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We explore the possibility of gravitationally generated particle production in the scalar-tensor
representation of fðR; TÞ gravity. Due to the explicit nonminimal curvature-matter coupling in the theory,
the divergence of the matter energy-momentum tensor does not vanish. We explore the physical and
cosmological implications of this property by using the formalism of irreversible thermodynamics of open
systems in the presence of matter creation/annihilation. The particle creation rates, pressure, temperature
evolution, and the expression of the comoving entropy are obtained in a covariant formulation and
discussed in detail. Applied together with the gravitational field equations, the thermodynamics of open
systems lead to a generalization of the standard ΛCDM cosmological paradigm, in which the particle
creation rates and pressures are effectively considered as components of the cosmological fluid energy-
momentum tensor. We also consider specific models, and compare the scalar-tensor fðR; TÞ cosmology
with the ΛCDM scenario and the observational data for the Hubble function. The properties of the particle
creation rates, of the creation pressures, and entropy generation through gravitational matter production are
further investigated in both the low and high redshift limits.
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I. INTRODUCTION

Einstein’s General Theory of Relativity (GR) is
undoubtedly one of the most extraordinary theories ever
conceived by the human mind [1]. Its mathematical
representation is given by the Einstein gravitational field
equations, Gμν ¼ Rμν − ð1=2ÞRgμν ¼ κ2Tμν, where Rμν is
the contraction of the Riemann curvature tensor, Rμν ¼
Rκ
μκν, R is the Ricci scalar R ¼ Rμ

μ, Tμν is the matter energy-
momentum tensor, and κ2 ¼ 8πG=c4 is the gravitational
coupling constant. The gravitational field equations can
also be derived from a variational principle, introduced by
Hilbert [2], thus making them fully consistent gravitation-
ally. GR had an amazing success in explaining gravitational
dynamics at the level of the Solar System, including the
precession of the perihelion of the planet Mercury, the
deflection of light, gravitational redshift, or the Shapiro
delay effect [3]. One of its outstanding predictions, namely,
the existence of gravitational waves (GWs) has been
directly confirmed by the LIGO-VIRGO collaboration [4].

This amazing discovery has opened a new window to test
the nature of gravity and paved the way for a new era
in astronomy, astrophysics, and fundamental physics. In
fact, European Space Agency selected the science theme—
The Gravitational Universe—and the space-born observa-
tory of GWs, Laser Interferometer Space Antenna, as the
goal for the third large mission (L3) in its Cosmic Vision
Program.
However, GR is currently facing many theoretical and

experimental challenges. High precision data obtained from
the observations of the Type Ia supernovae has confirmed
with startling evidence that the Universe is presently in a
phase of a de Sitter type accelerated expansion [5–11].
These important observations have led to a plethora of
observational and theoretical works, attempting to explain,
and understand, the present, as well as the past, cosmo-
logical dynamics (for a recent review of the cosmic
acceleration problem see [12]). On the other hand, the
Planck satellite observations of the Cosmic Microwave
Background [13], in conjunction with the studies of the
Baryon Acoustic Oscillations [14–16], have also confirmed
the late-time cosmic acceleration. However, to elucidate
these important discoveries an essential modification in our
present day understanding of the gravitational interaction is
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needed. Indeed, to solve some of the outstanding theoreti-
cal and observational problems of modern cosmology, one
postulates the existence of an exotic cosmic fluid, which
possesses a repulsive character at large scales, denoted dark
energy [17–28].
Another fundamental problem in astrophysics and

cosmology is represented by the dark matter problem
(see [29–31] for reviews on the existence of dark matter
and its properties). On galactic and extragalactic scales the
presence of dark matter is necessary for a (possible)
explanation of two basic astrophysical/astronomical obser-
vations, namely, the dynamics of the galactic rotation
curves and the virial mass problem in clusters of galaxies,
respectively. The detailed astronomical observations of the
galactic rotation curves [32–35] indicate that Newtonian
gravity, and also GR, cannot explain galactic dynamics.
The properties of the galactic rotation curves and the
missing mass problem in clusters of galaxies are usually
explained by postulating the existence of another dark
(invisible) form of matter, and whose interaction with
baryonic matter is only gravitational. Dark matter is
assumed to reside around galaxies, where it forms a
spherically symmetric halo. Dark matter is usually
described as a pressureless and cold cosmic fluid (for
reviews of the candidates for dark matter particle see
[36–39]).
Therefore, in our present day understanding of the

Universe, the local dynamics, and the global expansion
are controlled by two major components, cold dark matter,
and dark energy, respectively. Hence, baryonic matter plays
a negligible role in the late time cosmic expansion.
Probably the simplest theoretical model, which can fully
explain the late de Sitter type expansion, is obtained from
the Einstein field equations that also include the cosmo-
logical constant Λ, introduced by Einstein in 1917 [40] in
order to obtain a static curved model of the Universe. The
extension of the Einstein field equations through the
addition of Λ represents the basic theoretical and math-
ematical tool of the standard present day cosmological
paradigm, the ΛCDM (Λ Cold Dark Matter) model. Even
though the ΛCDM model fits very well the observational
data [41–44], it possesses theoretical problems (for reviews
and detailed discussions on the cosmological constant
problem see, for example, [45–47]).
However, recently the ΛCDM model is also faced with

some other important observational problems. The “Hubble
tension” is perhaps the most important of these problems. It
originated from the differences obtained for the numerical
values of the Hubble constant, H0 by using different
observational methods. Thus, the determinations of H0

by the Planck satellite by using measurements of the
Cosmic Microwave Background [44], do not match with
the values measured by using observations in the local
Universe [48–50]. For example, the SH0ES determinations
of H0 give the value H0 ¼ 74.03� 1.42 km=s=Mpc [48].

On the other hand, the analysis of the CMB by using the
Planck satellite data gives H0 ¼ 67.4� 0.5 km=s=Mpc
[43], with this value differing from the SH0ES result
by ∼5σ.
Therefore, the pursuit for alternative descriptions of the

cosmological expansion, and of the nature of dark matter
represents a fundamental undertaking for present day
astrophysics and cosmology. One of the interesting pos-
sibilities for solving the cosmological mysteries is to move
beyond the framework of standard GR, by resorting to
modified gravity theories. Indeed, the difficulty in explain-
ing specific observations, the incompatibility with other
well-established theories and the lack of uniqueness,
might be indicative of a need for new gravitational physics
[51]. Hence, the assumption that the gravitational force
itself changes on cosmological scales could represent a
very promising direction of investigation of cosmological
phenomena [52–57].
An interesting class of modified gravity theories are

represented by theories that involve curvature-matter cou-
plings [58–65], in which matter plays a more important role
than in standard GR, through its direct effect on geometry.
In this work, we consider the cosmological implications
of a specific theory of modified gravity, with an explicit
curvature-matter coupling, namely, the fðR; TÞ gravity
theory [66]. An important feature of this theory, as well
as of all theories with geometry-matter coupling is that the
covariant divergence of the energy-momentum tensor does
not vanish [67,68], and hence Tμν is no longer conserved.
Constraints on the viability of these theories have also been
considered in the literature [69]. In fact, the nonconserva-
tion leads to the possibility of an energy/matter transfer
from the gravitational field to ordinary matter, and therefore
it may involve matter creation processes.
Hence, inspired by the basic principles of the thermo-

dynamic of open systems, we investigate the possibility
of gravitationally induced particle production in the scalar-
tensor representation of fðR; TÞ gravity [70,71]. We
explore the physical and cosmological implications of
the nonconservation of the theory, which we associate
with particle creation, by using the formalism of irrevers-
ible thermodynamics of open system, in the presence of
matter creation [72,73]. A covariant formulation of the
irreversible thermodynamics was developed in [74]. In fact,
irreversible thermodynamics and thermodynamics of open
systems is a widely studied field, since it is useful in various
applications [75–85]. We will obtain the particle creation
rate and creation pressure in the scalar-tensor representation
of fðR; TÞ gravity, and we will discuss in detail their
properties and implications. We also consider specific
cosmological models and compare the predictions of the
theory with the ΛCDM scenario.
This article is organized in the following manner: In

Sec. II, we outline the geometrical and the scalar-tensor
representations of fðR; TÞ gravity and present the modified
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field equation. In Sec. III, the generalized Friedmann
equations are presented and we explore the physical and
thermodynamical implications in the framework of the
thermodynamics of open systems, by assuming that the
nonconservation of the energy-momentum describes an
irreversible matter creation process. In Sec. IV, we consider
several cosmological models by specifying the functional
form of the potential Vðφ;ψÞ, and we perform a detailed
comparison of the theoretical models with the cosmological
observations and with the predictions of the standard
ΛCDM scenario. We summarize and discuss our results
in Sec. V.

II. FIELD EQUATIONS OF f ðR;TÞ GRAVITY

In the present section, we introduce the action principle
for the fðR; TÞ gravity theory, and we present its scalar-
tensor representation with the help of two independent
scalar fields.

A. Geometrical representation

We assume that the action for fðR; TÞ gravity is given by
the following expression [66]:

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR; TÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð2:1Þ

where κ2 ¼ 8πG, G is the universal gravitational constant,
Ω is the 4-dimensional spacetime manifold on which a set
of coordinates xμ is defined, g is the determinant of the
metric tensor gμν. fðR; TÞ is an arbitrary well-behaved
function of the Ricci scalar R ¼ gμνRμν, where Rμν is the
Ricci tensor, and the trace of the energy-momentum tensor
T ¼ gμνTμν Tμν, which is defined in terms of the variation
of the matter Lagrangian Lm as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð2:2Þ

Throughout this work we adopt a system of geometrized
units, where G ¼ c ¼ 1, and therefore κ2 ¼ 8π.
By varying the action (2.1) with respect to the metric

tensor gμν, we obtain the following gravitational field
equations of fðR; TÞ gravity (see Ref. [66] for details):

fRRμν −
1

2
gμνfðR; TÞ þ ðgμν□ −∇μ∇νÞfR

¼ κ2Tμν − fTðTμν þ ΘμνÞ; ð2:3Þ

where fR and fT denote partial derivatives of f with respect
to R and T, respectively, ∇μ is the covariant derivative and
□≡∇σ∇σ is the D’Alembert operator, both defined in
terms of the metric tensor gμν. The tensor Θμν is defined as

Θμν ≡ gρσ
δTρσ

δgμν
: ð2:4Þ

By taking the divergence of Eq. (2.3) and using the
geometric identity ð□∇ν −∇ν□ÞfR ¼ Rμν∇μfR, one finds
that the conservation equation for fðR; TÞ gravity is the
following:

ðκ2 − fTÞ∇μTμν ¼ ðTμν þ ΘμνÞ∇μfT þ fT∇μΘμν

þ fR∇μRμν −
1

2
gμν∇μf: ð2:5Þ

As we can see the covariant divergence of the energy-
momentum tensor of matter does not vanish. We interpret
this result as an exchange of energy and momentum
between geometry and matter, as a consequence of the
geometry-matter coupling encapsulated in the trace T of
the energy-momentum tensor of matter. Next we consider
the scalar-tensor representation of this theory, which will be
used throughout this work.

B. Scalar-tensor representation

fðR; TÞ gravity can be rewritten in a dynamically
equivalent scalar-tensor representation with two scalar
fields [71]. First, one introduces two auxiliary fields α
and β and rewrites the action (2.1) in the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½fðα; βÞ þ ðR − αÞfα þ ðT − βÞfβ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð2:6Þ

where the subscripts α and β in f denote its partial
derivatives with respect to these variables, respectively.
We define the two scalar fields φ and ψ and a scalar

interaction potential Vðφ;ψÞ in the forms

φ≡ ∂f
∂R

; ψ ≡ ∂f
∂T

; ð2:7Þ

Vðφ;ψÞ≡ −fðα; βÞ þ φαþ ψβ; ð2:8Þ

so that the action (2.6) is rewritten in the equivalent scalar-
tensor representation as

S¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φRþψT −Vðφ;ψÞ�d4xþ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x:

ð2:9Þ

The action (2.9) depends on three independent variables,
the metric gμν and the two scalar fields φ and ψ . Varying the
action with respect to the metric gμν yields the following
gravitational field equations:
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φRμν −
1

2
gμνðφRþ ψT − VÞ − ð∇μ∇ν − gμν□Þφ

¼ κ2Tμν − ψðTμν þ ΘμνÞ: ð2:10Þ

This field equation can also be obtained directly from
Eq. (2.3) by using the definitions shown in Eqs. (2.7)
and (2.8), with α ¼ R and β ¼ T. Taking the variation of
Eq. (2.9) with respect to the scalar fields φ and ψ yield the
following relations:

Vφ ¼ R; ð2:11Þ

Vψ ¼ T; ð2:12Þ

respectively, where the subscripts in Vφ and Vψ denote the
derivatives of the potential Vðφ;ψÞ with respect to the
variables φ and ψ , respectively.
Additionally, using the definitions (2.7) and (2.8), and

the geometrical result ∇μ½Rμν − ð1=2ÞRgμν� ¼ 0, the con-
servation equation for fðR; TÞ gravity in the scalar-tensor
representation becomes

ðκ2 − ψÞ∇μTμν ¼ ðTμν þ ΘμνÞ∇μψ þ ψ∇μΘμν

−
1

2
gμν½R∇μφþ∇μðψT − VÞ�: ð2:13Þ

The results obtained in this subsection will be used to
explore cosmological solutions in the next section.

III. COSMOLOGICAL EVOLUTION

In order to consider the cosmological evolution in the
scalar-tensor formulation of fðR; TÞ gravity, we obtain first
the generalized Friedmann equations corresponding to the
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.
Then, after a brief presentation of the thermodynamic of
open systems, we proceed to apply it systematically to the
cosmological models in the fðR; TÞ gravity theory. The
particle creation rates, the creation pressures, as well as the
entropy and temperature evolutions are considered in detail.

A. Spacetime geometry and generalized
Friedmann equations

In this work, we assume that the Universe is described
by an homogeneous and isotropic flat FLRW spacetime
metric, given in spherical coordinates ðt; r; θ;ϕÞ by

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð3:1Þ

where aðtÞ is the scale factor. In addition to this, we also
assume that matter is described by a perfect fluid:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð3:2Þ

where ρ is the energy density, p is the isotropic pressure,
and uμ is the fluid 4-velocity satisfying the normalization
condition uμuμ ¼ −1. Taking the matter Lagrangian to be
Lm ¼ p [86], the tensor Θμν takes the form

Θμν ¼ −2Tμν þ pgμν: ð3:3Þ

To preserve the homogeneity and isotropy of the
solution, all physical quantities are assumed to depend
solely on the time coordinate t, i.e., ρ ¼ ρðtÞ, p ¼ pðtÞ,
φ ¼ φðtÞ, and ψ ¼ ψðtÞ. Under these assumptions, one
obtains two independent field equations from Eq. (2.10),
namely, the modified Friedmann equation and the modified
Raychaudhuri equation, which take the following forms:

_φ

�
_a
a

�
þ φ

�
_a
a

�
2

¼ 8π

3
ρþ ψ

2

�
ρ −

1

3
p

�
þ 1

6
V; ð3:4Þ

φ̈þ 2 _φ

�
_a
a

�
þ φ

�
2ä
a

þ _a2

a2

�
¼ −8πpþ ψ

2
ðρ − 3pÞ þ 1

2
V;

ð3:5Þ

respectively, where overdots denote derivatives with
respect to time. Furthermore, the equations of motion for
the scalar fields φ and ψ from Eqs. (2.11) and (2.12)
become

Vφ ¼ R ¼ 6

�
ä
a
þ _a2

a2

�
; ð3:6Þ

Vψ ¼ T ¼ 3p − ρ; ð3:7Þ

respectively. Finally, the conservation equation from
Eq. (2.13) in this framework takes the form

_ρþ 3ðρþ pÞ
�
_a
a

�

¼ 3

8π

�
_φ

�
ä
a
þ _a2

a2
−
1

6
Vφ

�
− _ψ

�
1

2
ρ −

1

6
pþ 1

6
Vψ

�

− ψ

�
_a
a
ðρþ pÞ þ 1

2
_ρ −

1

6
_p

��
: ð3:8Þ

The system of Eqs. (3.4)–(3.8) forms a system of five
equations from which only four are linearly independent.
To prove this feature, one can take the time derivative of
Eq. (3.4), use Eqs. (3.6) and (3.7) to eliminate the partial
derivatives Vφ and Vψ , use the conservation equation in
Eq. (3.8) to eliminate the time derivative _ρ, and use the
Raychaudhuri equation in Eq. (3.5) to eliminate the second
time derivative ä, thus recovering the original equation.
Thus, one of these equations can be discarded from the
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system without loss of generality. Given the complicated
nature of Eq. (3.5), we chose to discard this equation and
consider only Eqs. (3.4), (3.6), (3.7), and (3.8).
By introducing the Hubble function H ¼ _a=a, the

system of cosmological field equations takes the form

3H2 ¼ 8π
ρ

φ
þ 3ψ

2φ

�
ρ −

1

3
p

�
þ 1

2

V
φ
− 3H

_φ

φ
; ð3:9Þ

2 _H þ 3H2 ¼ −8π
p
φ
þ ψ

2φ
ðρ − 3pÞ þ 1

2

V
φ
−
φ̈

φ
− 2H

_φ

φ
;

ð3:10Þ

Vφ ¼ 6ð _H þ 2H2Þ; Vψ ¼ 3p − ρ; ð3:11Þ

_ρþ 3Hðρþ pÞ ¼ 3

8π

�
−

_ψ

2

�
ρ −

p
3
þ Vψ

3

�

− ψ

�
Hðρþ pÞ þ 1

2

�
_ρ −

1

3
_p

���
:

ð3:12Þ

As an indicator of the decelerating/accelerating nature
of the cosmological evolution we consider the deceleration
parameter q, defined as

q ¼ d
dt

1

H
− 1 ¼ −

_H
H2

− 1: ð3:13Þ

With the use of the generalized Friedmann equa-
tions (3.9) and (3.10) we obtain for q the expression

q ¼ 1

2
þ
3
h
4π p

φ −
ψ
4φ ðρ − 3pÞ − V

4φ þ φ̈
2φ þH _φ

φ

i
8π ρ

φ þ ψ
2φ ðρ − 3pÞ þ V

2φ − 3H _φ
φ

: ð3:14Þ

Note that, in general, modified theories of gravity with
geometry-matter couplings [56,58–68] imply the noncon-
servation of the matter stress-energy tensor ∇μTμν ≠ 0,
which may entail a transfer of energy from the geometry to
the matter sector [51,75,76,85].

B. Thermodynamic interpretation and matter creation

Here, we consider the formalism of irreversible matter
creation of thermodynamics of open systems considered
in the context of cosmology, as described in the ground
breaking work by Prigogine and collaborators [73]. In this
formalism, the Universe is seen as an open system, and the
description of particle creation is based on the reinterpre-
tation of the energy-momentum tensor of matter by
including a matter creation term in the conservation laws.
Let us consider an open system of volume V containing

NðtÞ particles, with an energy density ρ and a thermody-
namic pressure p, respectively. For such a system, the

thermodynamical conservation equation, written in its most
general form, is given by

dðρVÞ ¼ dQ − pdV þ h
n
dðnVÞ; ð3:15Þ

where dQ is the heat received by the system during time dt,
h ¼ ρþ p is the enthalpy per unit volume and n ¼ N=V is
the particle number density. Unlike isolated or closed
systems, where the number of particles remain constant,
the thermodynamical conservation of energy in open sys-
tems contains a term that expresses the matter creation/
annihilation processes that can occur within the system. The
second law of thermodynamics takes the following form:

dS ¼ deSþ diS ≥ 0; ð3:16Þ

where deS is the entropy flow and diS is the entropy
creation. The first term can be seen as measure of the
variation of the system’s homogeneity and the latter is the
part of entropy that is solely related to matter creation.
To find expressions for these two quantities, one starts by

writing the total differential of the entropy

T dS ¼ dðρVÞ þ pdV − μdðnVÞ; ð3:17Þ

where μ is the chemical potential, and T is the thermo-
dynamic temperature. By using Eq. (3.15) and the ther-
modynamical relation μn ¼ h − T s, where s ¼ S=V is the
entropy density, one can then write Eq. (3.17) in a more
convenient way

T dS ¼ dQþ T
s
n
dðnVÞ: ð3:18Þ

But Eq. (3.16) implies that

T dS ¼ T deSþ T diS; ð3:19Þ

and thus it is possible to obtain directly an expression for
the entropy flow and for the entropy creation, respectively,

deS ¼ dQ
T

; diS ¼ s
n
dðnVÞ: ð3:20Þ

Since entropy flow can be seen as a measure of the
variation of the system’s homogeneity, if we consider an
homogeneous system, the variation of homogeneity is zero.
Therefore, the entropy flow vanishes in a system with this
specific configuration. This means that in homogeneous
systems we expect adiabatic processes to occur and for that
reason matter creation is the only contribution to entropy
production

dS ¼ diS ¼ s
n
dðnVÞ ≥ 0: ð3:21Þ
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We now apply the formalism of irreversible matter
creation of thermodynamics of open systems to cosmology.
For that, let us consider an homogeneous and isotropic
Universe as an open system with volume V containingNðtÞ
particles, an energy density ρ and thermodynamic pressure
p, described by Eq. (3.1). Since we are considering an
isotropic and homogeneous Universe, the volume can be
expressed in terms of the scale factor, V ¼ a3ðtÞ. Then,
Eq. (3.15) can be rewritten in terms of (total) time
derivatives of the physical quantities as

d
dt

ðρa3Þ þ p
d
dt

a3 ¼ dQ
dt

þ ρþ p
n

d
dt

ðna3Þ: ð3:22Þ

As we have seen before, homogeneous systems do not
receive heat. Since the Universe we are considering is
homogeneous, we conclude that the heat received by it
remains constant over time, i.e., dQ=dt ¼ 0. This result
allows us to reformulate Eq. (3.22) in an equivalent form

_ρþ 3Hðρþ pÞ ¼ ρþ p
n

ð _nþ 3HnÞ: ð3:23Þ

Furthermore, by comparing Eq. (3.23) with Eq. (3.8) we
conclude that, in the formalism of thermodynamics of open
systems, the latter also constitutes the thermodynamical
conservation equation for the Universe, in which the
presence of the two scalar fields, φ and ψ , contribute to
particle creation in an homogeneous and isotropic geom-
etry, with the time variation of the particle number density
obtained as

_nþ 3Hn ¼ Γn; ð3:24Þ

where Γ is the particle creation rate. Substituting Eq. (3.24)
into Eq. (3.23) we get the energy conservation equation in
an alternative form

_ρþ 3Hðρþ pÞ ¼ ðρþ pÞΓ: ð3:25Þ

Therefore, by using Eqs. (3.8) and (3.25) we find that the
particle creation rate in the scalar-tensor representation of
fðR; TÞ gravity assumes the following form:

Γ ¼ 3

8π

1

ρþ p

�
_φ

�
ä
a
þ _a2

a2
−
1

6
Vφ

�

− _ψ

�
1

2
ρ −

1

6
pþ 1

6
Vψ

�

− ψ

�
_a
a
ðρþ pÞ þ 1

2
_ρ −

1

6
_p

��
: ð3:26Þ

Substituting Vφ and Vψ by their expressions, Eqs. (3.6)
and (3.7), respectively, and using Eq. (3.25) we obtain a
simplified expression for the particle creation rate

Γ ¼ −
ψ

8π þ ψ

�
d
dt

lnψ þ 1

2

_ρ − _p
ρþ p

�
: ð3:27Þ

For adiabatic transformations describing irreversible
particle creation in an open thermodynamic system, the
first law of thermodynamics can be rewritten as an effective
energy conservation equation

d
dt

ðρa3Þ þ ðpþ pcÞ
d
dt

a3 ¼ 0; ð3:28Þ

where we have introduced the creation pressure pc, a
supplementary pressure that must be considered in open
systems because of irreversible matter creation processes.
Expressing the equation above in an equivalent manner,

d
dt

ðρa3Þ þ p
d
dt

a3 ¼ −pc
d
dt

a3; ð3:29Þ

and comparing it with Eq. (3.22), after some simplifications
we can write the creation pressure as

pc ¼ −
ρþ p
3H

Γ: ð3:30Þ

Therefore, to determine the creation pressure it is enough
to know the particle creation rate. Consequently, by
using Eq. (3.27), we find that the creation pressure in
the scalar-tensor representation of fðR; TÞ gravity takes the
following form:

pc ¼
ρþ p
3H

ψ

8π þ ψ

�
d
dt

lnψ þ 1

2

_ρ − _p
ρþ p

�
: ð3:31Þ

These results are consistent with [75] because of our
definition of the field ψ , present in Eq. (2.7), therefore
proving the equivalence between the geometrical repre-
sentation and the scalar-tensor representation of fðR; TÞ
gravity.
Note that both the creation rate and creation pressure

only depend on the scalar field ψ , which is the one
associated with the trace of the energy-momentum tensor.
This means there is a contribution to matter creation from
the variation in the degree of freedom that encapsulates the
coupling between geometry and matter. Hence, we con-
clude that geometry-matter couplings induce particle pro-
duction. In the limit where the function f does not depend
on T, we regain the usual fðRÞ gravity theory in which the
covariant divergence of the energy-momentum tensor of
matter is zero. This conservation, as it happens with GR,
leads to the vanishing of the creation rate and of the
creation pressure.

C. Entropy and temperature evolution

We now recall the 2nd law of thermodynamics in the
context of open systems, Eq. (3.16), to explore the entropy
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evolution. We saw earlier that the condition of homogeneity
implies the vanishing of the entropy flow, deS ¼ 0, which
means the only contribution to entropy production is due to
entropy creation, and consequently Eq. (3.16) becomes
Eq. (3.21). Following our previous assumptions, that the
Universe is both homogeneous and isotropic, by taking the
total time derivative of Eq. (3.21) and using the expression
for the entropy creation, present in Eq. (3.20), the comov-
ing volume written in terms of the scale factor, V ¼ a3ðtÞ,
the definition of entropy density (s ¼ S=V) and Eq. (3.24),
one can obtain the following expression for the entropy
temporal evolution:

dS
dt

¼ ΓS ≥ 0; ð3:32Þ

whose general solution is

SðtÞ ¼ S0 exp

�Z
t

0

Γðt0Þdt0
�
; ð3:33Þ

with S0 ¼ Sð0Þ constant. Therefore, in an homogeneous
and isotropic geometry, in the formalism of irreversible
matter creation, what causes the time variation of the
entropy is the particle creation rate. Substituting Eq. (3.27)
into Eq. (3.33), we obtain the expression for the entropy in
scalar-tensor fðR; TÞ gravity

SðtÞ ¼ S0 exp

�
−
Z

t

0

ψ

8π þ ψ

�
d
dt

lnψ þ 1

2

_ρ − _p
ρþ p

�
dt

�
:

ð3:34Þ

The entropy flux 4-vector Sμ is defined as [74]

Sμ ¼ nσuμ; ð3:35Þ

where σ ¼ S=N is the entropy per particle (or characteristic
entropy). Since Sμ must obey the 2nd law of thermody-
namics, hence we have the following condition:

∇μSμ ≥ 0; ð3:36Þ

which is the second law of thermodynamics written in a
covariant formulation. Therefore, to obtain the entropy
production rate due to matter creation processes, one must
determine the covariant derivative of the entropy flux
4-vector

∇μSμ ¼ ð∇μnÞσuμ þ nð∇μσÞuμ þ nσ∇μuμ; ð3:37Þ

which by using ∇μuμ ¼ 3H and uμ∇μ ¼ d=dt assumes the
following form:

∇μSμ ¼ ð _nþ 3HnÞσ þ n _σ: ð3:38Þ

To further simplify the expression abovewe take the time
derivative of the Gibbs relation [74]

nT _σ ¼ _ρ −
ρþ p
n

_n; ð3:39Þ

and use it in combination with the expression for the
chemical potential

μ ¼ h
n
− T

s
n
¼ ρþ p

n
− T σ; ð3:40Þ

alongside Eqs. (3.23) and (3.24). With that, we obtain a
compact form for the covariant derivative of the entropy
flux 4-vector

∇μSμ ¼ Γs ≥ 0: ð3:41Þ
One can explore the similarities between Eqs. (3.32)

and (3.41). Both entropy temporal evolution and entropy
production rate depend on the particle creation rate,
evidencing the fundamental role played by this quantity
in the description of an homogeneous and isotropic
Universe, in which matter creation processes occur. The
only difference between the two is that the entropy
production rate depends on the entropy density (as
expected since we have a flux), while the entropy temporal
evolution depends on the entropy itself. Substituting
Eq. (3.27) into Eq. (3.41) we finally obtain the entropy
production rate in the scalar-tensor fðR; TÞ gravity

∇μSμ ¼ −
ψ

8π þ ψ

�
d
dt

lnψ þ 1

2

_ρ − _p
ρþ p

�
s ≥ 0: ð3:42Þ

Our objective now is to obtain the temperature evolution,
similar to what was done above. A thermodynamic system
is fundamentally described by the particle number density n
and the temperature T . In a thermodynamic equilibrium
situation, the energy density ρ and the pressure p are
determined from the equilibrium equations of state, given
in a parametric form as

ρ ¼ ρðn; T Þ; p ¼ pðn; T Þ: ð3:43Þ

Then, the differential of the energy density and the differ-
ential of the pressure are, respectively,

dρ ¼
�
∂ρ

∂n

�
T
dnþ

�
∂ρ

∂T

�
n
dT ; ð3:44Þ

dp ¼
�
∂p
∂n

�
T
dnþ

�
∂p
∂T

�
n
dT ; ð3:45Þ

where the subscripts T and n on the partial derivatives
indicate that the temperature T and the particle number n
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are fixed, respectively. Recalling the energy conservation
equation obtained previously, Eq. (3.25), and inserting
Eq. (3.44) in it, we obtain

�
∂ρ

∂n

�
T
_nþ

�
∂ρ

∂T

�
n

_T þ 3ðρþ pÞH ¼ ðρþ pÞΓ: ð3:46Þ

To express the energy conservation equation above
in a more convenient manner, first we use the Gibbs
relation [74] to write the differential of the characteristic
entropy σ as

dσ ¼ 1

nT
dρ −

ρþ p
n2T

dn: ð3:47Þ

By looking at Eq. (3.47), one could say that σ is a function
of ρ and n. However, since ρ itself is a function of n and T
[Eq. (3.43)], thus σ is, fundamentally, a function of n
and T . By this reasoning, the true differential of the
characteristic entropy is

dσ ¼
�
∂σ

∂n

�
T
dnþ

�
∂σ

∂T

�
n
dT : ð3:48Þ

To obtain an explicit expression for this differential, one
just inserts Eq. (3.44) into Eq. (3.47), yielding

dσ ¼
�
1

nT

�
∂ρ

∂n

�
T
þ ρþ p

n2T

�
dnþ 1

nT

�
∂ρ

∂T

�
n
dT : ð3:49Þ

The entropy S is an exact differential, and so it is the
characteristic entropy σ. Therefore the condition,

�
∂

∂T

�
∂σ

∂n

�
T

�
n
¼

�
∂

∂n

�
∂σ

∂T

�
n

�
T
; ð3:50Þ

follows immediately. Then, one can obtain the following
thermodynamical relation:

�
∂ρ

∂n

�
T
¼ ρþ p

n
−
T
n

�
∂p
∂T

�
n
; ð3:51Þ

which is plugged into the energy conservation equa-
tion (3.46), and with the help of Eqs. (3.23) and (3.25)
we achieve an expression for the temperature evolution

1

T
dT
dt

¼ c2s
_n
n
; ð3:52Þ

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið∂p=∂ρÞn

p
is the speed of sound. By using

Eq. (3.24), we write the temperature evolution in terms of
the particle creation rate as the following equation:

1

T
dT
dt

¼ c2sðΓ − 3HÞ; ð3:53Þ

whose solution is

T ðtÞ ¼ T 0 exp

�
c2s

Z
t0

0

½Γðt0Þ − 3Hðt0Þ�dt0
�
; ð3:54Þ

where T 0 ¼ T ð0Þ is a constant. Because of the compli-
cated form of the Hubble functionH in the present model, a
solution for the temperature should be obtained numeri-
cally. Finally, the temperature as a function of time in
scalar-tensor fðR; TÞ gravity is given by

T ðtÞ ¼ T 0 exp

�
c2s

Z
t

0

�
ψ

8π þ ψ

�
d
dt

lnψ þ 1

2

_ρ − _p
ρþ p

�

− 3H

�
dt

�
: ð3:55Þ

IV. PARTICULAR COSMOLOGICAL MODELS

In the present Section, we will consider several specific
cosmological models, obtained by specifying in advance
the functional form of the potential Vðφ;ψÞ. The existence
of the de Sitter solution will also be investigated. We will
also consider a detailed comparison of the theoretical
models with cosmological observations.
The comparison between different theoretical models

and observations can be performed in a much easier way if
one introduces as an independent variable the redshift z,
defined as 1þ z ¼ 1=a. Then

d
dt

¼ dz
dt

d
dz

¼ −ð1þ zÞHðzÞ d
dz

: ð4:1Þ

In the ΛCDM model the energy density of dust matter
with p ¼ 0 scales according to the law ρ ¼ ρ0=a3 ¼
ρ0ð1þ zÞ3, where ρ0 is the present day matter density.
This relation directly follows from the law of the con-
servation of the energy-momentum tensor. As a function of
the scale factor the time evolution of the Hubble function
is given in the ΛCDM model, as a function of the scale
factor, by [51]

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩb þΩDMÞa−3 þΩΛ

q
; ð4:2Þ

where H0 is the present day value of the Hubble function,
while by Ωb, ΩDM, and ΩΛ we have denoted the density
parameters of the baryonic matter, of the cold (pressureless)
dark matter, and of the dark energy (modeled by a
cosmological constant), respectively. The three density
parameters satisfy the simple algebraic relation Ωbþ
ΩDM þ ΩΛ ¼ 1, which follows from the flatness of the
geometry of the Universe.
In the standard ΛCDMmodel the deceleration parameter

is obtained as
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qðzÞ ¼ 3ð1þ zÞ3ðΩDM þΩbÞ
2½ΩΛ þ ð1þ zÞ3ðΩDM þ ΩbÞ�

− 1: ð4:3Þ

In the following for the matter density parameters we
adopt the values [87,88], with ΩDM¼0.2589, Ωb¼0.0486,
and ΩΛ ¼ 0.6911, respectively, obtained from the CMB
spectrum as investigated by the Planck satellite. The total
matter density parameterΩm ¼ ΩDM þΩb is then given by
Ωm ¼ 0.3089. The present day value of the deceleration
parameter is qð0Þ ¼ −0.5381, which indicates that present
day Universe is in an accelerating state.

A. The de Sitter solution

The de Sitter solution corresponds to a constant Hubble
function, H ¼ H0 ¼ constant. We now investigate the
possibility of the existence of the de Sitter solution in
the two scalar field-tensor representation of fðR; TÞ gravity.

1. The constant density solution

We assume that matter consists of pressureless dust with
p ¼ 0, and that during the exponentially expanding phase
the matter density is constant, ρ ¼ ρ0 ¼ constant. Then
Eqs. (3.11) can be easily integrated to give

Vðφ;ψÞ ¼ 12H2
0φþ fðψÞ; ð4:4Þ

and

Vðφ;ψÞ ¼ −ρ0ψ þ gðφÞ; ð4:5Þ

where fðψÞ and gðφÞ are arbitrary functions of the argu-
ment, giving

Vðφ;ψÞ ¼ 12H2
0φ − ρ0ψ þ Λ0; ð4:6Þ

where Λ0 is an arbitrary constant of integration. From
Eq. (3.12) we obtain for ψ the evolution equation

_ψ þ 3H0ψ ¼ 24πH0; ð4:7Þ

with the general solution given by

ψðtÞ ¼ e−3H0t½ψ0 − 8πð1 − e3H0tÞ�; ð4:8Þ

where ψ0 ¼ ψð0Þ. In the large time limit ψðtÞ tends to a
constant, limt→∞ ψðtÞ ¼ 8π. Then Eq. (3.9) gives the
evolution equation for φ,

_φ −H0φ ¼ Λ0

6H0

þ 16πρ0
3H0

−
e−3H0t

ρ0ð8π − ψ0Þ
; ð4:9Þ

with the general solution given by

φðtÞ ¼ 1

12H2
0

f½eH0tð12H2
0φ0 þ 2Λ0 þ ρ0ψ0 þ 56πρ0Þ

− 2ðΛ0 þ 32πρ0Þ − ρ0e−3H0tð8π − ψ0Þ�g; ð4:10Þ

where φ0 ¼ φð0Þ. The constant density of the Universe is
maintained by matter creation with particle production rate

Γ ¼ 3H0ðψ0 − 8πÞ
8πð2e3H0t − 1Þ þ ψ0

: ð4:11Þ

The corresponding creation pressure can be written as

pc ¼ −
ρ0
3H0

Γ ¼ −
ρ0ðψ0 − 8πÞ

8πð2e3H0t − 1Þ þ ψ0

: ð4:12Þ

2. De Sitter evolution with time varying matter density

A de Sitter type solution H ¼ H0 ¼ constant in the two
scalar field representation of fðR; TÞ gravity can also be
obtained for a nonconstant matter density, with matter in
the form of dust with p ¼ 0. To show this we consider that
the potential V has the form

Vðφ;ψÞ ¼ 12H2
0φ −

1

2β
ψ2; ð4:13Þ

where β is a constant. The first of the Eqs. (3.11) is then
identically satisfied, while the second gives

ψ ¼ βρ: ð4:14Þ

Thus the potential becomes

Vðφ;ψÞ ¼ 12H2
0φ −

β

2
ρ2: ð4:15Þ

Equation (3.12) can then be written as a first order
nonlinear differential equation for ρ,

�
1þ 5β

16π
ρ

�
_ρþ 3H0ρ ¼ −

3βH0

8π
ρ2; ð4:16Þ

with the general solution given by

ρðβρþ 8πÞ3=2 ¼ e−3H0ðt−t0Þ; ð4:17Þ

where t0 is an arbitrary constant of integration. By sub-
stituting the expression of V in Eq. (3.9), and by taking into
account that

dφ
dt

¼ dφ
dρ

dρ
dt

¼ −
3H0ρ½1þ ðβ=8πÞρ�
1þ ð5β=16πÞρ

dφ
dρ

; ð4:18Þ

Eq. (3.9) becomes
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9H2
0

ρ½1þ ðβ=8πÞρ�
1þ ð5β=16πÞρ

dφ
dρ

þ 3H2
0φþ 8πρþ 5β

4
ρ2 ¼ 0;

ð4:19Þ

with the general solution given by

φðρÞ ¼ −
1

11220βH2
0

�
55βffiffiffi
3

p
ρ

�
25βρ7=3 −

204c1H2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βρþ 8π
p

�

−
27648π5=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βρ
2
þ 4π

q 2F1

�
1

3
;
1

2
;
4

3
;−

βρ

8π

�

þ 13824π2 þ 6400πβρ

�
; ð4:20Þ

where c1 is an arbitrary constant of integration, and 2F1ða;
b; c; zÞ is the hypergeometric function 2F1ða; b; c; zÞ ¼P∞

k¼0 ððaÞkðbÞk=ðcÞkÞðzk=k!Þ. Finally, the particle creation
rate can be obtained as

Γ ¼ −
3

2

βρ

βρþ 8π

_ρ

ρ

¼ 9H0β

2

ρ½1þ ðβ=8πÞρ�
ðβρþ 8πÞ½1þ ð5β=16πÞρ� : ð4:21Þ

Hence, the general solution of the generalized Friedmann
equations describing a de Sitter type expansion can be
obtained in an exact parametric form, with ρ taken
as parameter. The time variation of the density can be
easily obtained in the limits βρ ≪ 8π and βρ ≫ 8π,
respectively, as ρðtÞ∼e−3H0ðt−t0Þ and ρðtÞ ∼ e−ð6=5ÞH0ðt−t0Þ,
respectively. For βρ ≫ 8π, the matter creation rate becomes
a constant, Γ ≈ ð9=5ÞH0, while in the opposite limit
Γ ≈ ð9H0=16πÞe−3H0ðt−t0Þ.

B. Vðφ;ψÞ=αφ+ βφ2 − ð1=2γÞψ2

We consider now more general cosmological models in
the two scalar field representation of fðR; TÞ gravity, by
assuming for the potential V a simple additive quadratic
form, namely, Vðφ;ψÞ ¼ αφþ βφ2 − ð1=2γÞψ2, where α,
β and γ are constants. We will consider only the case of a
dust Universe, and hence we take p ¼ 0. Then the second
of Eqs. (3.11) gives ψ ¼ γρ. Hence the system of the
cosmological evolution equations can be formulated as the
following first order dynamical system:

_H ¼ α

6
þ β

3
φ − 2H2; ð4:22Þ

_ρ ¼ −3H
ρ½1þ ðγ=8πÞρ�
1þ ð5γ=16πÞρ ; ð4:23Þ

and

_φ ¼ 8π

3

ρ

H
þ 5γ

12

ρ2

H
þ α

6

φ

H
þ β

6

φ2

H
−Hφ; ð4:24Þ

respectively.
In order to simplify the mathematical formalism we

introduce a set of dimensionless and rescaled variables
ðh; τ; r; σ; ϵÞ, defined as

H ¼ H0h; τ ¼ H0t; ρ ¼ 3H2
0

8π
r;

α ¼ 6H2
0ξ; β ¼ 3H2

0σ; γ ¼ 64π2

3H2
0

ϵ;

respectively, where H0 is the present day value of the
Hubble function. In the new variables the field equa-
tions (4.22)–(4.24) take the form

dh
dτ

¼ ξþ σφ − 2h2; ð4:25Þ

dr
dτ

¼ −3h
rð1þ ϵrÞ

1þ ð5ϵ=2Þr ; ð4:26Þ

dφ
dτ

¼ r
h
þ 5

4
ϵ
r2

h
þ ξ

φ

h
þ σ

2

φ2

h
− hφ: ð4:27Þ

In the redshift space Eqs. (4.25)–(4.27) are formulated as

−ð1þ zÞhðzÞ dhðzÞ
dz

¼ ξþ σφðzÞ − 2h2ðzÞ; ð4:28Þ

−ð1þ zÞhðzÞ drðzÞ
dz

¼ −3hðzÞ rðzÞð1þ ϵrðzÞÞ
1þ ð5ϵ=2ÞrðzÞ ; ð4:29Þ

and

− ð1þ zÞhðzÞ dφðzÞ
dz

¼ rðzÞ
hðzÞ þ

5ϵ

4

r2ðzÞ
hðzÞ þ ξ

φðzÞ
hðzÞ þ

σ

2

φ2ðzÞ
hðzÞ − hðzÞφðzÞ:

ð4:30Þ

The results of the numerical integration of the system
(4.28)–(4.30) are presented in Figs. 1 and 2, respectively,
for fixed values of the potential parameters σ and ϵ, and of
the initial condition for φ, and for different values of the
parameter ξ. A comparison with the observational data for
the Hubble function [89,90] and with the predictions of the
standard ΛCDM model is also performed.
The variation of the Hubble function is shown in the left

panel of Fig. 1. The Hubble function is a monotonically
increasing function of z (a monotonically decreasing
function of time). Its evolution is strongly dependent on
the numerical values of the parameters of the potential V, as
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well as on the numerical value of the initial condition for
φðzÞ. For certain parameter values the two scalar field
representation of fðR; TÞ gravity can give a good descrip-
tion of the observational data, and can reproduce the
predictions of the ΛCDM model. On the other hand, for
higher redshifts z ≥ 3, significant deviations from the
predictions of ΛCDM appear. Important deviations as
compared to standard cosmology are also present in the
behavior of the deceleration parameter, shown in the right
panel of Fig. 1. At higher redshifts the considered models
have higher values of q, indicating a rate of deceleration
higher than in ΛCDM. On the other hand, at lower redshifts
the deceleration parameter indicates a higher acceleration
rate than in standard cosmology, with some models

reaching a pure de Sitter phase at the present time.
Some model parameters can still reproduce well the
predictions of ΛCDM at low redshits.
Significant differences appear in the redshift variation of

the ordinary matter energy density, presented in the left
panel of Fig. 2. Interestingly enough, the ΛCDM model
predicts a larger ordinary matter content than the consid-
ered model of the two scalar field version of fðR; TÞ gravity
theory, with the differences increasing at higher redshifts.
The scalar field ϕ is a monotonically decreasing function of
the redshift, and its evolution shows a strong dependence
on the potential parameters.
The particle creation rate Γ, normalized to H0, can be

obtained as

FIG. 2. The evolution of the matter energy density rðzÞ (left panel), and of the function φðzÞ (right panel) as a function of redshift z for
ξ ¼ 1.54 (short dashed curve), ξ ¼ 1.61 (dashed curve), ξ ¼ 1.69 (long dashed curve), and ξ ¼ 1.76 (ultra long dashed curve). The
values of the potential parameters σ and ϵ have been fixed to σ ¼ −2.89 and ϵ ¼ 0.015, respectively. The initial conditions used for
the integration of the cosmological equations are hð0Þ ¼ 1, rð0Þ ¼ 1, and φð0Þ ¼ −0.005. The solid red line indicates the predictions of
the ΛCDM model.

FIG. 1. The evolution of the Hubble function hðzÞ (left panel), and of the deceleration parameter qðzÞ (right panel) as a function of
redshift z for ξ ¼ 1.54 (short dashed curve), ξ ¼ 1.61 (dashed curve), ξ ¼ 1.69 (long dashed curve), and ξ ¼ 1.76 (ultra long dashed
curve). The values of the potential parameters σ and ϵ have been fixed to σ ¼ −2.89 and ϵ ¼ 0.015, respectively. The initial conditions
used for the integration of the cosmological equations are hð0Þ ¼ 1, rð0Þ ¼ 1, and φð0Þ ¼ −0.005. The solid red line indicates the
predictions of the ΛCDM model. The error bars in the left panel indicate the observational values of the Hubble function [89,90].
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Γ
H0

¼ 9ϵ

2

hr
1þ ð5ϵ=2Þr : ð4:31Þ

For high densities satisfying the condition ð5ϵ=2Þr ≫ 1,
Γ=H0 ≈ ð9=5Þh, and is independent of the matter density,
depending only on the rate of the expansion of the
Universe. In the opposite limit ð5ϵ=2Þr ≪ 1, Γ=H0 ≈
ð9ϵ=2Þhr, and the matter creation rate depends on both
the expansion rate and the matter density. The variation of
Γ=H0 with respect to the redshift is represented in Fig. 3.
The particle creation rate is a monotonically increasing

function of the redshift, indicating a monotonic decrease in
time. For redshifts in the range z ≤ 1, the creation rate is
constant, with matter creation triggering an accelerated
expansion of the Universe.

C. Vðφ;ψÞ=αφnψ −m + βφ

As a second cosmological model in the two scalar field
representation of fðR; TÞ gravity, we will consider the case
in which the scalar potential is given by

Vðφ;ψÞ ¼ αφnψ−m þ βφ; ð4:32Þ

where α, β, n, andm > 0 are constants. In the following we
restrict again our analysis to the pressureless case, p ¼ 0.
For these choices of V and p the second equation from
Eqs. (3.11) gives immediately

ρ ¼ αm
φn

ψmþ1
: ð4:33Þ

By introducing the set of dimensionless variables ðr; h; τ;
α0; β0Þ, defined by ρ ¼ ð3H2

0=8πÞr, H ¼ H0h, τ ¼ H0t,

α ¼ ð3H2
0=8πÞα0, and β ¼ ð3H2

0=8πÞβ0, respectively,
we obtain

r ¼ α0m
φn

ψmþ1
: ð4:34Þ

The first of the Eqs. (3.11) gives for h the temporal
evolution equation

dh
dτ

¼ nα0
16π

φn−1

ψm þ β0
16π

− 2h2: ð4:35Þ

The time variation of φ can be obtained from Eq. (3.9) as

h
dφ
dτ

¼ α0m
φn

ψmþ1
þ ð1þ 3mÞα0

16π

φn

ψm þ β0
16π

− h2φ: ð4:36Þ

Equation (3.12) can be reformulated in a dimensionless
form as

�
1þ 3

16π
ψ

�
dr
dτ

þ3

�
1þ 1

8π
ψ

�
hrþ 1

8π
r
dψ
dτ

¼ 0: ð4:37Þ

With the use of the expression (4.34) for r we obtain the
evolution equation of ψ as

dψ
dτ

¼ ψ ½6hðψ þ 8πÞφþ nð3ψ þ 16πÞðdφ=dτÞ�
φ½ð3mþ 1Þψ þ 16πðmþ 1Þ� : ð4:38Þ

Hence, the full system of equations describing the
cosmological evolution in the redshift space of the two
scalar field fðR; TÞ gravity theory with potential (4.32) is
given by

−ð1þzÞhðzÞdhðzÞ
dz

¼ nα0
16π

φn−1ðzÞ
ψmðzÞ þ β0

16π
−2h2ðzÞ; ð4:39Þ

−ð1þ zÞh2ðzÞ dφðzÞ
dz

¼ β0
16π

φ½z� − h2ðzÞφðzÞ

þ α0m
φnðzÞ

ψmþ1ðzÞ

þ ð1þ 3mÞα0
16π

φnðzÞ
ψmðzÞ ; ð4:40Þ

and

− ð1þ zÞhðzÞ dψðzÞ
dz

¼ ψðzÞ
φðzÞ

�
6hðzÞðψðzÞ þ 8πÞφðzÞ

− nð3ψðzÞ þ 16πÞð1þ zÞhðzÞ dφðzÞ
dz

�

=½ð3mþ 1ÞψðzÞ þ 16πðmþ 1Þ�; ð4:41Þ

FIG. 3. The evolution of the matter creation rate Γ=H0 as a
function of redshift z for ξ ¼ 1.54 (short dashed curve), ξ ¼ 1.61
(dashed curve), ξ ¼ 1.69 (long dashed curve), and ξ ¼ 1.76 (ultra
long dashed curve). The values of the potential parameters σ and ϵ
have been fixed to σ ¼ −2.89 and ϵ ¼ 0.015, respectively. The
initial conditions used for the integration of the cosmological
equations are hð0Þ ¼ 1, rð0Þ ¼ 1, and φð0Þ ¼ −0.005.
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respectively. The system of equations (4.39)–(4.41) must
be integrated with the initial conditions hð0Þ ¼ 1,
φð0Þ ¼ φ0, and ψð0Þ ¼ ψ0, respectively. However, the
initial values ϕ0 and ψ0 are not independent, since the
condition rð0Þ ¼ 1 gives the relation

ψð0Þ ¼ ðα0mφn
0Þ1=ðmþ1Þ: ð4:42Þ

The redshift evolution of the Hubble function and of the
deceleration parameter are presented, for fixed values of α0,
ϕ0, ψ0,m, and n, and for different values of β0, in Fig. 4. As
one can see from the left panel of Fig. 4, at low redshifts the
model can describe well the observational data, and also
reproduces almost exactly the predictions of the ΛCDM

model. However, at higher redshifts the present model
predicts higher rates for the Hubble function, as compared
to the ΛCDM model. The behavior of the deceleration
parameter, represented in the right panel of Fig. 4, also
shows major differences with respect to ΛCDM at high
redshifts, the deceleration rate of the Universe being
generally higher in the two scalar field representation of
the fðR; TÞ theory with the potential (4.32). At low
redshifts for some particular values of β0 one can reproduce
the deceleration parameter behavior of ΛCDM.
The variations of the functions φðzÞ and ψðzÞ are

represented in Fig. 5. The function φðzÞ has a strong
dependence on the model parameters. For smaller values
of β0, after an initial period of decrease, and after reaching a

FIG. 4. The evolution of the Hubble function hðzÞ (left panel), and of the deceleration parameter qðzÞ (right panel) as a function of the
redshift z for the potential Vðφ;ψÞ ¼ αφnψ−m þ βφ for β0 ¼ 75 (short dashed curve), β0 ¼ 80 (dashed curve), β0 ¼ 85 (long dashed
curve), and β0 ¼ 89 (ultra long dashed curve), respectively. The values of the potential parameters α0, n and m have been fixed to
α0 ¼ 0.1, n ¼ 1, and m ¼ 2, respectively. The initial conditions used for the integration of the cosmological equations are hð0Þ ¼ 1,
φð0Þ ¼ 3.90, and ψð0Þ ¼ ðα0mφn

0Þ1=ðmþ1Þ. The solid red curve depicts the predictions of the ΛCDM model. The error bars in the left
panel indicate the observational values of the Hubble function [89,90].

FIG. 5. Redshift evolution of the functions φðzÞ (left panel) and ψðzÞ (right panel) for the potential Vðφ;ψÞ ¼ αφnψ−m þ βφ and for
β0 ¼ 75 (short dashed curve), β0 ¼ 80 (dashed curve), β0 ¼ 85 (long dashed curve), and β0 ¼ 89 (ultra long dashed curve),
respectively. The values of the potential parameters α0, n, andm have been fixed to α0 ¼ 0.1, n ¼ 1, andm ¼ 2, respectively. The initial
conditions used for the integration of the cosmological equations are hð0Þ ¼ 1, φð0Þ ¼ 3.90, and ψð0Þ ¼ ðα0mφn

0Þ1=ðmþ1Þ.

GRAVITATIONALLY INDUCED PARTICLE PRODUCTION IN … PHYS. REV. D 106, 044043 (2022)

044043-13



minimum value, φðzÞ begins to increase rapidly. For larger
values of β0, φðzÞ is a monotonically decreasing function of
the redshift (a monotonically increasing function of time).
The function ψðzÞ decreases monotonically with the red-
shift, and the variations of β0 do not affect the qualitative
behavior of ψ .
The redshift variations of the matter density of the matter

creation rate are shown in Fig. 6. The present model gives
an acceptable description of the variation of the matter
density, and at low redshifts one can reproduce the ΛCDM
model on a qualitative level. At high redshifts the matter
density increases more slowly in the present model, and the
amount of baryonic matter in the Universe is smaller than
the one predicted by standard cosmology.

V. DISCUSSION AND CONCLUSIONS

In the present work, we have explored the possibility of
gravitationally generated particle production in the scalar-
tensor representation of the fðR; TÞ gravity theory. Due to
the explicit nonminimal curvature-matter coupling in the
theory, the divergence of the matter energy-momentum
tensor does not vanish. We have considered the physical
and cosmological implications of this property by using the
formalism of irreversible thermodynamics of open systems
in the presence of matter creation/annihilation. The particle
creation rates, the creation pressure, the temperature evo-
lution, and the expression of the comoving entropy were
obtained in a covariant formulation and discussed in detail.
Applied together with the gravitational field equations, the
thermodynamics of open systems lead to a generalization
of the standard ΛCDM cosmological paradigm, in which
the particle creation rates and pressures are effectively
considered as components of the cosmological fluid

energy-momentum tensor. We also considered specific
models, and we have compared the scalar-tensor fðR; TÞ
cosmology with the ΛCDM scenario, as well as with the
observational data for the Hubble function. The properties
of the particle creation rates, of the creation pressures,
and the entropy generation through gravitational matter
production in both low and high redshift limits were
investigated in detail. From a cosmological point of view,
the generalized Friedmann equations of the scalar-tensor
representation of the fðR; TÞ gravity have the important
property of admitting a de Sitter type solution, which leads
to the possibility of an immediate explanation of the present
day acceleration of the Universe. The de Sitter solution can
either describe a constant density Universe, or a Universe in
which the matter density decreases asymptotically as an
exponential function.
It would also be important to obtain a qualitative estimate

of the particle production rate that could explain the
accelerated de Sitter expansion of the Universe, without
resorting to the presence of dark energy. Such an estimate
of the particle production rate can be obtained as follows.
As a result of the expansion of the Universe, during the
de Sitter phase, the matter density decreases as ρðtÞ ¼
ρ0 exp ð−3H0tÞ, where ρ0 denotes the present matter
density of the Universe. Consequently, the variation of
the density with respect to the time is given by

_ρðtÞ ¼ −3H0ρ0 exp ð−3H0tÞ: ð5:1Þ

We estimate now this relation at the present time.
Moreover, we assume that ρ0 is equal to the critical density
of the Universe, ρ0 ¼ 3H2

0=8πG. Then, for the present day
time derivative of the density we obtain

FIG. 6. Redshift evolution of the matter density rðzÞ (left panel) and of the particle creation rate ΓðzÞ (right panel) for the potential
Vðφ;ψÞ ¼ αφnψ−m þ βφ and for β0 ¼ 75 (short dashed curve), β0 ¼ 80 (dashed curve), β0 ¼ 85 (long dashed curve), and β0 ¼ 89
(ultra long dashed curve), respectively. The values of the potential parameters α0, n, and m have been fixed to α0 ¼ 0.1, n ¼ 1, and
m ¼ 2, respectively. The initial conditions used for the integration of the cosmological equations are hð0Þ ¼ 1, φð0Þ ¼ 3.90, and
ψð0Þ ¼ ðα0mφn

0Þ1=ðmþ1Þ. The solid red curve indicates the predictions of the ΛCDM model.
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_ρðtÞjt¼0 ¼ −
9H3

0

8πG
: ð5:2Þ

Consequently, the particle creation rate necessary to main-
tain the matter density constant is

ΓðtÞjt¼0 ¼ −_ρðtÞjt¼0 ¼
9H3

0

8πG
: ð5:3Þ

If the creation rate has the above expression, the evolution
of the Universe is of de Sitter type, and the ordinary matter
density is a constant, satisfying the relation 3H2

0 ¼
8πGρ0 ¼ constant. Let us estimate now the numerical value
of matter creation rate Γ. By assuming H0¼2.2×10−18 s−1

(Planck data), we obtain Γ ¼ 5.71 × 10−47 g=cm3=s. We
convert now cm to km and seconds to years, respectively,
thus obtaining Γ ¼ 1.8 × 10−24 g=km3=year. This result
shows that the creation of a single proton in one km3 in
one year, or, equivalently, 160 protons in a km3 in a century,
can fully balance the decrease in the density of the matter due
to the de Sitter evolution. Of course, such a small amount of
matter, created presumably from vacuum due to quantum
field theoretical processes, cannot be detected observatio-
nally or experimentally.
In concluding, the formalism of irreversible matter cre-

ation of thermodynamics of open systems as applied in
cosmology can give a full account of the creation of matter
in a homogeneous and isotropic Universe, as long as the

particle creation rate, and consequently the creation pressure,
are not zero. For instance, Einstein’s GR is incapable of
explaining the increase in entropy that accompanies matter
creation, since both the creation rate, and the creation
pressure, are not of gravitational origin. Modified theories
of gravity in which these two quantities do not vanish not
only can provide a (macroscopic) phenomenological
description of particle production in the cosmological fluid
filling the Universe but also lead to the possibility of
cosmological models that start from empty conditions and
gradually build up matter and entropy. Hence, fðR; TÞ
gravity theory can provide a phenomenological description
of the matter creation processes in the Universe. In this
theory the geometry-matter coupling is responsible for
inducing particle production from the gravitational field.
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