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In this work we investigate the quantitative effects of the misalignment kinetic axion on R2 inflation. Due
to the fact that the kinetic axion possesses a large kinetic energy that dominates its potential energy, during
inflation its energy density redshifts as stiff matter fluid and evolves in a constant-roll way, making the
second slow-roll index to be nontrivial. At the equations of motion level, the R2 term dominates the
evolution; thus the next possible effect of the axion could be found at the cosmological perturbations level,
via the second slow-roll index which is nontrivial. As we show, the latter elegantly cancels from the
observational indices; however, the kinetic axion extends the duration of the inflationary era to an extent
that it may cause a 15% decrease in the tensor-to-scalar ratio of the vacuum R2 model. This occurs because
as the R2 model approaches its unstable quasi–de Sitter attractor in the phase space of FðRÞ gravity due to
the hR2i fluctuations, the kinetic axion dominates over the R2 inflation and in effect the background
equation of state is described by a stiff era, or equivalently a kination era, different from the ordinary
radiation domination era. This in turn affects the duration of the inflationary era, increasing the e-foldings
number up to 5e-foldings in some cases, depending on the reheating temperature, which in turn has a
significant quantitative effect on the observational indices of inflation and especially on the tensor-to-scalar
ratio.
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I. INTRODUCTION

Dark matter, inflation, dark energy, and the mysterious
reheating-early radiation domination era are the mysteries
of modern theoretical physics. These problems have been
puzzling theoretical physicists for decades, and to date
no definite answers are given for the questions imposed
by these problems. Of the above evolution eras of our
Universe, only the dark energy era has been observationally
verified, whereas the rest of the eras remain at the
speculation level. However, inflation and the closely related
postinflationary reheating era are going to be severely
scrutinized in the next 15 years, both by stage-4 cosmic
microwave background (CMB) experiments [1,2] and by
interferometric and not only gravitational waves experi-
ments such as the LISA, DECIGO, BBO, and Einstein
telescope [3–10]; see also [11]. The gravitational wave
interferometric experiments will directly probe tensor
modes that reentered the Hubble horizon during the
mysterious reheating era, thus small wavelength modes
that carry information both for the observational indices of
inflation and for the reheating era, while the stage-4 CMB
experiments will seek the B-mode polarization in the CMB.
The B-modes can be generated by two distinct effects: by
the E-mode conversion to B-modes via gravitational
lensing for small angular scales or large-l CMB modes,

or by tensor modes for large angular scales or small-l CMB
modes. Dark matter though seems unreachable to us for the
time being. Although there are many proposals for dark
matter [12–17], currently it still remains a mystery what
dark matter is composed of. The basic known facts about
dark matter are that it has a particle nature, based on
observations such as the bullet cluster, and the dark matter
particle definitely has a small mass. An appealing candi-
date, as elusive among other particles as dark matter itself,
is the axion [18–77]. With the terminology axion, we do not
refer to the QCD axion, but to an axionlike particle, in
which case the primordial Uð1Þ Peccei-Quinn symmetry of
the axion is broken during inflation, and the axion develops
a nonzero vacuum expectation value. The axion is a light
scalar field, and thus it is highly motivated from a string
theory point of view, since scalar fields are the string
moduli, which are a basic and profound characteristic of
string theory. The axion is an elusive particle with an
extremely small mass and is admittedly quite hard to detect;
however, there are direct and indirect ways to detect it, for
example, from observations of neutron stars [67] or due to
black hole superradiance effects [53–56]. However, in the
future it might also be detected on ground experiments,
utilizing the conversion of the axion to photons in the
presence of a strong magnetic field. The most fascinating
feature of the axion and of axionlike particles in general is
the fact that during inflation, the primordialUð1Þ symmetry
is broken, thus allowing the axion to have a large vacuum*voikonomou@auth.gr; v.k.oikonomou1979@gmail.com
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expectation value, and no cosmic string remnants pollute
the postinflationary era. Another fascinating fact about the
axion is that when the Hubble rate of the Universe becomes
of the same order as the axion mass, the axion commences
oscillations around its vacuum expectation value and its
energy density redshifts as ρa ∼ a−3, thus as cold dark
matter. Hence the axion can be the predominant component
of cold dark matter in the Universe.
Modified gravity [78–82] offers an appealing theoretical

framework, in the context of which the dark energy era and
the inflationary era can be described in a unified way (see
the pioneer article [83] for the first attempt toward this
direction and also Refs. [76,84–90] for later developments
in this research line). In both the inflationary era and the
dark energy era general relativistic descriptions, the use of a
scalar field, minimally or nonminimally coupled to gravity,
is inevitably needed. With regard to the inflationary era, the
scalar field description can be somewhat problematic, since
the scalar field must inevitably be coupled to the Standard
Model particles, and the couplings are arbitrary. Also with
regard to the dark energy era, the scalar field description is
problematic, since the dark energy equation of state (EoS)
parameter is allowed to take values beyond the phantom
divide line, so it can be less than −1. The scalar field
description of such an evolution requires tachyon fields,
which are not appealing at all in any context. Modified
gravity in its various forms offers a consistent framework that
can describe both the inflationary and the dark energy eras,
without the shortcomings of the scalar field description.
Among all the modified gravities, the fðR;ϕÞ theories

are the most motivated, since in a fundamental primordial
scalar field in its vacuum configuration, the first quantum
corrections are higher powers of the Ricci scalar (see [91]
for more details, and also combinations of the Ricci scalar
with Riemann and Ricci tensors, such as the Einstein-
Gauss-Bonnet theories). In this article we shall assume that
the inflationary era is controlled by an FðRÞ gravity in the
presence of a primordial axion field. The axion field shall
be assumed to be the misalignment axion, in which case the
primordial Uð1Þ Peccei-Quinn symmetry that the axion
possessed is broken during inflation. There are two mis-
alignment axion models in the literature: the canonical
misalignment axion [21], and the kinetic misalignment
axion models [25–27]. The difference between the two
models is that during inflation, the canonical misalignment
axion possesses no kinetic energy, and on the contrary in
the case of the kinetic misalignment axion case, the axion
possesses a large kinetic energy, which dominates the
potential energy. Thus the axion oscillations in the latter
case commence much more later, compared to the former
axion model. In this work we shall investigate the effects of
the kinetic misalignment axion model on the inflationary
era generated by an FðRÞ gravity and specifically on the
R2 inflationary era. At the equations of motion level, the
effects are absent; however, at the cosmological

perturbations level, the axion may affect directly the
evolution via the second slow-roll parameter ϵ2. As we
show, the kinetic axion obeys a constant-roll evolution,
which dominates the evolution at the late stages of the R2

controlled inflationary era. The kination era caused by the
kinetic axion basically dominates over the hR2i fluctuations
that destabilize the inflationary quasi–de Sitter vacuum.
This causes the total EoS of the Universe to be described by
a short kination era, described by a stiff perfect fluid
evolution, which eventually affects the total number of the
e-foldings. Remarkably though, the fact that the scalar field
obeys a constant-roll evolution during inflation does not
affect at all the observational indices of inflation, since the
contribution of the slow-roll parameter ϵ2 is elegantly
canceled.
This paper is organized as follows: In Sec. II we present

the essential features of the kinetic axion FðRÞ gravity
model. We describe in brief the kinetic axion model, and we
also present the way in which the axion postinflationary
may mimic cold dark matter. In Sec. III, we investigate in
detail the inflationary dynamics of the kinetic axion FðRÞ
gravity model. We show how the constant-roll evolution of
the kinetic axion during inflation eventually leaves unaf-
fected the dynamics of inflation at the cosmological
perturbations level, and also we show how the kination
era at the last stages of the R2 controlled inflationary era
eventually prolongs the inflationary era, increasing the total
number of e-foldings. The conclusions of this work follow
in the end of the article.

II. ESSENTIAL FEATURES OF THE FðRÞ
GRAVITY-KINETIC AXION MODEL

Before we get to the study of the inflationary dynamics
for the FðRÞ gravity-kinetic axion model, let us first present
the theoretical framework of the model in some detail. The
FðRÞ gravity-kinetic axion model is basically an fðR;ϕÞ
gravity theory, in which case the gravitational action has the
following form:

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
FðRÞ−1

2
∂
μϕ∂μϕ−VðϕÞþLm

�
; ð1Þ

where κ2 ¼ 1
8πG ¼ 1

M2
p
, with G being Newton’s gravitational

constant and Mp standing for the reduced Planck mass.
Also, Lm denotes the Lagrangian density of the perfect
matter fluids that are present, and we will assume that only
radiation is present. The dark matter perfect fluid will be
composed solely by the axion particles present, with the
latter being identified with the scalar field ϕ. Now, with
regard to the FðRÞ gravity model, for phenomenological
reasons we will assume that it has the following form:

FðRÞ ¼ Rþ 1

M2
R2 −

Λð R
m2

s
Þδ

ζ
; ð2Þ
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with ms being defined as m2
s ¼ κ2ρð0Þm

3
; also ρð0Þm is the energy

density of cold dark matter at present day, and 0 < δ < 1.
Finally, ζ and γ are some freely chosen dimensionless
constants, which we shall discuss in a later section. The
FðRÞ gravity model is composed by an R2 model that will
control the primordial inflationary era and by a power-law
term ∼Rδ, which eventually will control the late-time
dynamics. In fact, the model (2) can lead to a viable dark
energy era, as was shown in detail in [76,77,91] so we will
not address the late-time dynamics issue here.
With regard to the parameterM appearing in the R2 term,

it will be chosen to be M ¼ 1.5 × 10−5ðN
50
Þ−1Mp, a value

imposed by inflationary phenomenological reasoning [92],
with N being the e-foldings number. Also the parameter Λ
in Eq. (2) is assumed to be of the same order as the
cosmological constant at present day. In this work we shall
consider a flat Friedmann-Robertson-Walker (FRW) back-
ground with line element

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð3Þ

so the field equations for the fðRÞ gravity with the axion
scalar field in the presence of radiation are

3H2FR ¼ RFR − F
2

− 3H _FR þ κ2
�
ρr þ

1

2
_ϕ2 þ VðϕÞ

�
;

−2 _HF ¼ κ2 _ϕ2 þ F̈R −H _FR þ 4κ2

3
ρr; ð4Þ

ϕ̈þ 3H _ϕþ V 0ðϕÞ ¼ 0; ð5Þ

where FR ¼ ∂F
∂R, while the “dot” denotes differentiation with

respect to the cosmic time, and the “prime” denotes
differentiation with respect to the axion scalar field.
With regard to the axion field, we shall consider the
misalignment axion [21,76], in which case the axion should
not be related to the QCD axion, but it is some axionlike
particle, which we call axion. In the literature there are two
misalignment axion models, the canonical misalignment
model [21] and the kinetic misalignment model [25–27]. In
this work we shall consider the effects of the kinetic
misalignment axion model on the inflationary dynamics
of FðRÞ gravity, and we shall see in which way it affects
eventually the duration of the inflationary era. In the kinetic
misalignment axion model, the axion has a primordial
Peccei-Quinn Uð1Þ symmetry which is broken during the
inflationary era. The fact that the original Peccei-Quinn
symmetry is broken is particularly important for the infla-
tionary phenomenology since no remnant cosmic strings
remain after inflation ends. This, however, was a problem
in standard QCD axion models, which is absent though in
all misalignment axion models. After theUð1Þ symmetry is
broken, the axion acquires a large vacuum expectation

value hϕi ¼ θafa, where θa is the initial misalignment
angle and fa is the axion decay constant. The misalignment
angle is in reality a dynamical field and can take values in
the range 0 < θa < 1; however, in the way that it enters in
the vacuum expectation value of the axion, it is not
considered as a dynamical field, but as an average value
throughout the whole universe at the time of inflation. With
regard to the axion decay constant fa, this parameter is of
fundamental phenomenological importance, and in con-
junction with the axion mass, constitutes the two most
important phenomenological parameters for the axion
dynamics. Regarding the axion having a vacuum expect-
ation value during inflation, this fact does not mean that the
axion is actually constant during inflation, but it basically
has small deviations about its vacuum expectation value,
different from the small oscillations about its vacuum
expectation value after the inflationary era ends. Let us
describe in brief the kinetic misalignment axion dynamics
during inflation. Schematically, this is depicted in Fig. 1.
As it can be seen in Fig. 1, the axion during inflation has a
small initial displacement from its vacuum expectation
value, and more importantly it has an nonzero initial
velocity. This initial velocity is what justifies the terminol-
ogy “kinetic.” The axion rolls down its potential, and due to
the initial velocity it ends up uphill again, at a position
different from the one corresponding to the canonical
misalignment axion model, in which case the axion after
it rolls down and reaches the minimum, starts to oscillate
around its vacuum expectation value. Thus in the kinetic
misalignment case, the axion ends up uphill, and it then
rolls downhill until it reaches the minimum and commences
to oscillate around its vacuum expectation value when the
Hubble rate of the Universe becomes comparable to the
axion mass H ∼ma. In the kinetic misalignment axion
mechanism the oscillations start at a later time compared to
the canonical misalignment mechanism, and thus in the
kinetic axion model, the temperature at which oscillations
commence is lower compared to the canonical misalign-
ment axion model. Let us briefly quantify the above picture
in terms of the potential and the axion mass. Primordially,
the axion potential has the following form:

FIG. 1. The kinetic misalignment axion dynamics.
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VðϕÞ ¼ m2
af2a

�
1 − cos

�
ϕ

fa

��
; ð6Þ

and when the axion acquires a vacuum expectation value
during inflation, for small displacements from its vacuum
expectation value, its potential can be approximated as
follows:

VðϕÞ ≃ 1

2
m2

aϕ
2; ð7Þ

an approximation that is valid when ϕ ≪ fa or similarly
ϕ ≪ hϕi. Initially, when the axion is uphill at both ends of
the potential, we have H ≫ ma; however, when the axion
reaches the minimum for the second time, it starts to
oscillate around its vacuum expectation value when
H ≤ ma, and at that point the axion energy density redshifts
as dark matter [21,76]. The most important feature of the
kinetic misalignment axion model is the fact that initially
the axion kinetic energy term _ϕ2 is quite larger than the
axion potential energy _ϕ2 ≫ V. This continues until some
time instance during the reheating, the potential and the
kinetic energy become comparable, when the temperature
of the Universe is of the order

_ϕðT̃Þ ¼ maðT̃Þ; ð8Þ

at which temperature the axion does not have a large kinetic
energy anymore so it becomes trapped in the potential
barrier and the oscillations around the minimum com-
mence. The canonical misalignment temperature when
the oscillations start T� is larger than T̃. So basically,
when the axion mass is larger than the Hubble rate

maðT̃Þ ≥ HðT̃Þ ¼ 3
Mp

ffiffiffiffi
π2

10

q
g�T̃2, the roll down and up of

the axion occurs, and whenmaðT̃Þ ≤ HðT̃Þ ¼ 3
Mp

ffiffiffiffi
π2

10

q
g�T̃2,

the axion starts to oscillate with abundance

ρa ∼maðT ¼ 0Þ _ϕf2a
s , where s is the entropy density and

maðT ¼ 0Þ ¼ ma is the actual axion mass as a dark matter
particle. In general, in the kinetic axion misalignment
model, the axion dark matter mass is larger than the one
compared to the canonical misalignment axion case. A
useful relation that connects the axion mass with the axion
decay constant is the following:

maðTÞ ¼ 6 meV
109 GeV

fa
; ð9Þ

and in order for the kinetic axion to account for the current
dark matter abundance, the axion decay constant must
satisfy fa ≤ 1.5 × 1011 GeV.
Let us further quantify the dynamics of the axion during

inflation, since this will be important for the study of the
inflationary phenomenology. Since initially, the kinetic

energy of the axion is quite larger than the potential energy,
that is, _ϕ2 ≫ m2

aϕ
2, the field equation for the axion

becomes approximately

ϕ̈þ 3H _ϕ ≃ 0; ð10Þ

which can be solved to yield

_ϕ ∼ a−3: ð11Þ

So primordially, the energy density of the axion which is

ρa ¼ _ϕ2

2
þ VðϕÞ ≃ _ϕ2

2
becomes ρa ∼ a−6. Thus this is an era

of kination for the axion dynamics, with its effective
equation of state parameter being w ¼ 1, which describes
stiff matter fluid. Hence the kinetic axion during inflation
behaves as a stiff perfect matter fluid. In the next section
we shall consider in a quantitative way the direct effects of
the kinetic misalignment axion scalar on the inflationary
dynamics of FðRÞ gravity, and we shall reveal how the stiff
axion fluid eventually prolongs the inflationary era.
Before closing this section, let us note that the kinetic

misalignment axion mechanism is inherently related to the
initial explicit breaking of the Peccei-Quinn symmetry
which is broken by a higher dimensional effective operator
in the same way as in the Affleck-Dine mechanism.

III. DYNAMICS OF INFLATION FOR THE
KINETIC AXION FðRÞ GRAVITY MODEL

Let us now use the results of the previous section in order
to determine the inflationary dynamics and the correspond-
ing phenomenology in terms of the slow-roll indices.
Recall that in the previous section we showed that the
kinetic axion field redshifts as a perfect matter fluid during
inflation with a stiff EoS, since ρa ∼ a−6, so its energy
density is smaller compared to the radiation fluid energy
density. Assuming a low scale inflationary era, with the
Hubble rate during inflation being of the order
HI ¼ 1013 GeV, let us investigate which terms effectively
dominate in the field equations of the kinetic axion FðRÞ
gravity. The Ricci scalar takes quite large values for
HI ¼ 1013 GeV, and thus R2 dominates the evolution
roughly speaking. Let us see this in some detail, and recall
that m2

s ≃ 1.87101 × 10−67 eV2 and also the parameter M
which appears in the R2 term in Eq. (2) is M ¼ 1.5 ×
10−5ðN

50
Þ−1Mp [92]; hence by roughly taking for N ∼ 60,M

is of the order M ≃ 3.04375 × 1022 eV. Also, due to the
fact that during inflation the slow-roll conditions are
satisfied, we approximately have R ≃ 12H2 and therefore
R ∼ 1.2 × 1045 eV2. Furthermore, Mp ≃ 2.435 × 1027 eV,
and also the parameter Λ is of the order of the cosmological
constant at present day, that is, Λ ≃ 11.895 × 10−67 eV2.
Finally, the vacuum expectation value of the axion is
roughly of the same order as the axion decay constant;
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therefore hϕi ¼ ϕi ≃Oð1015Þ GeV and approximately
ma ≃Oð10−14Þ eV. Thus, the potential term is of the order
κ2VðϕiÞ ∼Oð8.41897 × 10−36Þ eV2, while the two curva-
ture terms R and R2 are of the order R ∼ 1.2 ×Oð1045Þ eV2

and R2=M2 ∼Oð1.55 × 1045Þ eV2, and the power-law

curvature term is of the order
Λð R

ms
Þ0.1

0.2 ∼Oð10−55Þ eV2 for
δ ¼ 0.1 and ζ ¼ 0.2, with the latter being phenomenologi-
cally acceptable values. Also, during inflation the radiation
density term κ2ρr ∼ κ2e−4N , a similar relation applies for
the kinetic misalignment axion energy density ρa, and the
corresponding term scales as κ2ρr ∼ κ2e−6N . Therefore, at
the equations of motion level, the resulting theory is
basically effectively described by a vacuum R2, in which
case

FðRÞ ≃ Rþ 1

M2
R2: ð12Þ

Then the field equations take the form

Ḧ −
_H2

2H
þHM2

2
¼ −3H _H: ð13Þ

and due to the slow-roll conditions,

−
M2

6
¼ _H; ð14Þ

which has as a solution

HðtÞ ¼ HI −
M2

6
t; ð15Þ

which is a quasi–de Sitter solution, with HI being an
arbitrary integration constant, with profound physical
significance since this is the scale of inflation.
Now one might consider that effectively the kinetic axion

does not affect at all the dynamics of inflation; however,
this is not true. It is certain that the axion does not control
the Hubble rate at the level of the equations of motion for
sure; however, the dynamics of inflation are not affected
only by the background evolution. As we will show, the
axion may affect inflation in two ways: first, it may directly
affect the scalar curvature perturbations, and second, it
prolongs the inflationary era, since the axion effective
equation of state is w ¼ 1 so that inflation is prolonged as
we show shortly.
The cosmological scalar curvature perturbations are

dynamically quantified by the slow-roll indices, which
for the fðR;ϕÞ theory at hand are defined to be [78,93,94],

ϵ1 ¼ −
_H
H2

; ϵ2 ¼
ϕ̈

H _ϕ
; ϵ3 ¼

_FR

2HFR
; ϵ4 ¼

_E
2HE

;

ð16Þ

where the function E for the fðR;ϕÞ theory at hand has the
following form:

E ¼ FR þ 3 _F2
R

2κ2 _ϕ2
: ð17Þ

Now the most important effect that the kinetic axion theory
brings along in the FðRÞ gravity is contained in the
parameter ϵ2. Since the axion obeys the stiff scalar differ-
ential equation (10), this means that in our case, the slow-
roll parameter ϵ2 takes the value ϵ2 ¼ −3; therefore, the
axion obeys a constant-roll condition in its dynamics. The
question is, does ϵ2 affect the inflationary dynamics? As we
now show, at leading order, the contribution of the axion
field is elegantly canceled in the observational indices of
inflation and specifically with the spectral index of the
primordial scalar curvature perturbations. To this end, let
us present the details of the calculation of the parameter ϵ4
in which the dynamics of the axion is found. We have
explicitly at leading order during inflation

E ≃
3 _F2

R

2κ2 _ϕ2
; ð18Þ

so ϵ4 is approximately equal to

ϵ4 ≃
3

2κ2
2 _FRF̈R

_ϕ2 − _F2
R
_ϕ ϕ̈

_ϕ4
; ð19Þ

which is simplified to

ϵ4 ≃
F̈RR

H _FR

−
ϕ̈

H _ϕ
¼ F̈RR

H _FR

− ϵ2: ð20Þ

Let us further elaborate on the parameter ϵ4 which after
some algebra is written as follows:

ϵ4 ≃ −
24FRRRH2

FRR
ϵ1 − 3ϵ1 þ

_ϵ1
Hϵ1

− ϵ2: ð21Þ

The term _ϵ1 can be written as

_ϵ1 ¼ −
ḦH2 − 2 _H2H

H4
¼ −

Ḧ
H2

þ 2 _H2

H3
≃ 2Hϵ21; ð22Þ

hence ϵ4 becomes

ϵ4 ≃ −
24FRRRH2

FRR
ϵ1 − ϵ1 − ϵ2: ð23Þ

Upon introducing x we have

x ¼ 48FRRRH2

FRR
; ð24Þ
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and ϵ4 can be written in terms of it as follows:

ϵ4 ≃ −
x
2
ϵ1 − ϵ1 − ϵ2: ð25Þ

Now for the fðR;ϕÞ gravity, the scalar spectral index of the
scalar curvature perturbations is [78,93,94]

nS ¼ 1 − 4ϵ1 − 2ϵ2 þ 2ϵ3 − 2ϵ4: ð26Þ

Thus by substituting the expression for ϵ4 we obtained in
Eq. (23), we can see that the contribution of ϵ2 elegantly
cancels, and the spectral index takes the form

nS ≃ 1 − ð2 − xÞϵ1 þ 2ϵ3: ð27Þ

Also the scalar-to-tensor ratio for the case at hand is equal
to [78,93,94]

r ≃ 48ϵ21: ð28Þ

Since the dominant part of the FðRÞ gravity during inflation
is an R2 gravity, the term x is equal to zero; thus, the scalar
spectral index is greatly simplified. For the quasi–de Sitter
solution at hand, the first slow-roll index is easily calculated
to be

ϵ1 ¼ −
6M2

ðM2t − 6HIÞ2
; ð29Þ

and by solving the algebraic equation ϵ1ðtfÞ ¼ 1, the time
instance at which inflation ends is

tf ¼ ð6HI þ
ffiffiffi
6

p
MÞ=M2: ð30Þ

Using the definition of the e-foldings number N,

N ¼
Z

tf

ti

HðtÞdt; ð31Þ

the time instance at which inflation commences is

ti ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9H2

I − 3M2N
p

þ 6HI

M2
; ð32Þ

and so the first slow-roll index at the first horizon crossing is

ϵ1ðtiÞ ¼
1

1þ 2N
: ð33Þ

Hence at leading order in terms of the e-foldings number,
the spectral index and the tensor-to-scalar ratio take the
forms ns ∼ 1 − 2

N and r ∼ 12
N2. Now for N ∼ 60 the resulting

phenomenology is identical to the Starobinsky model;
however, the axion stiff equation of state causes another
effect on inflation. Basically it prolongs the inflationary era

to some extent as we now evince. As inflation comes to an
end near the time instance tf, the background total EoS of
the Universe is no longer described by a quasi–de Sitter
EoS. Hence the stiff EoS of the axion describes the
Universe, since the matter perfect fluids become more
dominant slowly by slowly. Therefore the total EoS
parameter of the background evolution approaches the stiff
EoS value w ¼ 1. This fact prolongs the inflationary era,
causing the e-foldings number to be larger than 60. The
physical picture behind the increase of the e-foldings
number relies on the combined presence of the R2 term
and the large kinetic term of the kinetic misalignment
axion. In standard R2 gravity, inflation tends to its end
when the curvature fluctuations hR2i become quite strong
and make the de Sitter attractor unstable. This phenom-
enological picture is possible only with the R2 gravity, and
as it was shown in Ref. [95], the Starobinsky model has an
unstable de Sitter attractor. Let us show this in brief (see
also [95] for more details). By introducing the dimension-
less variables,

x1 ¼ −
_FRðRÞ

FRðRÞH
; x2 ¼ −

FðRÞ
6FðRÞH2

; x3 ¼
R

6H2
;

ð34Þ

and by using the e-foldings number as a dynamical variable
instead of the cosmic time, the field equations of vacuum
FðRÞ gravity can be written in terms of the following
dynamical system:

dx1
dN

¼ −4 − 3x1 þ 2x3 − x1x3 þ x21;

dx2
dN

¼ 8þm − 4x3 þ x2x1 − 2x2x3 þ 4x2;

dx3
dN

¼ −8 −mþ 8x3 − 2x23; ð35Þ

with the dynamical parameter m being equal to

m ¼ −
Ḧ
H3

: ð36Þ

The dynamical system (35) is autonomous when the
parameter m takes constant values, and for a quasi–de
Sitter evolution aðtÞ ¼ eH0t−Hit2 the parameterm is equal to
zero. The total EoS of the cosmological system is defined
as [78]

weff ¼ −1 −
2 _H
3H2

; ð37Þ

and it can be expressed directly in terms of the variable x3
in the following way:
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weff ¼ −
1

3
ð2x3 − 1Þ: ð38Þ

Now, by performing a fixed point analysis of the dynamical
system for m ¼ 0, we easily obtain the fixed points

ϕ1� ¼ ð−1; 0; 2Þ; ϕ2� ¼ ð0;−1; 2Þ; ð39Þ

and the corresponding eigenvalues of the matrix that
corresponds to the dynamical system for ϕ1� are
ð−1;−1; 0Þ, while in the case of the fixed point ϕ2� these
are (1, 0, 0). Therefore, the dynamical system possesses
two that are nonhyperbolic, but the fixed point ϕ1� is stable
and, in contrast, the fixed point ϕ2� is unstable, with the
latter being the most interesting fixed point from a
phenomenological point of view. It is noticeable that for
both the fixed points, we have x3 ¼ 2, and hence, from
Eq. (38), we get weff ¼ −1. This feature basically shows
that both fixed points are de Sitter fixed points. As we
already mentioned, the second de Sitter fixed point,
namely, ϕ2� ¼ ð0;−1; 2Þ, is the most interesting phenom-
enologically, since for this equilibrium, the conditions x1 ≃
0 and x2 ≃ −1 yield

−
d2F
dR2

_R

H dF
dR

≃ 0; −
F

H2 dF
dR 6

≃ −1: ð40Þ

Using the slow-roll approximation during inflation for the
Ricci scalar curvature R ≃ 12H2, for the quasi–de Sitter
evolution, we can write the second differential equation as
follows:

F ≃
dF
dR

R
2
; ð41Þ

which when solved yields

FðRÞ ≃ αR2; ð42Þ

where α is some arbitrary integration constant, which
describes the FðRÞ gravity that generates the quasi–de
Sitter evolution. Clearly the R2 model possesses an
unstable de Sitter point. Thus when this unstable de
Sitter attractor is reached, the system is repelled from
it in the phase space. The time instance for which this
happens is determined roughly by the condition ϵ1ðtfÞ ¼ 1.
Now in the presence of the large axion kinetic term that
dominates over its potentials, things are somewhat different
when the cosmological system reaches the de Sitter
attractor. Particularly, the cosmological system initially is
controlled by the R2 term so it reaches the quasi–de Sitter
attractor. However, when it is repelled from the unstable de
Sitter attractor point, the cosmological system does not
enter directly the reheating era and the hRi reheating
fluctuations do not commence directly, but the kinetic

term, which was subdominant, dominates over the R2 term
and thus controls the dynamics at the end of inflation, after
the cosmological system is repelled from the quasi–de
Sitter attractor. Thus the end of inflation is somewhat
prolonged for the kinetic axion R2 model. This can be
schematically seen in Fig. 2, in which it is shown that in the
ordinary R2 model, the system after it reaches the unstable
de Sitter attractor, the hR2i fluctuations make the system to
be repelled from the attractor, and the cosmological system
enters the reheating era controlled by the hRi fluctuations.
In the presence of the kinetic axion, after the hR2i
fluctuations cause the system to be repelled from the de
Sitter attractor, the cosmological system does not enter
directly the reheating era, but the kinetic term dominates
the evolution and the background EoS is not the one
corresponding to an ordinary reheating era w ¼ 1=3 but it
corresponds to a stiff era with w ¼ 1. The system stays in
this stiff era and the ordinary reheating era commences
when the axion oscillations begin, so when _ϕ2 ∼ V, at
which point the axion redshifts as ordinary dark matter and
the radiation fluid controls the evolution thereafter. Thus
the number of e-foldings is somewhat extended in the
kinetic axion FðRÞ gravity picture.
Another striking feature of the kinetic axion FðRÞ

gravity model is the fact that the R2 term actually enhances
significantly the kinetic axion physics, delaying further the
kinetic axion to start its oscillations. In a future work we
shall demonstrate using a dynamical systems approach how
this can happen. Now let us quantify the qualitative picture

FIG. 2. The kinetic misalignment axion FðRÞ gravity total EoS
dynamical evolution. The cosmological system reaches an un-
stable de Sitter point in both the vacuum R2 gravity and the
kinetic misalignment axion FðRÞ gravity. Eventually, the hR2i
fluctuations make the system to be repelled from the de Sitter
attractor, and the cosmological system enters the reheating era
controlled by the hR2i fluctuations. In the presence of the kinetic
axion, after the hR2i fluctuations cause the system to be repelled
from the de Sitter attractor, the cosmological system does not
enter the reheating era directly, but the kinetic term dominates the
evolution and the background EoS is not the one corresponding to
an ordinary reheating era w ¼ 1=3 but it corresponds to a stiff era
with w ¼ 1. The system stays in this stiff era and the ordinary
reheating era commences when the axion oscillations begin.
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we described above, and let us see how the stiff era affects
the e-foldings number, thus somewhat extending inflation
for some e-foldings. As we will show, this feature is
strongly affected by the reheating temperature. In a general
setting, the e-foldings number for a primordial scalar mode
with wave number k, which became a superhorizon at the
beginning of inflation, is equal to [96]

akHk

a0H0

¼ e−N
Hkaend
arehHreh

Hrehareh
aeqHeq

Heqaeq
a0H0

; ð43Þ

with ak andHk being the scale factor and the Hubble rate at
the time instance where the primordial mode k became a
superhorizon at the beginning of inflation (at the first
horizon crossing), aend stands for the scale factor at the end
of the inflationary era, and finally areh and Hreh denote the
scale factor and the Hubble rate when the reheating era
ends. Furthermore, aeq and Heq denote the scale factor and
the Hubble rate at the time instance that the matter-radiation
equality occurs, and moreover a0 andH0 denote the present
day scale factor and the Hubble rate, respectively. Now, if
near the end of inflation, the total EoS parameter is w
(different from the value w ¼ 1=3), we get

ln

�
aendHend

arehHreh

�
¼ −

1þ 3w
6ð1þ wÞ ln

�
ρreh
ρend

�
; ð44Þ

with Hend being the Hubble rate when inflation ends, and
the energy densities ρend and ρreh stand for the total energy
density of the Universe when inflation ends and when the
reheating era ends. Note that for the derivation of Eq. (44),
we assumed that the total EoS parameter at the end of the
reheating era and at the end of inflation is constant and
equal to w. Then, when the hR2i commence, causing
instability to the de Sitter period, the constant EoS stiff
era of the kinetic axion commences, so the e-foldings
number of the inflationary era is extended as follows [96]:

N ¼ 56.12 − ln

�
k
k�

�
þ 1

3ð1þ wÞ ln
�
2

3

�

þ ln

�
ρ1=4k

ρ1=4end

�
þ 1 − 3w
3ð1þ wÞ ln

�
ρ1=4reh

ρ1=4end

�
þ ln

�
ρ1=4k

1016 GeV

�
;

ð45Þ

with ρk being the Universe’s total energy density at the
beginning of the inflationary era, exactly when the mode k
became a superhorizon. We shall also assume that the pivot
scale k� is k� ¼ 0.05 Mpc−1, and furthermore, we shall
assume that the degrees of freedom of particles g� during
the inflationary era, just after this era, are nearly constant.
Thus the energy density of the Universe at a temperature T
is equal to ρ ¼ π2

30
g�T4. Hence, the expression of Eq. (45)

can be rewritten in terms of the temperatures at the various

epochs and not in terms of the energy densities. In effect, if
the total number of e-foldings changes, the parameter M
coupled to the R2 gravity will also be somewhat affected,
and this should be taken into account for the inflationary
phenomenology of the current model. In Table I we present
the phenomenological behavior of the basically prolonged
R2 inflationary model, for three reheating temperatures,
namely a large reheating temperature TR ¼ 1012 GeV, and
an intermediate reheating temperature TR ¼ 107 GeV. The
perspective of having low reheating temperatures is already
discussed in the literature, even having MeV scale reheat-
ing temperatures (see, for example, [97]). As it can be seen,
in all cases, the inflationary era is prolonged and the results
are different from the standard R2 model for N ¼ 60 with
the changes being of the order 15% for the case of the
tensor-to-scalar ratio. Also as expected, since the infla-
tionary era generated by the kinetic axion FðRÞ gravity
theory is a deformation of the R2 model, it produces a
viable phenomenology. This can be seen in Fig. 3 where we
confront the kinetic axion FðRÞ gravity model with the
Planck likelihood curves for various reheating temperatures
in the range 107–1012 GeV. As it can be seen, the model is
well fitted in the sweet spot of the Planck data. In the plots,
the green dots correspond to the vacuum R2 model, and the
red dots correspond to the kinetic axion R2 model. As it can
be seen, the kinetic axion R2 model is a measurable
deformation of the vacuum R2 model.

FIG. 3. The Planck likelihood curves and the kinetic axion
FðRÞ gravity model (red dots) and the vacuum R2 model (green
dots). The kinetic R2 model serves as a viable deformation of the
vacuum Starobinsky model.

TABLE I. The e-foldings number for the kinetic axion FðRÞ
gravity model for various reheating temperatures, to be compared
with the standard R2 model results nS ¼ 0.966667 and r ¼
0.00333333 and a standard reheating scenario.

e-foldings number and
inflationary indices TR ¼ 1012 GeV TR ¼ 107 GeV

e-foldings number N 65.3439 61.5063
Spectral index nS 0.969393 0.967483
Tensor-to-scalar ratio r 0.00281042 0.00317206
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IV. CONCLUSIONS

In this work we investigated how a kinetic misalignment
axion can affect the inflationary era generated by an R2

model of FðRÞ gravity. In the context of the kinetic
misalignment axion, the primordial Uð1Þ Peccei-Quinn
symmetry is broken in the axion sector during inflation,
and thus the axion has a nonzero vacuum expectation
value; however, it also possesses a large kinetic energy.
The kinetic energy term of the axion dominates over its
potential; however, during inflation and at the equations
of motion level, the vacuum R2 model dominates the
evolution. Thus the axion may affect the dynamics of
the inflationary era at the cosmological perturbations level
through the second slow-roll index. Due to the dominance
of the axion’s kinetic energy over its potential, the axion
evolves in a constant-roll way, and thus the second slow-
roll index is constant and large. We calculated the obser-
vational indices including the kinetic axion effects, and as
we showed, the contribution of the second slow-roll index
elegantly cancels. Thus, at the cosmological perturbations
level, the kinetic axion does not affect the R2 inflationary
era. However, the kinetic axion affects the duration of the
inflationary era, causing in some cases 15% differences in
the tensor-to-scalar ratio compared with the vacuum R2

model. This change is due to the fact that the kinetic axion
has an EoS parameter that corresponds to that of a stiff era.
As the R2 inflationary era reaches its unstable quasi–de
Sitter attractor in the phase space, the kinetic axion starts
to dominate the evolution over the R2 term. Thus, the
Universe enters a stiff evolution era and an era of kination
with background total EoS parameter w ¼ 1. This stiff
background directly affects the e-foldings number, thus
extending the inflationary era up to 5e-foldings in some
cases. Quantitatively in some cases this amounts to a
decrease of the tensor-to-scalar ratio of about 15% com-
pared to the vacuum R2 model. A particularly interesting
extension of this work is to further consider in the
Lagrangian an Einstein-Gauss-Bonnet term. Due to the
fact that the axion is not constant during inflation, but it is
fluctuating around its vacuum expectation value, the
Einstein-Gauss-Bonnet does not trivially vanish; thus it
would be interesting to investigate the consequences of the
kinetic axion in this class of theories. In fact, it would
furthermore be interesting to investigate the late-time
evolution of the unified model, because when the axion
starts to oscillate around its vacuum expectation value, it
redshifts as dark matter. These issues shall be addressed in a
future work.
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