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In this paper, we study gravitational collapse in the 5-dimensional Einstein-Gauss-Bonnet (EGB) theory.
We construct the spherical marginally trapped surfaces and determine their evolution when the collapsing
matter admits a wide class of initial density distributions. We show that their location, and time of formation
depend crucially on the initial density, and the initial velocity profile of collapsing matter, as well as on the
Gauss-Bonnet (GB) coupling constant. In particular, trapped surfaces only appear when the mass contained
inside the collapsing spherical shell is greater or equal to the GB coupling. Otherwise, no trapped surfaces
exist and the central singularity is massive and naked. This inference is verified for pressureless dust and
extended for fluids satisfying equations of state. We also make a detailed comparison of these results with
those in Einstein’s theory; the effect of dimensionality of spacetime on these results is discussed as well.
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I. INTRODUCTION

The study of gravitational collapse of a self-gravitating
isolated system remains a matter of great physical impor-
tance in understanding large scale structures in the uni-
verse, as well as toward discerning the formation of black
hole horizons, spacetime singularities and the cosmic
censorship conjecture [1–6]. In general relativity (GR),
the spherical gravitational collapse and the singularity
theorems have been studied at length. Although several
important aspects including the cosmic censorship, non-
symmetrical collapse remain to be understood completely,
progress in this direction has been remarkable.
The models of gravitational collapse in alternate theories

of gravity, including higher dimensional ones are also being
studied with interest since it is believed that one (or some)
of these theories may solve problems affecting GR,
including spacetime singularities [7–14]. Among these,
modified gravity theories with higher curvature corrections
arise naturally. Indeed, GR is viewed as an effective field
theory in which the Einstein-Hilbert action is only a low
energy contribution and higher curvature terms consistent
with diffeomorphism invariance may become relevant as
one goes to higher energies [15–22]. Such higher curvature
terms have been explicitly obtained in string theories

[23–27]. These higher curvature corrections should leave
imprints at low energy scales which become important for
low energy physics too, affecting the horizon structure
of large black holes. The Einstein-Gauss-Bonnet (EGB)
theory is the simplest diffeomorphism invariant modifica-
tion of GR whose equations of motion contain no more
than second order in time derivatives [16–18,28–30]. This
generalization is also known to be the unique lowest order
correction in the Lovelock action. Furthermore, since the
EGB gravity is free from ghosts (if the coupling constant
has the same sign as the GR term) and leads to a well-
defined initial value problem, it is a respectable theory of
gravity in higher dimensions, and its solutions have also
been a matter of interest. In particular, black hole solutions
in the EGB theory are well known. They include the
Boulware-Deser, and other spherically symmetric solutions
[25,31–33]. Black holes in EGB theory are also testing
grounds to gain fundamental insights into various quantum
aspects of gravity like the horizon entropy [34–36].
Thus, because of the importance of the EGB theory as

a natural higher dimensional theory, effects of the GB
correction term on singularity formation have received
attention. In the literature, inhomogeneous dust collapse
of Lemaitre-Tolman-Bondi (LTB) type, and of null dust
have been discussed [7–12]. These studies indicate that the
central (as well as noncentral) singularity is naked, and this
untrapped region increases with coupling constant λ > 0.
However, it remains a possibility that such singularities
may not exist if realistic matter density distributions are
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considered. This expectation is not unwarranted since
occurrence of these singularities break the censorship
conjecture [6], as well as the Seifert conjecture [37], which
essentially states that massive singularities must be cen-
sored inside a trapped region. Of course, it remains a
possibility that these conjectures themselves need modifi-
cations in higher dimensions, just like the Hoop conjecture
[38]. Hence, it is essential that gravitational collapse in the
EGB model be studied in a greater generality, using a large
class of models where the matter admits a wide variety of
initial density and velocity profiles so that gravitational
collapse may be understood in significant detail. To obtain
this broader picture of the collapse process, we need to
understand the formation of spacetime singularity, and
simultaneously track the horizon formation as the shells
of matter collapse. A delay in the time of formation, of
one over the other, leads either to a naked singularity or to
a black hole. In other words, to unambiguously certify the
outcome of a specific collapse process in EGB theory, exact
radius–time relation of shells is necessary.
However, studies carried out so far have been focused

on obtaining the nature of singularity using behavior of
geodesics near the center of the matter distribution [7–9].
The density distribution of matter is taken to be of simple
power- law type. Although such techniques lead to a
qualitative understanding of the process, exact solutions
are better. The only explicit solution of shell collapse have
been for marginally bound inhomogeneous dust models
admitting power law density profile [11]. For a more
complete picture, individual shell dynamics is a necessary
requirement, and such studies must be carried out for matter
possessing diverse energy- momentum tensors. This analy-
sis is yet to be carried out. So, to address this lacunae in the
literature, we formulate the problem of gravitational col-
lapse in 5d EGB by directly solving the field equations of
matter shells. Why 5d EGB theory? As we shall see, in this
dimension, interesting features like massive naked singu-
larities, and horizons both arise, depending on matter and
geometric parameters, So, it forms an ideal testing ground
for scrutinising our perceptions. These studies shall then be
extended to dimensions n > 5, to identify the region of the
parameter space where singular structures arise.
In the following, we shall explicitly solve the 5d EGB

field equations describing gravitational collapse of inho-
mogeneous dust and of fluids satisfying equations of state.
By assuming that the initial matter profile is either
(a) marginally bounded, (b) bounded,1 we shall be able
to determine the radius of collapsing shell as a function of
shell coordinate and its proper time. These solutions shall
be used to obtain the singularity formation time. We shall
also locate the time of formation of spherically symmetric
trapped surfaces, and determine the evolution of their

boundary (considered as the black hole horizon here) as
matter falls in. Note that the formation of spacetime
singularity, trapped surfaces, and their time development
depend not only on the theory, or the initial velocity profile,
but is also intimately connected with the density distribu-
tion of the collapsing matter. For example in GR, the
formation and dynamics of the black hole horizon changes
drastically with variations in the density profile [39,40],
and it is natural to expect that such various shall be
observed for the GB modification too. To include these
variation, we study the above-mentioned objectives using
spherical shells of inhomogeneous pressureless matter
admitting a wide range of realistic initial density distribu-
tion profile. In each of the examples, we shall track the
motion of individual collapsing matter shells, simultane-
ously follow the time development of spacetime singularity,
and determine the trapped region formed due to these
shells. We shall also be able to precisely quantify location
and time of occurrence of the black hole horizon, and
detail its development as more matter falls through it. This
will allow us to identify the singularity is censored or
covered by the horizon. In particular, we shall show that
(i) for n ¼ 5, unless mass ≥2λ no trapped surface exists
(ii) trapped surfaces always exist for spacetimes in n ≥ 6,
admitting arbitrary mass. A consequence of these con-
clusions are that black hole horizons censor a singularity in
n ¼ 5, only when sufficient mass ≥ 2λ has collapsed, and
that singularities in n ≥ 6 are always censored.
Note that in gravitational collapse, the fundamental role

is played by trapped surfaces. The boundary of these
trapped surfaces is also defined as a black hole horizon.
We present a brief motivation for this alternate approach:
Black hole horizons are usually defined through event
horizons [1,2]. This definition suffers from theoretical
inconsistencies due to its teleological nature and hence,
there has been a surge of interest toward a quasilocal
definition of horizons [41]. In the following, we exploit
this quasilocal method and consider the horizon to be a
4-dimensional null hypersurface foliated by closed spheri-
cal 3-dimensional spacelike spheres, such that the expan-
sion scalar of the outgoing null normal to the foliation
(lμ) vanishes, θðlÞ ¼ 0, while the expansion of the ingoing
null normal to the foliation, (nμ) is negative θðnÞ < 0. This
formulation of the black hole horizon is called marginally
trapped tube (MTT) and has found use in analytical and
numerical studies of black holes. In particular, MTT has
helped in understanding their classical nature, quantum
behavior, as well as their stability under various geometric
and physical variations [39,41–58]. Note that although
MTT is not associated with a particular signature, it can
describe various states of a horizon. For example, a black
hole horizon in equilibrium is a null MTT and is referred
to as an isolated horizon (IH) (see [41,43,44,53,58].
Here, the tangent vector field of the MTT is null. A
growing black hole admits a spacelike tangential vector

1An extension for unbounded collapse is similar and shall not
been carried out here.

CHATTERJEE, JARYAL, and GHOSH PHYS. REV. D 106, 044049 (2022)

044049-2



field, and this MTT is called a dynamical horizon (DH) (see
[41,45,46,55,56] for these horizons as well as their varia-
tions). Further, it is useful to describe a MTTwith timelike
signature, which admits matter flow in both directions, and
is called a timelike tube. Thus MTTs provide an unified
framework to study time evolution of black holes through
different phases. The nature of spherical MTTs during
gravitational collapse in GR has been studied in detail for
various class of matter fields [39,40]. However, spherical
MTTs in the EGB theory remains to be studied in the
context of gravitational collapse of inhomogeneous matter
fields (the LTBmodels), and here we fill this gap by making
a detail study of these matter collapse models. We carry out,
(i) study the collapse end state with special emphasis on the
formation of horizons, and in particular, track the location
of spherical marginally trapped tubes with variation of
matter profile, and (ii) for the mass profiles considered
here, identify the regions of the parameter space where
the MTT evolves as a DH (spacelike), where it might be
timelike, and when it reaches equilibrium and become a
null IH. This shall also help us to (iii) correctly locate the
spherical outermost trapped surface developing during
gravitational collapse. We must stress that although
MTTs in 4-dimensions have been studied [39,40], their
behavior is drastically different in the EGB models, even
for small coupling constants.
The paper is arranged as follows: In the next section, we

briefly discuss geometry of the MTTs, the equations of
motions for the EGB theory and it’s reduction in the context
of spherically symmetric spacetimes using the ðt; r; θ;ϕ;ψÞ
coordinates. We shall also discuss the matter contributions
to these equations and the way to determine the spherically
symmetric MTTs for these spacetimes. In Sec. III, we solve
the equations of motion directly for the marginally bounded
and bounded cases. The solution for the unbounded case is
similar, and so we shall not repeat it here. We conclude
in Sec. IV with discussions. The units c ¼ 1, 8πG ¼ 1 are
used throughout the paper.

II. MARGINALLY TRAPPED TUBES
IN THE EGB THEORY

The formalism of MTT as a quasilocal description of
black hole horizons was developed in [47]. In the follow-
ing, we present a brief discussion on this formalism, and
set up the basic notations for our later use. Let us consider
a 5-dimensional spacetime ðM; gμνÞ with signature
ð−;þ;þ;þ;þÞ. Let Δ be a hypersurface in M which
may be spacelike, timelike or even null. Δ is taken to be
topologically S3 ×R. At each point of the spacetime, we
shall have 2 null vectors and three spacelike vectors. The
null vector fields lμ and nμ are respectively the outgoing
and the ingoing vector fields orthogonal to the 3-sphere
cross sections of Δ, with l · n ¼ −1. The three normalized
spacelike vectors tangential to the 3- sphere are called θ̂, ϕ̂,

and ψ̂ respectively, and are orthogonal to the null vectors lμ

and nμ. If tμ is a vector field tangential to Δ and normal to
the S3 foliations, then tμ ¼ lμ − Cnν, where C is a function
of the foliation coordinates. Now, assume that the S3

foliations are such that its null normals satisfy the following
conditions: (i) θðlÞ ¼ 0, and (ii) θðnÞ < 0. The hypersurface
Δ foliated by such surfaces is called a MTT. Naturally MTT
depends on the foliation but, in this paper, we shall restrict
only to MTTs which are geometrical spheres. This means
that the shear and rotation corresponding to the null normal
lμ vanish on the MTT [41]. Note also that MTT does not
carry a specific signature. Since t · t ¼ 2C, this parameterC
determines the signature of Δ. When C ¼ 0, Δ is null,
foliated by lμ and it describes a black hole in equilibrium, a
DH when it is spacelike (C > 0), or simply a timelike
membrane when C < 0 and Δ is timelike. Thus, MTT is an
unified formalism for horizon evolution. The value of C can
be determined for various gravitational collapse processes,
and for a wide class of energy momentum tensors. Hence,
the entire evolution of the MTT can be unambiguously
determined throughout the evolution process, if the sig-
nature of C is known.
As tμ is orthogonal to the foliations and tangential toΔ, it

generates a foliation preserving flow so that on the MTT
(Δ), the following condition holds:

£tθðlÞ ¼ 0: ð1Þ

This equation implies that on the MTT, variation of the
expansion scalar θðlÞ along null normals are related:

£lθðlÞ ¼ C£nθl: ð2Þ

In terms of the parameter C, this is rewritten as
C ¼ ½£lθðlÞ=£nθðlÞ�. To determine the value of C, we
use the geometrical equations (B18) and (B19) of 3-surface
geometry given in the Appendix B. These equations imply
that on Δ, the quantity C, which determines the nature of
MTT is given by:

C ¼ Gμνlμlν

3ð2π2=AÞ2=3 − Gμνlμnν
; ð3Þ

where we have used the relation between area of the round
3-sphere A, and the scalar curvature: R ¼ 6ð2π2=AÞ2=3.
We shall also assume that the Einstein-Gauss-Bonnet field
equations Gμν ≡ Rμν − ð1=2ÞRgμν ¼ Tμν,

2 holds on Δ.

2We use the units of c ¼ 1 and 8πG ¼ 1, or equivalently, we
scale the components of the energy-momentum tensor by 8πG. In
case of the EGB theory too, we shall write the Einstein equations
in the similar manner, Gμν ¼ Tμν. In that case, Tμν shall imply a
sum of terms, due to matter variables Tμν and, due to extra
geometric variables arising out of the GB correction.
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The signature of C in Eq. (3) is a quantity of utmost
importance since it decides the nature and stability of
horizon [48,52], and, as may be observed from the above
equation, this value is regulated by the null components of
the energy- momentum tensor as well as area of the cross
sections of the MTT. However, in the following sections
where we shall treat a wide class of energy-momentum
tensors for collapse models of the LTB type, we shall
observe that details like the initial velocity profile, initial
density profile of the collapsing matter, and the dimension
of the spacetime play important role as well. Indeed, in
several cases, simple changes in the density profile alters
the nature and time of formation of the spacetime singu-
larity, and that of the MTT quite drastically. For example, in
4-dimensions, if the matter profile is smooth, the MTT
begins as a spacelike hypersurface from the center of the
cloud as soon as matter begins to fall, and asymptotes to
the null event horizons as infall of matter is discontinued.
Trapped surfaces in 4-dimensions are discussed in
[39,50,59–69]. However, in the 5-dimensional EGB theory,
even for the collapse of marginally bound matter with
density admitting a Gaussian distribution, the central
singularity forms earlier than the corresponding MTT.
This happens because the EGB equations allow the for-
mation of MTT only at the later shell coordinates, and
hence, the collapse of the first few shells leads to an
untrapped singularity.
In the following section, we shall discuss the EGB

equations of motion for the spherical collapse of matter
fields, and determine the requirements for formation of
trapped surfaces in the 5-dimensions.

A. The equations of motion

The action for the 5-dimensional EGB theory is given by

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ðRþ λLGBÞ þ Smatter; ð4Þ

where R is the Ricci scalar, g denotes determinant of the
metric gμν and, λ is coupling constant of the Gauss-Bonnet
term. The Gauss-Bonnet Lagrangian ðLGBÞ is given by

LGB ¼ R2 − 4RμνRμν þ RμνσδRμνσδ: ð5Þ

The action Eq. (4) leads to the following field equations

Gμν ≡ Rμν −
1

2
Rgμν ¼ Tμν − λHμν; ð6Þ

where the term Gμν is the usual Einstein tensor as in GR,
Tμν is the energy momentum tensor, and Hμν is the
contribution due to the Gauss-Bonnet term. In the above
equation (6), the term Hμν signifies the following

Hμν ¼ H0
μν −

1

2
gμνLGB

¼ 2½RRμν − 2RμλRλ
ν − 2RλσRμλνσ þ Rμ

λσδRν λσδ�

−
1

2
gμνLGB: ð7Þ

Note that Hμν may be considered as an effective energy
momentum tensor adding to the usual matter tensor.
Now, we consider a general spherically symmetric col-

lapsing cloud of fluid bounded by a spherical surface. In the
comoving coordinates, the line element of a 5 dimensional
spherically symmetric spacetime geometry can be written as

ds2 ¼ −e2αðr;tÞdt2 þ e2βðr;tÞdr2 þ Rðr; tÞ2½dθ2 þ sin2 θdϕ2

þ sin2 θ sin2 ϕdψ2�; ð8Þ

where αðr; tÞ, βðr; tÞ and Rðr; tÞ are metric functions to
be determined.3 Rðr; tÞ is radius of the collapsing matter
cloud whereas, θ, ϕ, ψ are the angular coordinates of that
3-sphere. The energy momentum tensor for the fluid is taken
to be

Tμν ¼ ðpt þ ρÞuμuν þ ptgμν þ ðpr − ptÞXμXν ð9Þ

where ρðr; tÞ is density, whereas prðr; tÞ and ptðr; tÞ are the
radial and tangential components of pressure. The uμ and Xμ

are unit timelike and spacelike vectors satisfying uμuμ ¼
−XμXμ ¼ −1 In the comoving co-ordinates the four velocity
and the unit spacelike vector of the fluid as uμ ¼ e−αð∂tÞμ
and Xμ ¼ e−βð∂rÞμ. In the above equation, we have kept the
form of the energy-momentum tensor quite general so as to
write the EGB field equations in some generality, which we
shall use in the Appendix A, to write the on-shell values of
geometric fields in terms of the matter variables. The
equation of motion for this metric in the EGB theory are
given by

ρðr; tÞ ¼ 3

2

F0ðr; tÞ
R3R0 ; ð10Þ

prðr; tÞ ¼ −
3

2

_Fðr; tÞ
R3 _R

; ð11Þ

_R0 ¼ _Rα0 þ R0 _β; ð12Þ

α0 ¼ 3R0

R
pt − pr

ρþ pr
−

p0
r

ρþ pr
; ð13Þ

Fðr; tÞ ¼ R2ð1 − GþHÞ þ 2λð1 − GþHÞ2; ð14Þ

3The symbol R is used to denote both Ricci scalar and the
radius of the matter configuration. We deliberately kept the same
symbol since they will not appear simultaneously to cause any
confusion.
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where the superscripts primes ( 0) and dots (·) represent partial
derivatives with respect to r and t respectively. The quantity
Rðr; tÞ is physical radius for matter configuration and Fðr; tÞ
is the Misner-Sharp mass function. The first and the second
equations, (10) and (11), are the G00 and the G11 equations.
The third is the R01 equation. The fourth equation is the
Bianchi identity∇μTμr ¼ 0, which for the pressureless matter
implies that the metric variable α0 ¼ 0. Equation (14), is the
equation for the mass function with the functionsHðr; tÞ and
Gðr; tÞ defined as H ¼ e−2α _R2 and G ¼ e−2βR02.
Several points are to be noted regarding the above-

mentioned equations of motion. First, the relation between
the matter variables and the geometric variables in the
above Eqs. (8)–(14) are modified in comparison to the
4-dimensional Einstein theory. The changes in the numeri-
cal factors are due to dimensionality of the spacetime as
well as due to change in the theory itself, see for example
Eq. (14), where the mass function Fðt; rÞ is modified by the
EGB coupling constant.
Second, the number of independent equations are five in

number. The unknown functions in this problem are the
three metric variables αðt; rÞ, βðt; rÞ, Rðt; rÞ, three matter
variables prðr; tÞ, ptðt; rÞ, ρðt; rÞ, and the mass-function
Fðt; rÞ. This combination allows two freely specifiable
functions. Since the equations give dynamical evolution of
the functions, it is natural to specify these functions at an
initial time t ¼ ti, and allow the Einstein equations to
evolve the dynamical functions. Since we shall be dealing
with pressureless (dust) collapse, it is useful to point out
that for dust collapse, pr and pt are taken to vanish at ti, and
this fixes the function αðt; rÞ ¼ αðtÞ. We shall show below
that this effectively implies α ¼ 0, since we can rescale the
time coordinate. The remaining freely specifiable functions
are the density ρðr; tiÞ, and βðr; tiÞ which, as we shall show
below, implies the specification of initial density and
velocity profiles of the collapsing matter. We shall also
assume that Rðr; tiÞ ¼ r. This requirement is consistent
with the regularity conditions discussed below. By choos-
ing different values of r at the initial surface gives the time
evolution of the various shells of matter.
Thirdly, few regularity conditions on the metric func-

tions must also be enforced during the collapse process.
The positivity and regularity of the density ρðt; rÞ, and
Eq. (10) imply that the mass function Fðt; rÞmust smoothly
vanish at the center of the matter configuration at r ¼ 0.
The condition Rðt; rÞ ¼ 0 is the genuine spacetime singu-
larity where the density and the curvature scalars blow up.
Note that the density also blows up for R0 ¼ 0, although
this is not a genuine spacetime singularity and can be
removed. This condition in fact implies shell-crossings,
when shells of fixed r cross each other. The sufficient
condition which guarantees no shell-crossing is R0 > 0,
which ensures that shells maintain their ordering. Note that
Rðr; tiÞ ¼ r, and any other index on r leads either to shell-
crossing or affects differentiability of metric functions at

center of the matter configuration. An important require-
ment for gravitational collapse is to require _Rðr; tÞ < 0.
Finally, we shall ensure in our study that no trapped surface
is present at the initial data, by checking that the value of r
at the initial surface is greater than the condition of
formation of trapped surface at that coordinate.
Now, with the metric given in Eq. (8), the outgoing and

the incoming null normals to the 3-sphere are given by:

lμ ¼ e−αðr;tÞð∂tÞμ þ e−βðt;rÞð∂rÞμ ð15Þ
nμ ¼ð1=2Þe−αðr;tÞð∂tÞμ − ð1=2Þe−βðt;rÞð∂rÞμ: ð16Þ

This leads to the following expressions for the expansion
scalars:

θðlÞ ¼
3

Rðr; tÞ ½
_R expð−αÞ þ R0 expð−βÞ�

¼ 3

Rðr; tÞ ½
_Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrÞ

p
�; ð17Þ

θðnÞ ¼
3

Rðr; tÞ ½
_R expð−αÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrÞ

p
�; ð18Þ

where we have used the relation R0 ¼ eβðr;tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrÞp

.
This relation is obtained as follows: For the case of
pressureless matter, Eq. (13) gives α0 ¼ 0 which along
with Eq. (12) implies:

Gðt; rÞ ¼ e−2βðr;tÞR02 ≡ EðrÞ≡ 1 − kðrÞ; ð19Þ

where kðrÞ, EðrÞ are the integration functions. From the
Eq. (14), the equation of motion of collapsing configuration
gives the following expression for _Rðt; rÞ:

_Rðr;tÞ¼−eαðt;rÞ
h
ð1=4λÞ

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4þ8λFðr;tÞ

q
−R2

o
−kðrÞ

i1=2
;

ð20Þ
where we have used the −ve sign, as required for
gravitational collapse. It follows from this Eq. (20), and
the equation (17) that the condition for θðlÞ ¼ 0 requires:

RMðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; tÞ − 2λ

p
; ð21Þ

which at the same time is also the condition for θðnÞ < 0.
Thus, for the spacetimes we are studying, all the three spheres
which satisfy Eq. (21) are marginally trapped spheres.
As discussed earlier following Eq. (3), the dynamics of

the marginally trapped surfaces (whether they are timelike,
spacelike or null), depends upon sign of the parameter C.
On the MTT, it is given by

C ¼ Tμνlμlν − λHμνlμlν

3=Rðr; tÞ2 − Tμνlμnν þ λHμνlμnν
; ð22Þ
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where Eq. (3) and Eq. (6) have been used. Now, the task is
to write down all the components in Tμν as well as inHμν in
terms of the matter variables. The expression for Tμν is
already given in Eq. (9). The details of the calculation for
Hμν is carried out in the Appendix A. The quantityHμνlμlν

in Eq. (22) is given by:

Hμνlμlν¼2

�
6FðρþprÞ

F2
þ2p2

t −4prpt−
2

3
ptðρþprÞ

�
;

ð23Þ
Similarly, the expressions for Hμνlμnν involves two terms,
which are given by:

H0
μνlμnν ¼ 2

�
4pt

�
pt þ

2

9
ρ −

4

3
pr

�

−
2

F2
f6Fpt þ ðF þ 4λÞðρ − prÞg

− 6

�
pt þ

2

3
ðρ − prÞ −

3F
F2

�
2

þ 16

9
ðρ2 þ p2

rÞ − 72
λ2

F4

�
: ð24Þ

The term involving the LGB gives the following expression
in terms of the matter variables:

LGB ¼
�
2

3
ðρ− prÞ − 2pt

�
2

þ 18

�
F2 þ 32λ2

F4

�

þ 6

�
pt þ

2

3
ðρ− prÞ−

3F
F2

�
2

−
12

9
ðρ− prÞ2

− 4

�
2

3
ðρþ prÞ þ pt

�
2

− 4

�
2

3
ðρþ prÞ− pt

�
2

: ð25Þ

Using these expressions in Eq. (22), we shall understand the
evolution of spherical MTTs for various collapse scenarios.

III. GRAVITATIONAL COLLAPSE FOR
PRESSURELESS MATTER

Let us use the equations derived above to understand the
dynamics of collapse process for pressureless matter
configuration. In the absence of pressure, the EGB
Eq. (11) implies that F ¼ FðrÞ, whereas Eq. (13) gives
α0 ¼ 0. The metric function αðt; rÞ is a function of t only.
This allows the rescaling of the time coordinate so that
effectively αðt; rÞ ¼ 0. The metric function βðt; rÞ follows
from Eq. (19). This two solutions implies that the metric is
given by:

ds2 ¼ −dt2 þ R02

1 − kðrÞ dr
2 þ Rðr; tÞ2dΩ3; ð26Þ

where dΩ3 is the metric of an unit round 3-sphere, and
Rðt; rÞ is obtained from the Eq. (14), which gives the
equation of motion of the collapsing matter configuration in
5D-EGB theory:

_R2ðr; tÞ ¼ −kðrÞ − R2

4λ
þ R2

4λ

�
1þ 8λF

R4

�
1=2

; ð27Þ

where we have used Eq. (19). The function kðrÞ can take
either signatures or zero. The situation where kðrÞ remains
vanishing during the collapse process is called a marginally
bound collapse, whereas the one in which kðrÞ admits a
positive signature is called a bounded collapse. We shall
deal with these two cases only. The behavior for unbounded
gravitational collapse in EGB theory is similar and shall not
be carried out here.
Now, one has to ensure that this metric existing inside the

collapsing matter cloud must be matched to an exterior
static spherically symmetric metric. Such a metric is
already well known as the Boulware-Deser-Wheeler sol-
ution [25,31–33]. We shall always ensure that metric of the
collapsing matter cloud remains matched to an external
Boulware- Deser- Wheeler solution of mass M, across a
timelike hypersurface rb. As we show in the Appendix C,
such a matching leads to the condition that FðrbÞ ¼ M.
In the following, we shall consider a wide variety of density

profiles for matter fields and note the formation of singularity
and spherically symmetric trapped surfaces and horizons.

A. Marginally bound collapse

For the marginally bound collapse, we have k ¼ 0. From
the Eqs. (14) and (27), the equation of motion is

_R2ðr; tÞ ¼ −
R2

4λ
þ R2

4λ

�
1þ 8λF

R4

�
1=2

: ð28Þ

Using some simple substitutions and algebra we get the
equation for matter shells corresponding to values of Rðr; tÞ
(see also [11])

tsh ¼ ts −
�

λR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − 8λF

p
− R2

�
1=2

−
ffiffiffi
λ

p

2
ffiffiffi
2

p tan−1
�

3R2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − 8λF

p

2
ffiffiffi
2

p f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − 8λF

p
− R2g1=2

�
; ð29Þ

where ts is the time of the formation of singularity, and is
given by:

ts ¼
ffiffiffi
λ

p

2
ffiffiffi
2

p tan−1
�

3r2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 8λF

p

2
ffiffiffi
2

p f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 8λF

p
− r2g1=2

�

þ
�

λr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − 8λF

p
− r2

�
1=2

: ð30Þ
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The expression of the time for shells reach the Boulware-Deser-Wheeler horizon or the MTT, obtained for Rðr; tÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; tÞ − 2λ

p
is given by tMTT:

tMTT ¼ ts −
�

λðF − 2λÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF − 2λÞ2 − 8λF

p
− ðF − 2λÞ

�
1=2

−
ffiffiffi
λ

p

2
ffiffiffi
2

p tan−1
�

3ðF − 2λÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF − 2λÞ2 − 8λF

p
2

ffiffiffi
2

p f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF − 2λÞ2 − 8λF

p
− ðF − 2λÞg1=2

�
: ð31Þ

Given these expressions we now proceeds to understand the
nature of MTTs for some realistic mass profiles.

1. Examples

(1) Let us first consider a collapsing matter profile
which admits a variation in the density distri-
bution according to the choice of two parameters
ς and r0. The density distribution is of the following
form:

ρðrÞ ¼ m0EðςÞ
r40

�
1 − Erf

�
ς

�
r
r0

− 1

���
; ð32Þ

where m0 ¼ mðr → ∞Þ is the total mass of the
cloud, r0 is the label on the matter shell coordinate
where the variation of the density with the radial
coordinate is largest, i.e., −ðdρ=drÞ is highest. We
shall choose the value of r0 ¼ 2. The parameter ς in
Eq. (32) controls the variation of density function. A
similar density profile was also studied for LTB
models in 4-d GR [39,40]. As seen from the plot in
Fig. 1(a), a larger value of ς implies a step-function-
type distribution of the density, whereas, for a lower
value of ς, the density varies slowly with r. So, ς is a
control parameter for approach toward the OSD
model—the larger the value of ς, the closer is the
density to isotropy, and smaller values of ς implies
inhomogeneities. The function EðσÞ has the follow-
ing form:

EðςÞ ¼ 3ς3½2πςð2ς2 þ 3Þð1þ ErfςÞ
þ 4

ffiffiffi
π

p
expð−ςÞð1þ ς2Þ�−1; ð33Þ

and Erf is the usual error function. We consider the
cases where ς ¼ 5 and 15. The graphs are given in
Fig. 1. From Fig. 1(d), we note that as shells begin to
collapse, the MTT begins to form, and grows with
the fall of the shells, until the growth stops when all
the shells up to r ¼ 2 has fallen in. This happens
since the matter density is almost zero after r ¼ 2.
After all the matter goes in, the MTT becomes null,
as seen by the straight line in Fig. 1(d). The MTT
becomes null at R ¼ 0.89 since the total mass of the
cloud is unity, and hence for λ ¼ 0.1, the MTT is

obtained from Eq. (21) to be
ffiffiffiffiffiffiffi
0.8

p ¼ 0.894. In this
region, the MTT has reached the IH phase.
Two further points need to be noticed. First, for

ς ¼ 5, the MTT are spacelike. This may be seen
from the values of C in Fig. 1(b). However, if we
look at the Rðr; tÞ − t graph in Fig. 1(d), it seems
that the MTT may have become timelike in certain
regions. This apparent contradiction was also noted
earlier in [39,48] and happens due to nontrivial
ways in which the MTT crosses the chosen folia-
tions. For ς ¼ 15, the MTT is surely timelike, as
may be noted from Figs. 1(c) and 1(e). The MTT
begins to form earlier at r ¼ 1.7 at t ¼ 1.8 and then
begins to grow on either side to match with the
MTT at the center R ¼ 0, and also toward the IH at
R ¼ 0.89. This possibly points toward an unstable
MTT, as was pointed out in the case of GR in
[39,40,48].
Secondly, as can be noted from the graph in

Fig. 1(e), all the shells, denoted by the blue lines
reach the singularity at R ¼ 0 at the same time,
which is a distinctive feature of the OSD process.
As the value of ς is lowered, the example of
Fig. 1(d) shows that the shells begin to deviate
marginally from this feature since the deviation in
the density profile remains small. This also points
to the fact that this collapse process is similar to
that in GR, at least in this particular case of
isotropic collapse.

(2) For the next example, we take the mass density to
have following form [11,40]:

ρðrÞ ¼ m0½1 − ðr=r0Þ�Θð100 − rÞ ð34Þ

where ΘðxÞ denotes the Heaviside theta function,
and r0 ¼ 100m0. The graphs of ρ,C and Rðr; tÞ-t are
given in the Figs. 2(a), 2(b), and 2(c) respectively.
Note that the MTT begin around t ¼ 2900 when the
shell at r ¼ 50 has already fallen in. After this
growth, it remains a dynamical horizon throughout
and becomes an isolated horizon only when the
matter shells stops falling at r ¼ 100 and all the
matter has collapsed. This behavior in the R − t
plot is reflected in the graph of C quite faithfully.
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Indeed, the signature of C indicates that MTT is
spacelike, beginning at r ¼ 50 and continues until
the shell at r ¼ 100 falls, after which it becomes
null.
Note however that MTT does not begin to form

immediately, but only after some shells have fallen
in. This is because of a simple reason but leads to
some important consequences, and is discussed
below: The MTT forms only when the condition
in Eq. (21) is satisfied. Indeed, for the early shells,
the value of FðrÞ for these shells, i.e., the amount of
matter contained inside the sphere of radius r at the
initial time, is smaller than the value of λ, which here
is taken to be 0.1. For that reason, RMðr; tÞ does not
admit real values. It is only after sufficient number
of shells have fallen in, that condition of trapped
surface can be evaluated to obtain a real value. Until
that time, the central singularity remains naked for a
trapped surface. Our study reveals this feature in a
direct manner since we have been able to probe each
and every matter shells quite elaborately.

(3) Let us now consider a Gaussian density profile with
the density given by the following form:

ρðrÞ ¼ 3m0

r40
expð−r2=r20Þ; ð35Þ

wherem0 is the total mass of the matter cloud, r0 is a
parameter which indicates the distance where the
density of the cloud decreases to ½ρð0Þ=e�. In our
example, we have chosen r0 ¼ 100m0 and the EGB
coupling constant λ ¼ 0.1. Note that the MTT
begins only after the shell at r ¼ 90 has fallen in.
As explained in the previous subsection, this is a
direct consequence of the relation Eq. (21). The
MTT in Figs. 3(b) and 3(c) clearly shows that the
MTT is spacelike, and attains the IH phase when
the shells at r ¼ 300 has fallen in.

(4) Let us consider a density profile given by the
following form for r ∈ ½0; πr0�:

ρðrÞ¼ðγ=r20Þ½π−ðr=5r0Þf3þ2cos2ð5r=r0Þg� ð36Þ

where γ is a dimensionless constant. This example
constitutes a situation where the MTTs are a series
of timelike membranes interspaced with dynamical
horizons. A similar profile was used to study
gravitational collapse in 4d GR [39,40]. In our

(a)

(d) (e)

(b) (c)

FIG. 1. These figures give the gravitational collapse for the density profile of Eq. (32). For the plot we have used the EGB coupling
constant λ ¼ 0.1. (a) gives the density fall-off for two choices of the control parameter ς, (b) is the plot of the function C for ς ¼ 5. The
signature of C shows that the MTT in this case is spacelike. (c) is the plot of the function C for ς ¼ 15. The signature of C shows that the
MTT in this case is timelike. The figure (d) is Rðr; tÞ vs t graph for ς ¼ 5, (e) gives the time development of MTT for ς ¼ 15 along with
the collapse of each shell. In the R − t graphs, the shells are denoted by blue lines whereas the red lines are the MTT. The straight vertical
red lines in (d) and (e) represents the isolated horizon phase of the MTT and is reached when no more matter falls in.
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example, we have chosen r0 ¼ 1, γ ¼ 1=120, and
the EGB coupling constant λ ¼ 0.1. Note the pecu-
liar dynamics of the MTT from Fig. 4(c). The MTT
first forms for the shell at r ¼ 1.5, and then evolves
in a timelike manner to reach toward the MTT
formed after the shells at r ¼ 1.35 have fallen in.
Again note that during the initial period, the central
singularity is not covered by the MTT and remains
naked, as expected due to Eq. (21). During the
period the shells from r ¼ 1.7 to r ¼ 2.0 collapse,
the MTT is a dynamical horizon, as may also be
confirmed from the graph of C in Fig. 4(b). This
behavior is repeated until matter stops falling at
r ¼ 3.0, when the MTT reaches the equilibrium state
of an IH.

(5) Two shells falling consecutively on a black hole: Let
us assume that a black hole of mass M exists, upon
which a density profile of the following form falls:

ρðrÞ ¼ 12ðm0=r40Þ½ðr=r0Þ − ς�2
½2ð4þ ς2Þ þ ð9þ 2ς2Þ ffiffiffi

π
p

eς
2f1þ ςErfðςÞg�

× exp½ð2r=r0Þς − ðr=r0Þ2�;
ð37Þ

where m0 ¼ M=2, (M ¼ 1) is the mass of the shell,
2r0 is the width of each shell, and ς ¼ 10m0. The
graphs corresponding to this case is given in Eq. 5.
Note that these graphs constitute the case where two
mass profiles fall on a black hole one after the other.
The spacetime singularity already exists into which
these shells fall in. Note that as the first profile falls,
the MTT begins from the already existing horizon at
R ¼ 0.89 and develops until the shells correspond-
ing to r ¼ 23 to r ¼ 25 fall in carrying no mass with
them. At these times, the MTT reaches an equilib-
rium state, and becomes dynamical only after the
second mass profile begins to fall. So, the MTT
passes through multiple stages of dynamical hori-
zon, interspaced with isolated horizons when no
matter is infalling. This behavior is easily verifiable
from Figs. 5(b), and 5(c).

B. Bounded collapse

For bounded collapse, we again have α0 ¼ 0 and
Gðr; tÞ ¼ e−2βðr;tÞR02 ¼ 1 − kðrÞ ¼ EðrÞ, where EðrÞ is
the integration function. For this case k > 0, the equation
of motion is given by (27)

(a) (b)

(c)

FIG. 2. The graphs show the (a) density distribution ρ, for Eq. (34), (b) values of C, and (c) formation of MTT along with the shells.
For the plot we have used λ ¼ 0.1. Note that the MTT begins to form only after some shells have fallen in the singularity. This is a direct
consequence of the fact that Eq. (21) requires the mass function FðrÞ to exceed 2λ for a real valued RMðr; tÞ in the equation of MTS.
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_R2ðr; tÞ ¼ −kðrÞ − R2ðr; tÞ
4λ

þ R2ðr; tÞ
4λ

�
1þ 8λFðr; tÞ

R4ðr; tÞ
�
1=2

:

ð38Þ

This equation of motion (38) can be rewritten in the
following form:

dt ¼ −
2

ffiffiffi
λ

p
dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−R2 − 4λkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 8λF

pp ð39Þ

To integrate this equation of motion (39), we consider a
parametric choice of Rðr; tÞ of the following form:

x ¼ −R2ðr; tÞ − 4λkðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4ðr; tÞ þ 8λFðrÞ

q
: ð40Þ

A simple calculation of squaring both sides leads to the
following expression:

Rðr; tÞ ¼ 1ffiffiffi
2

p
�

8λF
ðxþ 4λkÞ − ðxþ 4λkÞ

�
1=2

: ð41Þ

Using this expression of Eq. (41), a simple calculation leads
to modification of (39):

dt ¼
ffiffiffi
λ

p ððxþ 4λkÞ2 þ 8λFÞdxffiffiffi
2

p ffiffiffi
x

p ðxþ 4λkÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λF − ðxþ 4λkÞ2

p : ð42Þ

The integration of the above equation gives the equation of
the collapsing shell to be

tsh ¼ A1½ð8λF − 2
ffiffiffiffiffiffiffiffi
2λF

p
ðxþ 4λkÞÞ þ A2fð

ffiffiffiffiffiffi
2F

p
þ 2

ffiffiffi
λ

p
kÞEllipticE½N1; 2N2�

− ð
ffiffiffiffiffiffi
2F

p
− 2

ffiffiffi
λ

p
kÞEllipticF½N1; 2N2� − 2

ffiffiffi
λ

p
kEllipticPi½N2; N1; 2N2�g�

− ðA1Þ0½ð8λF − 2
ffiffiffiffiffiffiffiffi
2λF

p
ðx0 þ 4λkÞÞ þ ðA2Þ0fð

ffiffiffiffiffiffi
2F

p
þ 2

ffiffiffi
λ

p
kÞEllipticE½ðN1Þ0; 2N2�

− ð
ffiffiffiffiffiffi
2F

p
− 2

ffiffiffi
λ

p
kÞEllipticF½ðN1Þ0; 2N2� − 2

ffiffiffi
λ

p
kEllipticPi½N2; ðN1Þ0; 2N2�g�: ð43Þ

The equation for the spherical MTTs, are obtained for Rðr; tÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ − 2λ

p
and gives:

(a) (b)

(c)

FIG. 3. The graphs show the (a) density distribution for Eq. (35), (b) values of C, and (c) formation of MTT along with the shells. The
straight lines of MTT in (c), after the shell r ¼ 300, represents the isolated horizon phase.
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tMTT ¼ ðA1Þ2M½ð8λF − 2
ffiffiffiffiffiffiffiffi
2λF

p
ðx2m þ 4λkÞÞ þ ðA2Þ2Mfð

ffiffiffiffiffiffi
2F

p
þ 2

ffiffiffi
λ

p
kÞEllipticE½ðN1Þ2M; 2N2�

− ð
ffiffiffiffiffiffi
2F

p
− 2

ffiffiffi
λ

p
kÞEllipticF½ðN1Þ2M; 2N2� − 2

ffiffiffi
λ

p
kEllipticPi½N2; ðN1Þ2M; 2N2�g�

− ðA1Þ0½ð8λF − 2
ffiffiffiffiffiffiffiffi
2λF

p
ðx0 þ 4λkÞÞ þ ðA2Þ0fð

ffiffiffiffiffiffi
2F

p
þ 2

ffiffiffi
λ

p
kÞEllipticE½ðN1Þ0; 2N2�

− ð
ffiffiffiffiffiffi
2F

p
− 2

ffiffiffi
λ

p
kÞEllipticF½ðN1Þ0; 2N2� − 2

ffiffiffi
λ

p
kEllipticPi½N2; ðN1Þ0; 2N2�g�; ð44Þ

where the coefficients A1, A2, and the argumentsN1,N2 are
given by:

A1 ¼
ffiffiffi
x

p

kðxþ 4λkÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8λF − ðxþ 4λkÞ2

p ;

A2 ¼
ð25λ2FÞ1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ 4λk
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−8λF þ ðxþ 4λkÞ2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ffiffiffiffiffiffi
2F

p þ 2
ffiffiffi
λ

p
k

p
N1 ¼ sin−1

� ð ffiffiffiffiffiffi
2F

p þ 2
ffiffiffi
λ

p
kÞðxþ 4λkÞ

2λkf2 ffiffiffiffiffiffiffiffi
2λF

p þ ðxþ 4λkÞg

�1=2
;

N2 ¼
2

ffiffiffi
λ

p
kffiffiffiffiffiffi

2F
p þ 2

ffiffiffi
λ

p
k
:

The tMTT terms with subscript 0 and 2M represents its
value at the initial shells at r ¼ r0 and at the formation of

MTTwith RM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F − 2λ

p
. For example, x ¼ −R2 − 4λkþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4 þ 8λF
p

, whereas, its value at 0 represents x0 ¼
−r2 − 4λkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 8λF

p
. The EllipticF[ϕ; z] represents an

incomplete elliptic integral of the first kind, EllipticE[ϕ; z]
is elliptic integral of the second kind, whereas EllipticPi
[y;ϕ; z] is an elliptic integral of the third kind [70].
In the following we shall take several examples to show

how a MTT develops during the bounded gravitational
collapse in EGB theory.

1. Examples

(1) Let us consider a Gaussian profile with the density
given by Eq. (35). The form of the density is same as in
Fig. 3(a). In our example, we have chosen r0¼100m0.
The behavior of MTT is similar to that discussed for

(a) (b)

(c)

FIG. 4. The graphs show the (a) density distribution, (b) values of C, and (c) formation of MTTalong with the shells for the density in
Eq. (36).
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the marginally bound case, see Fig. 6. However, the
time of formation of MTT and the value of the C has
changed in comparison. Again note that the MTT
forms only after shells at r ¼ 90 collapse. Before that
shell falls in, the singularity remains naked. The time
of formation of MTT changes in comparison to the
marginally bound case of Fig. 3. The straight lines of

MTT in (b), after the shell r ¼ 300, represents the
isolated horizon phase.

(2) Let us consider a density profile given by the
following form:

ρðrÞ ¼ ðm0=8πr40Þ expð−r=r0Þ; ð45Þ

(a) (b)

(c)

FIG. 5. The graphs show the (a) the density profile from Eq. (37), (b) values of C, and (b) formation of MTT along with the shells
which fall consecutively on a black hole.

(a) (b)

FIG. 6. The graphs show the (a) values of C, and (b) formation of MTT along with the shells for the Gaussian distribution of Eq. (35).
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where m0 is the total mass of the matter cloud, r0 ¼
100m0 is a parameter which indicates the distance
where the density of the cloud decreases to ½ρð0Þ=e�.
The MTT begins after the shells at r ¼ 30 have
fallen into the singularity. The MTT remains space-
like through out its time evolution, and reaches an
equilibrium state only after the density reaches
negligible values. These conclusions are easily be
verified from the graphs in Fig. 7. Note again that the
MTT begins only after sufficient number of shells
have collapsed to the singularity in accordance to the
choice of λ ¼ 0.1 in Eq. (21).

(3) Two shells falling consecutively on a black hole: The
density is given by Eq. (37). The graphs correspond-
ing to this case is given in Fig. 8. Note that these
graphs have a similar behavior to those in Fig. 5,
except that the times for formation of MTTs have
changed.

(4) Let us again consider the density profile given by
Eq. (36), given in Fig. 4(a). The behavior is of the
MTTs and the shells, for the bounded collapse as
given in Fig. 9 is similar to the graphs in Fig. 4, with
the exception that the time of formation of MTTs,

and as well as those of the shells reaching the
singularity has changed.

Similar study may be carried out for more complicated
matter profiles and other matter sources. These studies can
be made using the techniques developed above.

IV. GRAVITATIONAL COLLAPSE FOR FLUIDS
ADMITTING TANGENTIAL PRESSURE

Let us now extend our study to matter fields which admit
pressure terms in energy momentum tensor, Eq. (9).
Timelike/null fluids satisfying linear equation of state are
the most simple examples of this kind. They have been
studied in GR to understand astrophysical black holes, but
they are yet to be analysed in the EGB theory. For
simplicity in obtain analytic expression, these studies have
been restricted to fluids having vanishing radial pressure,
but admitting dynamical tangential pressures satisfying an
equation of state. These tangential pressure models of
gravitational collapse have shown to lead to either a black
hole or a naked singularity depending on the fluid param-
eters [4,71]. For comparison with GR, we shall also
consider a similar model of fluids, where pr ¼ 0, and

(a) (b) (c)

FIG. 7. The graphs show the (a) values of C, and (b) formation of MTT along with the shells for the matter profile with exponentially
falling density distribution given in Eq. (45). The MTT is spacelike.

(a) (b)

FIG. 8. The graphs show the (a) values of C, and (b) formation of MTT along with the shells which fall consecutively on a black hole.
The value of C remains positive and large, and for that reason it is not plotted here. As a consequence MTT remains spacelike.
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the tangential pressure satisfy a linear equation of state,
pt ¼ kρ, where k is the equation of state parameter.
A look at the EGB equations in Eq. (11) show that, to

sustain a radial component of pressure throughout the
collapse, mass function needs dependence on time as well.
But since matter has no radial component of pressure,
Fðr; tÞ ¼ FðrÞ. The Bianchi identity, Eq. (13) with the
above choice gives, exp½αðt; rÞ� ¼ R3k. The Einstein equa-
tion Eq. (12) gives exp½βðt; rÞ� ¼ ½R0=

ffiffiffiffiffiffiffiffiffi
bðrÞp

R3k�, where
bðrÞ is a integration function. Thus, the metric describing
collapse of fluids admitting tangential pressure is given by:

ds2 ¼ −R6kðr; tÞdt2 þ Rðr; tÞ02
bðrÞR6k dr

2 þ R2ðt; rÞdΩ3: ð46Þ

Naturally, for pressureless collapse, when pt ¼ 0, this
metric reduces to Eq. (26). Again, we shall ensure that
metric of the collapsing fluid remains matched to an
external Boulware-Deser-Wheeler solution of mass M,
across a timelike hypersurface rb (see Appendix C).
Such a matching leads to the condition that FðrbÞ ¼ M,
and that the tangential pressure vanish on the boundary.
To study the collapse phenomena with the effects of

pressure terms, we follow method used earlier. The
equation for mass function Eq. (14) becomes,

Hðr; tÞ ¼ −½1 −Gðr; tÞ� þ 1

4λ

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 8λF

p
− R2

o
: ð47Þ

Using the expressions forGðr; tÞ andHðr; tÞ from Eq. (46),
allows us to obtain an equation for dt:

dt ¼ −
R3kdR

½−f1 − bðrÞR6kg þ ð1=4λÞf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 þ 8λF

p
− R2g�1=2

ð48Þ

Integration of this equation as in the previous section, leads
to time equation (tsh) for the shell to reach radius Rðr; tÞ,
the time for a shell to reach the singularity ts, and to reach
the MTT ðtMTTÞ. For a distribution of matter having
Gaussian distribution, and having equation of state param-
eter k ¼ 1=3 (radiation) and for k ¼ 1=6, these equations
lead to the following graph in Figs. 10(a), and 10(b) These
figures show that just like dust collapse, the situation for
fluids is similar. The initial shells do not form trapped
horizons, and the marginally trapped surface begins to form
only after the collapsed matter has mass ≥ 2λ.

V. DISCUSSIONS

This paper deals with the study of gravitational collapse
in EGB gravity in 5-dimensions. The Gauss-Bonnet modi-
fication of the Einstein gravity changes the geometry of the
spacetime, and the structure of the horizon and singularity
quite drastically. We developed techniques to analyse these
effects in the phenomena of gravitational collapse in this
theory. In this context, several questions arise naturally
regarding the process of the collapse phenomenon itself as
well as the outcome of gravitational collapse of matter. To
understand these details, we have, in this paper, developed
a set of analytical and numerical techniques to locate
spherical marginally trapped surfaces in the spacetime,
when the collapse is in progress. We locate these MTTs for
a large class of matter profiles and initial velocity profiles.
This study helps us to address several questions regarding
gravitational collapse in the EGB theory:

(i) Role of the GB term and the coupling constant λ:
The GB term introduces several changes in the
equation of motion of the gravitational field. The
most drastic is the change in the form of the mass
function Fðr; tÞ given in Eq. (14). In fact, this
equation shows that the GB term leads to quadratic
effects involving _Rðr; tÞ and R0ðr; tÞ. As a result of

(a) (b)

FIG. 9. The graphs show the (a) density distribution, (b) values of C, and (c) formation of MTT along with the shells for the bounded
collapse of the density profile discussed in Eq. (36). The MTT is quite complicated and goes through various modulations.
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this quadratic contribution of _R, the equation of
motion of the radius of the dust cloud is altered
significantly, see Eq. (20). Naturally, this change in
the equation of motion of the spherically symmetric
matter configuration implies that the collapsing
matter spheres will get trapped at different times.
A direct reflection of this fact is in the expressions
for the expansion of the outward and the inward null
normals θðlÞ and θðnÞ in Eqs. (15) and (16). It follows
as a direct result of (16) that the equation defining a
marginally trapped surface is dependent on the GB
coupling constant λ, see Eq. (21). The marginally
trapped surface (MTS) forms at RMðr; tÞ ¼
Fðr; tÞ1=2 in the 5-dimensional Einstein theory,
whereas it forms at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; tÞ − 2λ

p
in the EGB

theory. In this paper, we have kept the value of
λ ¼ 0.1, and so, the equation for MTS, Eq. (21)
implies that real values of RMðr; tÞ is only possible
only if sufficient number of shells have fallen in so
that the cloud if massive enough to overcome the
effect of the GB coupling constant λ. This effect on
the formation of a MTS and the MTT is directly
visible in the graphs in Fig. 2, Fig. 3 as well as in the
Fig. 6. The coupling constant results in the delay in
the formation of MTT, and as can be noticed from
these figures, begins to form quite later than the
formation of central singularity due collapsing
shells. This effect is not visible in Fig. 5, since
the system already has a spacetime singularity, and
so, this initial black hole horizon censors all the
singularities arising out of shell collapse.
It is also instructive to compare this same study of

MTTs for the Gaussian profile in Eq. (35) in the
5-dimensional Einstein theory. As expected, the
MTT begins just as the first shells start to collapse

and the MTT equilibriates at R ¼ 1, since the total
mass of the profile is unity, and the MTT is
RMðr; tÞ ¼ Fðr; tÞ1=2. This is given in Fig. 11. This
difference in the behavior of dust collapse between
GR and EGB, holds for tangential pressure fluid
models too. Here also, in comparison with graphs in
Fig. 10, the GR case has no generic nakedness of
central singularities.

(ii) Nature of the central singularity: Since many of
these configurations lead to shell collapsing naked
singularities due to gravitational collapse of the initial
shells, and that MTTs do not cover them, it becomes
essential to characterize them, and make a clear
classification. We have explicitly verified that, in
each of the cases where the central singularity is
naked initially, satisfy the following relation: The
weak cosmic censorship is violated for each of these
collapse processes until the mass function FðrÞ > 2λ
(see also [7]). The fact that the curvature strength of
the singularity is a weak is obtained as follows: Note
that the singularity is defined to be strong if
the spacetime volume contained within Jacobi
vector fields is reduced to zero at the singularity.
The singularity is weak otherwise. According to the
standard characterizations of singularities in 4-dimen-
sions [4], a sufficient condition for a strong singu-
larity is that at least one causal geodesic tμ, with affine
parameter v must satisfy the following condition:

lim
v→v0

ðv − v0Þ2Rμνtμtν > 0: ð49Þ

For our spacetime, and a radial timelike vec-
tor field, a simple calculation shows that
limv→v0ðv → v0Þ2Rμνtμtν ¼ 0. Here too, the role of

(a) (b)

FIG. 10. The graphs show the dynamics of shell collapse for (a) k ¼ 1=6, and (b) k ¼ 1=3, λ ¼ 0.1, and b ¼ ð1=4λÞ, These graphs
show that for fluids too, the initial shells reach the singularity a a time much earlier that trapped surfaces begin to form. The initial
singularity is naked, and becomes censored only after the mass contained inside the collapsed shell ≥2λ. The MTT forms with the
r ¼ 70th shell for k ¼ 1=6, whereas it forms with the 90th shell for k ¼ 1=3. Note also that the singularity formation time is greatly
advanced for radiation fluids.
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the Gauss-Bonnet coupling becomes crucial, and
plays an important role in weakening the singularity.
So, although the singularities are naked at the begin-
ning of the collapse process, the singularity is
harmless since they are weakly naked.

(iii) Do the results of this paper extend to higher
dimensions as well? Our main interest to look for
MTTs in 5-dimensions was because of the specific
form that MTT conditions θðlÞ ¼ 0, and θðnÞ < 0
takes in that dimension. For the dust collapse studied
in this paper, these conditions implied that, on the
foliations of MTT, the mass function FðrÞ must be
higher than twice the GB coupling constant λ. In
fact, as long as FðrÞ > 2λ, no MTT forms, and the
singularity remains naked unless more shells col-
lapse to the singularity and the value of FðrÞ
contained within that spherical shell is higher than
2λ. This behavior is discussed in great detail in the
paper, as well as in the previous paragraphs.
For higher dimensions, MTTs do not depend on

the EGB coupling λ. In fact, for dimensions higher
than 5, the MTT begins with collapse of the first
shell, and hence the only naked singularity for n ≥ 5

must be massless. In the following we present the
condition for formation of MTT for dimensions ≥5.
The equation of motion for a dust shell of radius
Rðr; tÞ in a n-dimensions spacetime is given by:

_R2¼−kðrÞ−R2

2λ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4ðn−4Þðn−3ÞλFðr;tÞ

Rn−1

r �
:

ð50Þ
We shall not be concerned with the positive branch
since no trapped surfaces exist in that parameter
space. In the negative branch, and for dust collapse
(as we have been dealing with in this paper), a
calculation similar to that in 5-dimensions gives the
radius for the spherical marginally trapped surface
for n ¼ 6 to be

RM ¼
h
ðF=2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF=2Þ2 þ ð2λÞ3

q i1=3
×

�
1 −

2λ

½F=2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF=2Þ2 þ ð2λÞ3

p
�2=3

�
ð51Þ

Quite naturally, due to this form, MTT in 6 dimen-
sions always forms along with the first matter shell

(a) (b)

(c)

FIG. 11. The graph show formation of MTTalong with the shells for marginally bound collapse of pressureless matter with a Gaussian
density profile of Eq. (35), in (a) 5-dimensional GR, (b) 6-dimensional EGB and, (c) 7-dimensional EGB theory, All central singularities
are censored.
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Fðr; tÞ ¼ 0. For 7 dimensions, the radius of the
spherical MTT is

RM ¼ ½−6λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ 36λ2

p
�1=2; ð52Þ

which again shows that the MTT begins at
Rðr; tÞ ¼ 0, when Fðr; tÞ ¼ 0. One can show even
more generally that, for the dust collapse in n
dimensions, all massive singularities for dimensions
n ≥ 6 are censored, while all naked singularities
must be massless. This implies that no future
directed outgoing geodesic can emerge from the
singularity [7]. In Fig. 11(b) and Fig. 11(c), we give
the Rðr; tÞ graphs for the dimensions 6 and 7
respectively, as an explicit solution.

(iv) Are MTT true black hole boundaries? The actual
extent of a black hole region is a matter of great
debate. Over the years, global as well as quasilocal
considerations have led to several formulations of
horizon. Out of them, event horizon and Killing
horizons have been quite useful in the study of black
holes. The quasilocal formulations based on trapped
surfaces, and in particular the definitions of trapping
horizons and MTTs [47,61] have also been exten-
sively used to prove classical and quantum laws of
black hole dynamics. Although, it must also be
pointed out that the formulation of MTT as a black
hole boundary may need modifications, in particular
in respect to the conditions on θðnÞ, they may be
quite useful for this purpose. However, the main
issue lies in locating the nonspherically symmetric
MTTs as well, and in the context of 4-dimensional
spacetimes, they are yet to be completely specified
[64–66]. Furthermore, for some spacetimes, the
black hole boundary is identical with the event
horizon [72,73]. Our study using spherical MTTs
in 5-dimensions show that they may indeed be used
as a boundary of a black hole region, although a
nonspherical MTTs and their location is equally
important to be understood in this context. We must
also point out that our study needs to be extended for

more general matter fields and geometries, so that
such questions may be included in our discussions.

To conclude, we have explicitly shown, with a wide
range of examples, that the nature of trapped surface, its
formation and time development, is intimately related to the
initial velocity and the initial density profile of the matter
fields. Additionally, due to the presence of the EGB
coupling constant λ, the formation of MTT gets delayed
further, depending on the amount of matter a particular
matter shell encloses within its boundaries. All these effects
have been conclusively demonstrated through the examples
considered in the main part of the paper. We must however
admit that a full understanding of these phenomenon of
gravitational collapse and the censorship conjecture shall
require the methods of nonspherical gravitational collapse.
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APPENDIX A: EXPRESSIONS FOR CURVATURE
USING MATTER VARIABLES

In the following, we collect the expressions of the
various curvature components for the metric (8). These
components have been used in the main part of the paper to
determine the evolution of MTT, and in determining the
signature of the MTT in Eq. (22). The quantities like the
Ricci scalar (Rs), Ricci tensors and the Riemann tensors in
terms of the energy density, radial and tangential pressure,
and mass function.
First, the Riemann tensors are obtained using the metric

functions and the matter variables:

Rθϕθϕ ¼ Fðr; tÞsin2θ; Rθψθψ ¼ sin2θRθϕθϕ; Rϕψϕψ ¼ sin2θsin2ϕRθϕθϕ;

Rtϕtϕ ¼ sin2θRtθtθ; Rtψtψ ¼ sin2θsin2ϕRtθtθ; Rtθrθ ¼ 0;

Rrϕrϕ ¼ sin2θRrθrθ; Rrψrψ ¼ sin2θsin2ϕRrθrθ;

Rtθtθ ¼ −ð1=2Þe2α R
_R

d
dt

�
Fðr; tÞ
R2ðr; tÞ − 1

�
;

Rrθrθ ¼ ð1=2Þe2β R
R0

d
dr

�
Fðt; rÞ
R2ðt; rÞ − 1

�
;

Rrtrt ¼ ½pt − ð2=3Þðρþ prÞ − ð3F=R4Þ�e2ðαþβÞ:

The Ricci tensors are obtained similarly using the metric in Eq. (8).
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Rtt ¼ ð−2ρ=3þ pr=3þ ptÞe2α; Rrr ¼ ð−ρ=3þ 2pr=3 − ptÞe2β;
Rθθ ¼ −ðR2=3Þðρþ prÞ; Rϕϕ ¼ sin2 θRθθ;

Rψψ ¼ sin2 θ sin2 ϕRθθ; Rrt ¼ 0:

The Ricci scalar is given by Rs ¼ −ð2=3Þðρþ prÞ − 2pt. Using these expressions, and the expressions for null normals in
Eqs. (15) and (16), it can be shown easily that:

Hμνlμlν ¼ 2

�
6Fðρþ prÞ

F2
þ 2p2

t − 4prpt −
2

3
ptðρþ prÞ

�
;

H0
μνlμnν ¼ 2

�
4pt

�
pt þ

2

9
ρ −

4

3
pr

�
−

2

F2
f6Fpt þ ðF þ 4λÞðρ − prÞg

− 6

�
pt þ

2

3
ðρ − prÞ −

3F
F2

�
2

þ 16

9
ðρ2 þ p2

rÞ − 72
λ2

F4

�
:

We can also similarly determine an expression for LGB in terms of matter variables and the mass function.

LGB ¼
�
2

3
ðρ − prÞ − 2pt

�
2

þ 18

�
F2 þ 32λ2

F4

�
þ 6

�
pt þ

2

3
ðρ − prÞ −

3F
F2

�
2

−
12

9
ðρ − prÞ2 − 4

�
2

3
ðρþ prÞ þ pt

�
2

− 4

�
2

3
ðρþ prÞ − pt

�
2

:

APPENDIX B: THREE- SURFACE GEOMETRY

The subspace in our problem is a three dimensional
sphere. To understand the geometry of this subspace, we
shall present a general formulation of subspaces. Let
ðM; gμν;∇μÞ be a 5-dimensional time- oriented spacetime
with a metric compatible covariant derivative ∇μgνλ ¼ 0.
Let us assume that S be a closed, orientable, spacelike
3- surface embedded in M. Let us denote the two future
pointing null vectors by lμ (outward pointing) and nμ

(inward pointing), such that l · n ¼ −1.
The induced metric hab on the 3- surface S is given by:

hab ¼ eμaeνbgμν; ðB1Þ

where eμa denotes the pullback map, and a; b;… indicate
indices on S. The functions eμa are orthogonal to lμ and nμ.
This implies that the pushforward of the inverse three-
metric hab is given by:

gμν ¼ eμaeνbhab − lμnν − lνnμ: ðB2Þ

The second quantities of importance are the extrinsic
curvatures. This is vector on the normal bundle NðSÞ of
S, and it has two components.

kðlÞab ¼ eμaeνb∇μlν; kðnÞab ¼ eμaeνb∇μnν; ðB3Þ

where the extrinsic curvature itself may be written as:

kμab ¼ kðnÞablμ þ kðlÞabnμ: ðB4Þ
The Riemann tensor on M and on S are given respecti-
vely by:

ð∇μ∇ν −∇ν∇μÞZλ ¼ RμνλσZσ ðB5Þ
ðDaDb −DbDaÞzc ¼ Rabcdzd; ðB6Þ

where D is the metric compatible derivative operator on S,
so that Dahbc ¼ 0. The Gauss equation for the spacetime
and submanifold gives the following equation:

eμaeνbeλceσdRμνλσ ¼Rabcd− fkðlÞackðnÞbdþ kðnÞackðlÞbdg
þfkðlÞadkðnÞbcþ kðnÞadkðlÞbcg; ðB7Þ

and the Codazzi equations may be written in the following
forms corresponding to each of the two normals:

eμaeνbeλclσRμνλσ ¼ ðDb − ωbÞkðlÞac − ðDa − ωaÞkðlÞbc
ðB8Þ

eμaeνbeλcnσRμνλσ ¼ðDb − ωbÞkðnÞac − ðDa − ωaÞkðnÞbc;
ðB9Þ

where ωa
←
≡ eμaωμ is the pullback of the connection on the

normal bundle N ðSÞ, and is defined using the equation for
the Shape operator to get: ωa

←
¼ −nσeλa∇λlσ.
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The variation of the submanifold S in the normal
direction Nμ ¼ Alμ − Bnμ where A and B are functions
on foliation, is given by the variation of the above-
mentioned spacetime variables. The variation in the
induced metric is:

∇Nhab ¼ 2AkðlÞab − 2BkðnÞab ðB10Þ

whereas, the variation of the area element
ffiffiffi
h

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det hab

p
is given by:

∇N

ffiffiffi
h

p
¼ð1=2Þ

ffiffiffi
h

p
hab∇Nhab¼ðAθðlÞ−BθðnÞÞ

ffiffiffi
h

p
: ðB11Þ

The extrinsic curvatures are written in terms of the
expansion scalar and the shear tensors of the two null
normals:

kðlÞab ¼
1

ðD − 2Þ θðlÞhab þ σðlÞðabÞ;

kðnÞab ¼
1

ðD − 2Þ θðnÞhab þ σðnÞðabÞ ðB12Þ

where the expansion scalar and the shear tensors are
defined as:

θðlÞ ¼ ∇μlμ − κðlÞ ðB13Þ

σðlÞab ¼
�
eμaeνb −

hab
ðD − 2Þ g

μν

�
∇μlν þ κðlÞhab; ðB14Þ

where κðlÞ ¼ −nνlμ∇μlν is the measure of affinity of the
null normal. These equations for the other null-normal nμ is
obtained by lμ ↔ nμ.
Let us now consider how the foliation is evolved along

Nμ. Since lμ and nμ are normal to S, their pullback on
S vanish. Thus, eμalμ ≡ la

←
¼ 0, and also the same is true

for na
←
. This foliation is assumed to be preserved in the

evolution under Nμ, so that ð£NlÞa
←
¼ 0, and ð£NnÞa

←
¼ 0 is

assumed to hold true. These equations imply that:

Nμ∇μla
←
¼ κðNÞla

←
− ðDa

←
− ωa

←
ÞB; ðB15Þ

Nμ∇μna
←
¼ −κðNÞna

←
þ ðDa

←
þ ωa

←
ÞB; ðB16Þ

where κðNÞ ¼ −nμNν∇νlμ is called the surface gravity
corresponding to the vector field Nμ. A direct calculation
leads to the following results on the variation of θðlÞ [51]

∇NθðlÞ− κNθðlÞ ¼−d2Bþ2ωμdμB−B½jωj2−dω

− ðR=2ÞþGμνlμnν−θðlÞθðnÞ�
−A½σ2ðlÞ þGμνlμlνþð1=2Þθ2ðlÞ�: ðB17Þ

Here,R is the scalar curvature of the round 3-sphere. Let us
now show that for spherical symmetry with spherical
foliation, the quantities A and B may be chosen to be
constants. Note that with foliations of t ¼ r ¼ constant, the
3-dimensional manifolds in Eq. (8) are round spherical.
Thus, at any given point on the foliation, the tangents vector
fields to the foliations ½∂θ; ∂ϕ; ∂ψ � are always orthogonal to
the normals vector fields ∂t and ∂r. Thus, any normal vector
at any point of the foliation shall then be independent of
the angular coordinates. This implies that the diffeomor-
phisms generated by angle independent linear combination
of lμ and nμ shall map round spheres to round spheres. This
leads to the conclusion that the normal combination of
Alμ þ Bnμ, with A and B constants, can be preserved for
all times for this choice of foliation. Naturally, in spherical
symmetry, we can choose the constants A, and B judi-
ciously to extract the values of lμ and nμ. To find the
parameter C in Eq. (3), let us use the choice A ¼ 1, and
B ¼ 0 in the Eq. (B17). For this choice, Nμ ¼ lμ. This
implies that, on the MTT, where θðlÞ ¼ 0, the normal
derivative of the expansion is given by:

£lθðlÞ ¼ −Gμνlμlν: ðB18Þ

The shear σðlÞ vanishes due to spherical symmetry and
remains so since the foliations are always spherically
symmetric [44]. Again, on using A ¼ 0, and B ¼ −1 for
which Nμ ¼ nμ, Eq. (B17) on MTT gives,

£nθðlÞ ¼ −R=2þ Gμνlμnν: ðB19Þ
On spherical MTTs, the normal connection ω has con-
tributions from the normal directions only, and the tangen-
tial directions can be chosen to vanish [44]. Note that since
our spacetime and foliations, both are spherically sym-
metric, the choice of the lμ, and nμ vectors are unambigu-
ous. Hence, in the above Eq. (B17), the pull back of the
normal connection ω and its divergence vanish on
the spherical 3- sphere of MTT. These expressions in
Eqs. (B18) and (B19), along with the field equations in
Eq. (3) lead directly to the form of C in used in the paper.

APPENDIX C: MATCHING CONDITIONS AT
SHELL BOUNDARY

In the following, we present the junction condition of a
LTB metric, formed due to collapse of a spherically
symmetric matter configuration, with the spherically sym-
metric metric due to a body of mass M. The interior LTB
metric of the spacetime M− is given by Eq. (26):

ds2− ¼ −dt2 þ R02

1 − kðrÞ dr
2 þ Rðr; tÞ2dΩ3; ðC1Þ

where dΩ3 is the metric of an unit round 3-sphere, and
Rðt; rÞ is obtained from the Eq. (14). The metric of the
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external spacetime Mþ is the Boulware-Deser-Wheeler
solution [25,31–33], which for 5-dimensions is given by:

ds2þ ¼ −FðR̄ÞdT2 þ FðR̄Þ−1dR̄2 þ R̄2dΩ3; ðC2Þ

where T and R̄ are the time and radial coordinates in Mþ,
and the metric function FðR̄Þ is

FðR̄Þ ¼ 1þ R̄2

4λ

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λM

R̄4

r �
ðC3Þ

gives the external vacuum solution for a spherical body of
mass M when the −ve sign is chosen.
The matching is to be carried out at the timelike

hypersurface Σ given by rb. Let us denote the coordinates
on this surface Σ to be ðτ; θ;ϕ;ψÞ. FromM−, we can write
down the surface Σ as f−ðr; tÞ ¼ r − rb ¼ 0, and hence, the
induced metric on Σ is

ds2− ¼ −dτ2 þ r2bdΩ3: ðC4Þ

From the point of view of the exterior spacetime, the
hypersurface may be described by r ¼ R̄ΣðτÞ and
t ¼ TΣðτÞ, with no change in the angular variables. The
line element of the hypersurface is then given by

ds2þ¼−½FðR̄ΣÞ _T2
Σ−FðR̄ΣÞ−1 _̄R2

Σ�dτ2þ R̄ΣðτÞ2dΩ3; ðC5Þ

where the dots imply derivative with respect to τ.
The induced metric in Eqs. (C4) and (C5) must have

matched metric functions. This implies that:

FðR̄ΣÞ _T2
Σ − FðR̄ΣÞ−1 _̄R2

Σ ¼ 1 ðC6Þ

Now, let uμ and nμ denote the velocity of the matter
variables and the normal to the Σ respectively. They must
satisfy the conditions uμuμ ¼ −1, nμnμ ¼ 1, whereas,
uμnμ ¼ 0. From the interior spacetime, the expressions
of these vectors is easily obtained:

uμ ¼ δμ0 ≡ ð∂τÞμ; nμ ¼
R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kðrÞp ðdrÞμ: ðC7Þ

From the exterior spacetime, these vectors are also obtained
similarly to give:

uμ ¼ _TΣð∂τÞμ þ _̄RΣð∂rÞμ; nμ ¼ − _̄RΣðdτÞμ þ _TΣðdrÞμ:
ðC8Þ

The extrinsic curvatures are easily determined from these
normals for the exterior as well the interior spacetimes:

K−
ττ ¼ 0; K−

θθ ¼ R̄Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrbÞ

p
ðC9Þ

Kþ
ττ ¼ _̄R

−1
Σ ½ _FðR̄ΣÞ _TΣ þ FðR̄ΣÞT̈Σ� Kþ

θθ ¼ R̄ΣFðR̄ΣÞ _TΣ:

ðC10Þ

The Kθθ equations imply the following relation:

dTΣ

dτ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðrbÞ

p
FðR̄ΣÞ

; ðC11Þ

whereas the Eq. (C6) gives the following equation for the
function R̄Σ:

dR̄Σ

dτ
¼ ½1 − kðrbÞ − FðR̄ΣÞ�1=2: ðC12Þ

This implies that the following relation hold good:

�
dR̄Σ

dτ

�
2

¼ −kðrbÞ þ
R̄2
Σ

4λ

�
1 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λM

R̄4
Σ

s �
: ðC13Þ

A simple comparison with Eq. (27) implies that the
condition M ¼ FðrbÞ must be satisfied at the boundary.
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