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We compute the graybody factor and evaporation rate of a rotating black hole in the presence of a
hypothetical reflective surface slightly outside the outer horizon radius, assuming that it spontaneously
emits thermal radiation due to quantum-gravitational effects such as firewalls or stretched horizons. As a
result of a resonance caused by a cavity between the reflective surface and angular momentum barrier, the
graybody factor is subject to a modulation in the frequency space. By taking into account this effect for
multiangular modes of neutrinos, photons, and gravitons, we numerically compute the time development of
the mass and angular momentum of the black hole, and show that the excited reflective surface shortens the
lifetime of quantum black holes.
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I. INTRODUCTION

Black holes are among the most mysterious objects in the
Universe, and their classical and quantum-mechanical
aspects have been actively investigated for several decades.
Although a classical black hole is a perfect absorber and
emits nothing out of the near-horizon region, an actual
black hole may induce vacuum polarization around the
horizon, which causes the emission of thermal Hawking
particles and leads to the evaporation of the black hole
[1,2]. Therefore, the lifetime of a black hole is determined
by the emission rate of Hawking radiation.
The spectrum or emission rate of Hawking radiation may

be sensitive to the near-horizon structure of a black hole.
Despite intense efforts to theoretically understand the
evaporation process of black holes, a high-precision probe
of the near-horizon region of a black hole has not been
achieved yet. Nevertheless, there is some tentative evidence
implying the possibility that the near-horizon structure
differs from the classical one due to quantum-gravitational
effects. One of the most topical issues is the tentative
evidence of gravitational wave (GW) echoes that may
appear at late times in the GW signal from the binary black
hole merger events. Searching for the GW echoes was
pioneered by Ref. [3], and many other searches for echoes
have been performed; however, depending on the method-
ologies used, they found positive, mixed, or negative
evidence [4–11]. If the GW echoes are indeed emitted
after ringdown from a remnant black hole, it might be a
footprint of quantum-gravitational effects at the near-
horizon region [12–19].
Recently, many theoretical models that may cause the

emission of the GW echoes have been proposed and

investigated from a theoretical point of view [12–32],
and the numerical relativity is also employed to compute
the waveform of the GW echoes [33]. In most models, a
reflective surface at the near-horizon region is involved.
The GW echoes are emitted due to the resonance between
the reflective surface and the angular momentum barrier.
The surface is usually characterized by two quantities: its
reflectivity and position of the boundary. As a simplified
model of the reflection, the reflectivity is assumed to be
constant with respect to the frequency of incoming waves.
As another model, the Boltzmann reflectivity, for which the
reflectivity is given by the Boltzmann factor with the
Hawking temperature, has been proposed [15,17,27], and
its significance on the GW signal has been investigated
[28–31,33,34].
In addition to the reflection of the incoming waves, the

reflective surface itselfmayormaynot emit thermal radiation
spontaneously as depicted in Fig. 1. In Refs. [35,36], it is
assumed that gravitational collapse leads to the formation of
an ultracompact object with a reflective surface, and the
particle creation around the object is studied there. In this
case, the collapse of the cold boundary eventually terminates,
and the thermal emission (particle creation) is quenched at
late times.1 On the other hand, the near-horizon structure of a

1Recently, particle emission induced by the formation of a
gravastar was investigated in Ref. [37]. In that paper, it was
reported that the emission of thermal radiation, whose temper-
ature approaches the Gibbons-Hawking temperature of the de
Sitter interior, could last much longer than the free-fall time of the
system. Although the radiation would terminate at very late times
even in that model [37], the transient thermal radiation may arise
due to the formation of a gravastar.
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quantum black hole could involve an energetically or
thermally excited surface due to quantum-gravitational
effects, e.g., a firewall [38], membrane [39], or stretched
horizon [40]. It may have its own degrees of freedom,
possibly leading to the Bekenstein-Hawking entropy
[38,40], and may spontaneously emit thermal particles,
unlike a cold boundary.
In this paper, we consider an evaporation model for a

rotating black hole where the (partially) reflective surface is
in excited states and spontaneously emits thermal radia-
tion.2 It amounts to a change of the boundary condition and
hence affects the graybody factor. We show that the
spontaneous emission of thermal radiation and the reso-
nance between the reflective surface and angular momen-
tum barrier shorten the lifetime of the black hole. This is an
interesting possibility that may lead to a totally different
evaporation process from the standard one in the context of
quantum gravitational phenomenology.
We first compute the graybody factor for a rotating black

hole by taking into account a resonance caused by the
cavity between the reflective surface and angular momen-
tum barrier. We then compute the mass-loss and spin-loss
rates with respect to the reflectivity and the position of the
reflective surface. Finally, we simulate the evaporation of
the black hole by taking into account multiple harmonic
modes for several species of emitted particles such as

neutrinos, photons, and gravitons.3 Our methodology is
based on the previous work that simulates the evaporation
of a spinning black hole [41]. The computation performed
in this paper employs the general Heun’s function, which
represents the exact solution for the perturbations of a
test field in the Kerr–de Sitter spacetime [42]. This analysis
has the advantage of avoiding the direct numerical inte-
gration of the Teukolsky [43], Sasaki-Nakamura [44], or
Chandrasekhar-Detweiler equation [45] by virtue of the
fact that the Teukolsky equations can be transformed to the
Heun’s differential equations [42]. It has been employed
in the computation of quasinormal modes [46,47], wave
scattering problem [48], and Hawking radiation [49,50]
without the reflective surface. Also, the regular singularities
of the general Heun’s function enable us to analytically
compute the graybody factors [51,52] at the cost of having
a small cosmological constant. In Appendix, we check that
the effect of the small cosmological constant we use in
our simulation is negligible. We use natural units, where
c ¼ ℏ ¼ G ¼ kB ¼ 1, throughout the paper.

II. EXACT SOLUTION

In this section, we briefly review the fact that the
Teukolsky equation for the Kerr–de Sitter solution can
be transformed to the form of the Heun’s differential
equations. The Heun’s differential equation, obtained from
the radial Teukolsky equation, has analytic solutions near
the regular singularities located at the black hole and
cosmological horizons. This is the case even for the angular
equation for which the regular singularities correspond to
the poles. Therefore, we can consider a scattering problem
in the Kerr–de Sitter background while keeping the
spheroidal harmonics regular by employing the analytic
solutions of the Heun’s differential equations.

A. Teukolsky equation

We consider the Kerr–de Sitter spacetime, whose metric
in Boyer-Lindquist coordinates is given by

ds2 ¼ −
Δ

ð1þ αÞ2ρ2 ðdt − asin2θdφÞ2

þ ρ2
�
dr2

Δ
þ dθ2

1þ αcos2θ

�
þ ð1þ αcos2θÞsin2θ

ð1þ αÞ2ρ2
× ½adt − ðr2 þ a2Þdφ�2; ð1Þ

where

FIG. 1. Three scenarios of the emission process out of a black
hole. Vacuum fluctuations interacting with collapsing matter near
the horizon lead to thermal radiation (left), which is the original
proposal by Hawking [1,2]. For an ultracompact object (middle),
there is no radiation at late times as the surface is static and there
is no squeezing of vacuum fluctuations [35,36]. We discuss a
situation where a black hole spontaneously emits thermal
radiation while its surface has a nonzero reflectivity as another
possibility (right).

2We do not expect that the surface has perfect reflectivity for
all frequencies as the surface would not be thermalized in that
case. Nevertheless, we consider a nearly perfect reflectivity as an
example later to estimate a lower bound on the lifetime of an
echoing black hole.

3Note that as an approximation, neutrinos are regarded as
massless spin-half particles in our computation. This is valid
when the Hawking temperature is higher than the neutrino mass
(for a relevant discussion, see, e.g., Ref. [41]). For the sake of
brevity, we call the massless spin-half particles “neutrinos.”
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α ¼ Λa2

3
; ρ2 ¼ r2 þ a2 cos2 θ; ð2Þ

ΔðrÞ ¼ ðr2 þ a2Þ
�
1 −

Λ
3
r2
�
− 2Mr

¼ −
Λ
3
ðr − r−Þðr − rþÞðr − r0þÞðr − r0−Þ: ð3Þ

Here, Λ is a cosmological constant,M is a mass parameter,
and a is a spin parameter. Throughout the present paper, we
assume Λ > 0 and focus on the case where ΔðrÞ ¼ 0 has
four distinct real roots, which are denoted by r�; r0� with
the ordering r0− < 0 ≤ r− < rþ < r0þ. This assumption is
necessary for the formulation in terms of the general Heun
functionHl. Here, r− is the Cauchy horizon, rþ is the event
horizon, r0þ is the cosmological horizon, and r0− ¼ −ðr− þ
rþ þ r0þÞ holds. For later convenience, we introduce the
tortoise coordinate r� defined by

dr� ¼ ð1þ αÞðr2 þ a2Þ
ΔðrÞ dr; ð4Þ

or

r� ¼ ln jr − rþj
2κðrþÞ

þ ln jr − r0þj
2κðr0þÞ

þ ln jr − r0−j
2κðr0−Þ

þ ln jr − r−j
2κðr−Þ

;

ð5Þ

where

κðrÞ ¼ Δ0ðrÞ
2ð1þ αÞðr2 þ a2Þ : ð6Þ

We focus on the evolution of spin-s massless test fields
on the Kerr–de Sitter background. Decomposing the master
variable as

ψ sðt; r; θ;φÞ ¼
Z

dω
2π

e−iωteimφRsðrÞSsðθÞ; ð7Þ

the evolution equation is separated out and takes the unified
form for the spin 0; 1

2
; 1; 3

2
; 2 given by [53]

�
d
dμ

ð1þ αμ2Þð1 − μ2Þ d
dμ

þ λ − sð1 − αÞ − 2αμ2

þ 4sμð1þ αÞ½mα − cð1þ αÞ�
1þ αμ2

−
ð1þ αÞ2½mþ sμ − ð1 − μ2Þc�2

ð1þ αμ2Þð1 − μ2Þ
�
SsðθÞ ¼ 0; ð8Þ

�
Δ−s d

dr
Δsþ1

d
dr

þ K̃2 − isK̃Δ0

Δ
þ 2isK̃0 −

2

3
Λr2ðsþ 1Þð2sþ 1Þ þ 2sð1 − αÞ − λ

�
RsðrÞ ¼ 0; ð9Þ

which are angular and radial Teukolsky equations, respectively. Here, λ is a separation constant, and

μ ¼ cos θ; c ¼ aω; K̃ðrÞ ¼ ð1þ αÞ½ωðr2 þ a2Þ − am�: ð10Þ

B. General Heun function

The angular and radial Teukolsky equations can be recast into the general Heun equation [53], which takes the form of

d2f
dζ2

þ
�
γ

ζ
þ δ

ζ − 1
þ ε

ζ − a

�
df
dζ

þ αβζ − q
ζðζ − 1Þðζ − aÞ f ¼ 0; ð11Þ

with the condition

γ þ δþ ε ¼ αþ β þ 1; a ≠ 0; 1: ð12Þ

We use the upright type for the parameters ða; q; α; β; γ; δ; εÞ for the Heun equation. The Heun equation has four regular
singular points at ζ ¼ 0; 1; a;∞, around which we can apply the Frobenius method to construct infinite power series
solutions. In particular, two local solutions at ζ ¼ 0 are given by

f01ðζÞ ¼ Hlða; q; α; β; γ; δ; ζÞ; ð13Þ

f02ðζÞ ¼ ζ1−γHlða; ðaδþ εÞð1 − γÞ þ q; αþ 1 − γ; β þ 1 − γ; 2 − γ; δ; ζÞ; ð14Þ
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whereas two local solutions at ζ ¼ 1 are given by

f11ðζÞ ¼ Hlð1 − a; αβ − q; α; β; δ; γ; 1 − ζÞ; ð15Þ

f12ðζÞ ¼ ð1 − ζÞ1−δHlð1 − a; ðð1 − aÞγ þ εÞð1 − δÞ þ αβ − q; αþ 1 − δ; β þ 1 − δ; 2 − δ; γ; 1 − ζÞ; ð16Þ

where Hlða; q; α; β; γ; δ; ζÞ is known as the local Heun function or general Heun function HeunG, which converges for
jζj < minð1; jajÞ. The asymptotic behavior of the local solutions (13)–(16) is governed by the characteristic exponents:

f01ðζÞ ¼ 1þOðζÞ; f02ðζÞ ¼ ζ1−δ½1þOðζÞ�; ðζ → 0Þ; ð17Þ

f11ðζÞ ¼ 1þOð1 − ζÞ; f12ðζÞ ¼ ð1 − ζÞ1−δ½1þOð1 − ζÞ�; ðζ → 1Þ: ð18Þ

Inside the overlapping region of the disks of convergence, both local solutions at ζ ¼ 0; 1 are related to each other via
linear combinations. Specifically, the local solutions at z ¼ 1 can be written in terms of the local solution at z ¼ 0 as

f11ðzÞ ¼ D11f01ðzÞ þD12f02ðzÞ; ð19Þ

f12ðzÞ ¼ D21f01ðzÞ þD22f02ðzÞ; ð20Þ

where the connection coefficients are given by

D11 ¼
Wζ½f11; f02�
Wζ½f01; f02�

; D12 ¼
Wζ½f11; f01�
Wζ½f02; f01�

; D21 ¼
Wζ½f12; f02�
Wζ½f01; f02�

; D22 ¼
Wζ½f12; f01�
Wζ½f02; f01�

; ð21Þ

and Wζ½u; v� ¼ u dv
dζ −

du
dζ v is the Wronskian with differentiation with respect to ζ.

C. Angular solution

We are now ready to rewrite the angular function as

SsðθÞ ¼ xA1ðx − 1ÞA2ðx − xaÞA3ðx − x∞ÞwsðxÞ; ð22Þ

where

x ¼ ð1 − i=
ffiffiffi
α

p Þðμþ 1Þ
2ðμ − i=

ffiffiffi
α

p Þ ; x∞ ¼ 1 − i=
ffiffiffi
α

p
2

; xa ¼ −
ð1 − i=

ffiffiffi
α

p Þ2
4i=

ffiffiffi
α

p ; ð23Þ

A1 ¼
m − s
2

; A2 ¼ −
mþ s
2

; A3 ¼
1

2

�
sþ i

�
1þ αffiffiffi

α
p c −m

ffiffiffi
α

p ��
; A4 ¼

1

2

�
s − i

�
1þ αffiffiffi

α
p c −m

ffiffiffi
α

p ��
; ð24Þ

and then wsðxÞ obeys the general Heun equation (11) with

ζ ¼ x; f ¼ ws; a ¼ xa; q ¼ iλ
4

ffiffiffi
α

p þ 1

2
þ A1 þ

�
mþ 1

2

�
ðA3 − A4Þ;

α ¼ 1; β ¼ −2A4 þ 1; γ ¼ 2A1 þ 1; δ ¼ 2A2 þ 1; ε ¼ 2A3 þ 1: ð25Þ

The local solutions at x ¼ 0, 1 are given by w01;sðxÞ; w02;sðxÞ and w11;sðxÞ; w12;sðxÞ, corresponding to (13)–(16).
Given the asymptotic behaviors (17) and (18), for SsðθÞ to be regular at θ ¼ 0; π, we require the following linear

dependence of the exact solutions:

Wx½w0i;s; w1j;s� ¼ 0; i ¼
�
1 ðm − s ≥ 0Þ
2 ðm − s < 0Þ; j ¼

�
1 ðmþ s ≤ 0Þ
2 ðmþ s > 0Þ: ð26Þ
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This requirement determines the separation constant λ. Since the left-hand side of (26) involves λ in a nontrivial way, one
may use a root-finding algorithm to determine λ.

D. Radial solution

Similarly, we rewrite the radial function as

RsðrÞ ¼ zB1ðz − 1ÞB2ðz − zaÞB3ðz − z∞Þ2sþ1ysðzÞ ð27Þ

where

z ¼ r0þ − r−
r0þ − rþ

r − rþ
r − r−

; z∞ ¼ r0þ − r−
r0þ − rþ

; za ¼ z∞
r0− − rþ
r0− − r−

; ð28Þ

B1 ¼ BðrþÞ; B2 ¼ Bðr0þÞ; B3 ¼ Bðr0−Þ; B4 ¼ Bðr−Þ; ð29Þ

with

BðrÞ ¼ iK̃ðrÞ
Δ0ðrÞ ¼

i
2κðrÞ

�
ω −m

a
r2 þ a2

�
; ð30Þ

and then ysðzÞ obeys the general Heun equation (11) with

ζ ¼ x; f ¼ ys; a ¼ za;

q ¼ −
λ − 2sð1 − αÞ − Λ

3
ðsþ 1Þð2sþ 1Þðrþr− þ r0þr0−Þ

Λ
3
ðr− − r0−Þðrþ − r0þÞ

þ 2ið2sþ 1Þð1þ αÞ½ωðrþr− þ a2Þ − am�
Λ
3
ðr− − r0−Þðr− − rþÞðrþ − r0þÞ

;

α ¼ 2sþ 1; β ¼ −2B4 þ sþ 1; γ ¼ 2B1 þ sþ 1; δ ¼ 2B2 þ sþ 1; ε ¼ 2B3 þ sþ 1: ð31Þ

Again, the local solutions at z ¼ 0, 1 are given by y01;sðzÞ; y02;sðzÞ and y11;sðzÞ; y12;sðzÞ, in parallel to (13)–(16). The
corresponding radial solutions are denoted by R01;sðrÞ; R02;sðrÞ and R11;sðrÞ; R12;sðrÞ.
From the asymptotic behavior (17) and (18), we obtain

R01;sðrÞ ∝ ðr − rþÞ−s=2þθþ ; R02;sðrÞ ∝ ðr − rþÞ−s=2−θþ ; ðr → rþÞ; ð32Þ

R11;sðrÞ ∝ ðr − r0þÞ−s=2þθc ; R12;sðrÞ ∝ ðr − r0þÞ−s=2−θc ; ðr → r0þÞ; ð33Þ

where

θþ ¼ BðrþÞ þ
s
2
; θc ¼ Bðr0þÞ þ

s
2
: ð34Þ

By definitions (5) and (30), we see that ðr − rhÞ�θh ∼ e�iωr�

at the vicinity of the horizon r ∼ rh, which, respectively,
describes outgoing and ingoing waves in the tortoise
coordinates.

III. GRAYBODY FACTOR

In this section, we consider a scattering problem of a
Kerr–de Sitter black hole with a reflective surface located
slightly outside the outer horizon radius. We then compute
the graybody factor of the black hole.

A. Classical black hole

For the standard case, we define the “up” solution as a
purely outgoing wave at r → r0þ, i.e.,

Rup;sðrÞ→
�ðr−rþÞ−s=2þθþ −Rsðr−rþÞ−s=2−θþ ðr→ rþÞ
T sðr−r0þÞ−s=2þθc ðr→ r0þÞ:

ð35Þ

The coefficients Rs and T s amount to the reflection and
transmission coefficients of the angular momentum barrier
for the spin-s field, respectively. From the conservation of
Δsþ1Wr½Rup;s; Rdown;s�, where Rdown;sðrÞ ¼ Δ−sR�

up;−sðrÞ,
we obtain
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RsR�
−s þ F−1

s T sT �
−s ¼ 1; ð36Þ

where

Fs ¼
θþΔ0ðrþÞ
θcΔ0ðrcÞ

: ð37Þ

Thus, the graybody factor ΓðOÞ
slmðωÞ is defined as

ΓðOÞ
slm ≡ F−1

s T sT �
−s: ð38Þ

With the general Heun functions, we can write down
Rup;sðrÞ exactly. From the asymptotic behavior (32) and
(33) and the connection relation (19), we can identify

Rup;sðrÞ ¼
�
D11;sR01;sðrÞ þD12;sR02;sðrÞ ðr → rþÞ
R11;sðrÞ ðr → r0þÞ;

ð39Þ

up to an overall factor. Comparing the asymptotic form of
(39) with (35), and using (21), we can write down the
reflection and transmission coefficients as

Rs ¼
Wz½y11;s; y01;s�
Wz½y11;s; y02;s�

�
rþ − r−
z∞

�
2B1þs

; ð40Þ

T s ¼
Wz½y01;s; y02;s�
Wz½y11;s; y02;s�

�
z∞ − 1

z∞

�
2sþ1

�
rþ − r−
z∞

�
B1

×

�
z∞ðrþ − r−Þ
−ðr0þ − r−Þ2

�
B2

�
za − 1

za

�
B3

: ð41Þ

We then obtain the graybody factor (38) as

ΓðOÞ
slm¼F−1

s

�
z∞−1

z∞

�
2Wz½y01;s;y02;s�
Wz½y11;s;y02;s�

�
Wz½y01;−s;y02;−s�
Wz½y11;−s;y02;−s�

��
:

ð42Þ

B. Black hole with a reflective surface

In addition to the angular momentum barrier located at
r� ∼OðMÞ, we introduce a reflective surface of a black
hole, which we assume is located slightly outside the outer
horizon radius. Let r� ¼ r�w be the location of the reflective
surface in tortoise coordinates, and Rw;s be the reflection
coefficient of the reflective surface for the spin-s field.
Similarly to the standard case, we define the up solution
Rup;sðrÞ for the radial Teukolsky equation as a solution
satisfying a purely outgoing boundary condition at r ¼ r0þ.
Summing up the infinite scattering between the reflective
surface and the angular momentum barrier (see Fig. 2),
Rup;sðrÞ can be written in terms of the transmission and
reflection coefficients as

Rup;sðrÞ →
( 1

1−RsRw;s
½ðr − rþÞ−s=2þθþ −Rsðr − rþÞ−s=2−θþ� ðr�w ≤ r� ≪ −MÞ

T s
1−RsRw;s

ðr − r0þÞ−s=2þθc ðr� ≫ MÞ:
ð43Þ

The graybody factor ΓslmðωÞ is then given by

ΓslmðωÞ≡ F−1
s

T s

1 −RsRw;s

�
T −s

1 −R−sRw;−s

��
: ð44Þ

Note that the limitRw;s → 0 recovers the up mode (35) and
the graybody factor (38) without the reflective surface.
The reflectivity Rw;s at the reflective surface is modeled

by its absolute value ϵs and phase shift δ̃s. Also, the position
of the wall, r� ¼ r�w;s, determines the phase delay. Taking
into account these factors, we have

Rw;s ¼ ϵs exp ½−2ir�w;skH þ iδ̃s�; ð45Þ

where kH ≡ ω −mΩH with ΩH ≡ a=ðr2þ þ a2Þ. The factor
of −2ir�w;skH in (45) is the phase delay caused by the optical
path difference of the cavity between the reflective surface
at r� ¼ r�w;s and angular momentum barrier at r� ∼ 0. In
order for the graybody factor to be real, here we impose

RsRw;s ¼ R−sRw;−s: ð46Þ

In the Chandrasekhar-Detweiler variable, this condition
corresponds to merely requiring that the reflection coef-
ficient in energy is real [28]. Depending on the perturbation
variable we choose, the condition in (46) can be either
trivial or complicated. Then the graybody factor reduces to

ΓslmðωÞ ¼
ΓðOÞ
slm

1þjRsj2ϵ2s − 2jRsjϵs cos ½Θs− 2r�w;skH�
; ð47Þ

where Θs ≡ δs þ δ̃s and δs ≡ ArgðRsÞ. Again, we see that
if the black hole horizon is a perfect absorber (ϵs ¼ 0), the
graybody factor reduces to the original one. In the follow-
ing, we will omit the subscript s for the spin when it does
not cause ambiguity.
In the presence of the reflective surface with ϵ > 0, we

expect that a signature of the resonance in the region of
r�w ≤ r� ≲M shows up in the graybody factor. Indeed, as
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shown in Fig. 3, the graybody factor is subject to a high-
frequency modulation in the frequency space. As expected,
the amplitude of the modulation increases as ϵ increases.
The resonance frequency is determined by the distance
between the angular momentum barrier and the reflective
surface and hence depends on r�w. In Fig. 4, we see that the
density of resonant peaks in the frequency domain is

roughly proportional to jr�wj. This behavior is consistent
with the factor cos ½Θ − 2r�wðω −mΩHÞ� in (47).
The values of the parameters ϵ, r�w, and Θ are model

dependent, and there is no promising theoretical model to
fix them, at least at this moment. Therefore, in the next
section, we comprehensively explore possible parameter
regions to investigate the effect of the horizon reflectivity
on the black hole evaporation. Also, it is important to note
that the assumption of nearly perfect reflectivity may put an
upper constraint on the lifetime of an echoing black hole.

IV. EVAPORATION PROCESS OF AN ECHOING
BLACK HOLE

Here we numerically compute the time evolution of the
mass and angular momentum of a black hole with the
reflective surface. The near-horizon structure of the black
hole is assumed to be thermal and reflective due to quantum
gravitational effects. The reflective boundary condition
near the horizon leads to the resonance (echoes) as shown
in the previous section. In this section, we investigate how
the lifetime of the black hole emitting thermal radiation is
affected by the echo mechanism.
A technical caveat is that our procedure does not work

for the (asymptotically flat) Kerr background, for which the
master equation takes the form of the confluent Heun
equation, instead of the Heun equation for the Kerr–de
Sitter background. In this case, one needs to deal with the
connection problem between the solutions at the regular
singular point (black hole horizon) and the irregular
singular point (infinity), which is more complicated than
the case of the Heun equation. To circumvent this difficulty,
one can make use of the extrapolation of the results for a
small cosmological constant to predict high-precision
results for the Kerr background [46]. Nevertheless, to
clarify qualitative behaviors, we can still rely on the results
for the Kerr–de Sitter background with a small cosmo-
logical constant without extrapolation. Actually, with a
sufficiently small cosmological constant, numerical results
are quite stable unless one requires high numerical

FIG. 2. Schematic picture showing the resonance in the
cavity between the reflective surface and angular momentum
barrier. The reflective boundary condition modifies the graybody
factor.

FIG. 3. Graybody factor for various values of ϵ. Here we set other parameters as M ¼ 1=2, a=M ¼ 0.7, Λ ¼ 5 × 10−4,
ðs; l; mÞ ¼ ð2; 2; 2Þ, r�w ¼ −50, and Θ ¼ 0.
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precision. Thus, in the following, we present the results
with a small cosmological constant.4 In the Appendix, we
provide a consistency check that the small cosmological
constant does not affect our results, as well as a resolution
test for our numerical calculation.

A. Mass-loss and spin-loss rates

In this subsection, we show the dependence of the mass-
loss and spin-loss rates of a rotating black hole with the
reflective boundary condition controlled by the parameter
set ðϵ; r�w;ΘÞ. Here we assume that echoing black holes
emit thermal radiation that has the blackbody spectrum
with the Hawking temperature. Also, for simplicity, the
parameters characterizing the reflective surface are
assumed to be independent of the species of emitted
particles. The mass- and spin-loss rates are given by [41]

dM
dt

¼ −
X
slm

1

2π

Z
∞

0

dω
ωΓslmðω;ϵ; r�w;ΘÞ
ekH=TH − ð−1Þ2s ¼

X
slm

�
dM
dt

�
slm

;

ð48Þ

dJ
dt

¼ −
X
slm

1

2π

Z
∞

0

dω
mΓslmðω; ϵ; r�w;ΘÞ
ekH=TH − ð−1Þ2s ¼

X
slm

�
dJ
dt

�
slm

;

ð49Þ

where J ≡ aM is the magnitude of the angular momentum
for the Kerr black hole. Although the power spectrum
depends on the three parameters ðϵ; r�w;ΘÞ, the fluxes
dM=dt and dJ=dt are insensitive to the two parameters
r�w and Θ when jr�wj ≫ 1 as is shown in Figs. 5 and 6. In
those figures, we show the mass-loss and spin-loss rates
associated with ðs; l; mÞ ¼ ð2; 2; 2Þ. The reason why the
evaporation rate is insensitive to r�w and Θ for jr�wj ≫ 1 is
that the frequency integration involving the dense resonant
peaks of the graybody factor coarse grains the resonant fine
structure (see Fig. 4). Therefore, if the reflective surface is
sufficiently close to the outer horizon, the contribution of
the reflective surface to the evaporation process is solely
governed by the reflectivity parameter ϵ. In the following,
we consider such a case and fix the two parameters as
r�w ¼ −50 and Θ ¼ 0 without loss of generality.

B. Time evolution of an echoing black hole

We numerically investigate the time development of the
mass and angular momentum of an echoing black hole
whose mass-loss and spin-loss rates are controlled only by
the reflectivity parameter ϵ when jr�wj ≫ 1. The initial mass

FIG. 4. Graybody factor for various values of r�w, where M ¼ 1=2, a=M ¼ 0.7, Λ ¼ 5 × 10−4, ϵ ¼ 0.8, ðs; l; mÞ ¼ ð2; 2; 2Þ, and
Θ ¼ 0.

FIG. 5. The r�w dependence of the mass- and spin-loss rates for various values of Θ. The other parameters are set to M ¼ 1=2,
a=M ¼ 0.7, Λ ¼ 5 × 10−4, ϵ ¼ 0.8, and ðs; l; mÞ ¼ ð2; 2; 2Þ.

4A similar issue arises in the extremal case, for which the
Heun’s differential equation has an irregular singular point at the
black hole horizon. It makes the extension of our computation to
the extremal case difficult.
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and spin of the black hole are set toMo ≡Mðt ¼ 0Þ ¼ 1=2
and jðt ¼ 0Þ ¼ 0.9, where j≡ a=M is a dimensionless
spin parameter. The number of spin-s particle species
emitted from the black hole is labeled by ns. To follow
the development of z≡ − logðM=MoÞ with respect to
y≡ log j, as was performed in Ref. [41], we numerically
solve the following derivative equations with the 4th-order
Runge-Kutta method:

dz
dy

¼ f
g − 2f

; ð50Þ

dτ
dy

¼ e−3z

g − 2f
; ð51Þ

where

τ≡M−3
o t; ð52Þ

f ≡ −M3
dðlnMÞ

dt
; ð53Þ

g≡ −M3
dðln JÞ
dt

: ð54Þ

We assume that the spin parameter jðtÞ is a monotonic
function when solving the differential equations (50) and
(51) to predict the time development ofMðtÞ and JðtÞ. The
numerical computation is truncated at j ¼ 0.0009. For
j ≤ 0.0009, the time development of MðtÞ is computed
simply by solving (53) by approximating f as a constant. In
other words, we neglect the rotation effect in the evapo-
ration process for j ≤ 0.0009.
Figure 7 shows the time development of the total mass

and angular momentum of a black hole that emits only
gravitons, photons, and neutrinos, respectively. We take
into account dominant harmonic modes for each species:
ðl; mÞ ¼ ð2; 2Þ and (3,3) for gravitons, ðl; mÞ ¼ ð1; 1Þ and

FIG. 6. The r�w dependence of the mass- and spin-loss rates for various values of ϵ. The other parameters are set to M ¼ 1=2,
a=M ¼ 0.7, Λ ¼ 5 × 10−4, Θ ¼ 0, and ðs; l; mÞ ¼ ð2; 2; 2Þ.

FIG. 7. Time development of the mass and angular momentum of a black hole. The reflectivity is set to ϵ ¼ 0 (blue solid), 0.5 (green
dashed), and 0.99 (red dotted). The particle species are set to ðn2; n1; n1=2Þ ¼ ð1; 0; 0Þ (left), (0,1,0) (center), and (0,0,2) (right).
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(2,2) for photons, and ðl; mÞ ¼ ð1=2; 1=2Þ and ð3=2; 3=2Þ
for neutrinos. This shows that the lifetime of an echoing
black hole that spontaneously emits thermal radiation is
shortened by a factor of ∼2 for a nearly perfect reflectivity
ϵ ¼ 0.99. Note that to estimate a lower bound on the
lifetime of the evaporating black hole, here we consider a
nearly perfect reflectivity as an extreme situation, although
it is nontrivial if the thermalization of the reflective surface
and its nearly perfect reflectivity can be compatible. As the
evaporation proceeds and the angular momentum is
extracted by Hawking particles, the symmetry of the
background spacetime approaches the spherical symmetry,
and lower angular modes contribute to the dominant energy
flux of the Hawking radiation (see, e.g., Fig. 7 in [49]). As
such, the lower-spin fields mainly contribute to the emis-
sion of Hawking particles after the angular momentum of
the black hole is sufficiently extracted.
On the other hand, Figs. 8(a) and 8(b) show M ¼ MðτÞ

and J ¼ JðτÞ for a black hole that emits all particles with
ðn2; n1; n1=2Þ ¼ ð1; 1; 2Þ. Here we take a minimal combi-
nation of particle species: n2 ¼ 1 for gravitons, n1 ¼ 1 for
photons, and n1=2 ¼ 2 for electron neutrinos and muon
neutrinos. We also take into account the 2 degrees of
freedom of polarization or helicity for each species. While
the lifetime itself of the echoing black hole varies depend-
ing on how many particle species are taken into account for
the evaporation procedure, it is roughly reduced by several
factors for a nearly perfect reflectivity ϵ ¼ 0.99.

Let us consider the time evolution of the horizon area A,
which has the form

A ¼ 4πðr2þ þ a2Þ ¼ 2πMrþ: ð55Þ

In Fig. 8(c), one can see that the area monotonically
decreases for a nonextremal black hole5 with its small
reflectivity. On the other hand, the area initially increases
for a rapidly spinning black hole (j ∼ 0.9) with its nearly
perfect reflectivity. The instantaneous increment of the
horizon area may be caused by superradiance enhanced by
the reflective surface in the ergosphere. The amplified
superradiance leads to the sudden increase of rþ ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
þOðΛM3Þ as it is a monotonically decreasing

function with respect to the spin parameter a. In Ref. [49], it
was reported that a positive cosmological constant sup-
presses the maximum value of the superradiant amplifica-

tion, maxð−ΓðOÞ
slmÞ. Based on the result, the increase of the

horizon area at rapid rotations might be suppressed by a
positive cosmological constant. It is interesting to test the
expectation and to extend it to the case of a negative
cosmological constant, but this is not our focus here.

FIG. 8. (a) Mass and (b) angular momentum of a black hole with the same parameter set as in Fig. 7. The particle species are set to
ðn2; n1; n1=2Þ ¼ ð1; 1; 2Þ. The area of the black hole horizon is also shown in (c), and it can be seen that the area increases when j ∼ 0.9
due to the rapid decay of its angular momentum.

5In Ref. [41], the author shows that the area increases at the
near-extremal limit and then decreases until the hole evaporates.
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V. CONCLUSION

We considered an echoing black hole that has a reflective
surface slightly outside the radius of the outer horizon such
as a stretched horizon or firewall. Assuming the sponta-
neous emission of thermal radiation from the reflective
surface, we have shown that the resonance of Hawking
radiation in the cavity formed between the reflective
surface and angular momentum barrier results in the
enhancement of the flux carrying the mass and angular
momentum of the black hole.
The reflective surface is assumed to be characterized by

three factors: constant reflectivity, phase shift, and position.
We first computed the graybody factor by using the exact
solutions of the Teukolsky equation that can be transformed
to the Heun’s differential equation. We have found that the
graybody factor has resonant modulations in the frequency
domain and that the resonant frequency depends on the
phase shift and position of the surface. Nevertheless, we
have shown that the energy fluxes carrying the mass and
angular momentum of the black hole are insensitive to
those two factors in the close limit of the reflective
surface (r�w ≪ −1).
We have performed the numerical computation to follow

the time development of the mass and angular momentum
of the black hole by taking into account the emission of
gravitons, photons, and neutrinos. We have found that the
reflective surface promotes the evaporation process and that
the lifetime is shorten by several factors for a nearly perfect
reflectivity (ϵ ¼ 0.99). This means that the reflective sur-
face of a quantum black hole not only changes the
gravitational wave signals at late times but also affects
its evaporation process and lifetime. We have also found
that the superradiance is enhanced by the reflective surface
(i.e., ergoregion instability) and that the area of a highly
spinning black hole increases due to the rapid decay of its
spin even for j ≤ 0.9. In the previous work by Page [41], a
similar phenomenon was reported for a near-extremal black
hole without the reflective surface.
Although the reflectivity of black holes is a completely

unknown factor, an actual reflectivity might be milder than
the ϵ ¼ 0.99 we assumed in our computation since the
stretched horizon is thought to involve dissipative effects
[40]. Also, another model, the quantized black hole
horizon, would lead to the mixture of perfect absorption
and reflection depending on frequency [16]. In the
Boltzmann-reflectivity model [15,17,27], the reflectivity
ϵ2 ¼ e−jkHj=TH is determined by the thermal nature of the
black hole, i.e., the Hawking temperature TH and the
angular velocity of the horizon (or a chemical potential)
mΩH. If this is the case, only the modes of ω ∼mΩH
contribute to the echo evaporation, and other modes are
mostly dissipated at the surface. Therefore, ϵ ¼ 0.99 is a
stronger assumption, and the lifetime obtained from it may
be a lower bound of the lifetime of an actual quantum black
hole. Our conclusion is that if evaporating black holes have

nontrivial surfaces, such as firewalls, stretched horizons,
and so on, and have nonzero reflectivity as has mainly been
discussed in the context of gravitational-wave echoes, the
lifetime of black holes may be shorter than the standard
lifetime by a factor of at most ∼2 for ϵ ≤ 0.99 and j ≤ 0.9.
In other words, we found that in most cases, there is no
change of the order of magnitude in the lifetime. The
existing cosmological constraint on the mass of primordial
(microscopic) black holes would therefore be insensitive to
the scenario of black hole information recovery.
As possible extensions of our model, we could introduce

the spin-s dependence or frequency dependence of the
reflective surface. As a specific example where the fre-
quency dependence can be important, one may consider an
evaporation process of a wormhole if it emits quantum
radiation. Its geometry could be modeled by the junction of
two Schwarzschild solutions as was demonstrated in
Ref. [12]. In that case, the echo of Hawking flux is
significant only for low-frequency modes, which can be
modeled by introducing the frequency dependence of ϵ in
our model.
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APPENDIX: RESOLUTION OF OUR
COMPUTATION AND THE SMALLNESS
OF THE COSMOLOGICAL CONSTANT

We performed the numerical computation to see the time
development of the mass and angular momentum of a
spinning black hole with the reflective boundary condition
as shown in Figs. 7 and 8. Here we perform a resolution test
to check that our results shown in those figures were
obtained with sufficiently high accuracy. We change the
step size of the log-scaled spin parameter (introduced in
Sec. IV B), Δy, as

Δy≡ yiþ1 − yi
Ni

; ðA1Þ

with fjig ¼ ðjmax; 0.7jmax; 0.4jmax; 0.1jmax;

0.01jmax; 0.001jmaxÞ; ðA2Þ

where yi ≡ ln ji, and we take jmax ¼ 0.9 throughout the
paper. The results shown in Figs. 7 and 8 are obtained with
fNig ¼ ð20; 15; 10; 5; 5Þ. Figure 9 shows our results
obtained from high, medium, and low resolutions, and
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FIG. 9. Resolution test of our computation of MðτÞ, JðτÞ, and AðτÞ. We take the resolution of fNig ¼ ð30; 20; 15; 8; 8Þ (high),
(20,15,10,5,5) (medium), and (15,10,5,3,3) (low).

FIG. 10. Evolution of an echoing black hole [MðτÞ, JðτÞ, AðτÞ] with a small cosmological constant of Λ ¼ 1=2000, 1=1000, and
1=500.
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we find that the medium resolution we used in Figs. 7 and 8
is high enough.
We use the analytic solutions of the Heun’s differential

equation to obtain the graybody factor at the cost of having
a small cosmological constant. Throughout the main text,
we use Λ ¼ 1=2000 with the normalization of the initial
massMo ¼ 1=2 of the black hole. Figure 10 shows the time
development ofM, J, andA for various small cosmological

constants: Λ ¼ 1=2000, 1=1000, 1=500. We find that the
result is insensitive to the small values of the cosmological
constant at least for Λ ≤ 1=500. Therefore, our result is
valid for the Kerr black hole that is of our interest. The
deviation from the Kerr case may be significant for Λ≳ 0.1
as the superradiance is strongly affected by the cosmo-
logical constant when Λ≳ 0.1 withM ¼ Mo ¼ 1=2 as was
shown in Ref. [49].
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