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We study quasinormal modes (QNMs) of massive Klein-Gordon fields in static Bañados-Teitelboim-
Zanelli (BTZ) black holes in terms of ladder operators constructed from spacetime conformal symmetries.
Because the BTZ spacetime is locally isometric to the three-dimensional anti-de Sitter spacetime, ladder
operators, which map a solution of the massive Klein-Gordon equation into that with different mass
squared, can be constructed from spacetime conformal symmetries. In this paper, we apply the ladder
operators to the QNMs of the Klein-Gordon equations in the BTZ spacetime. We demonstrate that the
ladder operators can change indices of QNM overtones, and all overtone modes can be generated from a
fundamental mode when we impose the Dirichlet or Neumann boundary condition at infinity. We also
discuss the case with the Robin boundary condition.
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I. INTRODUCTION

Ladder operators are useful tools that provide a deep
insight into a system. For example, in quantum mechanics,
they change a quantum number of solutions of the
Schrödinger equation and allow for relating the different
eigenstates without detailed knowledge of the solutions. It
is known that the ladder operators in quantum mechanics
are related to the underlying symmetry of a given system.
As shown in [1,2], a similar discussion based on ladder
operators from symmetry of spacetimes is possible for a
Klein-Gordon field. Ladder operators of the massive Klein-
Gordon field can be defined in spacetimes with a particular
conformal symmetry, e.g., (anti-)de Sitter spacetimes, and
these operators change the mass squared of the Klein-
Gordon field [1,2]. The operator is named the mass ladder
operator and allows one to analyze the deeper structure of
test fields in curved spacetimes [3,4] as ladder operators in
quantum mechanics.
Test fields in a curved spacetime tell us a fundamental

geometrical property of the spacetime. They play an
important role in the understanding of phenomena in the
strong-gravity regime, say, energy extraction phenomena
from black holes [5,6], weak tidal fields in a compact
binary system [7,8], ringdown gravitational waves [9,10],
and probe of strong cosmic censorship conjecture [11]. In
general, to obtain a physically meaningful solution of the
equation of motion, we need to impose appropriate boun-
dary conditions on the solution. For example, for a test field
in black hole spacetimes, appropriate boundary conditions

at the horizon and infinity define its characteristic oscil-
lation, namely, quasinormal ringing, which plays an
important role in various contexts [12–22]. Naturally, the
following question arises: Does a solution generated from a
physically meaningful solution by the mass ladder operator
[1,2] satisfy the appropriate boundary conditions that are
the same as the original solution?
In this paper, we apply the mass ladder operators to

phenomena, which highly depend on the global structure of
the solution, namely, quasinormal modes (QNMs) of the
massive Klein-Gordon field in static Bañados-Teitelboim-
Zanelli (BTZ) spacetimes [23].1 This setup is the simplest
system, in which one can obtain an exact solution for
QNMs and can globally define the mass ladder operators.
With the rotational symmetry of the spacetime, the QNMs
can be decomposed into independent angular modes with
an integer m. For each mode with m, there exists a discrete
set of modes labeled by a non-negative integer n, which is
an index of overtones. We particularly investigate, when
performing the mass ladder operators on the QNMs,
whether the operators generate QNMs with different
indices ðm; nÞ.
This paper is organized as follows. In Sec. II, we review

QNMs and QNM frequencies of the massive Klein-Gordon
field in the static BTZ spacetime. In Sec. III, we construct
the mass ladder operators in the BTZ spacetime. In Sec. IV,

1In the previous work [4], we have mainly focused on
phenomena, which depend only on the local property of the
solution.
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we discuss the relation between the mass ladder operators
and the QNM boundary conditions. In Sec. V, we argue the
shift of the QNM frequencies by the mass ladder operators.
In Sec. VI, we provide some remarks on our results. In
Sec. VII, we summarize this work.

II. QUASINORMAL MODES IN
STATIC BTZ SPACETIMES

In this section, we review QNMs of the massive Klein-
Gordon field in the static BTZ spacetime by following
[16,17,24].

A. Massive Klein-Gordon field in the BTZ spacetime

In static coordinates ðt; r;φÞ, the static BTZ spacetime is
described by [23]

ds2 ¼ −N2ðrÞdt2 þ 1

N2ðrÞ dr
2 þ r2dφ2;

N2ðrÞ ¼ −M þ r2

l2
; ð2:1Þ

where we assume M > 0 and l is the length scale of
three-dimensional anti–de Sitter spacetimes. The range of
the coordinate φ is 0 ≤ φ < 2π and r ¼ rH ≔ l

ffiffiffiffiffi
M

p
is the

horizon radius such that N2ðrHÞ ¼ 0. We consider the
massive Klein-Gordon field Φðt; r;φÞ that satisfies

½∇μ∇μ − μ2�Φ ¼ 0; ð2:2Þ

where themass squared satisfiesμ2 ≥ μ2BF andμ
2
BF ≔ −1=l2

is the Breitenlohner-Freedman bound in three-dimensional
anti–de Sitter spacetimes [25,26].2 Expanding the field as

Φðt; r;φÞ ¼
X
m

ϕmðrÞe−iωmteimφ; ð2:3Þ

where ωm ∈ C and m ∈ Z, Eq. (2.2) is reduced to an
equation,

ϕ00
m þ

�
1

r
þ ðN2Þ0

N2

�
ϕ0
m þ 1

N2

�
ωm

2

N2
−
m2

r2
− μ2

�
ϕm ¼ 0;

ð2:4Þ

where the prime denotes the derivative with respect to r.
Hereafter, we will omit the subscript m of ϕm and ωm.
Equation (2.4) can be solved in terms of the hyper-

geometric functions. We introduce a valuable z ∈ ½0; 1Þ
defined by

z ¼ 1 −
rH2

r2
; ð2:5Þ

and a function fðzÞ such that

ϕðzÞ ¼ z−i
ωl2
2rHð1 − zÞ1þ

ffiffiffiffiffiffiffiffiffi
1þμ2l2

p
2 fðzÞ: ð2:6Þ

Then, Eq. (2.4) can be written in the form

zð1− zÞ d
2

dz2
fþ ½c− ð1þ aþ bÞz� d

dz
f − abf ¼ 0; ð2:7Þ

where constants a, b, c are given by

a ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
2

− i
l
2rH

ðωl −mÞ;

b ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
2

− i
l
2rH

ðωlþmÞ;

c ¼ 1 − i
ωl2

rH
: ð2:8Þ

Equation (2.7) is the differential equation for Gaussian
hypergeometric functions, of which linearly independent
solutions are 2F1ða; b; c; zÞ and z1−c2F1ða − cþ 1;
b − cþ 1; 2 − c; zÞ. We thus obtain a general solution of
Eq. (2.4):

ϕðzÞ ¼ z−i
ωl2
2rHð1 − zÞ1þ

ffiffiffiffiffiffiffiffiffi
1þμ2l2

p
2 ½A2F1ða; b; c; zÞ

þBz1−c2F1ða − cþ 1; b − cþ 1; 2 − c; zÞ�; ð2:9Þ

where A, B are constants.

B. QNM boundary condition at the black hole horizon

To define QNMs, we impose appropriate boundary
conditions on the general solution (2.9) at the black hole
horizon and infinity. Near the horizon, the general solution
behaves as

ϕ ≃ 2
−iωl2

2rH Ae−iωr� þ 2
iωl2
2rH Beiωr� ; ð2:10Þ

where r� is the tortoise coordinate defined by dr� ¼ N−2dr
and r� ≃ ðl2=2rHÞ lnððr − rHÞ=rHÞ. The first and second
terms of the right-hand side of Eq. (2.9) describe an ingoing
and outgoing wave, respectively. We impose the ingoing-
wave condition at the black hole horizon: B ¼ 0. We then
obtain the solution that satisfies the ingoing-wave condition
at the black hole horizon:

ϕðzÞ ¼ Az−i
ωl2
2rH ð1 − zÞ1þ

ffiffiffiffiffiffiffiffiffi
1þμ2l2

p
2

2F1ða; b; c; zÞ: ð2:11Þ

2In this paper, we focus on the case μ2 ≥ μ2BF. This is because
the system with μ2 < μ2BF is generically unstable [25,26]. Another
reason is that the mass ladder operator, which is the main subject
of the present paper, for the real-valued mass squared exists only
for the case μ2 ≥ μ2BF [1].
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C. Asymptotic behavior at infinity

We next consider the asymptotic behavior at infinity. For
μ2 > μ2BF ¼ −1=l2, we have

ϕðrÞ ¼ AI

�
rH
r

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
½1þOð1=r2Þ�

þ AII

�
rH
r

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
ΞðrÞ; ð2:12Þ

where the function Ξ behaves as3

ΞðrÞ ¼
�
ln rþOð1Þ; −a − bþ c ¼ negative integer;

1þOð1=r2Þ; −a − bþ c ≠ negative integer;

ð2:13Þ

and the constants AI, AII are given by

AI ¼ A
ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ ; ð2:14Þ

and

AII ¼
(
A ð−1Þ1þaþb−cΓðcÞ

Γð−aþcÞΓð−bþcÞ ; −a− bþ c¼ negative integer;

A ΓðcÞΓð−a−bþcÞ
Γð−aþcÞΓð−bþcÞ ; −a− bþ c ≠ negative integer:

ð2:15Þ

For μ2 ¼ μ2BF, the asymptotic behavior is

ϕðrÞ ¼ AI;BF
rH
r
þ AII;BF

rH
r
ln

�
rH
r

�
þOð1=r3Þ; ð2:16Þ

where

AI;BF ¼ −A
2γ þ ψðaÞ þ ψðbÞ

ΓðaÞΓðbÞ Γðaþ bÞ;

AII;BF ¼ −2A
Γðaþ bÞ
ΓðaÞΓðbÞ : ð2:17Þ

Here, we have used ψðξÞ≡ d
dξ ln ΓðξÞ for ξ ∈ C and the

Euler number γ ≡ −ψð1Þ ≃ 0.5772. In the above discus-
sion, some formulas for the hypergeometric functions,
which are given in Appendix A, are used.

D. QNM boundary condition at infinity and
QNM frequencies

We consider four cases: the Dirichlet, Neumann, Robin,
and Dirichlet-Neumann boundary conditions. In the
following, we summarize each boundary condition and

the corresponding QNM frequencies. We follow the def-
inition of the boundary conditions at infinity on [27].

1. Dirichlet boundary condition

The Dirichlet boundary condition requires that AI in
Eq. (2.14) vanishes. Because the Gamma function has no
zeros, this condition corresponds to a ¼ −n or b ¼ −n,
where a, b are given in Eq. (2.8) and n is a non-negative
integer, then AI ∝ 1=Γð−nÞ ¼ 0. The imposition of the
Dirichlet boundary condition determines the QNM
frequencies,

ωD ¼�m
l
− i

rH
l2

ð2nþ1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

q
Þ ðDirichlet B:C:Þ

ð2:18Þ
Physically, the non-negative integer n represents an index
of overtones.
Note that the expression of the QNM has no logarithmic

term,

ϕ ¼ A

�
1 −

r2H
r2

�−iωDl2

2rH

�
rH
r

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p

×
Xn
k¼0

ðaÞkðbÞk
k!ðcÞk

�
1 −

r2H
r2

�
k

; ð2:19Þ

where ðξÞk ≡ Γðξþ kÞ=ΓðξÞ for ξ ∈ C. This is because the
logarithmic terms as in Eq. (2.12) for the case where −a −
bþ c is a negative integer, cancel out by the imposition of
the Dirichlet boundary condition AI ¼ 0, i.e., a ¼ −n or
b ¼ −n, as can be seen from the formula for the hyper-
geometric function in Appendix A.

2. Neumann boundary condition

The Neumann boundary condition requires that AII in
Eq. (2.15) vanishes. That corresponds to c − a ¼ −n or
c − b ¼ −n, where a, b, c are given in Eq. (2.8) and n is a
non-negative integer. Then, the QNM frequencies are
determined,

ωN¼�m
l
− i

rH
l2

ð2nþ1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

q
Þ ðNeumannB:C:Þ:

ð2:20Þ
The non-negative integer n corresponds to an index of
overtones. As can be seen from this expression, for
μ2l2 > 0, the imaginary part of ωN can be positive,
indicating the existence of unstable modes due to the
presence of a non-normalizable mode.4 The QNM takes

3As will be seen later, the function Ξ has no logarithmic terms
when imposing the Dirichlet boundary condition at infinity.

4We callΦ a normalizable mode if and only if the norm jΦj2 ≡
−i

R
∞
rH

dx3
ffiffiffiffiffiffi−gp

gttðΦ�
∂tΦ −Φ∂tΦ�Þ is finite, where � denotes the

complex conjugate. If not, we callΦ a non-normalizable mode. In
the context of AdS=CFT correspondence, a non-normalizable
mode plays a role in the “source” of dual theories.
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the form

ϕ ¼ A

�
1 −

r2H
r2

�−iωNl2

2rH

�
rH
r

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p

×
Xn
k¼0

ðc − aÞkðc − bÞk
k!ðcÞk

�
1 −

r2H
r2

�
k

: ð2:21Þ

3. Robin boundary condition

In the case of μ2l2 > −1, the Robin boundary condition
corresponds to AII=AI ¼ κ (κ ∈ R), which includes the
Dirichlet boundary condition κ ¼ ∞, i.e., AI ¼ 0, and the
Neumann boundary condition κ ¼ 0, i.e., AII ¼ 0. It is
difficult to obtain the analytic expressions for the QNM
frequencies except for the Dirichlet and Neumann boun-
dary conditions. From the condition AII=AI ¼ κ, the QNM
frequency for a fixed κ can be obtained numerically (see
Appendix B).
For μ2l2 ¼ −1, the Robin boundary condition corre-

sponds to AII;BF=AI;BF ¼ 1=κBF (κBF ∈ R). We numerically
calculate the QNM frequency for a fixed κ from the
condition AII;BF=AI;BF ¼ 1=κBF (see Appendix B). We note
that the QNM frequency for the κBF ¼ −∞ case can be
analytically derived as shown below.

4. Dirichlet-Neumann boundary condition

In the case of μ2l2 ¼ −1, the Dirichlet-Neumann boun-
dary condition is the simultaneous imposition of the
Dirichlet and Neumann boundary condition [27], which
corresponds to κBF ¼ −∞ in AII;BF=AI;BF ¼ 1=κBF. The
QNM frequency is calculated to

ωDN ¼ �m
l
− i

rH
l2

ð2nþ 1Þ ðDirichlet-Neumann B:C:Þ:
ð2:22Þ

We note that this corresponds to the case of Eqs. (2.18) and
(2.20) with μ2l2 ¼ −1. The QNM takes the form

ϕ ¼ A

�
1 −

r2H
r2

�−iωDNl2

2rH

�
rH
r

�

×
Xn
k¼0

ðc − aÞkðc − bÞk
k!ðcÞk

�
1 −

r2H
r2

�
k

: ð2:23Þ

III. MASS LADDER OPERATORS IN THE
BTZ SPACETIME

In this section, we introduce ladder operators associated
with the spacetime conformal symmetry of the BTZ
spacetime (2.1) according to [1–4]. In the BTZ spacetime,
there are four independent closed conformal Killing
vectors,

ζ0 ¼ e
rH
l2
t
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rH2

p ∂t −
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rH2

p
l2rH

∂r

�
;

ζ1 ¼ e−
rH
l2
t
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rH2

p ∂t þ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − rH2

p
l2rH

∂r

�
;

ζ2 ¼ e
rH
l φ

�
r2 − rH2

lrH
∂r þ

1

r
∂φ

�
;

ζ3 ¼ e−
rH
l φ

�
−
r2 − rH2

lrH
∂r þ

1

r
∂φ

�
: ð3:1Þ

Those vectors satisfy the conformal Killing equations
∇ðμζνÞ ¼ ð1=3Þð∇αζ

αÞgμν and the closed condition
∇½μζν� ¼ 0. We define mass ladder operators in the static
BTZ spacetime,

Di;k ≔ Lζi −
k
3
∇μζ

μ
i ; ð3:2Þ

where i runs 0,1,2,3, k ∈ R is a parameter which is related
to the mass squared of the Klein-Gordon field, and Lζi is
the Lie derivative along the closed conformal Killing
vectors (3.1). The explicit forms of the mass ladder
operators (3.2) become

D0;k¼e
rH
l2
t
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p ∂t−
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p
l2rH

∂rþk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p
l2rH

�
;

D1;k¼e−
rH
l2
t
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p ∂tþ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p
l2rH

∂r−k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−rH2

p
l2rH

�
;

D2;k¼e
rH
l φ

�
r2−rH2

lrH
∂rþ

1

r
∂φ−k

r
lrH

�
;

D3;k¼e−
rH
l φ

�
−
r2−rH2

lrH
∂rþ

1

r
∂φþk

r
lrH

�
: ð3:3Þ

For these mass ladder operators, commutation relations
which act on scalar fields,

½∇μ∇μ;Di;k�¼−
2kþ1

l2
Di;kþ

2

3
ð∇μζ

μ
i Þ
�
∇μ∇μ−

kðkþ2Þ
l2

�
;

ð3:4Þ
hold, where ∇μ∇μ is the d’Alembertian in the static BTZ
spacetime.
Performing the commutation relation (3.4) on some

smooth function Φðt; r;φÞ, we obtain a relation,

Di;k−2

�
∇μ∇μ−

kðkþ2Þ
l2

�
Φ¼

�
∇μ∇μ−

ðk−1Þðkþ1Þ
l2

�
Di;kΦ:

ð3:5Þ

If Φ is a solution of the massive Klein-Gordon equa-
tion (2.2) with mass squared μ2l2 ¼ kðkþ 2Þ, i.e., Φ
satisfies
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�
∇μ∇μ −

kðkþ 2Þ
l2

�
Φ ¼ 0; ð3:6Þ

the left-hand side of Eq. (3.5) vanishes, thereby yielding

�
∇μ∇μ −

ðk − 1Þðkþ 1Þ
l2

�
Di;kΦ ¼ 0: ð3:7Þ

This shows that the mass ladder operators map a solution of
the massive Klein-Gordon equation with mass squared
μ2l2 ¼ kðkþ 2Þ into that with different mass squared
μ2l2 ¼ ðk − 1Þðkþ 1Þ.
The mass squared with μ2 ≥ μ2BF can be parametrized as

μ2l2 ¼ νðνþ 2Þ; ð3:8Þ

where ν ∈ R.5 For a given parameter ν, there are two
solutions of νðνþ 2Þ ¼ kðkþ 2Þ with respect to k, which
we denote by k�,

kþ ¼ −2 − ν; k− ¼ ν: ð3:9Þ

Thus, there exist two different mass ladder operators,
Di;kþ , Di;k− . The operators Di;kþ shift the mass squared
μ2l2 ¼ νðνþ 2Þ of the massive Klein-Gordon field to
ðνþ 1Þðνþ 3Þ, while the operators Di;k− shift it to
ðν − 1Þðνþ 1Þ, i.e., Di;kþ and Di;k− shift the parameter ν
to νþ 1 and ν − 1, respectively. Depending on the value of
μ2 or ν, the mass ladder operators make mass squared raise
or lower. Figure 1 shows the shift of ν by the mass ladder
operators Di;k� .

6

The above discussion shows that the mass ladder
operators Di;k� can shift the parameter ν in the mass
squared μ2l2 ¼ νðνþ 2Þ to ν� 1. This implies that per-
forming the mass ladder operators several times, the
parameter ν can be shifted to ν� N with a positive integer
N. For example, the operator DiN;ν−Nþ1 � � �Di2;ν−1Di1;ν can
shift the mass squared from μ2l2 ¼ νðνþ 2Þ to
ðν − NÞðνþ 2 − NÞ. Another interesting example is that
the operator Di2;−1−νDi1;ν becomes a symmetry operator of
the Klein-Gordon equation with the mass squared
μ2l2 ¼ νðνþ 2Þ, i.e., Di2;−1−νDi1;νΦ becomes the solution
of the Klein-Gordon equation with the same mass
squared μ2l2 ¼ νðνþ 2Þ.
Because ζ0 and ζ1 in Eq. (3.1) are regular vector fields,

the mass ladder operators D0;k� and D1;k� map a regular
solution of the Klein-Gordon equation into a regular

solution of that with different mass squared. On the other
hand, ζ2 and ζ3 in Eq. (3.1) are not globally regular vector
fields in the BTZ spacetime due to the factor e�rHφ=l, and
the corresponding mass ladder operators D2;k� and D3;k�
are also not globally regular. Thus, we mainly focus on
D0;k� and D1;k� in the following sections.7

IV. MASS LADDER OPERATORS AND
QNM BOUNDARY CONDITIONS

In this section, we investigate the relation among the
mass ladder operators D0;k, D1;k and asymptotic behaviors
of the Klein-Gordon fields in the cases of the Dirichlet,
Neumann, and Dirichlet-Neumann boundary conditions.
We discuss other mass ladder operator cases,D2;k andD3;k,
in Appendix C and the Robin boundary condition cases in
Appendix D. If the mass ladder operators keep the QNM
boundary conditions, they map a QNM into another
QNM appropriately. We parametrize the mass squared of
the Klein-Gordon field as μ2l2 ¼ νðνþ 2Þ for a real
parameter ν ∈ R. In this section, we assume ν ≥ −1, then
ν ¼ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
.

The QNMs obtained in Sec. II are written in the form

Φ ¼ A

�
1 −

r2H
r2

�−i l2
2rH

ω
�
rH
r

�
2þν

2F1ða; b; c; 1 − r2H=r
2Þ

× e−iωtþimφ; ð4:1Þ

FIG. 1. Mass ladder operators Di;k� shift ν in the mass squared
μ2l2 ¼ νðνþ 2Þ into ν → ν� 1. If the original parameter is
ν ¼ 1.3, the parameter is shifted into ν ¼ 0.3 by Di;k− and into
ν ¼ 2.3 by Di;kþ.

5We note that the parameter ν with ν ≥ −1 can represent all
mass squared with μ2 ≥ μ2BF. For ν ≥ −1, ν can be written by
ν ¼ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
. In this paper, we mainly focus on ν ≥ −1.

6ActingDi;k− on the field with −1 ≤ ν < −1=2makes the mass
squared raise. In the case of ν ¼ −1=2, that keeps the mass
squared.

7In fact, the multiple actions of the mass ladder operatorsD2;k�
andD3;k� can be regular, and this case will be briefly discussed in
Sec. VI B.
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where ω is the QNM frequency, and a, b, c are given in
Eq. (2.8). The asymptotic behavior near the horizon is

Φjr≃rH ¼2
−i l2

2rH
ωA

�
r−rH
rH

�
−i l2

2rH
ω

½1þOðr−rHÞ�e−iωtþimφ:

ð4:2Þ

Note r − rH ≃ rHe2rHr�=l
2

in terms of the tortoise coordi-
nate r�. For ν > −1, the asymptotic behaviors at infinity are

Φjr≃∞ ¼ AII

�
rH
r

�
2þν

½1þOð1=r2Þ�

× e−iωtþimφ ðDirichlet B:C:Þ; ð4:3Þ

Φjr≃∞ ¼ AI

�
rH
r

�
−ν
½1þOð1=r2Þ�

× e−iωtþimφ ðNeumann B:C:Þ: ð4:4Þ

Here, the coefficients AII and AI are, respectively, given in
Eqs. (2.15) and (2.14). For ν ¼ −1, the asymptotic behav-
ior with the Dirichlet-Neumann boundary condition at
infinity is

Φjðν¼−1Þ
r≃∞ ¼ AII;BF

�
rH
r
þOð1=r3Þ

�
× e−iωtþimφ ðDirichlet-Neumann B:C:Þ; ð4:5Þ

where AII;BF is given in Eq. (2.17). The power of the leading
behavior corresponds to the limit of ν → −1 of that in
Eqs. (4.3) or (4.4).

A. At the horizon

We consider the asymptotic behavior of a mapped
solution near the horizon. Performing the mass ladder
operators D0;k� and D1;k� on the exact solution (4.1), the
asymptotic behaviors at r → rH are calculated to

D0;k�Φ ¼ c0;k�

�
r − rH
rH

�
−i l2

2rH
ðωþirH

l2
Þ
½1þOðr − rHÞ�

× e−iðωþirH
l2
Þtþimφ;

D1;k�Φ ¼ c1;k�

�
r − rH
rH

�
−i l2

2rH
ðω−irH

l2
Þ
½1þOðr − rHÞ�

× e−iðω−i
rH
l2
Þtþimφ: ð4:6Þ

The explicit forms of the coefficients c0;k� and c1;k� are
given in Appendix E. Comparing these results with
Eq. (4.2), it can be seen that D0;k�Φ are ingoing waves
with the frequency ω̃ ¼ ωþ irH=l2 and D1;k�Φ are those
with ω̃ ¼ ω − irH=l2. Thus, the mass ladder operators
keep the ingoing-wave condition.

B. At infinity: Originally from the QNM with the
Dirichlet boundary condition

We consider the action of the mass ladder operators on
Φ, which satisfies the Dirichlet boundary condition.
Performing the mass ladder operators D0;kþ and D1;kþ on
the exact solution (4.1) with the Dirichlet boundary con-
dition, the asymptotic behaviors at infinity are

D0;kþΦ ¼ cðDÞ0;kþ

�
rH
r

�
3þν

½1þOð1=r2Þ�e−iðωþirH
l2
Þtþimφ;

D1;kþΦ ¼ cðDÞ1;kþ

�
rH
r

�
3þν

½1þOð1=r2Þ�e−iðω−i
rH
l2
Þtþimφ:

ð4:7Þ

The explicit forms of the coefficients cðDÞ0;kþ and cðDÞ1;kþ are
given in Appendix E. Comparing these results with
Eq. (4.3), it can be seen that these correspond to the
asymptotic forms of a solution with mass squared μ2l2 ¼
ν̃ðν̃þ 2Þ with ν̃ ¼ νþ 1, which satisfies the Dirichlet
boundary condition. Thus, the mass ladder operators
D0;kþ and D1;kþ keep the Dirichlet boundary condition.
Performing the mass ladder operators D0;k− and D1;k− on

the exact solution (4.1) with the Dirichlet boundary con-
dition, the asymptotic behaviors at infinity are

D0;k−Φ ¼ cðDÞ0;k−

�
rH
r

�
1þν

½1þOð1=r2Þ�e−iðωþirH
l2
Þtþimφ;

D1;k−Φ ¼ cðDÞ1;k−

�
rH
r

�
1þν

½1þOð1=r2Þ�e−iðω−i
rH
l2
Þtþimφ:

ð4:8Þ

The explicit forms of the coefficients cðDÞ0;k−
and cðDÞ1;k−

are
given in Appendix E. Comparing these results with
Eqs. (4.3)–(4.5), we can read off the boundary conditions
at infinity depending on the value of ν. The asymptotic
forms of a solution with mass squared μ2l2 ¼ ν̃ðν̃þ 2Þ
with ν̃ ¼ ν − 1, which satisfies the Dirichlet boundary
condition for ν > 0. Thus, for ν > 0, the mass ladder
operators D0;k− and D1;k− also keep the Dirichlet boundary
condition. For ν ¼ 0, the mass ladder operators D0;k− and
D1;k− change into the Dirichlet-Neumann boundary con-
dition as can be seen by comparing with Eq. (4.5). For
−1 < ν < 0, the asymptotic behaviors in Eq. (4.8) are the
asymptotic forms of a solution with mass squared μ2l2 ¼
ν̃ðν̃þ 2Þ with ν̃ ¼ jνj − 1, which satisfies the Neumann
boundary condition: AII ¼ 0. Note that ν̃ satisfies −1 <
ν̃ < 0 for −1 < ν < 0. Thus, remarkably, for −1 < ν < 0,
the mass ladder operators D0;k− and D1;k− change the
Dirichlet boundary condition into the Neumann boundary
condition.
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C. At infinity: Originally from the QNM with the
Neumann boundary condition

We perform the mass ladder operators on Φ, which
satisfies the Neumann boundary condition. Performing the
mass ladder operatorsD0;kþ andD1;kþ on the exact solution
(4.1) with the Neumann boundary condition, the asymp-
totic behaviors at infinity are

D0;kþΦ ¼ cðNÞ0;kþ

�
rH
r

�
−1−ν

½1þOð1=r2Þ�e−iðωþirH
l2
Þtþimφ;

D1;kþΦ ¼ cðNÞ1;kþ

�
rH
r

�
−1−ν

½1þOð1=r2Þ�e−iðω−i
rH
l2
Þtþimφ:

ð4:9Þ

The explicit forms of the coefficients cðNÞ0;kþ and cðNÞ1;kþ are
given in Appendix E. These are the asymptotic forms of a
solution with mass squared μ2l2 ¼ ν̃ðν̃þ 2Þ with
ν̃ ¼ νþ 1, which satisfies the Neumann boundary con-
dition. Thus, the mass ladder operators D0;kþ and D1;kþ
keep the Neumann boundary condition.
Performing the mass ladder operators D0;k− and D1;k− on

the exact solution (4.1) with the Neumann boundary
condition, the asymptotic behaviors at infinity are

D0;k−Φ ¼ cðNÞ0;k−

�
rH
r

�
1−ν

½1þOð1=r2Þ�e−iðωþirH
l2
Þtþimφ;

D1;k−Φ ¼ cðNÞ1;k−

�
rH
r

�
1−ν

½1þOð1=r2Þ�e−iðω−i
rH
l2
Þtþimφ:

ð4:10Þ

The explicit forms of the coefficients cðNÞ0;k−
and cðNÞ1;k−

are
given in Appendix E. Comparing these results with
Eqs. (4.3)–(4.5), we can read off the boundary conditions
at infinity depending on the value of ν. For ν > 0, the
asymptotic forms of a solution with mass squared μ2l2 ¼
ν̃ðν̃þ 2Þ with ν̃ ¼ ν − 1, which satisfies the Neumann
boundary condition. Thus, for ν > 0, the mass ladder
operatorsD0;k− andD1;k− also keep the Neumann boundary
condition. For ν ¼ 0, the mass ladder operators D0;k− and
D1;k− change into the Dirichlet-Neumann boundary con-
dition as can be seen by comparing with Eq. (4.5). For
−1 < ν < 0, the asymptotic behaviors in Eq. (4.10) are the
asymptotic forms of a solution with mass squared μ2l2 ¼
ν̃ðν̃þ 2Þ with ν̃ ¼ jνj − 1, which satisfies the Dirichlet
boundary condition. Note that ν̃ satisfies −1 < ν̃ < 0 for
−1 < ν < 0. It should also be noted that, for −1 < ν < 0,
the mass ladder operators D0;k− and D1;k− change the
Neumann boundary condition into the Dirichlet boundary
condition.

D. At infinity: Originally from the QNM with the
Dirichlet-Neumann boundary condition

We perform the mass ladder operators D0;−1 and D1;−1
on Φ, which satisfies the Dirichlet-Neumann boundary
condition.8 Performing them on the exact solution (4.1)
with the Dirichlet-Neumann boundary condition, the
asymptotic behaviors at infinity are

D0;−1Φ ¼ cðDNÞ0;−1

�
rH
r

�
2

½1þOð1=r2Þ�e−iðωþirH
l2
Þtþimφ;

D1;−1Φ ¼ cðDNÞ1;−1

�
rH
r

�
2

½1þOð1=r2Þ�e−iðω−i
rH
l2
Þtþimφ:

ð4:11Þ

The explicit forms of the coefficients cðDNÞ0;−1 and cðDNÞ1;−1 are
given in Appendix E. Comparing with Eq. (4.3), these
correspond to the asymptotic forms of a massless solution,
which satisfies the Dirichlet boundary condition. Thus, the
mass ladder operatorsD0;−1 andD1;−1 change the Dirichlet-
Neumann boundary condition into the Dirichlet boundary
condition.

V. CHANGES OF QNM FREQUENCIES AND
INTERPRETATION

In the previous section, for the cases of the Dirichlet,
Neumann, and Dirichlet-Neumann boundary conditions,
we have seen that the single action ofD0;k� andD1;k� maps
the QNM into another QNM with one of those boundary
conditions depending on the value of ν (see Tables I–III). In
this section, we discuss physical interpretations in terms of
the QNM frequency spectra. In particular, for those
boundary conditions, we will see that all overtones can
be generated from the fundamental modes.
The QNM frequencies with the Dirichlet, Neumann, and

Dirichlet-Neumann boundary conditions are, respectively,
given in Eqs. (2.18), (2.20), and (2.22), which are rewritten
in terms of ν as

ωDðν;nÞ¼�m
l
− i

rH
l2

ð2nþ2þνÞ ðDirichlet B:C:Þ; ð5:1Þ

ωNðν;nÞ¼�m
l
− i

rH
l2

ð2n−νÞ ðNeumannB:C:Þ; ð5:2Þ

ωDNðnÞ¼�m
l
− i

rH
l2

ð2nþ1Þ ðDirichlet-NeumannB:C:Þ;
ð5:3Þ

wherem ∈ Z is the azimuthal number and n ¼ 0; 1; 2;… is
an index of overtones. Note that the parameter ν is related to

8Because of kþ ¼ k− ¼ −1 in Eq. (3.9), both the mass ladder
operators Dkþ and Dk− make the mass squared raise as stated at
the end of Sec. III.
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the mass squared μ2l2ð≥ μ2BFl
2Þ as ν ¼ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
under the assumption ν ≥ −1.

A. From the QNM with the
Dirichlet boundary condition

Equations (4.7) and (4.8) imply that performing the mass
ladder operators D0;k� on the QNM, the QNM frequency is
shifted as ω → ω̃ ¼ ωþ irH=l2, i.e.,

ω̃ ¼ �m
l
− i

rH
l2

ð2nþ 1þ νÞ: ð5:4Þ

It also follows from Eqs. (4.7) and (4.8) that per-
forming the mass ladder operators D1;k� , we observe
ω → ω̃ ¼ ω − irH=l2, i.e.,

ω̃ ¼ �m
l
− i

rH
l2

ð2nþ 3þ νÞ: ð5:5Þ

These frequency shifts can be interpreted as the changes of
ðν; nÞ by comparing with Eqs. (5.1)–(5.3). We summarize
the results in Table I. We should note that D0;k− and D1;k−
change the boundary condition of the QNMs for
−1 < ν ≤ 0. When performing D0;kþ on the fundamental
mode of Φ, i.e., n ¼ 0, a trivial solution is generated:
D0;kþΦ ¼ 0. Namely, no “negative overtones” are gener-
ated. This can also be understood from the fact that the

coefficients c0;kþ and cðDÞ0;kþ in Eqs. (E1) and (E2) vanish for
the fundamental QNM frequency ωDðν; 0Þ.

B. From the QNM with the
Neumann boundary condition

From Eqs. (4.9) and (4.10), performing the mass ladder
operators D0;k� on the QNM, we obtain a shifted QNM
frequency,

ω̃ ¼ �m
l
− i

rH
l2

ð2n − ν − 1Þ: ð5:6Þ

Equations (4.9) and (4.10) also imply that performing the
mass ladder operators D1;k� , we obtain

ω̃ ¼ �m
l
− i

rH
l2

ð2n − νþ 1Þ: ð5:7Þ

These frequency shifts can be interpreted as the changes of
ðν; nÞ by comparing with Eqs. (5.1)–(5.3). We summarize
the results in Table II. We should note that D0;k− and D1;k−
change the boundary condition of the QNMs for
−1 < ν ≤ 0. When performing D0;k− on the fundamental
mode of Φ, i.e., n ¼ 0, a trivial solution is generated:
D0;k−Φ ¼ 0; thus, no negative overtones are generated.
This can also be understood from the fact that the

coefficients c0;k− and cðNÞ0;k−
in Eqs. (E1) and (E5) vanish

for the fundamental QNM frequency ωNðν; 0Þ.

TABLE II. Change of the QNM frequencies by the mass ladder operators. The original QNM frequency is ωNðν; nÞ in Eq. (5.2). For
D0;k− , no negative overtones are generated from the fundamental mode n ¼ 0.

Operators D0;kþ D0;k− D1;kþ D1;k−

Frequencies ωNðνþ 1; nÞ
ωNðν − 1; n − 1Þ ðν > 0Þ

ωNðνþ 1; nþ 1Þ
ωNðν − 1; nÞ ðν > 0Þ

ωDNðn − 1Þ ðν ¼ 0Þ ωDNðnÞ ðν ¼ 0Þ
ωDðjνj − 1; n − 1Þ ð−1 < ν < 0Þ ωDðjνj − 1; nÞ ð−1 < ν < 0Þ

TABLE III. Change of the QNM frequencies by the mass ladder operators. The original QNM frequency is ωDNðnÞ in Eq. (5.3). For
D0;−1, no negative overtones are generated from the fundamental mode n ¼ 0. The operator DBF

0 maps the fundamental mode into a
fundamental mode of the QNM with the Neumann boundary condition for the massless Klein-Gordon equation.

Operators D0;−1 D1;−1 DBF
0

Frequencies ωDð0; n − 1Þ ωDð0; nÞ ωDNð0Þ → ωNð0; 0Þ

TABLE I. Change of the QNM frequencies by the mass ladder operators. The original QNM frequency is ωDðν; nÞ in Eq. (5.1). For
D0;kþ , no negative overtones are generated from the fundamental mode n ¼ 0.

Operators D0;kþ D0;k− D1;kþ D1;k−

Frequencies ωDðνþ 1; n − 1Þ
ωDðν − 1; nÞ ðν > 0Þ

ωDðνþ 1; nÞ
ωDðν − 1; nþ 1Þ ðν > 0Þ

ωDNðnÞ ðν ¼ 0Þ ωDNðnþ 1Þ ðν ¼ 0Þ
ωNðjνj − 1; nÞ ð−1 < ν < 0Þ ωNðjνj − 1; nþ 1Þ ð−1 < ν < 0Þ
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C. From the QNM with the Dirichlet-Neumann
boundary condition

From Eq. (4.11), performing the mass ladder operator
D0;−1 on the QNM, the QNM frequency is shifted as
ω → ω̃ ¼ ωþ irH=l2, i.e.,

ω̃ ¼ �m
l
− i

rH
l2

ð2nÞ: ð5:8Þ
Equation (4.11) also implies that performing the mass
ladder operator D1;−1, we obtain a shifted QNM frequency,

ω̃ ¼ �m
l
− i

rH
l2

ð2nþ 2Þ: ð5:9Þ
These frequency shifts can be interpreted as the changes of
ðν; nÞ by comparing with Eq. (5.1). We summarize the
results in Table III. We should note that D0;−1 and D1;−1
change the boundary condition of the QNMs from the
Dirichlet-Neumann boundary condition into the Dirichlet
boundary condition. When performing D0;−1 on the fun-
damental mode of Φ, i.e., n ¼ 0, a trivial solution is
generated: D0;−1Φ ¼ 0; thus, no negative overtones are
generated. This can also be understood from the fact that

the coefficients c0;−1 and c
ðDNÞ
0;−1 in Eqs. (E1) and (E6) vanish

for the fundamental QNM frequency ωDNð0Þ.
In fact, for the μ2 ¼ μ2BF case, we can define an addi-

tional mass ladder operator which performs on only a
fundamental mode as

DBF
0 Φ0 ≔ ð∇μζ

μ
0ÞΦ0 ¼ erHt=l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2H

p
l2rH

Φ0; ð5:10Þ

where Φ0 is the fundamental mode in Eq. (2.23) with
n ¼ 0. We can easily see that DBF

0 Φ0 is the fundamental
mode of the QNM with the Neumann boundary condition
for the massless Klein-Gordon equation.9

D. Symmetry operators from multiple actions

Symmetry operators can be constructed from multiple
actions of D0;k� and D1;k� . For example, the actions

D0;kþ−1D0;k− or D1;kþ−1D1;k− keep mass squared as the
original one and maps the QNM into a QNM appropriately.
Then, the QNM frequency is shifted as ω → ω� i2rH=l2.
In the case of the Dirichlet boundary condition, in which
the QNM frequency is given in Eq. (5.1), that leads to

ω̃ ¼ �m
l
− i

rH
l2

½2ðn − 1Þ þ 2þ ν�; ð5:12Þ
for D0;kþ−1D0;k−Φ and

ω̃ ¼ �m
l
− i

rH
l2

½2ðnþ 1Þ þ 2þ ν�; ð5:13Þ
for D1;kþ−1D1;k−Φ. It can be seen that the index of the
overtone is shifted. This is also the case of the Neumann
boundary condition and the Dirichlet-Neumann boundary
condition. Thus, for those boundary conditions, all over-
tones can be generated from the fundamental modes by
performing these symmetry operators multiple times.10 We
note that if a symmetry operator constructed from the
multiple action of the mass ladder operators does not
change the overtone number, the operator can be written
by the multiple action of the Lie derivative with respect to
the Killing vectors.

VI. REMARKS

A. Parameter shifts of QNMs with purely imaginary
frequency for the Robin boundary condition

In Appendix D, we discuss changes of QNMs with the
Robin boundary condition with the mass ladder operators.
The QNM frequencies are shifted as ω → ωþ irH=l2 and
ω → ω − irH=l2 for D0;k� and D1;k� , respectively. The
mass ladder operators D0;k� and D1;k� change not only the
mass squared but also the Robin boundary condition
parameter κ. In general, the resulting Robin parameter is
complex even if the original parameter is real. We find that
the shifted Robin parameter takes real values when the
original QNM frequency is purely imaginary and the
original Robin parameter is real. As can be seen in
Figs. 2(a) and 3(a) in Appendix B, the purely imaginary
ω indeed exist. When performing the mass ladder operators
on the QNMs with purely imaginary ω and the real Robin
parameter, resulting QNMs also have purely imaginary
frequencies and the real Robin parameter.

B. Regular solution generated by
multiple actions of D2;k� and D3;k�

As mentioned in Sec. III, the single action of D2;k� and
D3;k� fails to generate a globally regular solution from the
QNMdue to the factor e�rHφ=l. Here, we argue that a special
combination of them yields a regular solution, i.e., a QNM.
For example, the multiple action D2;kþ−1D3;kþ has no
singular factor and changes the parameter ν as ν → νþ 2.

9The reason why this operator acts as a ladder operator only for
the fundamental mode is as follows. We parametrize the mass
squared around μ2BF as μ2l2 ¼ −1þ δ2 with 1 ≫ δ ≥ 0, then k�
becomes k� ¼ −1� δ. The additional mass ladder operator DBF

0
can be written by

DBF
0 ¼ −

3

2
lim
δ→0

D0;kþ −D0;k−

δ
: ð5:11Þ

For δ > 0, if the operator D0;kþ −D0;k− acts on the fundamental
mode of the QNM with the Dirichlet boundary condition, the
mapped solution becomes the QNM with the Neumann boundary
condition because the action of D0;kþ on the fundamental mode
vanishes (see Table I). Taking the limit of δ → 0, the mapped
solution becomes the fundamental mode of the QNM with the
Neumann boundary condition for the massless Klein-Gordon
equation.

10This is not necessarily the case of the Robin boundary
condition.
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The QNM is appropriately mapped into a QNM with mass
squared raised but the value ofω is unchanged. The resulting
QNM frequencies are interpreted as

ω̃ ¼ �m
l
− i

rH
l2

½2ðn − 1Þ þ 2þ ðνþ 2Þ� ð6:1Þ

for the Dirichlet boundary condition, and

ω̃ ¼ �m
l
− i

rH
l2

½2ðnþ 1Þ − ðνþ 2Þ� ð6:2Þ

for the Neumann boundary condition. The indices of the
overtone are also shifted.
Finally, we make a comment on symmetry operators. If

we construct regular symmetry operators from D2;k� and
D3;k� , e.g., D2;k−þ1D3;kþ , those do not change the QNM
frequencies. In fact, those operators become the trivial
symmetry operators, i.e., the Lie derivative with respect to
the Killing vectors.

VII. SUMMARY

We have studied QNMs of the massive Klein-Gordon
field in the static BTZ spacetime in terms of the mass ladder
operator, which is constructed from the spacetime con-
formal symmetry. The mass ladder operators consist of two
types of operators, which play a role in making
mass squared of the Klein-Gordon field raise or lower,
respectively.
We have shown that the mass ladder operators keep the

ingoing-wave condition at the horizon and can change
boundary conditions at infinity. In the cases of the Dirichlet
and Neumann boundary condition, we have seen that the
mass ladder operators map the QNM into another QNM
with one of those boundary conditions depending on the
value of the mass squared. It has further been shown that
the mass ladder operators change not only the mass squared
but also the QNM frequencies. In some cases, an index of
overtones is shifted. It has been revealed that all overtones
can be generated from a fundamental mode with the mass
ladder operators. This reminds us of the well-known results
in quantum mechanical problems, i.e., all excited states can
be derived by performing the ladder operators on the
ground state wave function in the harmonic oscillator or
supersymmetric system. It is also known that there is a
correspondence among QNMs and bound states of the

Schrödinger equation in quantum mechanics, e.g., [28–31].
Our present results suggest the existence of a further
analogy between QNMs and quantum mechanical systems.
We have also investigated the case of the Robin

boundary condition, which is characterized by one real
parameter called the Robin parameter. In this case, the mass
ladder operators keep the Robin boundary condition but
change the Robin parameter. In general, the resulting Robin
parameter is complex even if the original parameter is real.
We have found that the shifted Robin parameter takes real
values when the original QNM frequency is purely
imaginary.
It is interesting to extend the current analysis to the case

of rotating BTZ black holes. Test fields in the rotating BTZ
black hole spacetime have been intensively investigated in,
e.g., [32–34]. Because the rotating BTZ spacetime is also
locally the anti–de Sitter spacetime in three dimensions, the
mass ladder operators can also be defined by using the
spacetime conformal symmetry. Thus, we expect that the
ladder operators can be used to understand the QNM
frequencies of rotating BTZ black holes. It is also interest-
ing to study QNMs of topological black holes in [35], of
which geometries are locally isometric to the anti–de Sitter
spacetimes in four and higher dimensions. We leave these
problems for future work.
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APPENDIX A: FORMULAS OF
HYPERGEOMETRIC FUNCTION

We give the formulas for the hypergeometric functions
[36] used in Sec. II. In the derivation of Eq. (2.12) for
μ2l2 > −1, if −a − bþ c ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
is a negative

integer, e.g., μ2 ¼ 0, we use a property,

2F1ða; b; c; zÞ ¼
ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ ð1 − zÞ−a−bþc
Xaþb−c−1

k¼0

ð−aþ cÞkð−bþ cÞk
k!ðaþ b − cþ 1Þk

ð1 − zÞk

−
ð−1Þaþb−cΓðcÞ

Γð−aþ cÞΓð−bþ cÞ
X∞
k¼0

ðaÞkðbÞk
k!ðaþ b − cþ kÞ! ð1 − zÞk

× ðlnð1 − zÞ − ψðkþ 1Þ − ψðaþ b − cþ 1þ kÞ þ ψðaþ kÞ þ ψðbþ kÞÞ; ðA1Þ
where ðξÞk ≡ Γðξþ kÞ=ΓðξÞ for ξ ∈ C. If − a − bþ c ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l2

p
is not a negative integer, we use a property
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2F1ða; b; c; zÞ ¼
ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ ð1 − zÞ−a−bþc
2F1ð−aþ c;−bþ c;−a − bþ cþ 1; 1 − zÞ

þ ΓðcÞΓð−a − bþ cÞ
Γð−aþ cÞΓð−bþ cÞ 2F1ða; b; aþ b − cþ 1; 1 − zÞ: ðA2Þ

In the derivation of Eq. (2.16) for μ2l2 ¼ −1, we use a property

2F1ða; b; aþ b; zÞ ¼ Γðaþ bÞ
ΓðaÞΓðbÞ

X∞
k¼0

ðaÞkðbÞk
ðk!Þ2 ð1 − zÞkð− lnð1 − zÞ þ 2ψð1þ kÞ − ψðaþ kÞ − ψðbþ kÞÞ: ðA3Þ

For the Dirichlet boundary condition, i.e., a ¼ −n (or
b ¼ −n) for a non-negative integer n, the hypergeometric
function takes the form of a finite polynomial,

2F1ð−n; b; c; zÞ ¼
Xn
k¼0

ð−nÞkðbÞk
ðcÞk

zk

k!
: ðA4Þ

Note that there is a property 2F1ða; b; c; zÞ ¼
2F1ðb; a; c; zÞ; therefore, 2F1ða;−n; c; zÞ is also a finite
polynomial of z.

APPENDIX B: QNM FREQUENCIES WITH THE
ROBIN BOUNDARY CONDITION

In this section, we numerically calculate QNM frequen-
cies with the Robin boundary condition due to the difficulty
of the analytical derivation of them.

1. μ2l2 > − 1 case

For μ2l2 > −1, the generic boundary condition at
infinity corresponds to choosing the values of AI and AII
in the asymptotic behavior in Eq. (2.12). When we solve the
linear differential equation, the only meaningful informa-
tion is the ratio of AI and AII. Thus, we choose the value of κ
such that AII=AI ¼ κðκ ∈ RÞ. This generic boundary con-
dition is called the Robin boundary condition. We note that
the Robin boundary condition includes the Dirichlet boun-
dary condition κ ¼ ∞, i.e., AI ¼ 0, and the Neumann
boundary condition κ ¼ 0, i.e., AII ¼ 0.11 In this section,
we investigate a typical mass squared case in the region of
−1 < μ2l2 < 0, where there are two normalizable modes.
An analysis of QNMs in this case is well motivated from
various contexts, e.g., [37–40].
The QNM frequencies are determined by AII=AI ¼ κ. It

is hard, in general, to obtain their analytic expressions
except for κ ¼ ∞; 0. We numerically solve the algebraic
equation AII=AI ¼ κ, where AI and AII are functions of ω
and are given by Eqs. (2.14) and (2.15), respectively.

Figure 2(a) presents the flow of the QNM frequencies of
the fundamental mode with m ¼ 1; μ2l2 ¼ −0.75; rH=l ¼
1 in the complex ω plane when we continuously increase
−κ in the range of −κ ∈ ½−1000; 3�. At the beginning
−κ ¼ −1000, the QNM frequencies are in good agreement
with the analytic expressions with the Dirichlet boundary
condition, i.e., Eq. (2.18). As − κ increases, jIm½ω�j
decreases, while jRe½ω�j increases up to −κ ≃ −2 and turn
to the decrease. At − κ ¼ 0, the QNM frequencies are in
good agreement with the analytic expressions with the
Neumann boundary condition, i.e., Eq. (2.20). As −κ
further increases, the trajectories approach the imaginary
axis with Im½ω� < 0, and intersect the imaginary axis at
−κ ¼ −κc ≃ 0.84. Finally, the trajectory splits into two on
the imaginary axis, one moving in the positive direction on
the axis and the other moving in the negative direction. The
dynamics is linearly stable for −κ ≤ −κc. We notice that
there is a special value −κ ¼ −κ0ð> −κcÞ such that ω ¼ 0
and below which exponentially growing modes exist. In
other words, for −κ > −κ0, the dynamics is linearly
unstable due to the boundary condition.12

Figure 2(b) shows the relation between the imaginary
part of the QNM frequencies of the fundamental mode and
κ. We set m ¼ 1; μ2l2 ¼ −0.75, and rH=l ¼ 1.4, 1.0, 0.7,
which are denoted by the green, blue, and red lines,
respectively. Each line bifurcates into two at κ ¼ κc. It
can also be seen that Im½ω� vanishes at −κ ¼ −κ0 ≃ 0.53,
0.84, 1.29 for rH=l ¼ 1.4, 1.0, 0.7, respectively, and
unstable modes exist for −κ > −κ0.

2. μ2l2 = − 1 case

In this case, the Robin boundary condition is
AII;BF=AI;BF ¼ 1=κBF (κBF ∈ R), where AI;BF and AII;BF

are given in Eq. (2.17). We numerically solve
AII;BF=AI;BF ¼ 1=κBF for ω. Figure 3(a) demonstrates the
flow of the QNM frequencies of the fundamental mode
with m ¼ 1; μ2l2 ¼ −1; rH=l ¼ 1 when we increases κBF
in the range of κBF ∈ ½−1000; 1�. At the beginning11TheDirichlet orNeumannboundary conditions require that the

leading term of ðr=rHÞ1−
ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
ϕ or ∂rððr=rHÞ1−

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
ϕÞ vani-

shes near r → ∞, respectively, while the Robin boundary condition
requires their linear combination vanishes [27]. The domi-

nant behaviors of ðr=rHÞ1−
ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
ϕ and ∂rððr=rHÞ1−

ffiffiffiffiffiffiffiffiffiffiffi
1þμ2l2

p
ϕÞ

are governed byAI andAII, respectively.Hence,AI ¼ 0 andAII ¼ 0
correspond to the Dirichlet boundary condition and the Neumann
boundary condition, respectively.

12This kind of instability has been investigated in [39] for the
rotating BTZ black hole case and in [40] for the Reissner-
Nordström-AdS-black hole case. We note that in pure AdS, there
is a condition κ ≥ κ0 for which no exponentially growing modes
appear [27,40]. In the BTZ spacetime, the critical value κ0 differs
from the pure AdS case.
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κ ¼ −1000, the QNM frequency is in good agreement with
the analytic expression (2.22). As κBF increases, the QNM
frequencies approach the imaginary axis with Im½ω� < 0,
and intersect the imaginary axis at κBF ¼ κBF;c ≃ −0.38.
Finally, the trajectory splits into two on the imaginary axis,
one and the other moving in the positive and negative
direction on the axis, respectively. The dynamics is stable
for κBF ≤ κBF;c. There exists a special value κBF ¼ κBF;0ð>
κBF;cÞ such that ω ¼ 0 and beyond which exponentially
growing modes exist.13

Figure 3(b) shows that the relation between the
imaginary part of the QNM frequencies of the funda-
mental mode and κBF. We set m ¼ 1; μ2l2 ¼ −0.75, and
rH=l ¼ 1.4, 1.0, 0.7 which are denoted by the green,
blue, and red lines, respectively. Each line bifurcates into
two at κBF ¼ κBF;c. It can also be seen that Im½ω�
vanishes at κBF;0 ≃ −0.92;−0.38, 0.84 for rH=l ¼ 1.4,
1.0, 0.7, respectively, and unstable modes exist
for κBF > κBF;0.

APPENDIX C: ASYMPTOTIC BEHAVIORS OF
D2;kΦ AND D3;kΦ

We discuss the asymptotic behaviors of D2;kΦ and
D3;kΦ near the horizon and infinity. As mentioned in
Sec. IV, because the mass ladder operators D2;k and D3;k

are not globally regular, D2;kΦ and D3;kΦ are also not
globally regular even if Φ is a globally regular solution.
This can be seen in the factor e�rHφ=l, i.e. the mapped
solutions are not globally smooth in φ direction, in the
following discussion. Thus, the mass ladder operators
D2;k� and D3;k� fail to generate a QNM from the QNM
solution Φ. However, as is stated in Sec. VI B, the
multiple actions with appropriate combinations of D2;k�
and D3;k� are regular operators and they can generate
a QNM.

1. At the horizon

We consider the asymptotic behavior of a mapped
solution near the horizon. Performing the mass ladder
operators D2;k� and D3;k� on the exact solution (4.1), the
asymptotic behaviors at r → rH are calculated to

D2;k�Φ ¼ −2−i
ωl2
2rHA

iωl2 þ k�rH − iml
rHl

�
r − rH
rH

�
−i l2

2rH
ω

× ½1þOðr − rHÞ�e−iωtþiðm−irHl Þφ;

D3;k�Φ ¼ 2
−iωl2

2rHA
iωl2 þ k�rH þ iml

rHl

�
r − rH
rH

�
−i l2

2rH
ω

× ½1þOðr − rHÞ�e−iωtþiðmþirHl Þφ: ðC1Þ

2. At infinity: Originally from the
QNM with the Dirichlet boundary condition

We perform the mass ladder operators on Φ, which
satisfies the Dirichlet boundary condition. Performing the
mass ladder operatorsD2;kþ andD3;kþ on the exact solution
(4.1) with the Dirichlet boundary condition, the asymptotic
behaviors at infinity are

FIG. 3. Left: flow of the QNM frequencies with respect to κBF
for m ¼ 1; μ2l2 ¼ −1; rH=l ¼ 1.0. The arrows denote the di-
rection to which κBF increases. The red points represent the QNM
frequencies for the Dirichlet-Neumann boundary condition case
in Eq. (2.22). Right: relation between the imaginary part of the
QNM frequencies and κBF for m ¼ 1; μ2l2 ¼ −1, and
rH=l ¼ 1.4, 1.0, 0.7, which are denoted by the green, blue,
and red lines, respectively.

FIG. 2. Left: flow of the QNM frequencies with respect to κ for
m ¼ 1; μ2l2 ¼ −0.75; rH=l ¼ 1.0. The arrows denote the direc-
tion to which −κ increases. The red and black points represent the
QNM frequencies for the Dirichlet condition case in Eq. (2.18)
and the Neumann condition case in Eq. (2.20), respectively.
Right: relation between the imaginary part of the QNM frequen-
cies and −κ for m ¼ 1; μ2l2 ¼ −0.75, and rH=l ¼ 1.4, 1.0, 0.7,
which are denoted by the green, blue, and red lines, respectively.

13In the pure AdS case, there is a condition κBF ≤ κBF;0 beyond
which exponentially growing modes appear [27].
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D2;kþΦ ¼ −
ðωl2 − rHð2þ νÞ − imlÞðωl2 þ rHð2þ νÞ þ imlÞ

2r2Hlð2þ νÞ AII

�
rH
r

�
3þν

× ½1þOð1=r2Þ�e−iωtþiðm−irHl Þφ;

D3;kþΦ ¼ −
ðωl2 þ irHð2þ νÞ þmlÞðωl2 − irHð2þ νÞ −mlÞ

2r2Hlð2þ νÞ AII

�
rH
r

�
3þν

× ½1þOð1=r2Þ�e−iωtþiðmþirHl Þφ: ðC2Þ

Performing the mass ladder operators D2;k− and D3;k− on
the exact solution (4.1) with the Dirichlet boundary con-
dition, the asymptotic behaviors at infinity are

D2;k−Φ ¼ −
2ð1þ νÞ

l
AII

�
rH
r

�
1þν

½1þOð1=r2Þ�

× e−iωtþiðm−irHl Þφ;

D3;k−Φ ¼ 2ð1þ νÞ
l

AII

�
rH
r

�
1þν

½1þOð1=r2Þ�

× e−iωtþiðmþirHl Þφ: ðC3Þ

3. At infinity: Originally from the QNM with the
Neumann boundary condition

We perform the mass ladder operators on Φ, which
satisfies the Neumann boundary condition. Performing the
mass ladder operatorsD2;kþ andD3;kþ on the exact solution
(4.1) with the Neumann boundary condition, the asymp-
totic behaviors at infinity are

D2;kþΦ ¼ 2ð1þ νÞ
l

AI

�
rH
r

�
−1−ν

½1þOð1=r2Þ�

× e−iωtþiðm−irHl Þφ;

D3;kþΦ ¼ −
2ð1þ νÞ

l
AI

�
rH
r

�
−1−ν

½1þOð1=r2Þ�

× e−iωtþiðmþirHl Þφ: ðC4Þ

Performing the mass ladder operators D2;k− and D3;k− on
the exact solution (4.1) with the Neumann boundary
condition, the asymptotic behaviors at infinity are

D2;k−Φ¼ðiωl2þrHν− imlÞðiωl2−rHνþ imlÞ
2r2Hlν

×AI

�
rH
r

�
1−ν

½1þOð1=r2Þ�e−iωtþiðm−irHl Þφ;

D3;k−Φ¼−
ðiωl2þrHνþ imlÞðiωl2−rHν− imlÞ

2r2Hlν

×AI

�
rH
r

�
1−ν

½1þOð1=r2Þ�e−iωtþiðmþirHl Þφ: ðC5Þ

APPENDIX D: MASS LADDER OPERATORS
ON THE QNMS WITH THE

ROBIN BOUNDARY CONDITION

Here, we perform the mass ladder operators Di;k� on the
QNM with the Robin boundary condition. The asymptotic
behaviors of the field with μ2l2 ¼ μðνþ 2Þ at infinity are

Φjðν>−1Þr≃∞ ¼ AI

��
rH
r

�
−ν
ð1þOð1=r2ÞÞ

þ κ

�
rH
r

�
2þν

ð1þOð1=r2ÞÞ
�
e−iωtþimφ; ðD1Þ

Φjðν¼−1Þ
r≃∞ ¼ AII;BF

��
rH
r

�
ln

�
rH
r

�
þ κBF

rH
r

þOð1=r3Þ
�
e−iωtþimφ: ðD2Þ

In the derivation of Eq. (D1), for simplicity, we have
assumed that ν is not an integer; thus, the expression of the
QNM has no logarithmic term.14

1. Asymptotic behaviors at infinity: ν > − 1 case

We perform the mass ladder operators on Φ, which
satisfies the Robin boundary condition. Performing the
mass ladder operatorsDi;kþ on the exact solution (4.1) with
the Robin boundary condition, the asymptotic behaviors at
infinity are

D0;kþΦ ¼ −
2ð1þ νÞ

l2
AI

��
rH
r

�
−1−ν

ð1þOð1=r2ÞÞ

−
ðð2þ νÞrH − iωl2Þ2 þm2l2

4r2Hð1þ νÞð2þ νÞ κ

�
rH
r

�
3þν

× ð1þOð1=r2ÞÞ
�
e−iðωþirH

l2
Þtþimφ;

D1;kþΦ ¼ 2ð1þ νÞ
l2

AI

��
rH
r

�
−1−ν

ð1þOð1=r2ÞÞ

−
ðð2þ νÞrH þ iωl2Þ2 þm2l2

4r2Hð1þ νÞð2þ νÞ κ

�
rH
r

�
3þν

× ð1þOð1=r2ÞÞ
�
e−iðω−i

rH
l2
Þtþimφ;

14If ν is an integer, in general, the expression of the QNM has
logarithmic terms. Then, the asymptotic behaviors include the
contribution of Ξ in Eq. (2.13).
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D2;kþΦ ¼ 2ð1þ νÞ
l

AI

��
rH
r

�
−1−ν

ð1þOð1=r2ÞÞ

−
ðð2þ νÞrH þ imlÞ2 þ ω2l4

4r2Hð1þ νÞð2þ νÞ κ

�
rH
r

�
3þν

× ð1þOð1=r2ÞÞ
�
e−iωtþiðm−irHl Þφ;

D3;kþΦ ¼ −
2ð1þ νÞ

l
AI

��
rH
r

�
−1−ν

ð1þOð1=r2ÞÞ

−
ðð2þ νÞrH − imlÞ2 þ ω2l4

4r2Hð1þ νÞð2þ νÞ κ

�
rH
r

�
3þν

× ð1þOð1=r2ÞÞ
�
e−iωtþiðmþirHl Þφ: ðD3Þ

Note thatD2;kþΦ andD3;kþΦ are not globally regular due to
the factor e�rHφ=l. It can be seen for D0;kþΦ and D1;kþΦ
that comparing with Eq. (D1), those are the asymptotic
forms of a solution with μ2l2 ¼ ðνþ 1Þðνþ 3Þ, which
satisfies the Robin boundary condition. We notice that
defining the Robin boundary condition parameter for the
mapped solutions, κ̃r, in the same manner as κ, that is
different from κ, i.e.,

κ → κ̃r ¼
8<
:
− ðð2þνÞrH−iωl2Þ2þm2l2

4r2Hð1þνÞð2þνÞ κ; for D0;kþ ;

− ðð2þνÞrHþiωl2Þ2þm2l2

4r2Hð1þνÞð2þνÞ κ; for D1;kþ :
ðD4Þ

Thus, for ν > −1, the mass ladder operators D0;kþ and
D1;kþ keep the Robin boundary condition but change the
Robin boundary condition parameter. In general, κ̃r is
complex even if the original κ is real. To our knowledge, the
physical interpretation of the solution of which the Robin
parameter is complex has not been known. As an interest-
ing case, when the original frequency ω is purely imagi-
nary, κ̃r is real. As can be seen in Fig. 2(a) in Appendix B,
the purely imaginary ω indeed exists.
Performing the mass ladder operators Di;k− on the exact

solution (4.1) with the Robin boundary condition, the
asymptotic behaviors at infinity are

D0;k−Φ¼ 2ð1þνÞ
l2

AI

�
κ

�
rH
r

�
1þν

ð1þOð1=r2ÞÞ

−
ðνrHþ iωl2Þ2þm2l2

4r2Hνðνþ1Þ
�
rH
r

�
1−ν

ð1þOð1=r2ÞÞ
�

×e−iðωþirH
l2
Þtþimφ;

D1;k−Φ¼−
2ð1þνÞ

l2
AI

�
κ

�
rH
r

�
1þν

ð1þOð1=r2ÞÞ

−
ðνrH − iωl2Þ2þm2l2

4r2Hνðνþ1Þ
�
rH
r

�
1−ν

ð1þOð1=r2ÞÞ
�

×e−iðω−i
rH
l2
Þtþimφ;

D2;k−Φ¼−
2ð1þ νÞ

l
AI

�
κ

�
rH
r

�
1þν

ð1þOð1=r2ÞÞ

þ ðνrH − imlÞ2þω2l4

4r2Hνðνþ 1Þ
�
rH
r

�
1−ν

ð1þOð1=r2ÞÞ
�

× e−iωtþiðm−irHl Þφ;

D3;k−Φ¼ 2ð1þ νÞ
l

AI

�
κ

�
rH
r

�
1þν

ð1þOð1=r2ÞÞ

þ ðνrH þ imlÞ2þω2l4

4r2Hνðνþ 1Þ
�
rH
r

�
1−ν

ð1þOð1=r2ÞÞ
�

× e−iωtþiðmþirHl Þφ: ðD5Þ

Note that D2;k−Φ and D3;k−Φ are not globally regular
due to the factor e�rHφ=l. It can be seen for D0;k−Φ and
D1;k−Φ that comparing with Eq. (D1), those are the asym-
ptotic forms of a solution with μ2l2 ¼ ðν − 1Þðνþ 1Þ,
which satisfies the Robin boundary condition. Defining
the Robin boundary condition parameter for the mapped
solutions, κ̃l, in the same manner as κ, that is different
from κ, i.e.,

κ → κ̃l ¼
8<
:
− ðνrHþiωl2Þ2þm2l2

4r2Hνðνþ1Þκ ; for D0;k− ;

− ðνrH−iωl2Þ2þm2l2

4r2Hνðνþ1Þκ ; for D1;k− :
ðD6Þ

Thus, for ν > −1, the mass ladder operatorsD0;k− andD1;k−
also keep the Robin boundary condition but change the
Robin boundary condition parameter. The resulting
parameter κ̃l is not necessarily real but is real at least
when the original frequency ω is purely imaginary [see
Fig. 2(a)].

2. Asymptotic behaviors at infinity: ν = − 1 case

We perform the mass ladder operators on Φ, which
satisfies the Robin boundary condition for ν ¼ −1.
Performing them on the exact solution (4.1) with the
Robin boundary condition, the asymptotic behaviors at
infinity are

D0;−1Φ ¼ AII;BF

l2
e−iðωþirH

l2
Þtþimφ

�
ð1þOð1=r2ÞÞ

−
ðirH þmlþ ωl2ÞðirH −mlþ ωl2Þ

2r2H

×
−1þ 2γ þ ψð1þ aÞ þ ψð1þ bÞ

2γ þ ψðaÞ þ ψðbÞ κBF

�
rH
r

�
2

× ðln rþOð1ÞÞ
�
;
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D1;−1Φ ¼ −
AII;BF

l2
e−iðω−i

rH
l2
Þtþimφ

�
ð1þOð1=r2ÞÞ

−
ðirH þml − ωl2ÞðirH −ml − ωl2Þ

2r2H

×
−1þ 2γ þ ψðaÞ þ ψðbÞ

2γ þ ψðaÞ þ ψðbÞ κBF

�
rH
r

�
2

× ðln rþOð1ÞÞ
�
;

D2;−1Φ ¼ −
AII;BF

l
e−iωtþiðm−irHl Þφ

�
ð1þOð1=r2ÞÞ

−
ðirH −mlþ ωl2ÞðirH −ml − ωl2Þ

2r2H

×
−1þ 2γ þ ψð1þ aÞ þ ψðbÞ

2γ þ ψðaÞ þ ψðbÞ κBF

�
rH
r

�
2

× ðln rþOð1ÞÞ
�
;

D3;−1Φ ¼ AII;BF

l
e−iωtþiðmþirHl Þφ

�
ð1þOð1=r2ÞÞ

−
ðirH þmlþ ωl2ÞðirH þml − ωl2Þ

2r2H

×
−1þ 2γ þ ψðaÞ þ ψð1þ bÞ

2γ þ ψðaÞ þ ψðbÞ κBF

�
rH
r

�
2

× ðln rþOð1ÞÞ
�
; ðD7Þ

where a, b, and c are given in Eq. (2.8) and μ2l2 ¼ −1.
Note that D2;−1Φ and D3;−1Φ are not globally regular due
to the factor e�rHφ=l. It can be seen for D0;−1Φ and D1;−1Φ
that comparing with Eq. (D1), those are the asymptotic
forms of a solution with ν ¼ 0, which satisfies the Robin
boundary condition. Defining the Robin boundary con-
dition parameter for the mapped solutions, κ̃, that is
different from κ, i.e.,15

κ̃ ¼
8<
:

− ðirHþmlþωl2ÞðirH−mlþωl2Þ
2r2H

−1þ2γþψð1þaÞþψð1þbÞ
2γþψðaÞþψðbÞ κBF; for D0;−1;

− ðirHþml−ωl2ÞðirH−ml−ωl2Þ
2r2H

−1þ2γþψðaÞþψðbÞ
2γþψðaÞþψðbÞ κBF; for D1;−1:

ðD8Þ

Thus, for ν ¼ −1, the mass ladder operators keep the Robin boundary condition but change the Robin boundary condition
parameter. As far as we numerically confirm, κ̃ in Eq. (D8) is real when ω is purely imaginary [see Fig. 3(a) for an
illustration of the existence of the purely imaginary ω].

APPENDIX E: COEFFICIENTS OF THE ASYMPTOTIC FORMS OF THE MAPPED SOLUTIONS

Here, we present the explicit forms of the coefficients of the asymptotic forms of the mapped solutions D0;k�Φ and
D1;k�Φ in Eqs. (4.6)–(4.11):

c0;k� ¼ 2
−1−i l2

2rH
ðωþirH

l2
Þ iA
rHl2ðωl2 þ irHÞ

× ½r2Hðk�ð2þ k�Þ − νð2þ νÞÞ þ ðωl2 þml − ik�rHÞðωl2 −ml − ik�rHÞ�;

c1;k� ¼ −21−i
l2
2rH

ðω−irH
l2
Þ iωA
rH

; ðE1Þ

cðDÞ0;kþ ¼ −
ðωl2 þmlþ ið2þ νÞrHÞðωl2 −mlþ ið2þ νÞrHÞ

2r2Hl
2ð2þ νÞ AII;

cðDÞ1;kþ ¼ ðωl2 þml − ið2þ νÞrHÞðωl2 −ml − ið2þ νÞrHÞ
2r2Hl

2ð2þ νÞ AII; ðE2Þ

cðDÞ0;k−
¼ 2ð1þ νÞ

l2
AII; cðDÞ1;k−

¼ −
2ð1þ νÞ

l2
AII; ðE3Þ

cðNÞ0;kþ ¼ −
2ð1þ νÞ

l2
AI; cðNÞ1;kþ ¼ 2ð1þ νÞ

l2
AI; ðE4Þ

15Note that κBF ¼ 0 does not lead to κ̃ ¼ 0, and instead, gives a finite value.
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cðNÞ0;k−
¼ ðωl2 þml − iνrHÞðωl2 −ml − iνrHÞ

2r2Hl
2ν

AI;

cðNÞ1;k−
¼ −

ðωl2 þmlþ iνrHÞðωl2 −mlþ iνrHÞ
2r2Hl

2ν
AI; ðE5Þ

cðDNÞ0;−1 ¼ −
ðωl2 þmlþ irHÞðωl2 −mlþ irHÞ

2r2Hl
2

−1þ 2γ þ ψð1þ aÞ þ ψð1þ bÞ
2γ þ ψðaÞ þ ψðbÞ AI;BF;

cðDNÞ1;−1 ¼ ðωl2 −ml − irHÞðωl2 þml − irHÞ
2r2Hl

2

−1þ 2γ þ ψðaÞ þ ψðbÞ
2γ þ ψðaÞ þ ψðbÞ AI;BF: ðE6Þ

Note that kþ ¼ −2 − ν and k− ¼ ν in Eq. (E1). We also note that the coefficients c0;kþ and cðDÞ0;kþ vanish for the fundamental

modes with the Dirichlet boundary condition; c0;k− and c
ðNÞ
0;k−

vanish for the fundamental modes with the Neumann boundary

condition; c0;−1 and cðDNÞ0;−1 vanish for the fundamental mode with the Dirichlet-Neumann boundary condition.
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