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We study the dynamics of a modified-gravity theory, which is supplemented by an extended Gibbons-
Hawking-York boundary term and incorporates diffeomorphism violation through nondynamical back-
ground fields denoted as u and sμν in the literature. An ADM decomposition allows us to project the
modified Einstein equations into purely spacelike hypersurfaces, which implies the field equations for the
induced dynamical three-metric. We also obtain the Hamilton-Jacobi equations of motion for the canonical
variables of the theory based on its Hamiltonian, which was derived in a previous work. The computations
show that the dynamical field equations obtained from the Lagrangian and Hamiltonian approaches are
consistent with each other. Connections to Brans-Dicke theory and ghost-free massive gravity are
established.
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I. INTRODUCTION

The phenomena of perihelion advance of Mercury [1],
light deflection [2], and gravitational redshift [3] compose
the three classical tests of General Relativity (GR) and
successfully confirm the latter as the correct gravity theory.
Further significant validations of GR are the detection of
the geodetic and frame-dragging effects by Gravity Probe B
[4], the first direct observation of gravitational waves by
LIGO [5], and the images of the accretion disks of the
supermassive central black holes in the elliptic galaxy
M87 and our Milky Way, respectively, which were recently
taken by the Event Horizon Telescope [6,7]. Apart from
linearized GR exhibiting a propagating massless spin-2
excitation, diffeomorphism invariance is at the heart of
Einstein’s theory. This symmetry encodes the profound
property of GR being invariant under nonlinear, differ-
entiable maps from a spacetime manifold onto itself. The
field equations of GR are also covariant under general
coordinate transformations, but the latter only operate on
the atlas of a manifold as opposed to points, sets, and curves
on the manifold proper. The geometry of a curved space-
time manifold is locally equivalent to the pseudo-Euclidean
geometry of Minkowski spacetime, whose symmetry group

is the Poincaré group. Our focus is on diffeomorphisms
instead of the local symmetry structure of GR.
Any departure from diffeomorphism invariance in a

modified-gravity theory is expected to have significant
theoretical and observational implications. In particular, the
constraint algebra [8] and Dirac observables [9] of GR are
likely to be modified. The exact physical consequences of
such deviations are challenging to identify and extremely
difficult to measure directly, as manipulations of the
spacetime manifold are beyond the capabilities of presently
conceivable experiments. However, parametrizing explicit
diffeomorphism violation via nondynamical background
fields, which have nonstandard transformation properties,
can provide a window into probing associated phenomena.
In principle, diffeomorphism violation is as old as GR

itself. While his theory was still in the making, Einstein
required that the determinant of the spacetime metric
correspond to unity, which led to vast simplifications of
his field equations [10]. This condition is also incorporated
in unimodular gravity [11–13], which is not invariant under
the full diffeomorphism group of GR, but only under
volume-preserving diffeomorphisms. Unimodular gravity
corresponds to GR with an arbitrary cosmological constant,
although the latter arises as an integration constant instead
of a parameter introduced at the level of the action [14,15].
Despite the beauty of Einstein’s gravity theory and

its astounding achievements, alterations are expected
when the latter is to be reconciled with quantum theory.
Modifications of the gravitational laws of physics have
been found to occur naturally at the Planck scale,
where quantum effects are expected to become dominant.
Such settings are provided by string theory, branes, and
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supergravity. For example, diffeomorphism violation in
gravity can arise from a spontaneous breaking of Lorentz
invariance in particular string field theories [16]. The
potential mechanism gives rise to problems related to
compactified dimensions in the context of inflation, sug-
gesting the generation of mass terms for some metric
components [17,18]. Recently, other diffeomorphism-
violating gravity models were shown to involve such mass
terms [19,20].
Generically, both spontaneous and explicit diffeomor-

phism symmetry breaking are parametrized within the
comprehensive effective-field theory framework known
as the gravitational Standard-Model Extension (SME)
[21,22]. Searches for diffeomorphism violation—let it be
spontaneous or explicit—can constrain SME coefficients.
The direct detection of gravitational waves by LIGO [5]
ushered in the new era of gravitational-wave astronomy.
The latter constitutes one method to probe deviations from
GR, which has gained vast prominence and has been
providing an ever increasing number of constraints on
SME coefficients and parameters in modified-gravity
theories [23–30]. The absence of energy losses of particles
by gravitational Cherenkov radiation [31,32] provides an
alternative possibility of bounding SME coefficients. Some
experimental constraints on background field coefficients
such as those obtained in, e.g., Refs. [33,34] are interpreted
as bounds on explicit diffeomorphism violation. The data
tables [35] can be consulted as an extensive compilation of
such constraints.
Diffeomorphism invariance is also violated explicitly in

particular models of massive gravity. An extension of GR
implementing the propagation of a massive spin-2 excita-
tion is known as massive gravity and its construction has
received significant attention during the past years. The
action initially introduced by Fierz and Pauli [36] is ghost-
free at the linearized level, but does not agree with GR in
the massless limit. The Vainshtein mechanism [37] solves
this problem by taking into account nonlinear effects.
Unfortunately, with that settled, another severe issue was
revealed by Boulware and Deser; the occurrence of a ghost
mode at the nonlinear level at an unacceptably small
scale [38].
In 2011, the construction of de Rham, Gabadadze,

and Tolley (dRGT) [39] led to a breakthrough, since
it avoids the Boulware-Deser (BD) ghost in the decoupling
limit to all orders. This realm of research has uncovered
many interesting aspects such as its interplay with the
physics of diffeomorphism violation [40–42], extra
dimensions [43,44], the Stückelberg trick [45–48], linear-
ized [36,49] vs. nonlinear massive gravity [37–39,50–53],
the helicity decomposition of the metric perturbation [54],
and the Ostrogradsky formalism as well as ghost states
[38,55,56]. Note that dRGT theory has even been incorpo-
rated into other modified-gravity theories such as fðRÞ
gravity [57]. It is worthwhile to consult the valuable review
[58] for this research area.

The motivations for constructing gravity theories beyond
GR are multifold. Low-energy extensions of Einstein’s
gravity are basically motivated by cosmological observa-
tions. Understanding the late-time acceleration of the
Universe and inflation as well as the search for Dark
Matter has inspired various modifications of GR [59–67].
Some alternatives such as Brans-Dicke theory [68] intend
to incorporate Mach’s principle into the description of
gravity. The latter was one of Einstein’s motivations for
developing his GR, but it seems that he abandoned this goal
later on. Hořava-Lifshitz gravity [69,70] is formulated
to improve the UV behavior of the graviton propagator,
while the theory approaches Einstein’s gravity in the IR
regime. Another interesting model is cardinal gravity
[71,72] that interprets long-range gravitational forces as
propagating Nambu-Goldstone modes arising from sponta-
neous symmetry breaking.
In general, some extensions of GR introduce operators

with higher-order derivatives [73–75], others involve func-
tions of the Ricci curvature scalar [59–65] or additional
vector and tensor fields coupling to spacetime curvature
[76–86]. Stating an exhaustive list of references on exten-
sions or modifications of Einstein’s relativity lies beyond
our scope. References [87–89] provide elaborate reviews
on modified-gravity theories and experimental tests where
Ref. [89] focuses on the SME, in particular.
In light of the previously mentioned lines of research,

many modified-gravity theories exhibit diffeomorphism
violation. While spontaneous symmetry violation such as
in Refs. [76–86] is known to be benign [90], the question
may arise whether or not explicit diffeomorphism violation
implies internal inconsistencies and under which circum-
stances. This paper intends to answer that question for a
particular class of modified-gravity theories. Its action
involves coordinate scalars beyond GR being noninvariant
under diffeomorphisms. Symmetry violation is parame-
trized by a nondynamical scalar background field denoted
as u and a tensor-valued one called sμν, respectively. The
latter settings and extensions thereof are part of the
gravitational SME [21,22] mentioned before and have
been subject to phenomenological [91–95] as well as
theoretical studies [96]. As these alterations of GR are
quite generic, relationships to specific modified-gravity
theories in the literature are expected. In particular, we will
refer to Brans-Dicke theory and dRGT massive gravity.
In the recent work [97], the formalism developed by

Arnowitt, Deser, and Misner (ADM) [98–105] was applied
to the class of modified-gravity theories characterized by u
and sμν. The calculations showed that the background fields
imply an altered constraint structure in the Hamiltonian
formulation. Incorporating an extension of the Gibbons-
Hawking-York (GHY) boundary term [106,107] to elimi-
nate additional second-order time derivatives of the metric,
which occur in the Lagrangian and couple to the back-
ground fields, was an essential ingredient for constructing
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the Hamiltonian. Our objective in the present article is to
understand the dynamics of this theory better. We will be
working both within the covariant and the Hamiltonian
formulation. We also note in passing that the authors of
Ref. [108] investigate a similar, though not equivalent,
theory. Their interest and approach differ from ours in
certain aspects.
Our paper is organized as follows. In Sec. II we

recapitulate the modified-gravity theory that forms the
foundation of Ref. [97] and define the basic variables
employed in the ADM decomposition. Furthermore, we
emphasize correspondences between the latter setting and
Brans-Dicke theory and dRGT massive gravity. In Sec. III,
the canonical-momentum variables and the Hamiltonians
are compiled from Ref. [97]. Our new investigations start in
Sec. IV where the modified Einstein equations are pro-
jected into purely spacelike hypersurfaces of the spacetime
foliation. Section V is dedicated to the Hamilton-Jacobi
equations of motion. Our essential finding here is that the
latter correspond to the projected field equations in the
covariant formulation. In Sec. VI we continue by studying
projections of the modified Einstein equations into sub-
spaces that are partially or completely orthogonal to
spacelike hypersurfaces. These projections are demon-
strated to be linked to appropriate functional derivatives
of the Hamiltonians. Finally, via Sec. VII we would like to
motivate further SME-related studies along the same line
by demonstrating which SME background fields play a role
in linearized dRGT theory and Hořava-Lifshitz gravity. Our
findings are concluded on in Sec. VIII. We employ natural
units with c ¼ 1 unless otherwise stated. Our metric
signature is ð−;þ;þ;þÞ. Greek indices are spacetime
indices, whereas Latin indices describe quantities living
in purely spacelike hypersurfaces of the ADM decompo-
sition. The Mathematica package xTensor [109] provides
computational support.

II. MODIFIED GRAVITY WITH BACKGROUND
FIELDS

We focus on the following modified Einstein-Hilbert
(EH) action [21,22] without a cosmological constant,

S ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

½ð1 − uÞð4ÞRþ sμνð4ÞRμν�; ð1Þ

with κ ¼ 8πGN , the Ricci tensor ð4ÞRμν and the associated
Ricci scalar ð4ÞR ≔ ð4ÞRμ

μ of the four-dimensional space-
time manifold M with metric tensor gμν and g ≔ detðgμνÞ.
Furthermore, u ¼ uðxÞ and sμν ¼ sμνðxÞ are nondynamical
background fields having a generic spacetime dependence.
The latter are considered to have zero fluctuations: δu ¼ 0
and δsμν ¼ 0. All fields are defined in the tangent bundle of
M. The modified Einstein equations for Eq. (1) were first
obtained in Ref. [91] and can be read from Eqs. (6) and (7)
of the latter reference,

0 ¼ ð1 − uÞð4ÞGμν þ 1

2
ð∇μ∇νuþ∇ν∇μuÞ − gμν□u

−
1

2
ðsαβð4ÞRαβgμν þ∇α∇μsαν þ∇α∇νsαμ

−□sμν − gμν∇α∇βsαβÞ; ð2Þ

where ð4ÞGμν is the Einstein tensor. Furthermore, ∇μ is the
covariant derivative on the spacetime manifold M and
□ ≔ ∇μ∇μ the d’Alembertian. The Bianchi identities of
Riemannian geometry imply nontrivial restrictions on the
form of the background fields u and sμν, which is a well-
known feature of this theory that has been indicated in a
series of papers such as Refs. [21,22,90], amongst others.
We intend to study the consequences of these restrictions in
a future paper, but our current focus is on the purely
dynamical aspects of Eq. (1).
We use the ADM formalism expressed in terms of the

configuration space variables X ≔ fN;Ni; qijg. Here, N is
the lapse function, Ni are the components of the shift
vector, and qij are the components of the induced metric on
a spacelike hypersurface Σt [98–105]. It then holds thatffiffiffiffiffiffi−gp ¼ N

ffiffiffi
q

p
with q ≔ detðqijÞ and

g00¼−N2þqijNiNj; g0i¼Ni; gij¼ qij: ð3Þ

Furthermore, the components of the contravariant metric
amount to

g00 ¼ −
1

N2
; g0i ¼ Ni

N2
; gij ¼ qij −

NiNj

N2
: ð4Þ

Since we will have to study projections of the modified
Einstein equations into Σt, recall also the following
decomposition formula for the Ricci tensor and scalar
curvature that arise from the Gauss-Codazzi equation,

qiαqjβð4ÞRαβ ¼Rijþ 1

N
qiaqjbLmKab−

1

N
DiDjN

þKKij−2KikKk
j

¼ 1

N
qiaqjbLmKab− ðDiajþaiajÞ

þRijþKKij−2KikKk
j; ð5aÞ

ð4ÞR¼RþK2þKijKij−
2

N
DiDiNþ 2

N
LmK; ð5bÞ

in terms of the extrinsic curvature Kab ≔ Danb with
nμ ¼ ð−N; 0; 0; 0Þ, the Ricci tensor Rij, and the Ricci
scalar R in a spacelike hypersurface Σt. Furthermore,
Lm denotes the Lie derivative [110] along the four-vector
mμ ≔ Nnμ with nμ ¼ ð1=N;−Ni=NÞ and ai ≔ Di lnðNÞ is
known as the acceleration. Here, Di is the covariant
derivative in Σt, which is compatible with the induced
metric qij.
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The background field sμν is tensor-valued and decom-
poses into three distinct sectors according to the foliation of
the spacetime manifold in terms of the hypersurfaces Σt.
The following identity is valuable for performing this
decomposition,

sαβ ¼ qαμqβνsμν − ðqανnβ þ qβνnαÞsνn þ nαnβsnn; ð6Þ

where qμν projects a tensor or a part of it into Σt. Here we
define sij ≔ qiμqjνsμν as the purely spacelike sector of sμν

that lives in Σt entirely. Furthermore, let sin ≔ qiμnνsμν be
the vector-valued piece and snn ≔ nμnνsμν the scalar part.
Now, the total ADM-decomposed action based on

Eq. (1) reads [97]

S ¼
Z
M

dtd3xLADM; ð7aÞ

LADM ¼ Lð0Þ þ LðuÞ þ
X

i¼1;2;3

LðsÞ
i ; ð7bÞ

where Lð0Þ is the ADM-decomposed EH Lagrange density,

Lð0Þ ¼ N
ffiffiffi
q

p
2κ

�
2

N
LmK −

2

N
DiDiN þ Rþ K2 þ KijKij

�
;

ð7cÞ

and the modifications are

LðuÞ ¼ N
ffiffiffi
q

p
2κ

�
−uðR − K2 þ KijKijÞ

þ 2

N
ðKLmuþ uDiDiNÞ

�
; ð7dÞ

LðsÞ
1 ¼ N

ffiffiffi
q

p
2κ

�
−
1

N
ðKijLmsij þ sijDiDjNÞ

þ sijðRij − 2Ki
lKljÞ

�
; ð7eÞ

LðsÞ
2 ¼N

ffiffiffi
q

p
2κ

�
snn

�
1

N
DiDiN−KijKijþK2

�
þ 1

N
KLmsnn

�
;

ð7fÞ

LðsÞ
3 ¼ N

ffiffiffi
q

p
2κ

½2sinðDi K −DlKl
iÞ�: ð7gÞ

By defining new shift vector components as Ñi ≔
Ni − Nsin, the Lagrange density LðsÞ

3 , which involves the
vector-valued coefficients sin only, can be reproduced at
first order in sin from the ADM decomposition of the EH
Lagrange density. This property is a strong argument for sin

corresponding to mere gauge degrees of freedom [97].
Thus, they will be completely discarded in the remainder of

the paper. Then, we also take into account an extended
GHY boundary term [97] of the form

S ext
GHY

¼ ε

2κ

I
∂M

d3y
ffiffiffi
q

p ½2ð1 − uÞK − snnK þ Kijsij�; ð8Þ

where the parameter ε ¼∓ 1 for a spacelike (timelike)
boundary ∂M of the spacetime manifold M and the
integral runs over the coordinates ya defined on this
boundary. Last but not least, we introduce a second
boundary term for u and snn that is of plainly different
nature compared to that of Eq. (8),

S∂Σ ¼ −
1

2κ

I
∂Σt

d2z
ffiffiffi
q

p
rl½NDlð2uþ snnÞ�; ð9Þ

with the coordinates za given on the boundary of a
spacelike hypersurface Σt and a suitably normalized vector
rl orthogonal to the boundary. In earnest, such boundary
terms can emerge when integrations by parts are performed
over Σt while computing the Hamiltonian from the corre-
sponding Lagrangian via a Legendre transformation [97].
The purpose of these boundary contributions will become
clear later on.
Any modified-gravity theory that is formulated at the

level of an action is expected to have a corresponding
background field in the comprehensive parametrization of
the gravitational SME recently developed in Ref. [22].
However, it may be challenging to establish such a
correspondence for a specific model under consideration.
In the following, a number of popular examples are
provided, which shall serve as a motivation for developing
a better understanding of nondynamical background fields
in the gravitational SME.

A. Nondynamical part of Brans-Dicke and f ðRÞ theories
An early motivation for modifying Einstein’s GR was to

incorporate Mach’s principle. One among many possibil-
ities of formulating the latter is via a gravitational “con-
stant” that is promoted to a dynamical field with an explicit
dependence on the spacetime coordinates [111]. In the
formulation by Brans and Dicke [68] the inverse of the
gravitational constant is replaced by a scalar field ϕ,
whereupon the modified field equations are based on the
variation of a modified action as follows:

0 ¼ δ

Z
M

d4x
ffiffiffiffiffiffi
−g

p �
ϕRþ 16πLm − ω

ð∇ϕÞ2
ϕ

�
: ð10Þ

Here, ω is a dimensionless free parameter and Lm contains
the matter fields. The action can then be cast into the form

SBD ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
GN

2κ
ϕRþ Lm −

ωGN

2κ

ð∇ϕÞ2
ϕ

�
; ð11Þ

CARLOS M. REYES and MARCO SCHRECK PHYS. REV. D 106, 044050 (2022)

044050-4



where ½GN � ¼ ½κ� ¼ −2 and ½ϕ� ¼ ½R� ¼ 2. We identify

GNϕ ¼ 1 − u; ð12Þ

with the scalar background field u in LðuÞ of Eq. (7d). The
action of Brans-Dicke theory decomposes into three parts.
The first couples the scalar field to spacetime curvature.
The second contribution describes matter and the third term
gives rise to the dynamics of the theory. The latter is
governed by the free parameter ω. A reformulation of the
dynamical term in Eq. (11) amounts to

SBD ⊃
Z
M

d4x
ffiffiffiffiffiffi
−g

p �
−
ωGN

2κ

ð∇ϕÞ2
ϕ

�

¼ −
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

ω
ð∇uÞ2
1 − u

: ð13Þ

The dynamical part can be switched off by setting ω ↦ 0,
which renders the first term in Eq. (11) nondynamical.
Now, the modified field equations [68] following from
Eq. (11) read

GNϕGμν¼ 8πGNTμνþ
ω

GNϕ

�
∇μðGNϕÞ∇νðGNϕÞ

−
1

2
gμνð∇GNϕÞ2

�
þ∇μ∇νGNϕ−gμν□GNϕ;

ð14Þ

and expressing ϕ in terms of u according to Eq. (12)
implies

ð1 − uÞGμν ¼ 8πGNTμν þ
ω

1 − u

�
∇μu∇νu −

1

2
gμνð∇uÞ2

�

−∇μ∇νuþ gμν□u: ð15Þ

Dropping the energy-momentum tensor as well as the
dynamical contributions in the limit ω ↦ 0 leads to the
modified Einstein equations for the u term. They are
deduced from Eq. (2) by setting sμν ¼ 0 and will be
recalled in Eq. (24) to come. Thus, Brans-Dicke theory
without the dynamical term can be identified with the
nondynamical u sector of the gravitational SME. To the
best of our knowledge, this correspondence has not been
stated in the literature, so far.
Another observation is that the Lagrange density LðuÞ of

Eq. (7d) corresponds, in principle, to a particular fðRÞ
theory. The identification requires that a nondynamical
background field be incorporated from the beginning such
that fðRÞ ¼ ð1 − uÞR. It is not difficult to check that the
field equations quoted in Eq. (24) are equivalent to
Eqs. (1.1), (A4) of Ref. [59] with the energy-momentum
tensor Tμν ¼ 0.

B. dRGT massive gravity

As GR, massive-gravity theories constructed before the
seminal work [39] did not involve canonical momenta
associated with the lapse function and the shift vector,
which gave rise to four primary first-class constraints.
Thus, counting the number of physical degrees of freedom
[112] amounts to six, which is one more than expected for a
massive graviton. The additional degree of freedom cor-
responds to the BD ghost mode propagating at energy
scales proportional to the minuscule graviton mass, which
is unacceptable. dRGT theory emerged in an attempt to
conceive a massive-gravity theory that is devoid of the
BD ghost. To do so, the EH term is supplemented by a
particular potential of the graviton that has a highly peculiar
form. The theory is constructed in a manner to provide
another primary and an additional secondary constraint
[55] on the three-metric components. Thereupon, a count-
ing of the physical degrees of freedom indicates that the
ghost mode is eliminated.
The potential of dRGT theory involves traces of coor-

dinate two-tensors Xμ
ν ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαfαν

p
expressed in terms of

the dynamical spacetime metric gμν and a nondynamical
reference metric, which is frequently denoted as fμν [58].
At the level of the pure-gravity action of dRGT theory
it is challenging to identify the nondynamical background
fμν or contractions thereof with SME coefficients. After all,
the potential is not a simple sum of contributions involving
fμν contracted with dynamical fields or curvature compo-
nents in a linear fashion. The two-tensor Xμ

ν cannot be
evaluated generically, but must be computed based on
particular choices of the dynamical metric and the back-
ground field.
Finding an appropriate map in the matter sector is plainly

simpler. Coupling a particular set of matter fields to the
gravity sector via both metrics gμν and fμν was demon-
strated to reintroduce the BD ghost [113]. A reemergence
of the ghost can only be avoided by coupling in a more
sophisticated way via an effective metric given by

gðeffÞμν ¼ α2gμν þ 2αβgμαXα
ν þ β2fμν; ð16Þ

with arbitrary dimensionless parameters α, β that may be
tuned to either couple with the dynamical metric or the
reference metric or both. Now, a background vierbein v̄μa is
introduced such that fμν ¼ v̄μav̄νbηab with the Minkowski
metric ηab in a local inertial frame. If the dynamical
vierbein eμa and the background vierbein satisfy
eμav̄μb ¼ eμbv̄μa, it holds that Xμ

ν ¼ eμav̄νa ≕ γμν [114].
In the context of the gravitational SME, a redefinition of the
(inverse) metric according to gμν ≃ ð1þ uÞg̃μν þ sμν with a
new metric g̃μν can be carried out to remove u and sμν from
the pure-gravity sector. Expressing the former metric gμν in
terms of the new metric g̃μν in the matter sector, introduces
appropriate SME coefficients in the matter sector.
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By taking sμν as traceless, for the effective metric of
Eq. (16) it is possible to identify [115]

u ¼ −
1

2
βγσσ; sμν ¼ −2β

�
γμν −

1

4
γσσgμν

�
: ð17Þ

Thus, the theory of Eq. (7) has a direct link to matter-
gravity couplings in dRGT massive gravity.

III. CANONICAL MOMENTA
AND HAMILTONIANS

We are now interested in understanding the dynamics of
the modified-gravity theory based on Eq. (1). Both the
dynamical equations of motion and the constraints are
encoded in the modified Einstein equations. In principle,
each constraint arises from Eq. (2) by performing suitable
normal and tangential projections with respect to the
hypersurfaces Σt defined in the ADM formalism. A wise
approach is to explore the scalar u as well as the scalar and
purely spacelike sectors of sμν separately.
Let us exemplify the u sector. We now consider the set of

momenta Π ≔ fπN; πi; πijg associated with the canonical
variables. They are defined as

πN ≔
∂ðLð0Þ þ LðuÞÞ

∂ _N
; ð18aÞ

πi ≔
∂ðLð0Þ þ LðuÞÞ

∂ _Ni ; ð18bÞ

πij ≔
∂ðLð0Þ þ LðuÞÞ

∂ _qij
; ð18cÞ

where a dot stands for the time derivative. Since the
Lagrangian of Eq. (7) does not involve velocities of the
gauge variables, _N and _Ni, the canonical momentum
conjugates to the lapse function and the shift vector,
respectively, are found to be weakly equal to zero,

πN ≈ 0; πi ≈ 0: ð19Þ

Furthermore, we impose the following fundamental equal-
time Poisson brackets between the canonically conjugate
variables (see Ref. [116]),

fNðxÞ; πNðx0Þg ¼ δð3Þðx − x0Þ; ð20aÞ

fNjðxÞ; πiðx0Þg ¼ δi
jδð3Þðx − x0Þ; ð20bÞ

fqklðxÞ; πijðx0Þg ¼ ðδikδjl − δilδ
j
kÞδð3Þðx − x0Þ; ð20cÞ

where the Poisson bracket is defined as

fQðxÞ; Pðx0Þg ≔
Z
Σt

d3x̃

�
δQðxÞ
δXiðx̃; tÞ

δPðx0Þ
δΠiðx̃; tÞ

−
δQðxÞ
δΠiðx̃; tÞ

δPðx0Þ
δXiðx̃; tÞ

�
; ð21Þ

with the functional derivatives δ=δXi, δ=δΠi for the
canonical variables and momenta, respectively. In an analo-
gous manner, we introduce sets of momenta fpN; pi; pijg
and fPN; Pi; Pijg associated with the snn and sij sector,
respectively.
The canonical Hamiltonian that results from the

Legendre transformation of the Lagrange density given
in Eq. (7) was obtained in Ref. [97]. The canonical
momenta for each of these sectors then follow from
Eqs. (7c)–(7f),

πij ≔
∂ðLð0Þ þ LðuÞÞ

∂ _qij

¼
ffiffiffi
q

p
2κ

�
ð1 − uÞðKij − qijKÞ þ 1

N
qijLmu

�
; ð22aÞ

pij ≔
∂ðLð0Þ þ LðsÞ

1 Þ
∂ _qij

¼
ffiffiffi
q

p
2κ

�
ð1 − snnÞðKij − qijKÞ þ 1

2N
qijLmsnn

�
; ð22bÞ

Pij≔
∂ðLð0ÞþLðsÞ

2 Þ
∂ _qij

¼
ffiffiffi
q

p
2κ

�
Kij−qijK−ðsilKl

jþsjlKl
iÞ− 1

2N
Lmsij

�
: ð22cÞ

For the u, snn, and sij sector each, the canonical
Hamiltonians have the form

Hu¼
Z
Σt

d3x

�
−

ffiffiffi
q

p
2κ

Nðð1−uÞRþ2DiDiuÞþ
Lmu
1−u

�
π−

3

4

ffiffiffi
q

p
κN

Lmu

�
þ 2κNffiffiffi

q
p ð1−uÞ

�
πijπij−

π2

2

�
−2ðDiπ

ijÞNj

�
; ð23aÞ

H1¼
Z
Σt

d3x

�
−

ffiffiffi
q

p
2κ

NðRþDiDisnnÞþ
Lmsnn

2ð1−snnÞ
�
p−

3

8

ffiffiffi
q

p
κN

Lmsnn
�
þ 2κNffiffiffi

q
p ð1−snnÞ

�
pijpij−

p2

2

�
−2ðDipijÞNj

�
; ð23bÞ
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H2¼
Z
Σt

d3x

�
−

ffiffiffi
q

p
2κ

NðRþ sijRij−DjDisijÞþ
�
Pij−

P
2
qij

�
Lmsijþ

2κNffiffiffi
q

p
�
PijPij− ð1− siiÞ

P2

2
−2sijðPijP−Pi

kPkjÞ
�

−2ðDiPijÞNj

�
þO½ðsijÞ2�: ð23cÞ

Note that H2 is valid at first order in the coefficients sij and
derivatives of the latter. Since sij parametrize a modifica-
tion of GR, the coefficients are expected to be ≪ 1—at
least in regions with weak gravitational fields. Furthermore,
we assume that these coefficients also vary slowly in
spacetime and do not exhibit strong fluctuations, which
are reasonable assumptions in the classical regime. Study-
ing contributions to H2 that are of higher order in sij and
derivatives thereof may be worthwhile, but it is very
reasonable to understand the properties of this modification
at leading order first.

IV. FIELD EQUATIONS IN THE HYPERSURFACE

Coordinate invariance allows us to work in coordinates
with a nontrivial lapse function, N ¼ Nðt;xÞ, and a zero
shift vector, Ni ¼ 0, without a loss of generality. In the
following, we will focus on the u sector first and set
sμν ¼ 0. Later on, we will be studying the complementary
sμν sector with u ¼ 0. Now, the modified Einstein equa-
tions for a nonzero u read [91]

Qμν ≔ ð1 − uÞð4ÞGμν þ∇μ∇νu − gμν□u ¼ 0: ð24Þ

Their projection into the hypersurface Σt is obtained from

ð1 − uÞqiμqjνð4ÞGμν þ qiμqjν∇μ∇νu − qij□u ¼ 0: ð25Þ

Carrying out the projection of the part proportional to the
Einstein tensor is straightforward and the result is readily
found to be

qiμqjνð4ÞGμν ¼Rij−
R
2
qijþqiaqjb

1

N
LmKab

−
1

N
DiDjNþKKij−2KikKk

j

−
1

2
qij

�
K2þKklKklþ 2

N
LmK−

2

N
DlDlN

�
:

ð26Þ

The covariant-derivative pieces are projected in the follow-
ing way. Consider

qiμqjν∇μ∇νu ¼ DiDju −
1

N
KijLmu; ð27Þ

as well as

□u¼D2u−
1

N

�
KLmuþLm

�
1

N
Lmu

��
þaμ∇μu: ð28Þ

We then intend to express the projected field equations in
terms of the canonical momentum density πij that is given
by Eq. (22a). Inverting the latter for the extrinsic-curvature
tensor Kij gives

Kij ¼ 1

1 − u

�
2κffiffiffi
q

p
�
πij −

π

2
qij

�
þ qij

2N
Lmu

�
: ð29Þ

Taking into consideration the previous ingredients, the left-
hand side of the modified Einstein equations completely
projected into Σt reads

ðq⃗�QÞij¼ 2κ

N
ffiffiffi
q

p _πijþð1−uÞ
�
Rij−

R
2
qij

�

þ 1

N
ðqijDkDk½ð1−uÞN�−DiDj½ð1−uÞN�Þ

þqijakDku− ðaiDjuþajDiuÞ

þ 4κ2

qð1−uÞ
�
2πikπk

j−ππij−
1

2

�
πklπ

kl−
π2

2

�
qij

�

þ Lmu
Nð1−uÞ

�
2κffiffiffi
q

p πij−
3

4N
qijLmu

�
; ð30aÞ

with the time derivative of the canonical momentum stated
in Eq. (22a),

_πij ¼
ffiffiffi
q

p
2κ

�
Nð1 − uÞKð3Kij − qijKÞ

þ ð1 − uÞðLmKij − qijLmKÞ

þ ð2qijK − 3KijÞLmuþ qijLm

�
1

N
Lmu

��
: ð30bÞ

Here, we took over the convenient notation from Refs.
[103,105] describing the projection of a generic spacetime
tensor into Σt,

ðq⃗�TÞα1…αs
β1…βt

≔ qα1 γ1…qαs γsq
δ1
β1…qδtβtT

γ1…γs
δ1…δt :

ð31Þ

The next step is to consider the modified Einstein equations
for the sμν coefficients [91],
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Jμν ≔ ð4ÞGμν −
1

2
sαβRαβgμν −

1

2
∇α∇μsαν

−
1

2
∇α∇νsαμ þ 1

2
□sμν þ 1

2
gμν∇α∇βsαβ ¼ 0: ð32Þ

The projection of the Einstein tensor is quickly obtained
from Eq. (26). As we remarked before, we distinguish

between the different sectors of sμν mentioned below
Eq. (6). Recall that the coefficients sin are pure gauge
degrees of freedom, which is why they were discarded
right from the start. To compute the projection of
Eq. (32) for the purely timelike sector composed of the
single scalar coefficient snn, the following results are
indispensable,

qijsnnRnn ¼ qijsnn
�
−
1

N
LmK þDlal þ alal − KklKkl

�
; ð33aÞ

qiμqjν∇α∇μðsnnnαnνÞ ¼ ðDisnnÞaj − snnaiaj þ snnðKKij − KkiKj
kÞ þ

1

N
ðLmsnnÞKij þ snn

N
qikqjlLmKkl; ð33bÞ

qiαqjβ□ðsnnnμnνÞ ¼ 2snnðKikKj
k − aiajÞ; ð33cÞ

qiμqjνðgμν∇α∇βsαβÞ ¼ qij
�
1

N
Lm

�
1

N
Lmsnn

�
þ akDksnn þ

2

N
ðLmsnnÞKþsnn

�
1

N
LmK þ K2

�
þ snnðDlal þ alalÞ

�
:

ð33dÞ

Here, the extrinsic curvature expressed in terms of the canonical momentum reads

Kij ¼ 1

1 − snn

�
2κffiffiffi
q

p
�
pij −

p
2
qij

�
þ qij

4N
Lmsnn

�
: ð34Þ

The projected field equations are simpler in comparison to those of the u sector, as there is no term of the form snnR
[cf. Eqs. (7d), (7f)]. Now we are in a position to evaluate the left-hand side of Eq. (32) for sin ¼ sij ¼ 0 completely
projected into Σt. It is useful to define ðJ1Þμν ≔ Jμνjsin¼sij¼0 with Jμν given in Eq. (32). Then

ðq⃗�J1Þij ¼
2κ

N
ffiffiffi
q

p _pij þ Rij −
R
2
qij þ 1

N
ðqijDkDkN −DiDjNÞ þ 1

2
½qijakDksnn − ðaiDjsnn þ ajDisnnÞ�

þ 4κ2

qð1 − snnÞ
�
2pikpk

j − ppij−
1

2

�
pklpkl −

p2

2

�
qij

�
þ Lmsnn

Nð1 − snnÞ
�

κffiffiffi
q

p πij −
3

16N
qijLmsnn

�
; ð35aÞ

with the following time derivative of the canonical momentum of Eq. (22),

_pij ¼
ffiffiffi
q

p
2κ

�
Nð1 − snnÞKð3Kij − qijKÞ þ ð1 − snnÞðLmKij − qijLmKÞ þ

�
3

2
qijK − 2Kij

�
Lmsnn þ

qij

2
Lm

�
1

N
Lmsnn

��
:

ð35bÞ

Finally, we turn to the sij sector. We need

qiαqjβgαβsμνRμν ¼ qijskl
�
1

N
LmKkl − ðDkal þ akalÞ þ Rkl þ KKkl − 2KknKn

l

�
; ð36aÞ

qiαqjβ∇ν∇αðqνγqβδsγδÞ ¼ KKi
kskj þ 2Ki

kKk
lslj þDkDiskj − aiakskj þ akDiskj þ 1

N
ðLmKilÞqlkskj þ Ki

ksklKl
j; ð36bÞ
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qiαqjβ□ðqαγqβδsγδÞ ¼ DkDksij − K

�
1

N
Lmsij þ sikKk

j þ sjkKk
i

�
þ Ki

kKk
lslj þ Kj

kKl
ksil

−
�
1

N
Lm

�
1

N
Lmsij

�
þ 1

N
ðKk

jLmsik þ Ki
kLmskjÞ þ

�
1

N
Lmsik þ silKl

k þ sklKl
i

�
Kk

j

þ sikqkl

�
1

N
LmKlj þ 2KlmKm

j

�
þ
�
1

N
Lmsjk þ sjlKl

k þ sklKl
j

�
Kk

i

þ sjkqkl

�
1

N
LmKli þ 2KlmKm

i

�
− akDksij þ aisjkak þ ajsikak

�
; ð36cÞ

qiαqjβðgαβ∇μ∇νsμνÞ ¼ qij
�
1

N
LmðKklsklÞ þ sklDkal þ 2akDlskl þ aiajsij þDkDlskl þ KKklskl

�
: ð36dÞ

Furthermore, the extrinsic-curvature tensor is given by

Kij ¼ 2κffiffiffi
q

p
�
Pij −

1

2
½ð1 − skkÞPþ 2sklPkl�qijþsikPk

j þ sjkPk
i − sijP

�
þ 1

2N

�
Lmsij −

qij

2
qklLmskl

�
þO½ðsijÞ2�: ð37Þ

Let ðJ2Þμν ≔ Jμνjsnn¼sin¼0 be the left-hand side of the modified Einstein equations of Eq. (32) for the purely spacelike sector
composed of the coefficients sij. Considering their projection into Σt and incorporating Eq. (36) as well as expressing the
extrinsic curvature in terms of the canonical momentum according to Eq. (22c) results in

ðq⃗�J2Þij ¼
2κ

N
ffiffiffi
q

p _PijþRij−
R
2
qijþ 1

N
ðqijDkDkN−DiDjNÞþ1

2
½−qijðsklRkl−DkDlsklÞ−DkDiskj−DkDjskiþDkDksij�

þ1

2
ð2qij½akDlsklþ sklðDkalþakalÞ�−akðDiskjþDjskiÞþakDksijÞþ κ2

q
ð½ð1− skkÞP2−2PklPkl

þ4sklðPPkl−Pk
mPlmÞ�qijþ8½PikPk

jþ sikPklPljþ sjkPklPli− sikPPk
j− sjkPPk

iþ sklðPi
kPl

j−PklPijÞ�
þ2P2sij−4ð1− skkÞPPijÞþ κ

N
ffiffiffi
q

p ½2ðPi
kLmsjkþPj

kLmsikÞ− ðPLmsijþPijqklLmsklÞ�; ð38aÞ

where the time derivative of the canonical momentum of Eq. (22b) reads

_Pij ¼
ffiffiffi
q

p
2κ

�
NKð3Kij − qijKÞ − NðsilKl

j þ sjlKl
iÞK þ LmKij − ðsilLmKl

j þ sjlLmKl
iÞ − qijLmK −

K
2
Lmsij − ðLmsilÞKl

j

− ðLmsjlÞKl
i −

1

2
Lm

�
1

N
Lmsij

��
: ð38bÞ

With the latter result at hand, the modified Einstein
equations for the scalar sectors u and snn as well as the
purely spacelike sector sij have been successfully projected
into spacelike hypersurfaces Σt.

V. HAMILTON-JACOBI EQUATIONS OF MOTION

With the projected altered Einstein equations of the
modified-gravity theory based on Eq. (7) at our disposal, in
this section we will be working within the Hamiltonian
formalism. The latter is based on the following set of field
equations that are of first order in time,

_qij ¼ fqij; Hg; ð39aÞ

_πij ¼ fπij; Hg: ð39bÞ

The first set of equations corresponds to a geometrical
identity [8], whereas the second set describes the dynamics
of the theory under consideration [116]. In the latter, we
employ the canonical Hamiltonians of the u, snn, and sij

sectors given in Eq. (23). Our goal is to compare the
projected Einstein equations stated in Eqs. (30), (35), and
(38) to Eq. (39b) evaluated for each of the canonical
Hamiltonians of Eq. (23).
The canonical Hamiltonian associated with the u sector

is given by Eq. (23a). First of all, we will investigate the
first set of Hamilton’s equations given by Eq. (39a), i.e.,
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_qij ¼ fqij; Hug: ð40Þ

Evaluating the Poisson bracket leads to

_qij ¼
�
qij;

Z
Σt

d3x
1

1 − u

�
πLmuþ

2κNffiffiffi
q

p
�
πklπkl −

π2

2

���

¼ 2NKij; ð41Þ

where we used the extrinsic-curvature tensor of Eq. (29)
given as a function of the canonical momentum. After
confirming the outcome expected for the Hamiltonian
describing the gravitational system, we devote ourselves
to the second set of Hamilton’s equations in Eq. (39),

−
�
πij;

Z
Σt

d3x
ffiffiffi
q

p
2κ

Nð1 − uÞR
�

¼ −
ffiffiffi
q

p
2κ

ðqijDlDl½ð1 − uÞN� −DiDj½ð1 − uÞN�
þ Nð1 − uÞGijÞ; ð42aÞ

�
πij;

Z
Σt

d3x
2κNffiffiffi
q

p ð1−uÞ
�
πklπkl−

π2

2

��

¼−
2κNffiffiffi
q

p ð1−uÞ
�
2πiaπja−ππij−

1

2

�
πabπ

ab−
π2

2

�
qij

�
;

ð42bÞ

−
�
πij;

Z
Σt

d3x
N

ffiffiffi
q

p
κ

DlDlu

�
¼ −

N
ffiffiffi
q

p
2κ

qijalDlu; ð42cÞ

�
πij;

Z
Σt

d3x
Lmu
1 − u

�
π −

3

4

ffiffiffi
q

p
κN

Lmu

��

¼ −
Lmu
1 − u

�
πij −

3

8

ffiffiffi
q

p
κN

qijLmu

�
; ð42dÞ

with the Einstein tensorGij in Σt. Organizing the individual
parts, a multiplication by 2κ=ðN ffiffiffi

q
p Þ reproduces Eq. (30)

apart from the last two terms in the third line, which depend
on the acceleration. The boundary term of Eq. (9) solves
this issue. The part proportional to u is interpreted as an
additional contribution to Hu of Eq. (23a) that contains a
total derivative,

Δu ≔ −
Z
Σt

d3x
ffiffiffi
q

p
κ

DlðNDluÞ

¼ −
Z
Σt

d3x
N

ffiffiffi
q

p
κ

ðDlDluþ alDluÞ: ð43Þ

Its Poisson bracket with the canonical momentum density
reads

fπij;Δug ¼ N
ffiffiffi
q

p
2κ

ðaiDjuþ ajDiuÞ; ð44Þ

and provides the missing pieces to Eq. (30).
Next, our focus is on the snn and sij sectors. A

computation reveals that the first set of Hamilton’s equa-
tions in Eq. (39a) is satisfied for these sectors, too. Thus, for
the Hamiltonians H1 and H2 of Eq. (23b) and Eq. (23c),
respectively, it holds that

_qij¼fqij;H1g

¼
�
qij;

Z
Σt

d3x
1

1−snn

�
p
2
Lmsnnþ

2κNffiffiffi
q

p
�
pklpkl−

p2

2

���

¼2NKij; ð45aÞ

_qij ¼ fqij; H2g

¼
�
qij;

Z
Σt

d3x

�
2κNffiffiffi

q
p

�
PklPkl − ð1 − skkÞ

P2

2

− 2sklðPklP − Pk
nPnlÞ

�
þ
�
Pkl −

P
2
qkl

�
Lmskl

��

¼ 2NKij; ð45bÞ

where the right-hand sides are given by the
extrinsic-curvature tensors of Eq. (34) and Eq. (37),
respectively. With that settled, we take a look at the
second set of Hamilton’s equations of Eq. (39b) for the
snn sector. The individual contributions to the Poisson
bracket are

−
�
pij;

Z
Σt

d3x
ffiffiffi
q

p
2κ

NR

�

¼ −
ffiffiffi
q

p
2κ

ðqijDlDlN −DiDjN þ NGijÞ; ð46aÞ
�
pij;

Z
Σt

d3x
2κNffiffiffi

q
p ð1 − snnÞ

�
pklpkl −

p2

2

��

¼ −
2κNffiffiffi

q
p ð1 − snnÞ

�
2piapj

a − ppij

−
1

2

�
pabpab −

p2

2

�
qij

�
; ð46bÞ

−
�
pij;

Z
Σt

d3x
N

ffiffiffi
q

p
2κ

DlDlsnn
�

¼ −
N

ffiffiffi
q

p
4κ

qijalDlsnn;

ð46cÞ
�
pij;

Z
Σt

d3x
Lmsnn

2ð1 − snnÞ
�
p −

3

8

ffiffiffi
q

p
κN

Lmsnn
��

¼ −
Lmsnn

2ð1 − snnÞ
�
pij −

3

16

ffiffiffi
q

p
κN

qijLmsnn
�
: ð46dÞ

CARLOS M. REYES and MARCO SCHRECK PHYS. REV. D 106, 044050 (2022)

044050-10



By using these findings and multiplying by 2κ=ðN ffiffiffi
q

p Þ, we
arrive at Eq. (35) with the exception of the last two terms
in the second line depending on the acceleration. Recall
that an analogous issue occurred previously in the u
sector. The boundary term of Eq. (9) again solves this
problem. The part proportional to snn contributes to H1 of
Eq. (23b) with a total derivative,

Δ1 ≔ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

DlðNDlsnnÞ

¼ −
Z
Σt

d3x
N

ffiffiffi
q

p
2κ

ðDlDlsnn þ alDlsnnÞ: ð47Þ

Computing the Poisson bracket of the latter contribution
with the canonical momentum density results in

fπij;Δ1g ¼ N
ffiffiffi
q

p
4κ

ðaiDjsnn þ ajDisnnÞ; ð48Þ

which is related to the missing parts in Eq. (35).
Finally, the most intricate sector of the sij coefficients is

on the menu. Here, we benefit from the results

−
�
Pij;

Z
Σt

d3x
ffiffiffi
q

p
2κ

NR

�
¼ −

ffiffiffi
q

p
2κ

ðNGij þ qijDlDlN −DiDjNÞ; ð49aÞ

−
�
Pij;

Z
Σt

d3x
N

ffiffiffi
q

p
2κ

ðsklRkl −DlDksklÞ
�

¼ N
ffiffiffi
q

p
4κ

ð−2qij½akDlskl þ sklðDkal þ akalÞ�

þ akðDiskj þDjskiÞ − akDksij þ qijðsklRkl −DkDlsklÞ
þDkDiskj þDkDjski −DkDksijÞ; ð49bÞ

�
Pij;

Z
Σt

d3x

�
Pkl −

P
2
qkl

�
Lmskl

�
¼ 1

2
ðPijqklLmskl þ PLmsijÞ − ðPi

kLmskj þ Pj
kLmskiÞ; ð49cÞ

as well as

�
Pij;

Z
Σt

d3x
2κNffiffiffi

q
p

�
PklPkl −

1

2
ð1 − skkÞP2 − 2sklðPPkl − Pk

nPlnÞ
��

¼ −
κN
2

ffiffiffi
q

p ð½ð1 − skkÞP2 − 2PklPkl þ 4sklðPPkl − Pk
mPlmÞ�qij þ 8½PikPk

j þ sikPklPlj þ sjkPklPli − sikPPk
j − sjkPPk

i

þ sklðPi
kPl

j − PklPijÞ�Þ þ 2P2sij − 4ð1 − skkÞPPij: ð49dÞ

We employ the latter findings and multiply by 2κ=ðN ffiffiffi
q

p Þ,
which yields Eq. (38). Hence, our conclusion is that the
Lagrangian and Hamiltonian formulation of Eq. (7) lead to
the same dynamics. The lengthy computations necessary to
demonstrate this outcome corroborate the nontrivial nature
of this property.

VI. OTHER PROJECTIONS OF MODIFIED
FIELD EQUATIONS

General Relativity is a theory with constraints [100]. The
Hamiltonian and momentum constraints of GR are con-
nected to suitable projections of the Einstein equations
[105]. Here, we intend to find out whether or not analogous
relationships exist for the modified-gravity theory defined
by Eq. (7). It is convenient for reasons of brevity to use

more of the notation employed in Ref. [105]. Considering a
tensor Tμν of rank 2, the complete projection orthogonal to
Σt and the mixed projection partially orthogonal to Σt,
respectively, are written as

Tðn;nÞ ≔ nμnνTμν; Tϱðq⃗ð:Þ;nÞ ≔ qϱμnνTμν: ð50Þ

Such projections of the modified Einstein equations were
already obtained in Ref. [97], but they were expressed in
terms of the extrinsic curvature. In the following, we are
resorting to Eqs. (29), (34), and (37) to cast these
projections into scalar or vector-valued functions depend-
ing on the canonical momenta πij, pij and Pij, respectively.
Then, the purely orthogonal projections for each of the
three sectors are given by
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2Qðn;nÞ ¼ ð1 − uÞRþ 2DiDiu

−
4κ2

qð1 − uÞ
�
πijπ

ij −
π2

2

�
−

3ðLmuÞ2
2ð1 − uÞN2

;

ð51aÞ

2J1ðn;nÞ ¼ RþDiDisnn −
4κ2

qð1 − snnÞ
�
pijpij −

p2

2

�

−
3ðLmsnnÞ2

8ð1 − snnÞN2
; ð51bÞ

2J2ðn;nÞ ¼ Rþ sijRij −DiDjsij

−
4κ2

q

�
PijPij − ð1 − skkÞ

P2

2

þ 2sijðPikPj
k − PijPÞ

�
; ð51cÞ

where the latter holds at first order in the background
coefficients and their derivatives. Next, the mixed projec-
tions can be checked to be

2Qkðq⃗ð:Þ;nÞ¼ 2κffiffiffi
q

p
�
2Diπ

ikþ π

1−u
Dku

�
−

3Lmu
ð1−uÞNDku;

ð52aÞ

2J1kðq⃗ð:Þ;nÞ ¼
2κffiffiffi
q

p
�
2Dipik þ p

2ð1 − snnÞD
ksnn

�

−
3Lmsnn

4ð1 − snnÞNDksnn; ð52bÞ

2J2kðq⃗ð:Þ;nÞ ¼
2κffiffiffi
q

p
�
2DiPik þ 2sijDiPj

k − sikDiP

þ 2ðDisijÞPj
k þ ðDksijÞPij

−
�
Disik þ

1

2
Dksii

�
P

�
; ð52cÞ

with the third result again being valid at first order in the
diffeomorphism-violating coefficients and derivatives
thereof.
Now, turning to the Hamiltonian formulation of GR, on

the one hand, the purely orthogonal projection of the
Einstein equations is linked to the Poisson bracket of the
EH Hamiltonian with the canonical momentum of the lapse
function. On the other hand, the mixed projection connects
to the Poisson bracket of the EH Hamiltonian with the
canonical momentum of the shift vector. In the modified-
gravity theory based on Eq. (7) analogous correspondences
are found to hold. To be able to compute variations for the
shift vector, we will be working in general coordinates
with a lapse function N ¼ Nðt;xÞ and nontrivial shift
vector components, Ni ¼ Niðt;xÞ. Then, for the purely
orthogonal projections,

fπN;Hug ¼
ffiffiffi
q

p
κ

Qðn;nÞ; ð53aÞ

fpN;H1g ¼
ffiffiffi
q

p
κ

J1ðn;nÞ; ð53bÞ

fPN;H2g ¼
ffiffiffi
q

p
κ

J2ðn;nÞ: ð53cÞ

It is not challenging to check these results, as the depend-
ences of Hu, H1, and H2 in Eq. (23) on the lapse function
are plainly transparent. Furthermore, after some more
involved calculations, we find for the mixed projections

fπk; Hug ¼
ffiffiffi
q

p
κ

Qkðq⃗ð:Þ;nÞ; ð54aÞ

fpk;H1g ¼
ffiffiffi
q

p
κ

J1kðq⃗ð:Þ;nÞ; ð54bÞ

fPk;H2g ¼
ffiffiffi
q

p
κ

J2kðq⃗ð:Þ;nÞ: ð54cÞ

To verify the latter results, one must take into account that
the shift vector components only occur in the last terms of
Hu, H1, and H2 in Eq. (23) as well as the Lie derivatives of
the background fields. Note that in contrast to what we
inferred in Ref. [97], no additional requirements for the
background fields arise when the canonical momenta are
employed instead of the extrinsic curvature.
With all the previous findings at hand, we are one step

away from glimpsing the difficulties that may arise in the
constraint analysis of the modified gravity theory under
study. Although the complete constraint analysis is beyond
the scope of the present work, we can provide a first idea
and identify some possible issues that may arise when
performing the Dirac procedure. Our focus is on the u
sector described by the Hamiltonian of Eq. (23a)

Hu ≔
Z
Σt

d3xHu; ð55aÞ

Hu ¼ −
ffiffiffi
q

p
2κ

N½ð1 − uÞRþ 2DiDiu�

þ Lmu
1 − u

�
π −

3

4

ffiffiffi
q

p
κN

Lmu

�

þ 2κNffiffiffi
q

p ð1 − uÞ
�
πijπij −

π2

2

�
− 2ðDiπ

ijÞNj: ð55bÞ

We add to this Hamiltonian the primary constraints πN ≈ 0

and πi ≈ 0 with Lagrange multipliers λ and λi, respectively,

H ¼
Z

d3xðHu þ λπN þ λiπiÞ: ð56Þ
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We then evolve both constraints and obtain two additional
constraints; a modified Hamiltonian constraint

H̃⊥ ¼
ffiffiffi
q

p
2κ

N½ð1 − uÞRþ 2DiDiu� −
3

ffiffiffi
q

p
4κð1 − uÞN2

ðLmuÞ2

−
2κNffiffiffi
q

p ð1 − uÞ
�
πijπij −

π2

2

�
; ð57aÞ

and the standard momentum constraint

Hi ¼ 2Dkπ
k
i: ð57bÞ

As in GR, the constraints still generate changes in the
canonical variables. So by adjoining them, we can write

H ¼
Z

d3x

�
−NH̃⊥ −

3
ffiffiffi
q

p
2κð1 − uÞN ðLmuÞ2

−HiNi þ Lmu
1 − u

π þ λπN þ λiπi

�
: ð58Þ

At this level we can fix the gauge for the variables N and
Ni, which will turn these primary constraints, which are
first-class constraints, into second-class constraints and
impose them strongly to zero. However, when evolving
H̃⊥, the term proportional to 1=N may produce another
constraint that is absent in GR. We believe that the latter
additional constraint is a reflection of the broken diffeo-
morphism symmetry in the theory defined by Eq. (23a). A
continuation of this critical analysis will be left for a
future work.

VII. OUTLOOK: OTHER MODIFIED-GRAVITY
THEORIES AND THE SME

After demonstrating the dynamical consistency of
Eq. (1), two additional correspondences between modified-
gravity theories and particular sectors of the gravitational
SME shall be presented. By doing so, we intend to foster
further interest in SME-related physics.

A. Linearized dRGT massive gravity

The recent paper [42] is dedicated to gaining a better
theoretical understanding of dRGT theory with an empha-
sis on the stability of static solutions as well as certain
properties of the linearized theory such as gravitational-
wave propagation and the gravitational energy between two
pointlike masses. To be able to study the propagation of
gravitational-wave modes, the linearized field equations are
necessary. In momentum space, they are cast into the form

Õμν
αβh̃αβ ¼ 0; ð59Þ

where h̃αβ corresponds to the Fourier transform of
the dynamical-metric perturbation hμν ≔ gμν − ημν and

Õμν
αβ is a tensor-valued operator in momentum space

given by their Eq. (82). Furthermore, the authors describe
the reference metric via a small deviation from the
frequently taken Minkowski metric ημν, i.e., they define
δfμν ≔ fμν − ημν ≪ 1. All results are stated at first order in
the perturbation δfμν.
The modifications of GR are proportional to five

dimensionless parameters ci with i ∈ f1…5g. Now,
all possible background fields with an arbitrary mass
dimension preserving or violating diffeomorphism invari-
ance in linearized gravity are classified in Ref. [117].
Appropriate background fields violating diffeomorphism
invariance can be associated with each of these contri-
butions via their symmetry properties and momentum
dependences. The only suitable coefficients are those of
mass dimension 2 that are totally symmetric and not
contracted with additional momenta, kð2;1Þμνϱσ. For these
SME coefficients we refer to line 11 in Table 1 of
Ref. [117]. Then

kð2;1Þμνϱσ ¼ −
m2

2
ðc1ðηϱðμηνÞσ − ημνηϱσÞ þ c2ηðϱμησνÞ

þ c3ðη−1δfÞηϱðμηνÞσ þ c4½δfμν − ημνðη−1δfÞ�ηϱσ
þ c5ημνδfϱσÞ; ð60Þ

where m is the graviton mass and indices enclosed by a
pair of parentheses indicate that a symmetrization is
performed in these indices. The latter coefficients char-
acterize the linear regime of dRGT massive gravity
completely.

B. Hořava-Lifshitz gravity

Hořava-Lifshitz gravity [69,70] is a possible UV com-
pletion of GR. Its formulation relies on a foliation of
spacetime into purely spacelike hypersurfaces via the ADM
decomposition, while the leading contributions read [118]

SHL ¼
1

16πGH

Z
M
dtd3xN

ffiffiffi
q

p ðξRþKijKij−λK2þαaiaiÞ;

ð61Þ

with the extrinsic curvature Kij and the acceleration ai
defined directly under Eq. (5). Furthermore, the action
involves dimensionless dynamical parameters ξ, λ, α as
well as the dimensionful gravitational constant GH of this
theory. A significant property of Hořava-Lifshitz gravity
are different weight factors associatedwith the contributions
KijKij andK2. As it turns out, it is this property that makes a
match to the u and sμν sectors of Eq. (7) presumably
impossible. The authors of Ref. [108] also observed this
issue, which is why they added further would-be dynamical
terms to their action to enable a match. An alternative is to
match Eq. (61) with a setting known as Einstein-Aether

MODIFIED-GRAVITY THEORIES WITH NONDYNAMICAL … PHYS. REV. D 106, 044050 (2022)

044050-13



theory [119–121]. By doing so, the corresponding SME-
based Lagrange density is readily obtained as

Lð2Þ
gravity ¼

1

2κ
k̆ð2Þ; k̆ð2Þ ¼ kκλμνgκμgλν þ kμνgμν; ð62aÞ

with the background fields

kκλμν ¼ −
�
1þ λ

ξ

�
∇κuμ∇λuν þ

�
1þ 1

ξ

�
∇κuλ∇νuμ;

ð62bÞ

kμν ¼ −
α

ξ
uκuλ∇κuμ∇λuν; ð62cÞ

where ξ ¼ GH=GN and uμ is a unit vector orthogonal to the
spacelike hypersurfaces of the spacetime foliation. Here we
refer to the second line of Table XVI and Eq. (41) of
Ref. [42]. Note that the author of Ref. [121] uses the metric
signature ðþ;−;−;−Þ, which is different from that
of Ref. [42].

VIII. CONCLUSIONS

This work was dedicated to a modified-gravity theory
incorporating nondynamical background fields that break
diffeomorphism invariance explicitly. We focused on two
distinct types of background fields: a scalar field denoted as
u and a tensor-valued one known as sμν in the SME
literature [21,22]. The latter decomposes into a purely
timelike and a purely spacelike sector. The canonical
Hamiltonian had already been obtained in the previous
article [97] and formed the base of the current paper.
On the one hand, the ADM decomposition allowed us to

project the modified Einstein equations into purely space-
like hypersurfaces. On the other hand, the Hamilton-Jacobi
equations gave rise to another set of field equations for the
theory. We have found that both approaches are consistent
with each other. Similarly, projections completely orthogo-
nal to spacelike hypersurfaces as well as partial projections
into such hypersurfaces were shown to correspond to
functional derivatives of the Hamiltonian for the lapse
function and the shift vector componentes, respectively.

These outcomes are highly nontrivial, as nondynamical
background fields transform unconventionally under dif-
feomorphisms. Hence, the structure of such theories is
rendered substantially obscure as opposed to GR or
extensions thereof with diffeomorphism symmetry either
intact or broken spontaneously. Furthermore, having to
add the suitable boundary terms of Eqs. (8) and (9) to
the action to perform the match between these two
approaches emphasizes the importance of our analysis.
The latter is the first of its kind in the literature when it
comes to the gravitational SME. In principle, the Dirac
procedure could imply additional sets of constraints
beyond those of GR. However, our findings indicate that
the canonical Hamiltonian completely encodes the
dynamical properties of the gravitational theory under
study. Furthermore, they corroborate the results derived
previously in Ref. [97].
The setting investigated is quite generic and links to

several popular modified-gravity models proposed in the
literature such as Brans-Dicke theory and dRGT massive
gravity. Hence, this investigation could also arouse interest
of scientists not having had contact to the gravitational
SME, so far. Furthermore, with the Hamiltonian of Eq. (23)
established and its correctness backed up by the current
findings, this article plays a significant role in paving the
pathway for phenomenological studies of Eq. (1), e.g., in
cosmology or systems of strong gravitational fields such as
black holes. Additional explorations of the constraint
structure are beyond the scope of this paper and will be
pursued in a future work. Gaining a better understanding of
the SME sectors identified in Secs. VII A and VII B by
utilizing the methodology employed here may be further
worthwhile projects.
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[118] D. Blas, O. Pujolàs, and S. Sibiryakov, Consistent Ex-
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