨR

m inside the worldtube. We assemble each unknown
value at each grid point into a vector of unknowns
with indices indicating the associated spatial position:

Ψ⃗≡ ðΨm00;Ψm01;Ψm02;…;Ψm10;Ψm11;…;Ψmði;jÞ;…Þ. The
first index i specifies the radial position:
r�ðiÞ ¼ rmin� þ iΔr�; the second index j specifies the polar
position: θðjÞ ¼ jΔθ.
We approximately represent Eq. (3.9) by replacing

partial derivatives with their equivalent finite difference
expression at that position

∂Ψmði;jÞ
∂r�

→
Ψmðiþ1;jÞ −Ψmði−1;jÞ

2Δr�
;

∂
2Ψmði;jÞ
∂r2�

→
Ψmðiþ1;jÞ − 2Ψmði;jÞ þ Ψmði−1;jÞ

Δr2�
;

∂Ψmði;jÞ
∂θ

→
Ψmði;jþ1Þ −Ψmði;j−1Þ

2Δθ
;

∂
2Ψmði;jÞ
∂θ2

→
Ψmði;jþ1Þ − 2Ψmði;jÞ þ Ψmði;j−1Þ

Δθ2
: ð4:1Þ

Note that Eq. (4.1) applies to Ψm when all five referenced
positions are located outside the worldtube; further analysis
involving ΨR

m is necessary when positions within the
worldtube are referenced. Each grid point where we seek
a field value has an associated equation. For elliptic PDEs
(such as ours), all unknowns are universally coupled in a
way that compels a fixed global solution; this is in contrast
to parabolic or hyperbolic PDEs that would involve initial
data and evolution. For each m-mode, we express the finite
difference equations associated with our elliptic PDE in
matrix form to leverage the power of computational linear
algebra

MΨ⃗ ¼ S⃗; ð4:2Þ

where the matrix M contains the finite difference coef-
ficients (boundary conditions also influence M, see
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Sec. IV B) and the vector S⃗ characterizes inhomogeneous
features such as Smeff .
Consider a case involving positions within the world-

tube. If all five positions referenced in Eq. (4.1) are within
the worldtube, it is sufficient to incorporate the appropriate
effective source value and replace Ψm with ΨR

m everywhere
in Eq. (4.1). However, when some referenced positions are
outside the worldtube while others are inside, we transform
between Ψm and ΨR

m using ΨP
m as necessary. As an

example, consider the finite difference equation associated
with the ði; jÞ ¼ ð1; 4Þ position where the finite difference
stencil intersects the worldtube as depicted in Fig. 1.
Although the finite difference equation (□mΨm14 ¼ 0)
requires Ψm at five positions including ði; jÞ ¼ ð2; 4Þ,
Ψm24 does not appear in the vector of unknowns; rather,
ΨR

m24 appears in the vector of unknowns at that position
inside the worldtube. To express the required Ψm24 in terms
of the available ΨR

m24 we use Ψm24 ¼ ΨR
m24 þ ΨP

m24 in the
finite difference equation

A
ΨR

m24 þΨP
m24 − 2Ψm14 þΨm04

Δr2�

þ B
ΨR

m24 þΨP
m24 −Ψm04

2Δr�
þ… ¼ 0; ð4:3Þ

where A is the coefficient of ∂
2Ψm
∂r2�

and B is the coefficient of
∂Ψm
∂r�

according to Eq. (2.10). Because ΨP
m24 is known we

include it in S⃗ by moving it to the right-hand side,

A
ΨR

m24 − 2Ψm14 þΨm04

Δr2�

þB
ΨR

m24 −Ψm04

2Δr�
þ…¼ −A

ΨP
m24

Δr2�
−B

ΨP
m24

2Δr�
: ð4:4Þ

Notice that M is not affected by this transformation. By
applying this logic to each case where the finite difference
stencil intersects the worldtube, the jumps from Ψm to ΨR

m

are accommodated by carefully inserting ΨP
m into S⃗ at the

worldtube boundaries.

B. Boundary conditions

The θ boundary conditions follow from two physical
requirements: Φ must be continuous and differentiable
away from the particle. At θ ¼ 0 and θ ¼ π, the continuity
requirement implies a condition for Ψm≠0 and the differ-
entiability requirement implies a condition for Ψm¼0 [81]

Ψm≠0jθ¼0;π ¼ 0; ð4:5Þ

∂

∂θ
Ψm¼0jθ¼0;π ¼ 0: ð4:6Þ

The justification for why these conditions governing each
Ψm achieve a continuous and differentiable Φ is related to
how each m-mode implies associated ϕ dependence (and
how that ϕ behavior affects Φ approaching the poles). For
the m ¼ 0 condition, we use second-order one-sided finite
difference equations to approximate the θ derivative

−3Ψm¼0jθ¼0 þ 4Ψm¼0jθ¼Δθ −Ψm¼0jθ¼2Δθ
2Δθ

≃ 0;

3Ψm¼0jθ¼π − 4Ψm¼0jθ¼π−Δθ þ Ψm¼0jθ¼π−2Δθ
2Δθ

≃ 0: ð4:7Þ

The r� boundary conditions follow from identifying
features exhibited by the retarded solution. Specifically, we
demand asymptotic wave propagation directed away from
the source (either toward decreasing r� near r� ≃ −∞ or
toward increasing r� near r� ≃þ∞). Consider the behavior
of Ψm near r ¼ rþ. It is well known that near-horizon wave
propagation in Kerr spacetime involves nontrivial
dispersion that is responsible for extraordinary phenomena
such as superradiance. By substituting r ¼ rþ into
Eq. (2.10) (which causes the θ derivatives to vanish) we
are able to describe how Ψm behaves near the horizon

Ψme−imΩtjr�≃−∞ ¼ fðθÞeiðk�r�−mΩtÞ; ð4:8Þ

where k� represents the wave numbers associated with
waves traveling in the increasing (þ) or decreasing (−) r�
direction

kþ ¼ mΩ −
am
rþ

;

k− ¼ −mΩ: ð4:9Þ

Naturally, k− describes the retarded solution. The simplicity
of this result derived from Eq. (2.10) is perhaps surprising;

FIG. 1. Example of a finite difference stencil involving fields
inside and outside the worldtube. Notice that Ψm14 has three
neighboring fields located outside the worldtube and one inside
the worldtube. According to Eq. (3.9), we transform between Ψm

and ΨR
m using ΨP

m as appropriate.
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this alignment of our desired downgoing solution with the
more naive Schwarzschild behavior is a feature of trans-
forming ϕ according to ΔϕðrÞ as described in Eqs. (2.6)
and (2.7). Analysis of Eq. (4.8) and its r� derivative
provides the near-horizon boundary condition

�
∂Ψm

∂r�
− ik−Ψm

�����
r�¼rmin�

≃ 0: ð4:10Þ

We use the same type of one-sided finite difference for r�
boundary conditions as with Eq. (4.7).
The appropriate large r� behavior more obviously

involves a similar Sommerfeld condition

�
∂Ψm

∂r�
− imΩΨm

�����
r�≃∞

≃ 0: ð4:11Þ

Unfortunately, unlike the near-horizon case, very distant
values of rmax� (∼5000M) would be necessary for Eq. (4.11)
to accurately represent the retarded solution; such an
implementation would not be computationally practical.
Rather than applying Eq. (4.11) at r� ¼ rmax� , we seek an
improved boundary condition based on asymptotic analysis

Ψmjr�≃∞ ¼ eimΩr�

�
AðθÞ þ BðθÞ

r�
þ CðθÞ

r2�
þO

�
1

r3�

��
:

ð4:12Þ

Although the series coefficients AðθÞ, BðθÞ, and CðθÞ are
unknown, by carefully forming linear combinations of
Eq. (4.12) and its r� derivatives we have discovered more
sophisticated conditions involving less error for a given
rmax� . Consider linear combinations of Eq. (4.12) and its
first r� derivative following Eq. (4.11); although some
lower-order terms do cancel, nonvanishing higher-order
terms in the series produce a residual

∂Ψm

∂r�
− imΩΨm ¼ O

�
1

r2�

�
: ð4:13Þ

Each higher derivative of Eq. (4.12) included in the linear
combination can achieve cancellation of the next non-
vanishing lowest-order residual term. The following two
linear combinations each achieve curtailment of the
residual by one additional order

∂
2Ψm

∂r2�
− 2imΩ

∂Ψm

∂r�
−m2Ω2Ψm ¼ O

�
1

r3�

�
; ð4:14Þ

∂
3Ψm

∂r3�
− 3imΩ

∂
2Ψm

∂r2�
− 3m2Ω2

∂Ψm

∂r�
þ im3Ω3Ψm

¼ O
�
1

r4�

�
: ð4:15Þ

Because associated numerical implementations represent
each residual as zero, it is apparent that minimizing the size
of the residual improves the accuracy of the solution
associated with a certain boundary condition. Although
we did investigate usage of Eq. (4.15) with some success,
our ultimate version of the large r� boundary condition
involves substituting rmax� into Eq. (4.14); this with
Eqs. (4.10), (4.5), and (4.6) assembles a comprehensive
boundary strategy.
Equipped with boundary conditions and finite difference

equations, we are able to calculate M, which is a sparse
diagonally dominated square matrix. The linear system
described by Eq. (4.2) involving M and S⃗ uniquely

determines Ψ⃗ for given a given domain discretization
and m value. Our numerical implementation is based on
Mathematica’s “SparseArray” data type and “LinearSolve”
function. We predicted that a modern iterative solver, such
as using “Method → Krylov” with LinearSolve, was likely
to be most efficient. However, we found that using
“Method → Pardiso” with LinearSolve was more efficient
than any of the iterative solvers available in Mathematica;
the associated “Pardiso” documentation suggests it is based
on a direct solver involving factorization of M, except the
factorization is inexact so that the direct solution requires a
small amount of iterative refinement.

V. RESULTS AND CONVERGENCE

Solving the sparse linear system provides Ψm and ΨR
m in

their respective regions, see Fig. 2. Radial cross sections of
the numerical data with θ ¼ π=2 for various m values are

FIG. 2. Numerical solution of the elliptic PDE governing each
m-mode of the scalar field. The associated parameters are
a ¼ 0.9M, r0 ¼ 6M, and m ¼ 1. The blue arrow identifies the
interior of the worldtube; in that region the numerical solution
describes ΨR

m , which is responsible for the self-force. Outside the
worldtube, the numerical solution describes Ψm, which is
governed by predictable boundary conditions. Across the world-
tube we enforce ΨR

m ¼ Ψm − ΨP
m.
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depicted in Fig. 3. The gradient of ΨR
m at the position of the

small body determines each m-mode of the self-force. For
the dissipative part of the self-force the sum over m
converges rapidly. However, for the conservative part of
the self-force the sum over m converges more slowly
depending on the order of expansion for ΨP

m (or, equiv-
alently, the value of n). Generally, the conservative part of
the self-force is more challenging to calculate accurately.
Therefore, we measure the accuracy of Fm

r specifically to
assess any relevant aspect of convergence when calculating
ΨR

m numerically.
One obvious aspect of convergence involves ensuring

Δr� and Δθ are sufficiently small to minimize discretiza-
tion error. When pursuing successive resolution refine-
ments, we decrease Δr� and Δθ by the same factor through
increasing an integer shared in their denominators. By
default, we expect the error of our second-order finite
difference method to scale proportionally to Δr2�. However,
we use two orders of Richardson extrapolation to accelerate
convergence such that our overall performance is equiv-
alent to a fourth-order method, see Fig. 4.
Another aspect of convergence is related to how our rmin�

and rmax� boundary conditions are only approximate (except
at r� ≃�∞). That approximation improves as rmin� is
decreased and rmax� is increased. We observe rapid con-
vergence with decreasing rmin� so that rmin� ≃ −50M is
sufficient to avoid limiting errors. In contrast, we evaluate
a sequence of increasing rmax� values to assess associated
convergence. For each rmax� we reanalyze discretization
errors according to Fig. 4. Even with our enhanced
boundary condition involving higher r� derivatives (see

Sec. IV B), unreasonably high values of rmax� are seemingly
necessary. Thankfully, we are able to again use Richardson
extrapolation to accelerate convergence so that rmax� ≃
400M is typically sufficient, see Fig. 5.
The final aspect of convergence is in applying Eq. (3.10).

The dissipative part of the self-force converges exponen-
tially as more m-modes are included. Unfortunately, the

FIG. 3. Radial cross sections of numerical solutions at θ ¼ π=2
for various m values. The associated parameters are a ¼ 0.9M
and r0 ¼ 6M. The worldtube boundaries are identifiable as
discontinuities in the numerical solution. We measure the
gradient of ΨR

m at the center of the worldtube to assess
convergence.

FIG. 4. Measuring convergence with decreasing Δr� and Δθ.
The associated parameters are a ¼ 0.5M, r0 ¼ 6M, and m ¼ 1.
By default, our second-order finite difference method introduces
an error proportional to Δr2� (or, equivalently, Δθ2), which is
rather slow. We accelerate convergence to an acceptable rate with
two orders of Richardson extrapolation. The solid lines represent
theoretical convergence rates.

FIG. 5. Measuring convergence with increasing rmax� . The
associated parameters are a ¼ 0.5M, r0 ¼ 6M, and m ¼ 1. To
ensure our approximate outer boundary condition is not a limiting
factor, we successively increase rmax� until Fm

r converges. Even
with an improved boundary condition that utilizes higher deriv-
atives, we rely on Richardson extrapolation to avoid unreason-
ably large domain sizes.
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conservative part of the self-force converges at a slower
rate, see Fig. 6. Furthermore, some terms of Fm

r are large
and positive while others are large and negative, which
deteriorates our overall accuracy upon cancellation; notice
in Fig. 6 how the largest term in the sum is bigger than Fself

r
by a factor of ∼100. To improve accuracy, we use m-mode
regularization parameters [98] to essentially include infor-
mation associated with m values higher than those we
calculated numerically. Although the seemingly inacces-
sible m-modes of q∇rΦR would converge exponentially,
our Fm

r is calculated from the m-modes of q∇rΦR ¼
q∇rðΦ −ΦP

ð4ÞÞ; the large-m tail of Fm
r is an artifact of

truncating ΦP
ð4Þ and causes slower convergence. Each of

those n ¼ 4 tail terms Fm
rð4Þ can be represented as the m-

modes of q∇rðΦP
ð5Þ −ΦP

ð4ÞÞ. Calculating Fm
rð4Þ, which can

be evaluated at the particle before ϕ integration, is easier
than calculating the m-modes of ΦP

ð5Þ (and its associated

higher-order effective source) because the dependence of
ΦP

ð5Þ on r and θ would need to be preserved during ϕ

integration. If mmax is sufficiently large that q∇rΦR will
have converged, then Fm

r ≃ Fm
rð4Þ when m > mmax. This

approximate equivalence is powerful because we have an
exact expression for Fm

rð4Þ [98], which allows us to include

all terms through m ¼ ∞ (at n ¼ 4)

Fself
r ≃

Xmmax

m¼0

Fm
r þ

X∞
m¼mmaxþ1

Fm
rð4Þ: ð5:1Þ

Conveniently, the infinite sum in Eq. (5.1) has a closed-
form expression. Fm

rð4Þ is presently the highest-order m-

mode regularization parameter we are able to access;
further enhancements would be achievable if higher-order
regularization parameters were also available. It is possible
to do numerical fitting for higher-order regularization
parameters; we are likely to pursue such numerically
determined regularization parameters in future work.
Table I provides numerical results for Fself

r and verifies
agreement with prior work, Refs. [74,89]. Table II provides
the same comparison for Fself

ϕ to illustrate that the dis-
sipative self-force is typically not a limiting factor.
Reference [74] is based on separation of variables via
spheroidal harmonics and serves as an accurate benchmark.
Reference [89] is based on hyperbolic PDEs. Notice our
elliptic PDE method has surpassed or matched the accuracy
of Ref. [89] (with only one exception, see Table I), which
suggests that numerical challenges related to PDEs can be
mitigated so long as there are no problematic instabilities.
Neither of Refs. [74,89] involve methods that have fully
conquered the Lorenz gauge Kerr metric perturbation

FIG. 6. Measuring convergence of Eq. (3.10). The associated
parameters are a ¼ 0.5M and r0 ¼ 6M. Notice how the dis-
sipative part of the self-force converges exponentially while the
conservative part of the self-force converges more slowly. The
solid lines represent theoretical convergence rates. We use m-
mode regularization parameters to accelerate convergence of the
conservative part of the self-force.

TABLE I. Numerical results for Fself
r compared with prior work.

Only significant digits are shown (when present, significant digits
beyond the seventh are omitted). Reference [74] is based on
separation of variables via spheroidal harmonics and serves as
an accurate benchmark. Reference [89] is based on hyperbolic
PDEs. Notice how, with only one exception, our elliptic PDE
method has surpassed or matched the accuracy of Ref. [89], which
suggests that numerical challenges related to PDEs can be
mitigated so long as there are no problematic instabilities.

Conservative self-force comparisons: Fself
r × ðM2=q2Þ

r0 ¼ 10M r0 ¼ rISCO

4.9400 × 10−5 9.607 × 10−5 This work
a ¼ −0.9M 4.939995 × 10−5 9.607001 × 10−5 Ref. [74]

4.94 × 10−5 9.607 × 10−5 Ref. [89]
4.1007 × 10−5 1.1076 × 10−4 This work

a ¼ −0.7M 4.100712 × 10−5 1.107625 × 10−4 Ref. [74]
4.10 × 10−5 1.108 × 10−4 Ref. [89]

3.2894 × 10−5 1.2751 × 10−4 This work
a ¼ −0.5M 3.28942 × 10−5 1.275170 × 10−4 Ref. [74]

3.29 × 10−5 1.275 × 10−4 Ref. [89]
1.3784 × 10−5 1.677 × 10−4 This work

a ¼ 0 1.378448 × 10−5 1.677283 × 10−4 Ref. [74]
1.38 × 10−5 1.677 × 10−4 Ref. [89]

−4.035 × 10−6 −6.92 × 10−5 This work
a ¼ þ0.5M −4.03517 × 10−6 −6.922147 × 10−5 Ref. [74]

−4.03 × 10−6 −6.93 × 10−5 Ref. [89]
−1.092 × 10−5 −1.089 × 10−3 This work

a ¼ þ0.7M −1.091819 × 10−5 −1.088457 × 10−3 Ref. [74]
−1.092 × 10−5 −1.089 × 10−3 Ref. [89]
−1.768 × 10−5 −1.14 × 10−2 This work

a ¼ þ0.9M −1.768232 × 10−5 −1.133673 × 10−2 Ref. [74]
−1.77 × 10−5 −1.134 × 10−2 Ref. [89]
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problem (although, partial success following Refs. [44,89]
has been fruitful [64]); we are optimistic that our elliptic PDE
method will be able to conquer the gravitational case more
thoroughly. Depending on the values of r0 and a, our
Mathematica implementation that includes automated con-
vergence tests typically consumes ∼4–128 GB of peak
memory and∼2–12CPU hours total (including allm-modes
for a certain r0 and a). Because each m-mode can be
calculated independently, the real world time can be shorter
by a factor of ∼10–20 (although, our method of paralleliza-
tion involved assigning each pair of r0 and a to a single core
because we considered many orbits).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have developed and implemented new methods
designed to calculate Lorenz gauge Kerr metric perturba-
tions while avoiding problematic instabilities encountered
in prior work [44]. Our methods involve numerically
solving elliptic PDEs with an effective source for each
m-mode of the perturbation. As proof of concept we
applied these methods to calculate the self-force on a

scalar charge in a circular orbit around a Kerr black hole.
Consistent with our original motivation, we believe the
same approach will successfully access the Lorenz gauge
gravitational self-force on a compact mass orbiting a Kerr
black hole, which has valuable applications related to LISA
observations of gravitational waves from EMRIs.
Naturally, achieving an implementation of these methods

for Lorenz gauge metric perturbations would be a valuable
extension, and we have begun preliminary analysis of that
scenario at first order. Anticipating a factor of ∼10 increase
in computational cost (through increasing the number
of unknowns from one scalar field to ten components of
the metric perturbation), it will be beneficial to pursue
numerical and/or algorithmic enhancements. Abandoning
Mathematica in favor of a more traditional programming
language for numerical work is one example of a likely
enhancement. Another example is progression of the
numerical strategy by pursuing higher-order finite dif-
ferences or spectral methods. Attaining a domain of fixed
size through hyperboloidal slicing and compactification
[101–104] would be similarly advantageous. Other
improvements could include higher-order expansions for
the singular field (and effective source) and numerical
fitting of higher-order regularization parameters.
Extensions to more comprehensive scenarios include

accommodation of noncircular orbital motion and higher-
order perturbations. Perhaps eccentric and/or inclined
motion could be accessible by solving a separate elliptic
PDE for each frequency mode, but the nonperfect smooth-
ness of the effective source may impede rapid frequency
convergence (the Gibbs phenomenon). In the case of
ordinary differential equations, the methods of extended
homogeneous solutions [105] and extended particular sol-
utions [106] have overcome the Gibbs phenomenon to
achieve exponential convergence. Discovery of a similar
technique to accelerate Fourier convergencewith our elliptic
PDE approach would be valuable. For higher-order pertur-
bations, first-order Lorenz gauge Kerr self-force calculations
would be a promising foundation for second-order Kerr
investigations. Although the associated obstacles may be
considerable, the methods presented here might become a
viable path toward second-order Kerr self-force calculations.
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TABLE II. Numerical results for Fself
ϕ compared with prior

work. Only significant digits are shown (when present, signifi-
cant digits beyond the seventh are omitted). Generally, calculat-
ing the dissipative part of the self-force is not the limiting factor
related to achievable accuracy. Reference [89] also reported their
first insignificant digit (not shown here), which for this table
typically aligned with the correct value in a way that was not true
for Table I (perhaps their uncertainty estimates for the dissipative
self-force were especially careful).

Dissipative self-force comparisons: Fself
ϕ × ðM=q2Þ

r0 ¼ 10M r0 ¼ rISCO

−1.414708 × 10−3 −2.188351 × 10−3 This work
a ¼ −0.9M −1.414708 × 10−3 −2.188351 × 10−3 Ref. [74]

−1.4147 × 10−3 −2.1884 × 10−3 Ref. [89]
−1.356244 × 10−3 −2.578045 × 10−3 This work

a ¼ −0.7M −1.356244 × 10−3 −2.578045 × 10−3 Ref. [74]
−1.3562 × 10−3 −2.5780 × 10−3 Ref. [89]

−1.30227 × 10−3 −3.08354 × 10−3 This work
a ¼ −0.5M −1.302267 × 10−3 −3.083542 × 10−3 Ref. [74]

−1.3023 × 10−3 −3.0835 × 10−3 Ref. [89]
−1.185926 × 10−3 −5.304232 × 10−3 This work

a ¼ 0 −1.185926 × 10−3 −5.304232 × 10−3 Ref. [74]
−1.1859 × 10−3 −5.3042 × 10−3 Ref. [89]

−1.093493 × 10−3 −1.1836 × 10−2 This work
a ¼ þ0.5M −1.093493 × 10−3 −1.183567 × 10−2 Ref. [74]

−1.0935 × 10−3 −1.1836 × 10−2 Ref. [89]
−1.062163 × 10−3 −1.9487 × 10−2 This work

a ¼ þ0.7M −1.062163 × 10−3 −1.948731 × 10−2 Ref. [74]
−1.0622 × 10−3 −1.94873 × 10−2 Ref. [89]

−1.033444 × 10−3 −4.50 × 10−2 This work
a ¼ þ0.9M −1.033444 × 10−3 −4.508170 × 10−2 Ref. [74]

−1.0334 × 10−3 −4.508 × 10−2 Ref. [89]
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