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We provide a quantum picture for the emergence of a bouncing cosmology, according to the idea that a
semiclassical behavior of the universe towards the singularity is not available in many relevant
minisuperspace models. In particular, we study the Bianchi I model in vacuum adopting the isotropic
Misner variable as an internal clock for the quantum evolution. The isomorphism between the Wheeler-
DeWitt equation in this minisuperspace representation and the Klein-Gordon one for a relativistic scalar
field allows to identify the positive and negative frequency solutions as associated to the collapsing and
expanding universe respectively. We clarify how any Bianchi I localized wave packet unavoidably spreads
when the singularity is approached and therefore the semiclassical description of the model evolution in the
Planckian region loses its predictability. Then, we calculate the transition amplitude that a collapsing
universe is turned into an expanding one, according to the standard techniques of relativistic quantum
mechanics, thanks to the introduction of an ekpyroticlike matter component which mimics a “quantum”
time-dependent potential term and breaks the frequency separation. In particular, the transition probability
of this “quantum big bounce” acquires a maximum value when the mean values of the momenta conjugate
to the anisotropies in the collapsing universe are close enough to the corresponding mean values in the
expanding one, depending on the variances of the ingoing and outgoing universe wave packets. This
symmetry between the prebounce and postbounce mean values reflects what happens in the semiclassical
bouncing cosmology, with the difference that here the connection of the two branches takes place on a pure
probabilistic level.
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I. INTRODUCTION

The presence of an initial singularity in the universe
thermal history [1,2] constitutes the most relevant short-
coming of the implementation of general relativity to the
cosmological problem. Since the 1970s, the idea of a
possible bounce was formulated to replace the initial
singularity and reconnect a collapsing universe to our
expanding one in order to depict the scenario of a cyclical
universe [3]. Many implementations of a big bounce
scenario have been considered over the years, essentially
based on suitable modifications of the Einstein theory of
gravity (for recent examples, see [4–6]).
However, the justification of a bouncing cosmology as

the result of a quantum gravity effect in the Planckian
epoch arose when in [7] it was demonstrated that the
kinematical spectrum of the geometrical operators pos-
sesses a discrete nature in the framework of loop quantum
gravity (LQG). Indeed, the implementation of this formu-
lation [8–15] to the cosmological problem provided the

emergence of a big bounce with a minimal universe volume
in the past being different from zero and, consequently, a
regularized behavior of the energy density (for critical
considerations on the so-called loop quantum cosmology
(LQC) see [16–18]). The presence of a similar behavior of
the universe can be also recovered when polymer quantum
mechanics (PQM) [19] is applied to the cosmological
degrees of freedom [20–23] (for a comprehensive review
on the bouncing cosmologies in PQM and LQC see [24]).
All these descriptions of a bouncing cosmology from

quantum physics mainly rely on the characterization of
quasiclassical states for the universe, which outline a mean
behavior as following a big bounce picture and so deviating
from general relativity at sufficiently high-energy density.
However, this description seems lacking when the consid-
ered quasiclassical state follows the bounce trajectory with
a significant spreading that would bring the dynamics into a
full quantum sector. Actually, it cannot be excluded that
relevant anisotropies can arise during the evolution of a
contracting isotropic universe, see for instance the so-called
ekpyrotic universes [25–27] where such a problem is
addressed. The emergence of non-negligible anisotropy
degrees of freedom constitutes a crucial mechanism,
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through which a closed universe would pass from a
Robertson-Walker geometry to a Bianchi IX one [2]. In
this picture, the Kasner-like behavior of a Bianchi IX
localized state would be continuously perturbed towards
the bounce by the potential term, see for instance the
numerical analysis in [28].
Based on these considerations, it appears more reason-

able to consider the bounce as a full quantum region of the
universe evolution and so apply the concept of probability
amplitude associated to a transition from a collapsing
universe to an expanding one. In this respect, see the
pioneering work [29] for approaches based on a path-
integral formulation applied to the quantum cosmology in
the Euclidean sector, while for recent applications to the
Lorentz sector see [30,31]. Moreover, for other quantum
scenarios related to a transition from a collapsing to an
expanding universe see for instance [32,33]. We also
mention the study recently presented in [34], in view of
its promising applications and also for the rather general
paradigm that is considered. In particular, the Bianchi I
quantum cosmology is investigated, focusing on the prob-
lem of time in view of the resolution of the singularity. Two
different classes of time parameters are found, such that the
motion (and the range of the time parameter) is unbounded
(fast-gauge time) or bounded (slow-gauge time). In the
latter case, the removal of the singularity is achieved by
quantization thanks to the unitarity preservation.
The aim of the present analysis is investigating the

possibility to have a quantum big bounce also in the
Wheeler-DeWitt (WDW) approach of quantum cosmology.
We study the metric canonical quantization of the Bianchi I
model in vacuum, adopting the well-known Misner vari-
ables [2,35]. According to the standard literature [36], we
are able to provide an isomorphism between the WDW
equation and a massless Klein-Gordon one by choosing the
isotropic Misner variable as the internal time. Comparing
the behavior of the classical constants of motion with their
corresponding quantum eigenvalues, we can interpret the
negative and positive frequencies of the WDW solutions as
states which describe the expanding and collapsing uni-
verse, respectively. Also, we theoretically and numerically
show that the localized wave packets are subjected to a
significant spreading process, in order to support the need
of describing the behavior of the Bianchi I model towards
the singularity as an intrinsic quantum phenomenon.
After the quantization, we include a matter term with an

equation of state parameter w > 1 that breaks down the
frequency separation, being a time-dependent potential
responsible for the transition from a collapsing universe
to an expanding one (i.e., the positive and negative
frequency states). We remark that the standard theory of
relativistic scattering processes is used, as discussed in [37],
where the projection of ingoing states onto outgoing ones is
described via the wave function formalism (here the WDW
wave function of the universe), so that we escape the

so-called third quantization of the cosmological field and
all the ambiguous related issues [37,38]. In particular, we
project the ingoing wave packet for the collapsing universe,
that represents the exact solution of the WDW equation
during the ekpyrotic phase, on to a Bianchi I expanding
wave packet, according to the procedure presented in [37].
In both the universe wave packets, we use a Gaussian
weight in the momenta with nonzero mean values. As a
result of treating the quantum big bounce as a scattering
process, the probability amplitude of transition from the
collapse to the expansion is nonzero and mathematically
well defined. In particular, the probability amplitude has a
peaked profile, with the interpretation that the most likely
transition takes place when the mean value of the momenta
of the expanding wave packet is approximately equal to the
mean values of the contracting one, depending on their
variances. In other words, a localized collapsing state of the
universe has the maximum probability to make the tran-
sition into an expanding localized state if the morphology
of the latter closely resembles the packet shape of the
former.
This result opens a new perspective on the physical

nature of the big bounce, at least when an internal time
variable can be properly recovered. Indeed, the possibility
for a quantum transition in the canonical quantum dynam-
ics phenomenologically appears as a bouncing cosmology;
nevertheless, it is due to the mixing of positive and negative
frequency solutions when an interaction term is included,
and does not rely on the existence of a semiclassical
minimal value of the universe volume, that hence is no
longer essential in order to deal with a bouncing cosmology
at a quantum level.
The paper is structured as follows. In Sec. II the

minisuperspace of the Bianchi models is introduced, with
a particular focus on the dynamics of a Bianchi I wave
packet in Sec. II A. In Sec. III the procedure of scattering
integrals using the wave function formalism in the Klein-
Gordon theory is presented. Section [23] contains the core
of the work. The transition amplitude from a contracting to
an expanding Bianchi I universe thanks to the w > 1matter
term is developed and the existence of a quantum big
bounce in the WDW theory from a probabilistic point of
view is discussed. Finally, in Sec. V some concluding
remarks are outlined. We note that we use 8πG¼ c¼ℏ¼ 1
throughout the article.

II. MINISUPERSPACE OF THE BIANCHI MODELS

Let us start our analysis by discussing the structure of the
Hamiltonian constraint of the Bianchi cosmological mod-
els, i.e., anisotropic, homogeneous, and nonstationary
universes, in order to outline the isomorphic feature of
the minisuperspace with the relativistic quantum theory. In
the following, we will concentrate our attention to the
Bianchi I model, that one having zero spatial curvature.
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Using the Arnowitt-Deser-Misner (ADM) formalism and
the Misner variables ðα; βþ; β−Þ, the line element describ-
ing a Bianchi cosmology takes the form [1,2,39]

ds2 ¼ N2dt2 − e2αðe2βÞabσaσb; ð1Þ

where β≡diagfβþþ ffiffiffi
3

p
β−;βþ−

ffiffiffi
3

p
β−;−2βþg, N denotes

the lapse function and all the variables are time-dependent
only, due to the spatial homogeneity. The 1-forms σa (a ¼ 1,
2, 3) reflect the specific isometry of the considered Bianchi
model and in the case of Bianchi I they reduce to exact
differentials.
The action describing the dynamical features of a

Bianchi model takes the expression

SB ¼
Z

dtðpα _αþ pþ _βþ þ p− _β− − NHÞ; ð2Þ

where

H ≡ Ce−3α½−p2
α þ p2þ þ p2

− þ e4αVBðβþ; β−Þ� ð3Þ

in which the explicit form of the potential term VB fixes the
considered Bianchi model (VB ≡ 0 for Bianchi I). Here, the
dot symbol denotes the derivative with respect to t, C is a
constant depending on the performed spatial integration
and pα, and pþ and p− are the respective conjugate
momenta to the Misner variables. The isotropic variable
α defines the universe volume, while βþ and β− are the real
gravitational degrees of freedom since they correspond to
the anisotropies of the model.
As already outlined in [36] for the case of a generic

superspace, the variable associated to the volume has a
different signature with respect to the gravitational degrees
of freedom and therefore it can be interpreted as a time
variable for the classical and quantum dynamics of the
system. In other words, we are entitled to adopt α as the
internal clock of our minisuperspace corresponding to
the homogeneous cosmologies. It is worth expressing
the link of the relational time α in terms of the generic
time variable t by varying the action (2) with respect to the
momentum pα, namely

_α ¼ −2NCe−3αpα: ð4Þ

If we choose the synchronous time (N ≡ 1), i.e., the time
coordinate in which the thermal history of the universe is
preferably described, we see that for pα < 0 the physical
space expands with time, while for pα > 0 it contracts as
time goes. Furthermore, we note that the momentum pα

becomes a constant of motion if we deal with a Bianchi I
model (for which VB ≡ 0), so that its sign can be specified
a priori and the two branches of the expanding and
collapsing universe can be separated at a classical level.

Clearly, when we canonically quantize the dynamical
system described in (2) and (3), all the physical content is
summarized in the universe wave function ψ ¼
ψðN; α; β�Þ selected by the Hamiltonian operator Ĥ that
annihilates it. In this respect, the canonical implementation
of the primary constraint p̂N ≡ 0 (pN being the conjugate
momentum to N) provides that the wave function is
independent of the lapse function, while the secondary
constraint, whose classical existence is ensured by the
variation of the action (2) with respect to the lapse function
N, reads as

Ĥψ ¼ ½□þ e4αVBðβþ; β−Þ�ψðα; β�Þ ¼ 0; ð5Þ

where □ ¼ ∂
2
α − ∂

2
βþ − ∂

2
β−
. Quantizing Eq. (3), the normal

ordering has been used and a global positive fact e−3α has
been removed. As we can see, the WDW equation written
in the Misner variables still outlines the role of the
volumelike coordinate α as the internal time of the system
and the parallelism with a Klein-Gordon relativistic equa-
tion is almost immediate. Also, it is easy to check that
Eq. (5) admits the probability density

j0 ¼ iðψ�
∂αψ − ψ∂αψ

�Þ ð6Þ

in analogy with the Klein-Gordon formalism. In order to
deal with a positive defined probability density j0, we need
to perform the so-called frequency separation. Actually, in
the simplest case of a Bianchi I model (VB ≡ 0) without
any matter content, the frequency separation is easily
reached since the universe wave function can be written
in the plane wave basis as

ψ�
ωk
ðα; β�Þ ¼ e∓iωkαeiðkþβþþk−β−Þ; ð7Þ

where ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ þ k2−

p
.

Now, if we apply the quantum operator p̂α ¼ −i∂α to the
wave functionψ�

ωk
we see that the positive frequency solution

is an eigenstatewith a negative eigenvalue, while the positive
one is associated to the negative frequency state.
Accordingly, we can interpret the positive frequency sol-
utions as corresponding to states that describe an expanding
universe, vice versa the negative frequency solutions are
associated with a collapsing universe. These considerations
are supported by the Ehrenfest theorem that ensures that
Eq. (4) is verified by the corresponding quantum expectation
values.
This interpretation of the frequency separation will allow

to deal with a relativistic quantum approach to the analysis
of the Bianchi I dynamics, as discussed in [37], that is based
on the use of the universe wave function formalism instead
of the third quantization procedure.
It is important to stress that the WDW picture is a

covariant formalism in which it does not emerge a time
variable clearly, in the sense of a preferred arrow of time as
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in the Schrödinger formulation allowed by the ADM
reduction. However, in the present scheme the formal
analogy between the Bianchi I WDW equation in the
Misner variables and a massless Klein-Gordon one makes
it is possible to identify a clock. Hence, α inherits the role of
the usual parameter t in relativistic quantum mechanics, in
view of its different signature in the minisupermetric with
respect to the anisotropies. In other words, the isotropic
variable α is responsible for the time order. As explained
above, the interpretation of the quantum states depends on
the sign of the eigenvalue pα of the corresponding quantum
operator p̂α. In particular, ψþ

ωk
corresponds to a state that

goes from smaller to bigger values of α, i.e., it is expanding
or equivalently going forward in time, whereas ψ−

ωk
is

contracting or going backward in time. This is picture is
natural if viewed in the formalism of a relativistic wave
function for a single particle in first quantization. However,
the question concerning the causality relation arises, since
the measurements on the physical states must prevent the
light cone violation. On a classical level, particles can not
have speed faster than the light value and this is summa-
rized in the real value (zero for the massless particles) of the
invariant interval. On a quantum level, the causality
property of a quantum field theory is expressed by the
so-called microcausality relation, a direct consequence of
the Lorentz invariance of the formalism. The translation of
the microcausality relation in the minisuperspace, as
induced by the minisupermetric signature, appears a highly
nontrivial question. Actually, in the considered model the
light cone structure is not lost at all. In fact, we recall that
the potential term has to be regarded as an intrinsic
quantum effect, so all the momenta are constant and the
classical Bianchi I dynamics follows the trajectories

β� ¼ p�αþ β̄�; p2þ þ p2
− ¼ 1; ð8Þ

where β̄� are constants. Therefore, the pinpoint particle
describing the universe in the minisuperspace has a con-
stant anisotropy velocity that is equal to one, so the analogy
with the massless particles in standard relativistic quantum
mechanics is direct. By other words, for the classical
Bianchi I dynamics only the light cone surface is available
whereas spacelike trajectories are forbidden, so a certain
information on the causality can be still recovered. As far as
we are dealing with quantum localized wave packets, the
classical features of the Bianchi I model are preserved by
the Ehrenfest theorem, i.e., the operator α applied to the
wave packets should provide measurements preserving the
causal structure. During the scattering process, the causality
preservation has to be referred to the Lorentz invariance of
the quantum theory with respect to the minisupermetric. We
finally stress that the introduction of the potential also in the
classical framework would simply reduce the velocity of
the Bianchi I pinpoint particle to a subluminal one, i.e., the
potential term would not imply the possibility for

noncausal trajectories when described in terms of the
relational clock α.

A. Wave packets behavior in the Bianchi I
minisuperspace

Before proceeding on analyzing in details the big bounce
as a quantum process, in this subsection we preliminary
discuss the properties of the Bianchi I wave packet. We
construct a superposition of the particular solutions of the
form (7) by means of a generic localizing function, in order
to satisfy the requirement of describing a quasiclassical
state for the universe which is compatible with the
frequency separation. For example, in the case of an
expanding universe we have

ψðα; β�Þ ¼
ZZ þ∞

−∞
dkþdk−Aðkþ; k−Þψþ

ωk
; ð9Þ

where Aðkþ; k−Þ is commonly chosen as a Gaussian
function fixed by the initial condition on the wave function
at a given instant of time α ¼ α0.
First of all, we notice that the Bianchi I wave packet (9)

is characterized by a nonlinear dispersion relation ωk. This
feature produces a spreading of the wave packet during its
propagation due to the presence of a nonzero second
derivative of ωk with respect to kþ; k−. Differently, the
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
is not affected by this issue since it is characterized by a
linear dispersion relation. In fact, if we consider Gaussian
coefficients of the form

Aðkþ; k−Þ ¼ e
−ðkþ−k̄þÞ2

2πσ2þ e
−ðk−−k̄−Þ2

2πσ2− ð10Þ

in (9), we can reasonably suppose that these coefficients are
significantly different from zero only in the neighborhood
of ðk̄þ; k̄−Þ and so justify an expansion of ωk up to the
second-order term in ðkþ; k−Þ that simplifies the analytical
calculation of the integral. As can be easily demonstrated, a
linear term in α enters in the σ of the Gaussian packet due to
the second derivative of ωk with respect to kþ; k−. As the
wave packet propagates, both the mean value and the
variance change with time, producing the spreading phe-
nomenon (see Fig. 1). This feature of the Bianchi I universe
clearly prevents a satisfactory description of the dynamics
towards the singularity by means of quantum expectation
values on semiclassical states. More specifically, when
more general cosmological models with respect to the
FLRW one are considered, in view of producing a reason-
able description of the universe near the Planckian region,
the hypothesis of a localized state is violated.
Here, we can not avoid a discussion on the wave function

interpretation in the considered theory. As in [35,40,41], we
emulate the physical meaning of our states and observables
from the analogy with a relativistic particle [42], which,
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however, is affected by subtle physical shortcomings. In
fact, it is important to stress that the probability density j0 is
strictly positive for monochromatic plane waves only (see
[23,43,44]). In particular, it can be easily seen that just the
superposition of two different plane waves with positive
energy-like eigenvalues leads to the emergence of regions
in which j0 assumes negative values. This fact is an indirect
manifestation of the basic shortcoming that the Klein-
Gordon equation is not a single-particle problem [37,43].
The scenario is a bit more viable, but not completely free of
this limit, when we consider a Dirac equation, simply
because the probability density is now always positive
defined (for a Dirac-like equation in the minisuperspace see
[45]). An heuristic explanation could be the fact that only
one fermion can occupy a given state, due to the Pauli
exclusion principle. Thus, the creation of real or virtual
couples of particles-antiparticles is always relevant in
relativistic quantum mechanics and only the second quan-
tization procedure is the natural interpretative tool for the
underlying physics. However, when we translate these
considerations into the minisuperspace, as done here, the
second quantization method (commonly dubbed third
quantization approach) appears far from being physically
grounded (see [40]), whereas the interpretation of the
universe quantum dynamics as a single-particle problem
seems more reasonable (for the discussion on multiuniverse
proposals see [46–53]). Furthermore, as discussed in [23]
(see also [2]), a different scenario to solve this issue could
be the so-called ADM-reduction of the dynamics [54],
which naturally separate the expanding and contracting
branches. This is obtained at the price of fixing the time
gauge and, in general, dealing with a nonlocal reduced
Hamiltonian, with an associated probability density that is
only globally conserved [43]. This picture, de facto
resulting in a Salpeter-like formulation of the minisuper-
space relativistic quantum dynamics, is beyond the scope of
this manuscript and the proposed scheme, but could be the
starting point to reformulate the quantum scenario of a
cosmological scattering.
Here, we are considering the scattering theory as taking

place below the couple creation threshold and accepting the
single-particle representation, with the consequence of
having to deal with the ill-defined probability density.

This fact should be taken under serious consideration in
quantum cosmology [55], since it raises the question that j0
(properly a charge density) could not be a good candidate
for a well-defined probability density through which
computing expectation values of the quantum operators.
Nevertheless, in our analysis the probability density j0
remains always positive even if referred to a wave packet
superposition, since the Gaussian weight privileges the
peak frequency (see Fig. 1). In this work we try to go
beyond the semiclassical approach to the dynamics near the
singularity and so we overcome the problem of a well-
defined probability density by resorting to a full quantum
approach, i.e., using the notion of probability amplitude
between two states.

III. THE TRANSITION AMPLITUDE IN THE
WAVE FUNCTION FORMALISM

In this section we describe the formalism at the basis of
the scattering amplitude calculation by following the
approach presented in [37]. The Klein-Gordon equation
describes relativistic particles of zero spin by means of its
solutions, i.e., scalar wave functions. For the free particle
the equation reads as

ð□þm2ÞφðxÞ ¼ 0; ð11Þ

whose solution φðxÞ can be written as a superposition of
plane waves with both positive and negative frequencies

fð�Þ
p ðxÞ ¼ e∓ip·xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞ22ωp

q ; ð12Þ

where ωp ¼ p0 > 0 and p2 ¼ m2 according to the Einstein
energy condition. They form a complete set and satisfy the
following orthogonality and normalization conditions

Z
d2xfð�Þ�

p0 ðxÞi∂0
↔
fð�Þ
p ðxÞ ¼ �δ2ðp − p0Þ; ð13Þ

Z
d2xfð�Þ�

p0 ðxÞi∂↔0f
ð∓Þ
p ðxÞ ¼ 0: ð14Þ

FIG. 1. 3D plots of the probability density j0 associated to a Bianchi I wave packet containing only positive frequency plane waves. It
is calculated at three different values of the relational time α (α ¼ −10, 0, 10, respectively).
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The Feynman propagator for the Klein-Gordon equation
has the expression

ΔFðx0 − xÞ ¼
Z

d3p
ð2πÞ3

e−ip·ðx0−xÞ

p2 −m2 þ iϵ
ð15Þ

and solves the following equation,

ð□x0 þm2ÞΔFðx0 − xÞ ¼ −δ3ðx0 − xÞ: ð16Þ

It propagates the positive-frequency parts of a generic
superposition of solutions forward in time and the negative-
frequency ones backward in time by construction. We
notice that the possibility of creation and annihilation of
single spinless particles would require a many-particle
theory in interaction as developed in the quantum field
theory formalism. However, it is possible to extend the
propagator approach to the study of these particles coupled
to source terms added to the right-hand side of (11). In
particular, when an interaction term is added in Eq. (11) it
becomes

ð□þm2 þ VðxÞÞϕðxÞ ¼ 0 ð17Þ

and the general integral has the following form

ϕðxÞ ¼ φðxÞ −
Z

d3yΔFðx − yÞVðyÞϕðyÞ; ð18Þ

through which the solution of (17) can be evaluated to the
desired accuracy by iteration. In (18), φðxÞ is a super-
position of plane waves defined as

φðxÞ ¼ φðþÞðxÞ þ φð−ÞðxÞ

¼
Z

d2pcþðpÞfðþÞ
p þ

Z
d2pc�−ðpÞfð−Þp : ð19Þ

Now we can compute the transition amplitude to a particle
state of given momentum p0 by projecting the scattered
wave emerging from the interaction onto a normalized free
wave of momentum p0, so that the transition probability is
then given by the absolute square of this amplitude. In
particular, for particles and antiparticles scattering we have

Sp0
þ;pþ ¼ δ2ðp0þ − pþÞ − i

Z
d3yfðþÞ�

p0
þ

ðyÞVðyÞϕðyÞ ð20Þ

and

Sp0
−;p−

¼ δ2ðp0
− − p−Þ − i

Z
d3yfð−Þ�p0

−
ðyÞVðyÞϕðyÞ; ð21Þ

respectively, whereas for pair production and annihilation
we have

Spþ;p−
¼ −i

Z
d3yfðþÞ�

p0
þ

ðyÞVðyÞϕðyÞ ð22Þ

and

Sp−;pþ ¼ −i
Z

d3yfð−Þ�p0
−

ðyÞVðyÞϕðyÞ; ð23Þ

respectively. We notice that, under the hypothesis of a
limited interaction region, ϕðyÞ reduces to plane waves for
t → −∞ and for t → þ∞ it can be expanded in the plane
waves basis with the S-matrix elements as the expansion
coefficients. So, the conservation over time of the Klein-
Gordon norm (13) guarantees that ϕðyÞ can be normalized
as plane waves and, if ϕpðyÞ [namely the solution of (18)
that reduces to a plane wave of momentum p for t → −∞]
form a complete set, the unitarity of the operator SBounce is
ensured. This legitimates P ¼ jSBouncej2 as a well-defined
probability density.

IV. THE TRANSITION AMPLITUDE FROM A
COLLAPSING TO AN EXPANDING BIANCHI I

UNIVERSE

In this section we present the core of the work. First, we
recall that the Bianchi I model is characterized by a
primordial singularity at a classical level that is not solved
in the WDW approach. Our aim is to investigate the
probability of having a quantum transition from a collaps-
ing to an expanding universe, in effort to treat the big
bounce as a relativistic quantum interaction transposed to
the primordial cosmology when a time-dependent inter-
action term is present. In this way, the big bang singularity
would be solved even in the WDW formulation at a
probabilistic level. All the background theory used in the
following has been presented in the previous section and
based on [37].
First of all, we solve the WDWequation for the Bianchi I

model with a time-dependent potential

Ĥψ ¼ ½∂2α − ∂
2
βþ − ∂

2
β−

þ λe−3εα�ψðα; β�Þ ¼ 0; ð24Þ

that corresponds to (5) with VB ≡ 0 and an ekpyroticlike
matter component, i.e., a matter content with equation of
state P ¼ wρ where w > 1 [in (24) ε ¼ w − 1 > 0]. Here,
the ekpyrotic phase is generated by a quantum time-
dependent potential that is dominant near the singularity
and responsible for the transition, since it is able to mix the
positive and negative frequency states. The choice of
considering a fluid with equation of state P > ρ is dictated
by the effective value of w associated to the anisotropy
variables βþ and β−. In fact, if we write down a Friedmann-
like equation for the Bianchi I model [56], it is immediate to
recognize that the effective energy density of the anisotropy
degrees of freedom is associated to w ¼ 1. Thus, we
must take into account a matter contribution with w > 1,
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well-accounted by an ekpyrotic physics [25–27], in order to
deal with a potential term which violates the frequency
separation near the singularity and becomes negligible
when the universe expands enough. We recall that we
have chosen the natural operator ordering and that a global
positive factor e−3α has been removed before quantizing. It
is important to stress that this ekpyrotic contribution is
naturally designed to dominate the Planckian era, i.e., for
α → −∞, if present in the primordial universe dynamics.
On the other hand, by considering a cosmological fluid
with w < 1 (for instance the natural radiation contribution
corresponding to w ¼ 1=3), the dynamical picture would
be reversed and the potential term would have dominated
the late universe expansion, in clear contradiction with the
presence of quantum scattering processes in a fully
expanded classical universe. Furthermore, the presence
of a radiation contribution as relevant in the Planckian
universe is significantly questionable in this model,
since it is certainly dominated by the definitely present
anisotropy term.
Now we search for a solution of (24) in L2ðRÞ, namely of

the form

ψðα; β�Þ ¼ φðαÞeikþβþeik−β− ; ð25Þ

so that (24) reduces to the following equation for the
variable α

∂
2
αφðαÞ þ ðω2

k þ λe−3εαÞφðαÞ ¼ 0; ð26Þ

with ωk defined as in (7). The exact solution reads as

φðαÞ ¼ c1φð−ÞðαÞ þ c2φðþÞðαÞ; ð27Þ

where c1, c2 are integration constants and

φð−ÞðαÞ ¼ J−2iωk
3ε
ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
λe−3εα

p
=3εÞΓ

�
1 −

2iωk

3ε

�
; ð28Þ

φðþÞðαÞ ¼ J2iωk
3ε
ð2

ffiffiffiffiffiffiffiffiffiffiffiffi
λe−3εα

p
=3εÞΓ

�
1þ 2iωk

3ε

�
: ð29Þ

In (28)–(29), JνðxÞ indicates the Bessel function of the first
kind and ΓðxÞ the Euler gamma function. So, the general
solution is

ψðα; β�Þ ¼
ZZ þ∞

−∞
dkþdk−Aðkþ; k−ÞφðαÞeikþβþeik−β− ;

ð30Þ

where Aðkþ; k−Þ is defined as in [56]. We note that φðþÞðαÞ
and φð−ÞðαÞ reduce to a plane waves for α → þ∞ (except
for a phase depending on ε). In other words, φðαÞ has the
right limit far from the singularity, since it reduces to the
free solution when the w > 1 matter component becomes
negligible. It is worth noting that the Bessel functions
(corresponding for λ → 0 to negative and positive fre-
quency states respectively) are equally weighed in the
ingoing wave packet by setting c1 ¼ c2 ¼ 1=

ffiffiffi
2

p
. In this

way, we do not privilege neither the collapsing neither the
expanding configuration.
Now we compute the big bounce transition amplitude by

projecting the scattered wave emerging from the interaction
onto a free-universe wave packet of the form

χðα; β�Þ ¼
ZZ þ∞

−∞
dk0þdk0−A0ðk0þ; k0−Þe−iωk0αeik

0
þβþeik

0
−β− ;

ð31Þ

that consists in a superposition of only free expanding plane
waves by means of Gaussian coefficients as defined in [56],
where the prime symbol identifies the outgoing wave
packet. In particular, by using (22) we obtain

SBounce ¼ −i
ZZZ þ∞

−∞
dα dβþdβ−χ�ðα; β�ÞVðαÞψðα; β�Þ;

ð32Þ

where χðα; β�Þ represents the free expanding universe
wave packet (31), VðαÞ ¼ λe−3εα and ψðα; β�Þ is the
universe wave packet (30) that emerges from the inter-
action. Through the analytical calculation of the integral in
the anisotropies βþ; β− we obtain

SBounce ¼ −i
ZZZ þ∞

−∞
dα dβþdβ−⨌ þ∞

−∞ dkþdk−dkþ0dk−0Aðkþ; k−ÞA0ðkþ0; k−0ÞVðαÞφðαÞeiωk0αeiðkþ−kþ0Þβþeiðk−−k− 0Þβ−

¼ −i
Z þ∞

−∞
dα⨌ þ∞

−∞ dkþdk−dkþ0dk−0Aðkþ; k−ÞA0ðkþ0; k−0Þδðkþ − kþ0Þδðk− − k−0ÞVðαÞφðαÞeiωk0α; ð33Þ

so the integration over k0þ; k0− becomes trivial, thanks to the presence of the two Dirac delta functions δðk0þ − kþÞ and
δðk0− − k−Þ. We finally get

SBounce ¼ −i
ZZZ þ∞

−∞
dα dkþdk−Aðkþ; k−ÞA0ðkþ; k−ÞVðαÞφðαÞeiωkα; ð34Þ
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where Aðkþ; k−Þ and A0ðkþ; k−Þ are Gaussian distributions
with different mean values and variances. We remark that
the integral over the configurational variables α; βþ; β− can
be exchanged with those ones over kþ; k− and k0þ; k0−
contained in the wave packets χðα;βþ; β−Þ and
ψðα;βþ; β−Þ, since the integration domains are independent
of all the variables. Then, the remaining integral in the
variables α; kþ; k− has been computed by means of both
analytical and numerical methods. Finally, the big bounce
transition probability is obtained by making the absolute
square of (32) through which we get a four-variable scalar
function

jSBounceðk̄0þ; k̄0−; k̄þ; k̄−Þj2 ð35Þ

that depends only on the mean values of the momenta
conjugate to the anisotropies βþ; β− of the ingoing and
outgoing states, as expected (in this calculation all the
variances of the Gaussian coefficients have been set to
σ ¼ 1=

ffiffiffiffiffiffi
2π

p
). In particular, by fixing the quantum numbers

k̄þ; k̄− of the ingoing wave packet we obtain a two-variable
function

Pðk̄0þ; k̄0−Þ ð36Þ

describing the probability of a big bounce transition.
In Fig. 2 we present two plots that highlight the Gaussian

shape ofPðk̄0þ; k̄0−Þ, noticing that the peak of the probability
density in the mean values k̄0þ, k̄0− of the outgoing wave
packet occurs always in correspondence of the values
assigned to the corresponding mean values k̄þ, k̄− of the
ingoing wave packet. In particular, in the 3D plot we can
see that the peak occurs for ðk̄0þ; k̄0−Þ ¼ ðk̄þ; k̄−Þ ¼ ð2; 4Þ.
Without loss of generality, in the 2D plots we have
considered the same Gaussian distribution for the two
anisotropy momenta by imposing k̄ ¼ k̄þ ¼ k̄− and k̄0 ¼
k̄0þ ¼ k̄0− in order to show the position of the probability
peak (that occurs for k̄0 ¼ k̄) in a clearer way.
In Fig. 3 we have only considered the hypothesis of

σþ ¼ σ0þ and σ− ¼ σ0−, with the result that Pðk̄0þ; k̄0−Þ has a
major variance along the direction in which the ingoing
packet is widely spread (see the 3D plot) and also the
position of the peak occurs no longer exactly in corre-
spondence of the mean values k̄0þ and k̄0− of the ingoing
wave packet. As a result, when the same mean values k̄0 ¼
k̄0þ ¼ k̄0− for the outgoing wave packet are considered, the
probability peak occurs exactly in correspondence of the
average k̄0 ¼ ðk̄þ þ k̄−Þ=2 only when the ingoing wave
packets are equally peaked, whereas when considering
σþ ≠ σ− the peak occurs near the mean value of the more
localized ingoing Gaussian distribution (see the 2D plots).
The relevant role of the wave packet variances on the
probability peak position is even more evident in Fig. 4. In
particular, in the 3D plot we have considered all the

Gaussian variances set to σ ¼ ffiffiffiffiffiffi
2π

p
and we note that the

peak of Pðk̄0þ; k̄0−Þ is slightly shifted with respect to the
graph presented in Fig. 2, where σ ¼ 1=

ffiffiffiffiffiffi
2π

p
. Also, in

the 2D plots we can see that the peak of Pðk̄0Þ occurs
exactly in correspondence of k̄0 ¼ k̄ (here we have set
k̄ ¼ 5 for the ingoing Gaussian distributions) only when the
ingoing wave packet is highly peaked, whereas the bigger
the variance σ is the more appreciable the shift of the peak
with respect to the value of k̄ is.
In conclusion, we have demonstrated that the presence of

the big bounce for the anisotropic Bianchi I universe can be
treated at a full quantum level by means of a well-defined
probability density, with different features depending on
how the ingoing and outgoing wave packets are con-
structed. It is worth stressing that in our scattering picture
the role of a time variable is played by the isotropic Misner

FIG. 2. Top: 3D plot of the normalized probability density
Pðk̄0þ; k̄0−Þ of the big bounce transition. We can notice that the
peak of Pðk̄0þ; k̄0−Þ occurs for ðk̄0þ; k̄0−Þ ¼ ðk̄þ; k̄−Þ. In this graph
we have considered λ ¼ 1, ε ¼ 1=3, k̄þ ¼ 2, k̄− ¼ 4. Bottom: 2D
plots of the normalized probability density Pðk̄0Þ of the big
bounce transition for different values of k̄. We can notice that the
peak of Pðk̄0Þ occurs for k̄0 ¼ k̄. In this graph we have considered
λ ¼ 1, ε ¼ 1=3 and (from the left) k̄ ¼ −10;−5, 5, 10.
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variable α, due to the identification of the minisupermetric
with a Minkowski metric tensor. A basic request for a
variable to be a viable quantum clock is its monotonic
behavior on a semiclassical level [57,58]. This statement
suggests the idea that α can not be a proper clock in
describing the quantum evolution of a bouncing cosmol-
ogy, since in the collapsing and expanding branches it
would provide a different time arrow [40]. However, this
issue would concern a semiclassical big bounce picture and
not the present analysis in which the proposed bouncing
scenario is at a full quantum level, whereas the classical
dynamics is singular and hence the behavior of α is
monotonic. In particular, in this scheme the presence of
a quantum time-dependent potential allows the coexistence
of both the positive and negative energy solutions near the
singularity, i.e., a mixed state, making it possible a nonzero

probability transition from a collapsing to an expanding
universe. Thus, the quantum resolution of the initial
singularity is not related to a nonmonotonic behavior of
α but to the simultaneous presence of wave packets that
move forward and backward in time, due to the presence of
the potential. We also remark that the picture would be
perfectly time reversible in a collapsing branch, having for
α → ∞ its collapsing asymptotic free state. Clearly,
between these two separate representations we use that
one in which the pure state is expanding, according to our
universe phenomenology. To be thorough, despite the well-
posed choice of α as time variable for the proposed
scattering picture, the possibility to use a matter relational
time (for instance a free massless scalar field) should be
regarded as an intriguing perspective for further investiga-
tions. Actually, its concordant signature with respect to that

FIG. 4. Top: 3D plot of the normalized probability density
Pðk̄0þ; k̄0−Þ of the big bounce transition for σþ ¼ σ0þ ¼ ffiffiffiffiffi

2π
p

and
σ− ¼ σ0− ¼ ffiffiffiffiffi

2π
p

. We have considered λ ¼ 1, ε ¼ 1=3, k̄þ ¼ 2,
k̄− ¼ 4. Bottom: 2D plots of the normalized probability density
Pðk̄0Þ of the big bounce transition for different values of the
variance σ. We have considered λ ¼ 1, ε ¼ 1=3, k̄ ¼ 5, and σ ¼
1=

ffiffiffiffiffi
2π

p
in the pink plot, σ ¼ 1 in the blue one, σ ¼ ffiffiffiffiffi

2π
p

in the
purple one.

FIG. 3. 3D plot of the normalized probability density Pðk̄0þ; k̄0−Þ
(k̄þ ¼ 2, k̄− ¼ 4). 2D plots of the normalized probability density
Pðk̄0Þ (k̄þ ¼ 1, k̄− ¼ 9 and σþ ¼ σ0þ ¼ 1=

ffiffiffiffiffi
2π

p
, σ− ¼ σ0− ¼ ffiffiffiffiffi

2π
p

in the red plot, σþ ¼ σ0þ ¼ 1=
ffiffiffiffiffi
2π

p
, σ− ¼ σ0− ¼ 1=

ffiffiffiffiffi
2π

p
in the

purple one, σþ ¼ σ0þ ¼ 1=
ffiffiffiffiffi
2π

p
, σ− ¼ σ0− ¼ ffiffiffiffiffi

2π
p

in the
blue one).
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of the anisotropies does not prevent to choose it as a clock
in a genuine relational interpretation of the problem of time
and, what is more, it would not be affected by any
nonmonotonic behavior even in a semiclassical bouncing
picture, see [59]. For other approaches to the problem of
time in the WDW formalism, see also [60–64]. We finally
remark that the transition we are considering is a fully
quantum process, so the range of validity of the present
procedure is restricted to a finite time region where the
strong interaction potential is turned on. Clearly, when the
universe can no longer be described by a wave function, its
dynamics follows the classical trajectories that derive from
(3). Moreover, the probability amplitude tends to zero by
construction when λ → 0, consistently with the fact that the
transition of the quantum big bounce is possible only in the
presence of a time-dependent potential able to create a
mixed initial state for the collapsing universe.
An important point to be addressed in the proposed

parallelism between the Bianchi I quantum cosmology and
the relativistic quantum mechanics scattering is the follow-
ing. In the latter, the interaction potential is significantly
different from zero only for a finite time interval, before and
after which the states describe free particles. In the present
cosmological analysis, the interaction potential is really
negligible only in the future direction, i.e., α → þ∞. In the
past, asymptotically close to the singularity, the potential
contribution explodes. However, two points should be
made:

(i) the negligibility of the potential term in one of the
two asymptotic time direction is enough to ensure
the existence of an Hilbert space for the quantum
theory [40], and

(ii) we are able to calculate an exact solution for any
value of the variable α, even in the region where the
potential is diverging. These two facts make the
theory viable and allow to describe the transition
amplitude as the direct projection of an ingoing state
from α → −∞ onto an outgoing state towards
α → þ∞, disregarding the peculiar behavior of
the potential term. However, the analogy between
a quantum cosmological bounce and a relativistic
quantum scattering would be significantly improved
in the presence of a regularization of the universe
volume, i.e., in the presence of a semiclassical
nonsingular behavior. In fact, if the universe volume
does not approach zero but a finite value, the
potential term could no longer explode and it would
be a transient effect, just as in quantum field theory.
It is worth noting that in such a scenario a relational
time must be used since the volume would be
nonmonotonic and could not play the role of time.
In this respect, we think that the here proposed idea
of a quantum bounce as a scattering is a significant
improvement of those LQC bouncing models in
which the notion of a quasiclassical bounce is not

applicable, but the universe volume is naturally
regularized in the underlying full theory [7].

To summarize, the present scattering model has three
main merits that deserve attention for further developments.
The first point is having emphasized that a pure semi-
classical description of a bouncing cosmology could be
affected by nontrivial difficulties when analyzing the
Bianchi universes, given that even the Bianchi type I is
characterized by Gaussian-like spreading states. This
means that the notion of a quasiclassical trajectory has
to be abandoned near the Planckian era. The second merit is
having shown that the epkyroticlike matter contribution is
able to couple the expanding and the collapsing branches
by means of the basic eigenstates, i.e., the Bessel functions,
in the exact interacting solution as simultaneous compo-
nents. In particular, when such a term becomes relevant we
are able to calculate the exact solution of the (1þ 2)-
dimensional Klein-Gordon equation, i.e., we are not using a
perturbative approach, and the cross section between the
two branches is naturally allowed with the same arrow of
time. We stress how this aspect is closely related to the
analysis presented is [34]. Finally, as a third feature to be
further analyzed we observe that our picture could be
extended to the so-called Belinski-Khalatnikov-Lifshitz
conjecture, so leading to a notion of quantum big bounce
also in the generic cosmological solution (see [65,66] and,
for a careful analysis of the required additional hypotheses
as well as of the technical formulation of this inhomo-
geneous extension, see [67]). In fact, on a qualitative level
the superspace of the universe factorizes into independent
minisuperspaces, i.e., small causal regions of the universe,
at each point of the space (for a classical statistical and
quantum discussion see [68]).

V. CONCLUDING REMARKS

In the analysis above we proposed the idea that a
bouncing cosmology can emerge even in the framework
of the WDW equation [2,35,41] (i.e., without introducing
formalism and concepts of LQC [59]), as soon as the
replacement of a collapsing universe with an expanding one
is viewed on a quantum level as a transition amplitude.
We analyzed a Bianchi I model in vacuum by identifying

the Misner variable α as an internal time and basing our
quantum study on a parallelism with the Klein-Gordon
equation. We first emphasized the isomorphism existing
between the positive and negative frequency solutions and
the expanding and collapsing universe, respectively. Then,
we have shown that the wave packets constructed to
approximate quasiclassically the evolution of the model
unavoidably spread when α → −∞ towards the cosmo-
logical singularity (the choice of α as time is coherent with
a fast time gauge, see [34]), consistently with the behavior
of a (1þ 2)-dimensional massless relativistic particle.
Thus, we could infer how the behavior of the universe
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close enough to the initial big bang must be intrinsically a
quantum phenomenon. Consequently, the absence of a
quasiclassical trajectory which outlines a minimal volume
is not sufficient to exclude the presence of a quantum
transition from the collapsing to the expanding universe, as
soon as a physical mechanism able to break down the
frequency separation is taken into account.
Therefore, we considered an ekpyrotic phase in the

Kasner evolution, whose presence allows to deal with a
nonzero probability that the collapse is replaced by an
expansion at a probabilistic level. In order to calculate this
transition amplitude, having in mind to avoid any third
quantization procedure, we adopted the standard method
discussed in [37], which is applicable to any scattering
process described in the formulation of the relativistic wave
function. Thanks to the isomorphism between our model
and a Klein-Gordon massless equation with a time-depen-
dent potential, we estimated the probability amplitude
associated to a collapsing wave packet that is projected
onto an expanding one via the Green function.
We clearly demonstrated that the obtained probability

density is well defined and has a Gaussian shape. Its
maximum occurs when the mean values of the quantities kþ
and k− (as resulting from the Gaussian packets) essentially

coincide in the collapsing and expanding universe if and
only if the corresponding wave packets are sufficiently
localized. By increasing the variances, the position of the
probability peak is shifted with respect to the case of high
localization and occurs just nearby the mean values of the
ingoing wave packet. We propose this result as a notion of
quantum big bounce, which has also a quasiclassical
symmetry in the collapsing and expanding branches when
sufficiently localized wave packets (i.e., quasiclassical
states) are considered. In other words, our analysis has
the aim to give rise to the seeds of a new scenario for the
emergence of a bouncing cosmology, given the fact that the
semiclassical notion of a modified dynamics, characterized
by a finite maximum for the energy density, cannot be
applied in many cosmological implementations of the
quantum theory since localized states naturally spread in
quite general models when the singularity (or the presumed
bounce) is approached.
A further development is represented by the investiga-

tion of how the scenario proposed above can be imple-
mented in the case of a generic relational time [57], i.e., at
which extent we can make a direct identification of the
frequency separation with the nature of the universe volume
dynamics.
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