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We show how light scalar fields could account for the discrepancy between the theoretical and observed
values of the anomalous magnetic moment of the (anti)muon. When coupled to both matter and photons,
light scalar fields induce a change of the anomalous magnetic moment of charged particles. This arises from
two concurrent effects. Classically, light scalars induce a change of the cyclotron frequency, comple-
menting the electromagnetic effects coming from the magnetic and electric fields used experimentally.
Light scalars also contribute to the anomalous magnetic moment quantum mechanically at the one-loop
level. For unscreened scalar fields coupling with a Yukawa interaction to matter, these contributions are
negligible after applying the Cassini bound on deviations from Newtonian gravity. On the other hand,
screened scalars such as chameleons or symmetrons can couple strongly to matter in the laboratory and
decouple in the Solar System. This allows us to probe branches of their parameter spaces where the recently
measured anomalous magnetic moment of the (anti)muon can be accounted for in the chameleon and
symmetron cases. We consider the compatibility of these models with other cosmological and particle
physics observables. We find that prototype chameleon and symmetron models considered here are in
tension with the bounds on the branching ratio of kaons into pions and invisible matter.
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I. INTRODUCTION

The recent measurement of the anomalous magnetic
moment of (anti)muons deviates at the 4.2-σ level from
the expected value in the Standard Model [1]. This result
aligns with an earlier measurement by BNL [2], motivating
theory explanations for this anomaly. The Standard Model
prediction was discussed by the international theory col-
laboration (see Ref. [3], as well as [4–23]).1 Most explan-
ations of this result involve specific extensions of the
Standard Model such as supersymmetric physics or axions.
The corrections induced by the beyond the Standard Model
(BSM) models appear at the quantum level and comple-
ment the contributions coming from Standard Model
radiative corrections (for example, see Refs. [28–32]).

In this paper we show there is another, hitherto unexplored,
candidate to explain this discrepancy: a light scalar field
coupled to matter.
Scalar fields are a generic prediction of modifications

to general relativity, and were originally motivated by the
late time acceleration of the Universe. In this context, we
specifically concentrate on light scalar fields coupled to
matter. Of course, these fields mediate a “fifth force,” and
therefore there are strong bounds by laboratory [33] and
Solar System experiments [34] such as the Cassini [35]
probe which give tight constraints on the coupling strength
with atoms. Because of this, we focus on models where
screening takes place, that is, a dynamical suppression
of the fifth force due to environmental interactions. This
scenario was extensively reviewed in [36]. We will assume
that the coupling to matter is universal and in particular
couples to all fermions of the Standard Model in the same
way; we will focus on the couplings to the leptons.
Such light scalars induce two types of corrections to the

anomalous magnetic moment of leptons. The first one is an
experimental effect; i.e., it enters only in the comparison
with experimental results as the classical effects of light
scalars on the cyclotron frequency are not taken into
account in the data analysis. Their evaluation requires a
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1An alternative computation has been presented in [24] which
removes the muon g − 2 discrepancy, but it does so by modifying
the hadronic vacuum polarization in a way that raises tensions
elsewhere [25–27].
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careful reexamination of the anomalous spin precession
usually deduced from the Bargmann-Michel-Telegdi
(BMT) equation [37] (see also Ref. [38] for a derivation
which takes into account electromagnetic effects only). The
second contribution to the anomalous magnetic momentum
of leptons comes from the one loop diagrams including the
propagation of light scalars in the loops. This is well-known
and needs to be added to the classical effect before
comparing to the recent experimental results.
Here we concentrate on two typical models in which

screening takes place. They are also archetypical examples
of two screening mechanisms. The first one is the chame-
leon mechanism [39] whereby the scalar mass increases
with the ambient density of the environment. The conse-
quences of this are twofold: first, the scalar charge carried
by dense, macroscopic objects is exponentially suppressed.
Second, inside a comparatively dense environment such as
the Earth’s atmosphere the fifth force is very short ranged.
The second screening mechanism we consider is the
Damour-Polyakov mechanism [40–42] whereby the cou-
pling strength to matter is depleted in dense matter. In both
cases, the respective screening mechanisms allow for
strong fifth force interactions in vacuum and highly sup-
pressed ones in dense environments. The original inverse
power law chameleon, referred to as the chameleon in the
following, will be used for the chameleon mechanism. The
symmetron [42] will be used for the Damour-Polyakov
mechanism [40]. The models are strongly constrained
by laboratory experiments such as atom interferometry
[43–47], the Casimir effect [48,49], or neutron bouncers
[50,51]. For a review of these tests, as well as astrophysical
bounds, see [52,53]. We will find that neither the classical
chameleon nor the classical symmetron can account for the
anomalous muon’s results. However, in both cases once
quantum corrections are taken into account there is a region
of parameter space that could account for the muon results,
thanks to the large couplings that are enabled by the
screening mechanisms. This is a regime where the quantum
corrections dominate over the classical effects.
The plan of this paper is as follows. In Sec. II we

introduce the screened modified gravity models under
consideration. In Sec. III we explain how the anomalous
magnetic moment of a particle such as the muon, or
electron, is determined by comparing the cyclotron fre-
quency to the spin precession frequency. We include the
effect of the scalar particle in the derivation and give a
complete derivation of the anomalous spin precession. This
section shows how the scalar particle changes the classical
result for the anomalous magnetic moment. Section IV
contains a derivation of the quantum corrections for
the scalar particle. We then apply this to the anomalous
magnetic moment of the muon in Sec. V, first showing that
a standard Yukawa interaction could not account for the
discrepancy due to the strict Solar System constraints. We
show that both chameleon models and symmetrons could

account for the anomalous magnetic moment of the
(anti)muon as measured by Fermilab and BNL before [2].
This result requires a careful investigation of the parameter
space of both models against other experiments and, in the
case of the chameleon, recalculating the bounds from
the hydrogen transition taking screening into account. In
Sec. VI we discuss the compatibility of our parameters with
other constraints on the two models coming from cosmol-
ogy, such as big bang nucleosynthesis and the cosmic
microwave background, and from LHC physics such as the
Higgs decay. Here we find that most of the chameleon and
symmetron models that are compatible with ðg − 2Þμ have
hardly any cosmological impact. On the other hand, we
show that the scalars must be essentially decoupled from
the Higgs boson for the screening behavior of the theories
to be preserved. We also find that the explanation of
ðg − 2Þμ by chameleons and symmetrons is in tension with
results from kaon decays into pions and invisible matter.
This tension could be relaxed if the universality of the
coupling to matter is broken. We conclude in Sec. VII.
There are three technical appendixes where we discuss the
angular momentum tensor, give a simplified derivation
of the shift in the classical frequency, and show that our
models are modified gravity, rather than dark energy.

II. SCREENED MODIFIED GRAVITY

A. The models

We begin this section by briefly reviewing the ingre-
dients that constitute chameleon and symmetron models.
Both belong to the same family of scalar field theories
governed by the Lagrangian2

L ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ þ LmðΨ; A2ðϕÞημνÞ; ð1Þ

where the Standard Model fields (denoted collectively
by Ψ) and their couplings to ϕ are encapsulated in the
third term Lm. This dependence appears in the minimal
coupling to the rescaled metric gμν ¼ A2ðϕÞημν. In these
models the coupling to leptons is given by

βðϕÞ ¼ mPl
∂ lnA
∂ϕ

: ð2Þ

Given the two functions AðϕÞ and VðϕÞ, the scalar
dynamics are governed by the Klein-Gordon equation

□ϕþ ∂Veff

∂ϕ
¼ 0: ð3Þ

2For the purposes of laboratory experiments, it suffices to work
in flat space. See, e.g., the reviews in Refs. [36,54] for the
covariant form of this action. Our metric signature is
ð−;þ;þ;þÞ, we work in units where c ¼ ℏ ¼ 1, and we define
the reduced Planck mass as mpl ¼ ð8πGÞ−1=2.
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The effective potential is given by

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρm; ð4Þ

where ρm is the conserved matter density. In homogeneous
matter, the field settles at the minimum ϕðρmÞ of the
effective potential. The scalar field’s mass is given by

m2ðρmÞ ¼
∂
2Veff

∂ϕ2

����
ϕðρmÞ

; ð5Þ

and its effective coupling is

βðρmÞ ¼ βðϕðρmÞÞ: ð6Þ

Roughly speaking, one expects chameleon screening in a
body of size R and density ρm when mðρmÞR ≫ 1 and
Damour-Polyakov screening when βðρmÞ ¼ 0.

B. Chameleon and symmetron

We will focus on chameleon models with the potential
and matter coupling

VðϕÞ ¼ Λ4

�
1þ Λn

ϕn

�
; AðϕÞ ¼ 1þ ϕ

M
; ð7Þ

and likewise symmetrons have

VðϕÞ ¼ −
1

2
μ2ϕ2 þ λ

4
ϕ4; AðϕÞ ¼ 1þ ϕ2

2M2
: ð8Þ

In the symmetron case we have

βðϕÞ ∼mPlϕ

M2
; ð9Þ

which vanishes in a very dense environment where ϕ settles
at the origin. The mass of the symmetron is of order μ
which must be close to the inverse size of the experiments
to be probed for there to be an appreciable classical effect.
If it is much larger, the scalar field is exponentially
suppressed thanks to its large mass, and if it is much
smaller, then the field does not roll away from ϕ ¼ 0 [55].
The latest experimental constraints on symmetrons can be
found in [46,47,49,51]. For chameleons, the mass in dense
environments is given by

m2ðρmÞ¼nðnþ1Þ Λnþ4

ϕnþ2ðρmÞ
; ϕðρmÞ¼

�
nΛnþ4mPl

βρm

�
1=nþ1

:

ð10Þ

For a given n, the scale Λ and the constant coupling
β ¼ mPl=M are constrained by the wide range of experi-
ments mentioned in the Introduction. For a recent review
see [53].

III. THE ANOMALOUS SPIN PRECESSION

The anomalous magnetic moment of a particle such as
the muon, or the antimuon, can be determined by compar-
ing the cyclotron frequency of the particle in a constant
magnetic field to the spin precession frequency. Scalar
interactions modify both frequencies and can therefore
contribute to the experimental determination of the anoma-
lous magnetic moment. In effect, this is a classical con-
tribution of the scalar field which must be added to
quantum effects arising from radiative corrections akin
to the ones obtained from Standard Model particles. We
will discuss below how both this classical effect and the
quantum contribution can relieve the tension between the
Fermilab (and BNL) measurement and the SM prediction
on the (g − 2) measurements. We first show how the scalar
field modifies the cyclotron frequency before considering
the effect of the scalar on the spin precession of a particle.
We then derive the anomalous spin precession in detail and
show how the effect of the scalar field is included, showing
that the contribution of the scalar field is from the Thomas
precession via the scalar acceleration. This section is rather
technical and some readers may wish to see only the final
result in Eqs. (54) and (55). We also present a simplified
derivation with only the essential points in Appendix B.

A. Cyclotron frequency

We are interested in charged relativistic particles moving
in an external electromagnetic field and a background
scalar field profile. The dynamics of a point particle are
governed by the Lagrangian [56]

S ¼
Z

dτ
�
−mAðϕÞ

ffiffiffiffiffiffiffiffiffi
−u2E

q
þ qAμuEμ

�
: ð11Þ

Notice that the mass of the particle is taken to be effectively
scalar-dependent mE ¼ mAðϕÞ. This follows from the
coupling of the scalar field to matter. The coupling function
AðϕÞ will be explicitly specified when we discuss the
effects of chameleons and symmetrons on the anomalous
spin precession, but is left general for now. The associated
Euler-Lagrange equation is given by

mE
duEμ
dτ

¼ −quνEFνμ −mE∂ϕ lnA∂μϕ; ð12Þ

where uμE ¼ dxμ
dτ is the velocity 4-vector of the particle and τ

is the particle’s proper time dτ ¼ γ−1dt where the Lorentz
factor is defined as usual by γ ¼ 1ffiffiffiffiffiffiffiffi

1−v2
p . On shell we have

u2E ¼ −1. The label E refers to the Einstein frame where
spacetime is defined by the Minkowski metric and the mass
of the particle is field dependent. The velocity of the
particle is va ¼ dxa

dt where a denotes spatial indices. Let us
focus on static scalar and magnetic fields (Fab ¼ ϵabcBc),
as befitting experiments where the anomalous magnetic
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moment of muons is measured. We also include an electric
field Ea ¼ F0a. In the absence of an electric field we have
du0E
dτ ¼ 0 where u0E ¼ γ, implying that γ is constant. With an
electric field we have

mE
du0E
dτ

¼ mEγ
dγ
dt

¼ qγvaEa; ð13Þ

implying that γ is no longer constant and the speed varies
unless vaEa ¼ 0; i.e., the trajectory is perpendicular to
the electric field. In fact, this is precisely the electric field
configuration which corresponds to the experimental
setting. Otherwise, we have the nonconservation equation

mE
dγ
dt

¼ qvaEa: ð14Þ

The (g − 2) experiments involve a quadrupolar electric
field such that v⃗ · E⃗ ¼ 0, and therefore γ is constant. The
equation of motion is then simply in vector notation

dv⃗
dt

¼ −
q

mEγ
ðE⃗ · v⃗Þv⃗þ q

mEγ
E⃗þ q

mEγ
v⃗ ∧ B⃗ −

∂ϕ lnA

γ2
∇⃗ϕ:

ð15Þ

Using the expansion v⃗ ∧ ðv⃗ ∧ E⃗Þ ¼ ðv⃗ · E⃗Þv⃗ − v2E⃗ and, as
in the BNL [2] and Fermilab [1] experiments, taking the
electric field to be perpendicular to the trajectory, i.e.,
v⃗ · E⃗ ¼ 0, then relativistic Newton’s law can be written as a
gyroscope equation

dv⃗
dt

¼ ω⃗c ∧ v⃗; ð16Þ

where the angular velocity vector is defined by

ω⃗c ¼ −
q

mEγ
B⃗þ q

mEγv2
v⃗ ∧ E⃗ −

∂ϕ lnA

v2γ2
v⃗ ∧ ∇⃗ϕ: ð17Þ

We have assumed that the scalar field gradient is

perpendicular to the trajectories v⃗ · ∇⃗ϕ ¼ 0. The last term
comes from the scalar interaction with the particle and
has a structure similar to the one coming from the
Coulomb interaction of a particle with an electric field.

In the following we will often use the identity 1
v2 ¼ γ2

γ2−1
implying that

ω⃗c¼−
q

mEγ
B⃗þ qγ

mEðγ2−1Þ v⃗∧ E⃗−
∂ϕ lnA

γ2−1
v⃗∧∇⃗ϕ: ð18Þ

Notice that in the ultrarelativistic limit γ → ∞, the scalar
contribution is suppressed relative to the electric one. In the
models that we will consider AðϕÞ ≃ 1 implying that

mE ≃m. The only effect of the scalar field appears in
the extra ∂ϕ lnA term.

B. Effect of the scalar field on the spin precession
of a particle

We now come to the effect of the scalar field on the spin
precession of a relativistic point particle. We will first
characterize it in the absence of electric and magnetic fields
(see Refs. [57,58]). The electromagnetic effects will be
discussed in the following section. The spin vector of the
particle evolves according to

_Sμν ¼ 2p½μuν�; ð19Þ

where pμ ¼ muμ at leading order and : ¼ uμ∇μ. We work
in the Jordan frame here, i.e., the frame where the particle
interacts with the gravitational field only, and ∇μ is the
covariant derivative associated with the Jordan frame
metric gμν. In this frame, gravity is noncanonical and the
Einstein-Hilbert term of the gravitational action involves a
field-dependent Newtonian gravitational constant. On the
other hand, the Einstein frame metric where Newton’s
constant is field independent is assumed to be the one of
Minkowski space, as we take no gravitational effects into
account here. Moreover, we will assume that the Jordan
and Einstein metrics are conformally related only. Here the
Pauli-Lubanski vector representing the spin of the particle
is given by

Sμ ¼ −
1

2
ϵμνρσuνSρσ: ð20Þ

It is more convenient to study the spin precession in the
local frame that moves with the body. This is achieved in
two steps. First, by going to the local Minkowski frame
(static) in spacetime located at the point where the particle
is. This is realized by transforming vectors via the vielbein
eiμ where i is a local Lorentz index, i.e., fi ¼ eiμfμ for a
vector fμ. Then one needs to apply a boost Λi

ĵ
taking to the

hatted frame where the particle is locally at rest, i.e.,
fî ¼ Λî

if
i. We have the explicit expressions for this boost

Λ0
0̂
¼ u0; Λ0

â ¼ ua; Λa
b̂
¼ δab þ ðγ − 1Þ v

avb
v2

: ð21Þ

We can now define the matrix that transforms vectors in
spacetime to vectors in the local frame attached to the
particle

eμ
î
¼ Λi

î
eμi ; ð22Þ

and the spin in the local frame becomes

Sî ¼ eμ
î
Sμ: ð23Þ
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The spin equation is then

dSî
dτJ

¼ Sμuν∇νe
μ
î
; ð24Þ

where the covariant derivatives ∇μ are calculated in the
Jordan frame with the Jordan metric. Notice that here τJ is
the particle’s proper time in the Jordan frame. Using the
orthogonality condition gμνe

μ
î
eν
ĵ
¼ ηî ĵ we find that the

covariant derivative involves an antisymmetric tensor

uν∇νe
μ
î
¼ −ωĵ

î
eμ
ĵ
which is related to the spin precession

vector by ωâ ¼ ϵâ b̂ ĉω
b̂ ĉ leading to the spin precession

equation

dS⃗
dτJ

¼ ω⃗ ∧ S⃗; ð25Þ

confirming that ωâ is the spin precession vector in the local
frame moving with the body.
In practice the particle couples to the Jordan metric

gμν ¼ A2ðϕÞημν as we neglect the gravitational effects
locally. So we have eμi ¼ A−1ðϕÞδμi and therefore

eμ
î
¼ A−1ðϕÞΛi

î
δμi : ð26Þ

The spin precesses according to dSî
dτJ

¼ −ωî ĵS
ĵ, where

ωî ĵ ¼ gμνe
μ
î
uρ∇ρeνĵ . We have the explicit expression for

the covariant derivative ∇ρeνj ¼ ∂ρeνj − Γν
ρμe

μ
j implying that

uρ∇ρeνĵ ¼ eν
k̂
Λk̂
i
_Λi
ĵ þ uρð∂ρeνj − Γν

ρμe
μ
j ÞΛj

ĵ
; ð27Þ

with _Λi
ĵ ¼ uρ∂ρΛi

ĵ
. We have also for the Christoffel

symbols Γν
ρμ¼∂ρ lnAδνμþ∂μ lnAδνρ−∂

ν lnAημρ, and there-
fore the covariant derivative ∇ρeνj ¼ ∂μ lnAδ

μ
jδ

ν
ρ−∂

ν lnAδjρ
giving finally for the expression of the local precession
matrix

ωî ĵ ¼ ∂ϕAðeμî uμ∂νϕeνĵ − eμ
ĵ
uμ∂νϕeνî Þ þ ηî k̂Λk̂

i
_Λi
ĵ: ð28Þ

The first term comes from the intrinsic coupling between
the scalar field and the spin, whereas the last term is due
to the change of frame to the local frame where the particle
is at rest. Wewill evaluate it later and relate it to the Thomas
precession.
It is also illustrative to boost back the spin vector to the

local Minkowski frame where the particle moves with the
velocity vector va in the Einstein frame. The two vectors
are related by Sî ¼ Λi

î
Si where Si is the spin in the

laboratory frame, and we find that for the spatial part

dS⃗
dτJ

¼ ω⃗ϕ ∧ S⃗; ð29Þ

ωϕ
a ¼ 1

2
ϵbca ωϕ

bc and ωϕ
ij ¼ ∂ϕAðeμi uμ∂νϕeνj − eμjuμ∂νϕe

ν
i Þ.

Here uμ is the Jordan frame velocity vector such that
uμ ¼ A−1uμE and uμE ¼ ðγ; γviÞ is the Einstein velocity as
measured in the laboratory frame, assumed to be locally
Minkowski and at rest. When the scalar field is static we
have the identity

ω⃗ϕ ¼ ∂ϕAγv⃗ ∧ ∇⃗ϕ: ð30Þ

This induces the precession of the particle in the labo-
ratory frame.
Let us come back to the spin precession effect ωϕî ĵ in the

boosted frame where the particle is at rest. In the next
section, this will be added to the electromagnetic effects

ωϕî ĵ ¼ ∂ϕAðuî∂ĵϕ − uĵ∂îϕÞ þ ηî k̂Λk̂
i
_Λi
ĵ: ð31Þ

In the moving frame the particle is at rest implying that
uâ ¼ 0. As a result

ωϕâ b̂ ¼ ηâ ĉΛĉ
i
_Λi
b̂ ð32Þ

implying that the only effect due to the scalar field in the
rest frame comes from the boost from the laboratory frame.
This will be calculated in (36) and will lead to the Thomas
precession. In summary, once the Thomas precession effect
has been taken into account, no other contribution to the
spin precession will arise from the interaction of the scalar
field and the particle in its rest frame. In the following
section, we will add the effects of the electromagnetic
interactions.

C. The Bargmann-Michel-Telegdi equation

We can now take into account the coupling to an
electromagnetic field and its effect on the spin precession.
In an electromagnetic field the spin evolves according to

dSμ

dτ
¼ q

mE

�
g
2
FμνSν þ

�
g
2
− 1

�
uμESλF

λνuEν

�
; ð33Þ

where we impose uEμSμ ¼ 0 as an orthogonality condition.
These equations are valid in the Einstein frame where the
metric is locally Minkowski, and hence the presence of uμE
and not uμ. This equation does not include the effect of the
coupling of the scalar field to the spin that we described
previously. That will be added at the end of this subsection.
It is more convenient to work in the local frame where

the particle is at rest after applying the boost Λμ
î
¼ δμiΛi

î
.

In this frame uî ¼ ð1; 0⃗Þ, and therefore the local spin
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Sî ¼ Λμ
î
Sμ is such that S0̂ ¼ 0. The spin equation

becomes then

dSî

dτ
¼ q

mE

�
g
2
Fî ĵSĵ þ

�
g
2
− 1

�
uîSk̂F

k̂ ĵuĵ

�
−
dΛî

μ

dτ
Λμ
ĵ
Sĵ;

ð34Þ

where the last term is the change of frame effect we have
already encountered. Specializing this equation to spatial
directions only we find

dSâ

dτ
¼ qg

2mE
Fâ b̂Sb̂ −

dΛâ
μ

dτ
Λμ

b̂
Sb̂; ð35Þ

where we explicitly obtain

dΛâ
μ

dτ
Λμ

b̂
¼ γ2

γ þ 1

�
dvb̂
dτ

vâ −
dvâ

dτ
vb̂

�
: ð36Þ

Combining these terms we can write the spin equation as

dSâ

dτ
¼ −ωa

sb̂
Sb̂; ð37Þ

with the angular velocity matrix

ωâ
sb̂

¼ −
qg
2mE

Fâ
b̂
þ γ2

γ þ 1

�
dvb̂
dτ

vâ −
dvâ

dτ
vb̂

�
: ð38Þ

In the boosted frame the spatial parts of the electromagnetic
field strength becomes Fâ b̂ ¼ ϵâ b̂ ĉBĉ where the boosted
magnetic field is given by

Bâ ¼
�
γðBa − ðv⃗ ∧ E⃗ÞaÞ −

γ − 1

v2
ðB⃗ · v⃗Þva

	
δaâ; ð39Þ

which leaves invariant the component parallel to the
velocity. Defining the spin precession vector as ωâ

s ¼
1
2γ ϵ

â b̂ ĉωsb̂ ĉ we find that this reduces to

ωâ
s ¼ −

qg
2mEγ

Bâ þ γ2

γ þ 1
ða⃗ ∧ v⃗Þaδâa: ð40Þ

This is the precession vector for a spinning particle subject
to an electromagnetic field. The last term comes from the
change of frame effect in Minkowski space and is nothing
but the Thomas precession vector

ωâ
T ¼ γ2

γ þ 1
ða⃗ ∧ v⃗Þaδâa; ð41Þ

involving the acceleration of the particle

a⃗ ¼ dv⃗
dt

; ð42Þ

containing both the scalar and the electromagnetic forces.
Notice that this is to be evaluated in the laboratory frame.
The spin equation reads now

dS⃗
dt

¼ ω⃗s ∧ S⃗; ð43Þ

in the frame moving with the particle. This includes all the
electromagnetic and scalar effects on the spin precession
of a particle as the intrinsic contribution discussed in the
previous section vanishes identically.

D. Comparing the spin precession
to the angular velocity

1. Boosting the angular velocity

We are interested in the anomalous spin precession
defined as the difference between the spin precession
and the angular velocity vector in the moving frame. We
will compare the spin precession in the boosted frame as
obtained in (40) to the angular velocity vector in the
boosted frame too.
Let us now boost the angular velocity vector to the

moving frame and compare it to the spin precession vector.
To do this, recall that the vector

ω⃗c¼−
q

mEγ
B⃗þ qγ

mEðγ2−1Þ v⃗∧ E⃗−
∂ϕ lnA

γ2−1
v⃗∧∇⃗ϕ; ð44Þ

contains two parts,

ω⃗c ¼ ω⃗B þ ω⃗E: ð45Þ

The first part is a vector proportional to the magnetic field,

ω⃗B ¼ −
q

mEγ
B⃗: ð46Þ

Covariantly (see Appendix A) ω⃗B is the magnetic part of a
two-index antisymmetric tensor ωBij ¼ − q

mBij represent-
ing the part of the angular rotation of the particle in the
laboratory frame ωa

B ¼ 1
2
ϵabcωBab. As a result this trans-

forms under a Lorentz boost as the magnetic part of ωBij,

ωâ
B ¼

�
γωa

B −
γ2

γ þ 1
ðv⃗ · ω⃗BÞva

�
δaâ; ð47Þ

under a Lorentz boost to the moving frame. The second part
is a vector

ω⃗E ¼ qγ
mEðγ2 − 1Þ v⃗ ∧ E⃗ −

∂ϕ lnA

γ2 − 1
v⃗ ∧ ∇⃗ϕ; ð48Þ
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orthogonal to v⃗. Covariantly this is associated with the
antisymmetric tensor Eij ¼ ϵijkEk determined by the spatial

vector Ea. Applying a boost on Eij as Eî ĵ ¼ Λi
î
Λj
ĵ
Eij,

we find that the vector Ea is invariant implying that
ωEâ ≡ ωEaδ

a
â; i.e., the “electric” part of the angular velocity

is invariant under a Lorentz boost to the moving frame.
Collecting these two terms we find more explicitly

ωâ
c ¼

�
−

q
mE

�
Ba −

γ

γ þ 1
ðv⃗ · B⃗Þva

�
þ qγ
mEðγ2 − 1Þ v⃗ ∧ E⃗

−
∂ϕ lnA

γ2 − 1
v⃗ ∧ ∇⃗ϕ

	
δâa; ð49Þ

where the boost of the magnetic part is explicit.

2. The Thomas precession and the spin precession

The spin precession vector in the moving frame depends
crucially on the Thomas precession. This part of the
precession is obtained upon using the acceleration in the
laboratory frame

a⃗ ¼ q
mEγ

E⃗þ q
mEγ

v⃗ ∧ B⃗ −
∂ϕ lnA

γ2
∇⃗ϕ; ð50Þ

leading to the Thomas precession

ωâ
T ¼

�
−

qγ
mEðγ þ 1Þ v⃗ ∧ E⃗þ ∂ϕ lnA

γ þ 1
v⃗ ∧ ∇⃗ϕ

	
a
δâa: ð51Þ

Notice that there is a term coming from the scalar field on
par with the usual electric field contribution. All in all, we
get for the spin precession vector in the moving frame

ωâ
s ¼ −

q
mE

�
g
2

�
Bâ −

γ

γ þ 1
ðB⃗ · v⃗Þvâ

�

−
��

g
2
− 1

�
þ 1

γ þ 1

�
ðv⃗ ∧ E⃗Þâ

	
þ ∂ϕ lnA

γ þ 1
v⃗ ∧ ∇⃗ϕâ;

ð52Þ
where the influence of the scalar field only appears from the
Thomas precession term via the acceleration equation.

3. The anomalous spin precession

Putting it all together we obtain for the difference
between the spin precession and the angular velocity
vectors in the moving frame

ω⃗s − ω⃗c ¼ −
q
mE

�
aμ

�
B⃗ −

γ

γ þ 1
ðB⃗ · v⃗Þv⃗

�

þ
�
aμ −

1

γ2 − 1

�
v⃗ ∧ E⃗

	

þ γ

γ2 − 1
∂ϕ lnAv⃗ ∧ ∇⃗ϕ; ð53Þ

where aμ ¼ g
2
− 1.3 We retrieve the anomalous spin pre-

cession equation when no scalar is present,

ω⃗a≡ ω⃗s− ω⃗c

¼−
q
mE

�
aμ

�
B⃗−

γ

γþ1
ðB⃗ · v⃗Þv⃗

�
þ
�
aμ−

1

γ2−1

�
v⃗∧ E⃗

	
:

ð54Þ
The scalar field corrects the anomalous spin precession by
an amount

δω⃗a ¼
γ

γ2 − 1
∂ϕ lnAv⃗ ∧ ∇⃗ϕ; ð55Þ

which combines the effects of the Thomas precession and
the scalar force acting on the particle. A simpler derivation
in the absence of any electric field is given in Appendix B.

IV. QUANTUM CORRECTIONS

In this section we compute the quantum corrections to
the anomalous magnetic moment arising from the coupling
of the scalar field to fermions. This was computed in detail
within the context of electron magnetic moment experi-
ments [59], so we only recount the main points here. We
first show the coupling of the scalar field to fermions and
photons before computing the loop corrections.

A. Couplings to fermions and photons

From the Lagrangian in Eq. (1) we see that quantum
contributions to the anomalous magnetic moment arise
from the direct coupling between the scalar field and
fermions. Massive fermions, such as the muon, obey the
modified Dirac equation [60]

Lm ⊃ ψ̄ ½i=D − AðϕÞmμ�ψ ; ð56Þ
where Dμ ¼ ∂μ þ ieAμ is the gauge-covariant derivative.
Note that AðϕÞ is the coupling between the scalar and muon
fields, while Aμ is the photon field. The mass of the fermion
now depends on the scalar field. In addition, the scalar
could also couple to photons as this is not explicitly
forbidden by the symmetries of the theory [61–64].
The coupling function could be different from that of
the fermion εðϕÞ, which modifies the kinetic term of the
photon to read

Lm ⊃ −
1

4
ð1þ εðϕÞÞFμνFμν: ð57Þ

As both AðϕÞ and εðϕÞ introduce nonrenormalizable
operators in the models, these theories should be viewed

3Notice that this notation is traditional although rather un-
fortunate as the index μ refers to the muons and not a Lorentz
index.
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as low-energy effective field theories (EFTs) valid only
below some cutoff. These models typically satisfy AðϕÞ ≈ 1
and εðϕÞ ≈ 0. At the linearized level their effects are
captured by the dimensionless coupling strengths

βmðϕÞ ¼mPl
d lnA
dϕ

; βγðϕÞ ¼mPl
d lnð1þ εÞ

dϕ
≃mPl

dε
dϕ

;

ð58Þ

where the last equality follows if we assume that ε ≪ 1.
These couplings are typically at least as strong as gravity, or
βm; βγ ≥ 1. In the following, we will focus on the matter
coupling. For the chameleon, bounds from particle physics
impose that M ≳ 102 GeV [65].

B. Loop corrections

Let us consider quantum fluctuations χ ¼ ϕ − ϕ̄ about
the classical background field profile ϕ̄ in the experiment
where g − 2 is to be measured. As the muons remain very
close to the center of the experimental cavity, it suffices to
take ϕ̄ ≈ ϕ0 to be a constant, where ϕ0 is the classical field
value at the center. At the one-loop level, the only influence
from VðϕÞ is a mass term for the χ field, with mass m0

given by the second derivative

m2
0 ¼ Veff;ϕϕðϕ0Þ; ð59Þ

evaluated at the center of the cavity. Note that we can
linearize Eqs. (56) and (57) and we obtain the leading order
terms [63,65]

Lm ⊃ −
�
βmmμ

mPl

�
ψ̄ψχ −

1

4

�
βγ
mPl

�
χFμνFμν; ð60Þ

where βm ≡ βmðϕ0Þ and βγ ≡ βγðϕ0Þ.
At one-loop order there are three Feynman diagrams to

consider for the anomalous magnetic moment, as in Fig. 1.
Here we quote the results since these diagrams have
appeared widely in the literature (see, e.g., Refs. [66–70],
as well as [71] for recent applications to models of dark
matter). The first diagram in Fig. 1(a) gives the finite
contribution

δa ⊃ 2β2m

�
mμ

4πmPl

�
2

I1ðm0=mμÞ; ð61Þ

whereas the remaining two diagrams are UV divergent and
require renormalization. Using the MS scheme gives

δa ⊃ 4βmβγ

�
mμ

4πmPl

�
2
�
log

�
μ

mμ

�
þ I2ðm0=mμÞ

	
; ð62Þ

where μ is an arbitrary energy scale. The two finite integrals
above are

I1ðηÞ ¼
Z

1

0

dx
ð1 − xÞ2ð1þ xÞ
ð1 − xÞ2 þ xη2

; ð63aÞ

I2ðηÞ ¼
Z

1

0

dx
Z

1

0

dyðx − 1Þ log½x2 þ ð1 − xÞyη2�; ð63bÞ

where η ¼ m0

mμ
. In the regime of interest we typically have

m0 ≪ mμ, such that it suffices to set m0=mμ ¼ 0 in the
integrals and we have

I1ð0Þ ¼ I2ð0Þ ¼
3

2
:

In Eq. (62) there is an arbitrary scale μ. In low-energy
physics there is an ambiguity in determining this scale and
a conservative estimate is to set logðμ=mμÞ ∼ 1 in order to
evaluate the order of magnitude of the correction term.
Here, though, we consider the dominant contribution and
set βγ ¼ 0, giving the quantum correction to be

δa ¼ 3β2m

�
mμ

4πmPl

�
2

I1

�
m0

mμ

�
; ð64Þ

which should be added to the classical contributions
already discussed.

V. THE ANOMALOUS MAGNETIC MOMENT
OF THE MUON

A. A story of signs

In this section we will compare the relative signs of the
terms in the anomalous spin precession to show that a new
scalar field can alleviate, and not exacerbate, the tension
between experiment and theory. To start, we first recall that
the anomalous spin precession is

ω⃗a ¼ −
qB⃗
mμ

aμ þ
γ

γ2 − 1
∂ϕ lnAv⃗ ∧ ∇⃗ϕ; ð65Þ

where we have dropped the two terms that are approx-
imately zero for this particular experiment. Here mμ is the
mass of the muon in the Einstein frame. Let us ignore the
second term on the right-hand side for now. The quantities

(a) (b) (c)

FIG. 1. Scalar field (dashed line) contributions at one-loop
order to the magnetic moment of the muon. These contributions
involve either only the matter coupling (a) or both the matter and
photon couplings (b), (c). Reproduced from [59].
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q; aμ, and mμ are all positive. If we assume that the muons
are traveling in the clockwise direction (see Fig. 2), then the
magnetic field points in the þŷ direction.
Next we examine the scalar term. The field value is large

in the center and small near the walls. This follows from the
fact that the scalar field takes smaller values in the presence
of dense matter for the screened models that we consider,
i.e., chameleons and symmetrons. Furthermore, the anti-
muons are displaced in the þr̂ direction from the center.
Thus, the field gradient, at the location of the muons, points
in the −r̂ direction. This implies that the entire second term
points in the −ŷ direction.
Since both terms point in the −ŷ direction, we can

examine only the ŷ component of the equation:

ωa ¼
qB
mμ

aμ þ
γ

γ2 − 1
∂ϕ lnAvj∇⃗ϕj: ð66Þ

The experimental value may be isolated as

aμ;exp ¼
mμ

qB

�
ωa −

γ

γ2 − 1
∂ϕ lnAvj∇⃗ϕj

�
: ð67Þ

Without the scalar field correction term in this equation,
one would infer a value of aμ that is too large as the scalar
field contribution is positive.
At the same time, the theoretical value of the anomalous

magnetic moment is a combination of the Standard Model
contribution and the quantum mechanical contribution
from the new scalar:

aμ;th ¼ aμ;SM þ aμ;ϕQM; ð68Þ

where aμ;ϕQM is given by Eq. (61). Without the scalar
correction to the theoretical prediction one would calculate
a theoretical value that is too small.
The experimental value of aμ is indeed larger than the

theoretical prediction, by an amount

δaμ ¼ aμ;exp − aμ;th ¼ 2.51 × 10−9: ð69Þ

A new scalar field can alleviate the tension if

δaμ≈
mμ

qB
1

γv
∂ϕ lnAj∇⃗ϕjþ2ð∂ϕ lnAÞ2

�
mμ

4π

�
2

I1

�
m0

mμ

�
; ð70Þ

where the first and second terms are the classical and
quantum corrections to the anomalous spin precession,
respectively. We will explicitly evaluate the magnitude
of these terms for a Yukawa theory, chameleons, and
symmetrons.

B. Yukawa interaction

As the simplest example of a scalar particle’s interaction
with matter, let us first focus on the Yukawa interaction
corresponding to a contribution to the particle Lagrangian
with a constant coupling strength

δL ¼ −
β

mPl
ϕmψ ψ̄ψ ; ð71Þ

where β is this coupling. This corresponds to a modification
of gravity with an increase of Newton’s constant

GN → ð1þ 2β2ÞGN; ð72Þ

inside the Compton wavelength of the scalar field, which is
taken to be light enough that its range exceeds the size of
the solar system. The coupling strength is constrained by
the Cassini experiment at the β2 ≲ 10−5 level. This could be
relaxed as the gluons contribute mainly to the mass of
atoms, and therefore gravitational tests are mostly sensitive
to the coupling of scalars to gluons. Here we illustrate our
analysis by taking the coupling strength to be universal to
all Standard Model fields. The Yukawa interaction is
associated with a coupling function

AðϕÞ ¼ 1þ β

mPl
ϕ: ð73Þ

The quantum correction to (g − 2) is in this case

δaμ ¼ 3β2
�

mμ

4πmPl

�
2

: ð74Þ

Similarly for a laboratory experiment performed on earth,
the scalar field profile is mainly due to the earth with a
gradient

∇⃗ϕ ¼ 2βmPlge⃗r; ð75Þ

where e⃗r is the radial unit vector from the center of the earth
and g is the gravitational acceleration in the laboratory. The
correction to the anomalous spin precession becomes then

FIG. 2. Definition of the coordinate system on the storage ring,
matching the conventions of [72].
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δω⃗a ¼
2β2gγ
γ2 − 1

v⃗ ∧ e⃗r: ð76Þ

When the antimuons go clockwise in the experiment that is
in the horizontal plane, we find that this contribution goes
inwards in the plane toward the center of the ring. This does
not affect the contribution perpendicular to the ring as the
one associated with the magnetic field. As a result, and
as the norm of ω⃗a is measured experimentally, this gives a
new contribution to the experimental determination of ωa.
Now we find that

δωa

ωa
≲ 10−20; ð77Þ

after applying the Cassini bound [35]. Similarly we find
that the quantum contribution from a Yukawa interaction is
bounded to be below

δaμ ≲ 10−43: ð78Þ

This is completely negligible. In the following, we will
consider screening mechanisms where the Cassini test of
deviations from Newtonian law is easily passed while the
strength of the coupling to matter can be much larger in the
context of laboratory experiments.

C. Chameleon models

We have seen that the Yukawa model is too tightly
constrained by local tests of gravity to be able to produce
the discrepancy between experiment and theory in the
muon’s anomalous magnetic moment. A model with
screening, however, allows for much larger matter cou-
plings to be compatible with observation. We begin by
considering a canonical example of a screened theory, the
chameleon, as given by Eq. (7). We first estimate the size
of the scalar contribution to Eq. (53). To proceed we must

obtain the gradient of the scalar field ∇⃗ϕ. To this end, we
note that inside the walls of the storage ring the field
satisfies ϕ ≈ 0. This is the case as the density far exceeds
the energy scales associated with the self-interaction
potential for chameleons. Assuming the density of the
residual gas inside the storage ring is negligible, the field
value rises toward a point where the Compton wavelength
is of order the size of the cavity [43]

meffðϕvacÞ−1 ≈ Rvac; ð79Þ

giving a central field value

ϕvac ¼ ξðnðnþ 1ÞΛ4þnR2
vacÞ 1

nþ2; ð80Þ

where R ¼ 4.5 cm [73] is the radius of the cavity inside
the storage ring and ξ is a geometry-dependent factor.
Approximating the storage ring as an infinite cylinder,

we have ξ ¼ 0.68 [43]. Although the gradient ∇⃗ϕ is not
uniform, being steeper toward the edges of the storage
ring and shallower toward the center, wewill approximate it

as simply j∇⃗ϕj ≈ ϕvac=R. It is oriented in the radial
direction, perpendicular to the motion of the muons so

jv⃗ ∧ ∇⃗ϕj ¼ jv⃗jj∇⃗ϕj.
Using Eq. (70), we have

δaμ ¼
mμ

qB
1

γv
ϕvac

MRvac
þ 3

�
mμ

4πM

�
2

: ð81Þ

We have simplified the quantum term by noting that the
chameleons’ effective mass meff ¼ R−1

vac ≈ μ eV is very
small compared to the mass of the muon, so we have
the limiting case I1ðmeff=mμÞ ≈ 3=2.
The first term is the classical contribution, and the

second term is the quantum one. We can only trust the
classical term when (i) the perfect vacuum and (ii) the zero
skin depth approximations hold, i.e., the approximate
vanishing of the scalar field inside the walls. The perfect
vacuum approximation is

ρcav
M

≪
nΛ4þn

ϕnþ1
vac

; ð82Þ

and the zero skin depth approximation is

m2
0 ≪ m2

wall; ð83Þ

where m2
effðϕÞ≡ Veff;ϕϕðϕÞ is the effective mass of the

chameleon and we have defined m0 ¼ meffðϕvacÞ and
mwall ¼ meffðϕ∞Þ. The field value ϕ∞ is the equilibrium
deep inside the walls of the storage ring

ϕ∞ ¼
�
nΛ4þnM
ρwall

�
1=ð1þnÞ

: ð84Þ

The densities are approximately that of a room temperature
vacuum at 1 μTorr and steel, respectively [74], and are
given, along with other experimental values, in Table I.
With these assumptions, the values of Λ,M that produce

the discrepancy δa≡ jaexp − aSMj ≈ 10−9 are plotted,
along with existing constraints on chameleon parameter

TABLE I. Experimental values of Fermilabmuon experiment [1].

δaμ 2.51 × 10−9 Discrepancy between experiment and theory
v 0.999419 Muons’ velocity
γ 29.3 Muons’ Lorentz factor
B 1.45 T Magnetic field
ρvac 10−9 kgm−3 Density inside storage ring vacuum
ρwall 104 kgm−3 Density of storage ring walls
Rvac 4.5 cm Interior radius of storage ring tube
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space, in Fig. 3. Although the region where the classical
effect dominates the quantum one is already excluded by
atom interferometry, there exists a set of parameter values
where M ≈ 10−16MPl and Λ ≲meV for the n ¼ 1 chame-
leon, which could explain the discrepancy δa. The curve
terminates at Λ ¼ 10−7 eV, as below this point the cha-
meleon mass becomes larger than that of the muon. This
results in jI1ðm0=mμÞj ≪ 1, consequently the chameleon’s
contribution to the anomalous magnetic moment is strongly
suppressed.
The viable chameleon parameters are very nearly

excluded by collider tests of chameleons which rule out
M ≲ 10−16MPl at 2σ [65]. It is therefore entirely possible
that revisiting chameleon constraints with current LHC data
would be able to detect or exclude these models. We leave a
detailed analysis of those constraints to future work.
Note that the bounds deriving from hydrogen spectros-

copy [52,76] have been reinterpreted and relaxed consid-
erably. This is because those previous studies did not
account for the screening of the proton nucleus or the gas
inside the vacuum chamber. Both effects must be included
for the smaller values of M and Λ that are of interest here.
The modified hydrogen bounds appear in Fig. 3, the details
of which will appear in [75].

D. Symmetrons

For the symmetron model we now perform a similar
analysis to the one for chameleons. First, we need to

estimate the field ϕ and its gradient ∇⃗ϕ at the location of
the muons in the storage ring. To begin, it is helpful to write
the effective potential as

VeffðϕÞ ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ λ

4
ϕ4: ð85Þ

We will assume that the density is large in the walls of the
storage ring and negligible in the interior:

ρvac ≪ μ2M2 ≪ ρwalls: ð86Þ

The symmetron field evolves from a value ϕ ¼ 0 at the
surface of the storage ring walls toward its vacuum
expectation value (VEV) v≡ μffiffi

λ
p . It naturally does this

over approximately one Compton wavelength μ−1, so the
relative sizes of the symmetron mass μ and the radius of
the approximately cylindrical cavity of the storage ring
Rvac ¼ 4.5 cm have important consequences for the sym-
metron phenomenology. The three possible cases to con-
sider are as follows:

(i) μ−1 ≪ Rvac: The field quickly rolls to the VEV a
short distance from the vacuum chamber walls and is
approximately constant ϕ ≈ v in the interior of the
storage ring. At the location of the muons we have

ϕ ≈ v, ∇⃗ϕ ≈ 0, and the classical correction to the
anomalous spin precession equation is small. The
quantum contribution could still be large, however,
and will be considered at the end of this section.

(ii) μ−1 ≫ Rvac: In this case the field does not have
sufficient room to reach the VEV, and it is ener-
getically favorable for the field to remain at ϕ ¼ 0
everywhere inside the storage ring [55]. As a result,
the classical and quantum corrections to the anoma-
lous spin precession are zero.

(iii) μ−1 ≈ Rvac: In this case, the field rolls just quickly
enough to reach the VEV at the center. As a crude
approximation, we have ϕ ≈ v and ∇ϕ ≈ v

Rvac
,

and the classical correction to the anomalous spin
precession can be significant.

For the moment we will focus on this third scenario. This
sets the mass scale of interest to be

μ ≈ R−1
vac ¼ 4.44 × 10−6 eV: ð87Þ

In reality, the field does not roll all the way to the VEV
when μ−1 ≈ Rvac, nor is the field gradient linear. To improve
upon the present analysis, one could (i) perform detailed
numerical simulations as was done for other laboratory
experiments [44,46,47,49,59], (ii) estimate the central field
value as that which sets meffðϕcenterÞ−1 ≈ Rvac, as was done

FIG. 3. (a) The values of M, Λ for the n ¼ 1 chameleon that
produce the discrepancy between experimental and theoretical
values of the muon magnetic moment are plotted with a black
line. The zero skin depth approximation fails in the upper right
corner, while the perfect vacuum approximation fails in the lower
left half. The areas where the classical and quantum components
of Eq. (81) each dominate are indicated. Only the classical
component relies on the perfect vacuum approximation. The
hydrogen bounds have been reinterpreted from [52] to include the
screening of the hydrogen nucleus [75]. The region where
M ≈ 10−16MPl, Λ ≲meV remains viable. The curve stops at Λ ≈
10−7 eV due to the large chameleon mass inside the storage ring.
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with the chameleon, or (iii) rely on the analytic approxi-
mation method of [59]. The present analysis represents a
best-case scenario, for the classical symmetron correction
to the anomalous precession to be as large as possible. We
will find that such an interaction is already constrained by
existing experiments, so the simplified analysis presented
here is sufficient.
We will assume that ϕ ¼ v and ∇ϕ ¼ v=Rvac at the

location of the muons. In natural units, then, the classical
contribution to the muons’ anomalous magnetic moment
determination is

δacl ¼
m
qB

jv⃗j
Rvac

μ2

M2λ
∼

m
qB

jv⃗j
R3
vac

1

M2λ
;

¼ ð1.07 × 10−10 eV2Þ 1

M2λ
; ð88Þ

where we have used μ ≈ R−1
vac.

Recall that we have assumed the critical density μ2M2

lies between the densities of the vacuum and the walls
[Eq. (86)]. Using μ ≈ Rvac, we have

Rvac
ffiffiffiffiffiffiffiffi
ρvac

p
≪ M ≪ Rvac

ffiffiffiffiffiffiffiffiffi
ρwall

p
: ð89Þ

The quantum contribution is given by Eq. (64),

δaQM ¼ 3

�
mμ

4π

�
2 μ2

M4λ
: ð90Þ

In Fig. 4, we have plotted in the ðM; λÞ plane the region of
parameter space where symmetrons of mass μ ≈ R−1

vac could
account for the anomalous magnetic moment of the muon.
For μ ∼ 10−5 eV as specified by the size of the storage

ring, quantum neutron experiments [51] exclude all models
with λ ≤ 10−20 and M ≤ 102 TeV. This excludes the large
M region of the parameter space where the classical
contribution to the anomalous spin precession is dominant.
As such, the classical effects of a symmetron model cannot
account for the observed discrepancy between experiment
and theory of the anomalous magnetic moment.
We now turn to the first scenario listed above where

μ−1 ≪ Rvac. In this regime the classical effect is zero but the
quantum contribution could still be significant. Since we
will consider symmetrons with much larger masses μ, we
restore the function I1 and seek symmetron parameter
values that solve the equation

δaμ ¼ 2

�
mμ

4π

�
2 μ2

M4λ
I1

� ffiffiffi
2

p
μ

mμ

�
: ð91Þ

We still require that the vacuum density ρvac is sufficiently
small for the symmetron to have a nonzero VEV, so we
have

ρvac ≪ μ2M2; ð92Þ

as before. However, we no longer require that the vacuum
chamber walls be sufficiently dense, as the field remains
near its VEV v ≈ μ=

ffiffiffi
λ

p
everywhere.

Another bound on the validity of the calculation comes
from the sizes of the couplings. The symmetron introduces

the nonrenormalizable coupling Lint ∼
ϕ2

M2 ρm. There is
nothing preventing higher order terms that still respect

the ϕ → −ϕ symmetry from appearing, such as ϕ4

M4 ρm,
ϕ6

M6 ρm, and so on. As we only include the first term in this
calculation, we require that the higher order terms are
suppressed, that is, ϕ2=M2 ≪ 1. The largest that ϕ can
reach in the experiment is the VEV ϕ ¼ μ=

ffiffiffi
λ

p
, giving the

constraint [59]

μ2

2λM2
≲ 1: ð93Þ

The calculation of the quantum effect Eq. (64) relied on
perturbation theory, necessitating that the couplings are
sufficiently small. After expanding the theory [Eq. (56)]
about the VEV, the coupling between the muons and the

FIG. 4. Symmetron parameters that eliminate the tension
between experimental and theoretical values of aμ, for
μ ¼ R−1

vac ¼ 4 μeV. The calculation of the classical effect is only
valid in the unshaded middle region. The black curve is a sum of
the classical and quantum contributions to the anomalous
magnetic moment, although the classical component is the
dominant one in this regime, while the quantum component
dominates for M ≲ 10−2 GeV. This plot is for illustrative
purposes only, as at this mass the bouncing neutron experiment
[51] rules out the symmetron parameter space shown here.
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scalar quantum fluctuations χ are given by Eq. (60). This
depends on the dimensionless coupling strength βmmμ=mpl.
The magnitude of this coupling must be smaller than 1 for
the perturbation theory to apply, giving

μmμffiffiffi
λ

p
M2

≲ 1: ð94Þ

Similarly, the scalar field’s self-coupling must also be
sufficiently small for perturbation theory to work:

λ≲ 1

6
: ð95Þ

All inequalities from Eqs. (92)–(95) must hold in order for
the calculation of Eq. (91) to be trusted.
There are three experiments to consider in this mass

range. Bouncing neutrons [51] constrain symmetrons at
1 eV with coupling λ < 1, ruling out any possibility for
smaller symmetron masses to resolve the δaμ discrepancy.
This experiment, in particular, excludes the possibility
for symmetrons at the same mass scale as dark energy,
μ ≈meV, to explain the g − 2 discrepancy. This is illus-
trated in Fig. 5. We therefore focus on symmetrons with
mass μ > 1 eV. There also exist bounds from measure-
ments of the electron magnetic moment [59], which take a
nearly identical form to Eq. (91):

δae ¼ 2

�
me

4π

�
2 μ2

M4λ
I1

� ffiffiffi
2

p
μ

me

�
; ð96Þ

where δae ¼ 0.77 × 10−12 is the uncertainty on the
electron magnetic moment in the experiments [77,78].
This does not place any limitation on the parameter
combinations considered here. However, an improvement
of the uncertainty on the electron magnetic moment by
approximately 2 orders of magnitude would be sufficient
to detect or rule out the symmetron models we discuss.
The third experiment to consider is precision atomic
spectrometry [52,76]. The presence of a fifth force
perturbs the energy levels of an atom, so it is possible
to constrain forces with a range of approximately a Bohr
radius and larger. This translates to bounds on symmetron
models that have mass μ≲ keV [75]. There are, indeed,
combinations of symmetron parameters μ, M, λ that
satisfy all of these requirements and produce the right
size of correction to the anomalous magnetic moment
δaμ. They lie in the range 1 keV < μ < 10 GeV and are
illustrated in Fig. 6.
Given that the symmetron was originally motivated by,

and associated with, dark sector physics [42,79] it is natural
to wonder whether any of the parameter combinations
indicated in Fig. 6 could result in the same scales as dark
energy. We find that they cannot, so the models found here
lie squarely in the realm of modified gravity rather than
dark energy. The criteria by which this determination was
made are given in Appendix C.
We have found that symmetron models in a wide mass

range could account for the muon g − 2 anomaly. This
results from their quantum contribution at one loop, and
opens up the exciting possibility that modified gravity
could account for the deviation in the anomalous magnetic
moment of the muon. Currently the parameter range we
have uncovered is unconstrained by any other experiments.
On the other hand, if there were improved precision in the
anomalous magnetic moment of the electron, or in pre-
cision hydrogen experiments, by a couple of orders of
magnitude our symmetron regime could be either con-
firmed or found to be in tension.

VI. DISCUSSION

A. Cosmological consequences

The chameleon and symmetron models discussed in this
paper, which could play a role in the ðg − 2Þμ results, are
not traditional. They are characterized by parameters that
are not within the range discussed at length in cosmological
applications of these models. For this reason, it is of interest
to survey their possible consequences for cosmological
observations. We will also mention some severe constraints
from particle physics that could jeopardize the validity of
some of these models.
Let us start with the inverse power law chameleons.

Their cosmology was discussed in the original cosmologi-
cal chameleon paper [80]. Let us first consider the theory
at high energy in the radiation era. We must assume that

FIG. 5. Symmetron parameters, with the mass at the dark
energy scale μ ¼ 2.4 meV ¼ ΛDE, that could explain the muon
g − 2 anomaly. We see that all viable parameter combinations at
this mass, indicated by the black line, are excluded by cold
neutrons [51].
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the chameleon field sits at the minimum of its effective
potential

ϕcosmo ¼
�
MΛ5

ρ

�
1=2

; ð97Þ

where we focus on the n ¼ 1 model here. The field must
follow the minimum of the effective scalar potential since
big bang nucleosynthesis (BBN) which takes place at a
redshift of order zBBN ∼ 109. The mass of the field at the
minimum is given by

m2
ϕ ¼ 2Λ5

�
ρ

MΛ5

�
3=2

; ð98Þ

which grows with the density. The mass must satisfy
mϕ ≳H; i.e., the scalar mass must be larger than the
Hubble rate, for the minimum to be stable. That is,
otherwise the minimum is not a tracking solution, and
the field does not follow the time evolution of the minimum
[80,81]. Let us focus on M ¼ 10−16MPl and Λ ¼ 10−4 eV
as a typical value in the allowed interval 10−7 eV≲
Λ≲ 10−3 eV. In this case we find that the mass at BBN

(a) (b)

(c) (d)

FIG. 6. Symmetron parameters that could resolve the muon g − 2 anomaly, at 4 different representative mass scales μ: (a) 10 eV, (b)
1 keV, (c) 1 MeV, and (d) 1 GeV. The combinations of parameters μ, M, λ that do this are indicated by the black line. Perturbation
theory breaks down for λ ≳ 1=6, so models in that regime are not viable. Likewise, the EFT is not valid for very small values of λ.
Parameter combinations with μ ≲ 1 eV are ruled out by bouncing neutrons [51] and hydrogen. Those with masses larger than ∼10 GeV
do not have any region where the calculation may be trusted and where the resulting correction to δaμ is the right size to explain the
anomaly. Only the most limiting constraints on symmetron parameter space are plotted, corresponding to Eqs. (93) and (95), as well as
new bounds deriving from precision hydrogen spectra [75].
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is of the order 0.6 GeV, i.e., larger than the typical
temperature of T ∼ 1 MeV, and the chameleons are non-
relativistic. At higher temperature, as mϕ ∝ a−9=4 ∝ T9=4

since the chameleon mass depends on the matter energy
density varying in a−3, they are even more nonrelativistic
and cannot be produced thermally as the typical energy
E ≃ T ≪ mϕ. The time variation of the chameleons since
BBN would induce a variation of particle masses [80]

Δm
m

¼ jΔϕj
M

; ð99Þ

which is dominated by the value of ϕ in the cosmological
background ϕ0. For the chosen parameters, we find a
variation of order 6 × 10−11 which is completely negligible.
Later in the matter era, the chameleon becomes lighter and
could modify two crucial observables. First of all, if the
chameleon energy density varies in time, the equation of
state of dark energy would vary, and this would affect the
angular distance to the last scattering surface and therefore
would shift the peaks of the cosmic microwave background
(CMB). The ϕ dependent part of the chameleon potential Λ

5

ϕ

evaluated at zCMB ∼ 103 would be 10−5 the amount of dark
energy; i.e., the field dependent part of the chameleon
potential is negligible between last scattering and now.
Similarly the kinetic terms are given by 9H2

8
ϕ2 which is

negligible in the Friedmann equation as ϕ ≪ MPl. Hence
the field dependent part of the chameleon energy density
leads to a minute deviation of the dark energy equation of
state from ωDE ¼ −1. On the other hand, the chameleon
could affect the growth of structure. Indeed, structure grows

with an enhancement factor of ð1þ 2
M2

Pl
M2 Þ inside the

Compton wavelength of the scalar field [80,82]. This is
valid in linear perturbation theory and can be trusted as long
as the Compton wavelength is larger than a few mega-
parsecs. If the Compton wavelength of the scalar field is
smaller, then the effects of the scalar field are blurred by
astrophysical effects on galactic scales and below. As the
enhancement factor in our model is large, one must require
that the Compton wavelength should be sufficiently small.
For our template, mϕ ∼ 4 × 10−21 GeV at the present time,
which is 20 orders of magnitude larger than the Hubble
rate; i.e., the Compton wavelength is much smaller than
cosmological and astrophysical scales. In conclusion, we
find that the chameleon that could play a role for ðg − 2Þμ
has no impact on cosmology. Finally, let us comment
briefly on what happens for symmetrons. As shown in
Appendix C, we do not expect the symmetrons described
here to have any cosmological consequences for values
of μ≳ 1 MeV.

B. Coupling to the Higgs

The chameleon could also have consequences for par-
ticle physics experiments. In particular, the chameleon

could lead to new channels in the decay of the Higgs
particle. This invisible Higgs decay is constrained by the
branching ratio BRðH → invÞ < 11% by the LHC results
at run2 [83]. The decay of the Higgs field into a pair of
chameleons would follow from the direct coupling of the
chameleon to the Higgs as

δLHϕ ¼ μ2HA
2
HðϕÞH†H − λHðH†HÞ2; ð100Þ

where the coupling function AHðϕÞ is absent from the
quartic self-interaction. The scaling in AHðϕÞ corresponds
to the dimension of the coupling constant. Here we assume
that the Higgs field couples to the rescaled metric
gHμν ¼ A2

HðϕÞgμν. We distinguish AH from the coupling
function A to fermions as they play very different physical
roles as we will see below. For the complex scalar field HE

coupled to gHμν, the Higgs-scalar Lagrangian reads

LH ¼ −A2
HðϕÞ∂μH†

E∂
μHE þ A4

HðϕÞμ2HH†
EHE

− A4
HðϕÞλHðH†

EHEÞ2; ð101Þ

where the indices are raised using the metric gHμν.
Normalizing the field as H ¼ AHðϕÞHE and focusing on
the nonderivative interaction terms leads to Eq. (100) and
the Lagrangian

LH ¼ −∂H†
∂H þ μ2HA

2
HH

†H − λHðH†HÞ2: ð102Þ

As we are interested in the effects of the real Higgs boson
after electroweak symmetry breaking, let us decompose

H ¼ 1ffiffiffi
2

p
�

0

φH

�
; ð103Þ

so that the Lagrangian becomes

LH ¼ −
1

2
ð∂φHÞ2 þ

1

2
μ2HA

2
Hφ

2
H −

λH
4
φ4
H: ð104Þ

Since AHðϕÞ will be expanded around unity (i.e., the
absence of coupling) it is convenient to isolate the
Higgs-scalar interaction operator

LH ¼ −
1

2
ð∂φHÞ2 þ

1

2
μ2Hφ

2
H −

λH
4
φ4
H þ 1

2
μ2ðA2

H − 1Þφ2
H:

ð105Þ

When matter is present with a density ρ, the VEV hϕi is
determined by

∂V
∂ϕ

¼ −
μ2Hφ

2
H

2
∂ϕA2

HðϕÞ − ∂ϕAρ; ð106Þ
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where the second term is responsible for the environmental
dependence of the VEV hϕiðρÞ.
In the spirit of effective theories, we assume that, in fact,

we can expand AHðϕÞ in powers of ϕ=M such as

A2
HðϕÞ ¼ 1þ 2κϕϕ

M
þ λϕ

ϕ2

M2
þ � � � : ð107Þ

The first two terms reconstruct AðϕÞ ≃ 1þ ϕ
M when κϕ ¼ 1.

This is the function used in this paper for chameleons for
the coupling between the scalar field and fermions. For
symmetrons we have κϕ ¼ 0 and λϕ ¼ 1. When κϕ and λϕ
differ from these values, we have AH ≠ A and the Higgs
boson coupling is not equal to the fermion coupling
function.
The Higgs VEV is determined by

λHφ
2
H ¼ A2

HðϕÞμ2H: ð108Þ

In practice we assume that AH ∼ 1, and we retrieve the
Higgs VEV v ¼ μH=

ffiffiffiffiffiffi
λH

p
as usual. Expanding φH ¼ vþ h

and ϕ ¼ hϕiðρÞ þ δϕ, we find for the Higgs part of the
Lagrangian

LH ¼ −
1

2
ð∂hÞ2 − μ2Hh

2 þ 1

2
μ2HðA2

H − 1Þðv2 þ 2vhþ h2Þ;
ð109Þ

complemented with the Higgs cubic and quartic self-
couplings which are not needed for the present discussion.
At leading order and neglecting the coupling to the scalar
δϕ we can now identify the Higgs mass

mh ¼
ffiffiffi
2

p
μH: ð110Þ

Expanding around hϕi we have

A2 ¼ 1þ 2κϕhϕi
M

þ λϕ
hϕi2
M2

þ 2

M

�
κϕ þ λϕ

hϕi
M

�
δϕ

þ λϕ
δϕ2

M2
þ � � � ; ð111Þ

where the constant term is very close to unity. At quadratic
order, the Higgs-scalar Lagrangian becomes

Lh−δϕ ⊃ −
1

2
ð∂hÞ2 − μ2Hh

2 þ
�
λϕ

μ2Hv
2

M2
− V 00 − A00ρ

�
δϕ2

2

þ vm2
h

M

�
κϕ þ λϕ

hϕi
M

�
hδϕ: ð112Þ

Notice that the terms linear in δφ and h cancel thanks to the
minimum equations Eqs. (106) and (108). As we can see
the mass matrix is not diagonal and the Higgs field h is no
longer a mass eigenstate:

M2¼

0
B@ m2

h −vm2
h

2M

�
κϕþλϕ

hϕi
M

�

−vm2
h

2M

�
κϕþλϕ

hϕi
M

�
m2

ϕ−λϕ
μ2Hv

2

M2

1
CA: ð113Þ

Nothing guarantees now that one of the eigenmodes is a
light scalar field of mass

m2
ϕ ¼ V 00 þ A00ρ ð114Þ

anymore. Here we denote by 0 ¼ d
dϕ evaluated at the

minimum hϕiðρÞ.
Setting aside this problem for now, we focus on the next

term in the EFT, i.e., the cubic hδϕ2 interaction term

Lhδϕ ¼ λϕ
vm2

h

2M2
δϕ2h: ð115Þ

This term can be interpreted as springing from an effective
quartic interaction between the Higgs doublet and the scalar
field such as [83]

L4 ⊃
1

4
λHϕϕH†Hϕ2; ð116Þ

which leads us to identify the quartic coupling as

λHϕϕ ¼ 2λϕ
m2

h

M2
: ð117Þ

For a scalar with mass≲80 GeV, the Higgs-scalar coupling
is constrained to be λHϕϕ < 0.01 from Higgs boson decay.
This translates into a bound

M > 10
ffiffiffiffiffiffiffi
2λϕ

q
mh ≈

ffiffiffiffiffi
λϕ

q
TeV: ð118Þ

This would appear to rule out all of the chameleon and
symmetron g − 2 models if λϕ ¼ Oð1Þ.
In fact, this phenomenological constraint is superseded

by bounds from the existence and validity of screening in
the presence of a Higgs-scalar coupling. To see this, let us
come back to the mass matrix of the Higgs-scalar system.
The trace of the mass matrix gives the sum of the two
square eigenmasses, and we should request that this trace
be only weakly perturbed to guarantee that both the
stability of the electroweak symmetry breaking and the
scalar mass remain small compared to the electroweak
scale. We can see that Eq. (116) contributes to the scalar
mass element M2

ϕϕ by an amount λHϕϕv2=2. We need this
to be smaller than the scalar mass squared in the vacuum
regime of the g − 2 measurement, i.e.,

λHϕϕ ≪
m2

ϕ

v2
: ð119Þ
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As the vacuum chamber has a size of order 10 cm,
this translates to a minimum mass of 10−6 eV for the
scalar, yielding a maximum Higgs-scalar coupling of
λHϕϕ ≲ 10−34. This is obviously much more stringent than
the Higgs decay constraint and implies also that

λϕ ≲ 10−34; ð120Þ
when M ≃ 10−16M as is the case for chameleon models
reproducing ðg − 2Þμ. This reasoning extends straightfor-
wardly to arrive at similar conclusions for symmetrons.
Next, let us consider what happens in the presence of

matter to the minimum of the effective potential hϕiðρÞ.
Theories such as the chameleon and symmetron rely
sensitively on variations in the ambient energy density.
But, it can be seen from Eqs. (107) and (109) that the scalar
field is also sensitive to the Higgs condensate energy:

Lϕ ⊃ −κϕ
μ2Hv

2

M
ϕ −

ρ

M
ϕ: ð121Þ

This energy is enormous compared to typical densities in
the laboratory and threatens to overwhelm the chameleon
screening dynamics. The only resolution is to fine-tune the
Higgs coupling parameter κϕ to a small value. It follows
that the Higgs coupling does not destabilize the scalar
vacuum provided

κϕ ≪
jMA0ρj
2μ2Hv

2
: ð122Þ

Assuming A0ðϕÞ ¼ M−1, as is the case with the chameleon,
and using the ambient matter density ρvac ≈ 106 eV4 in the
muon g − 2 experiment, this translates into a bound

κϕ ≲ 10−38 ð123Þ
for chameleons and an even more stringent one for
symmetrons.
We can see that keeping our scalar field light, and

insensitive to the Higgs condensate energy, requires us to
fine-tune the Higgs coupling to be so small that the
constraints from invisible Higgs decays are automatically
satisfied. In practice, this tells us that although AðϕÞ ≠ 1 to
reproduce ðg − 2Þμ, we must impose that AHðϕÞ ¼ 1 to
preserve the screening mechanisms for both chameleons
and symmetrons. Of course, the decoupling of the screened
scalars from the Higgs boson sector will be challenged by
quantum corrections in a way reminiscent of the hierarchy
problem for the Higgs boson itself. A detailed analysis of
this issue is left for future work.

C. Other particle physics effects

Ruling out the chameleon or symmetron explanation of
ðg − 2Þμ completely would require additional experimental
input. This may be provided by the physics of B mesons,

as the coupling of the scalar to fermions could lead to
interesting effects in Bmeson decays [84]. In particular, the
scalar with a linear coupling to matter coupling to fermions
is proportional to the mass of the fermions4

Lint ¼ −
ϕ

M
ρ ¼ −

X
ψ

ϕ

M
mψ ψ̄ψ ; ð124Þ

where the sum runs over all Standard Model fermion
fields ψ . This interaction can therefore potentially break
the universality of B meson decays [85]. This would
contribute to the anomalous behavior of these decays

and lead to a ratio RK ¼ BRðB→KμμÞ
BRðB→KeeÞ which would differ

from unity. As an order of magnitude estimate from
penguin diagrams where an intermediate photon is replaced
by a scalar, we expect

ΔRK

RK;SM
≃
mtmμ

αM2
; ð125Þ

for the deviation due to scalars compared to the SM model
value. Notice that numerical factors such as 4π’s have not
been included in this simple estimate. This has potential
consequences for the viability of our scenario, especially
for symmetrons. A more accurate calculation should be
performed to confirm the results below [86]. We have
also neglected the mass of the scalar. This could also be
important for symmetrons with masses ≳MeV and would
suppress the contribution due to these scalars.
Imposing that the ratio in Eq. (125) should be less than

10−2 leads to M ≳ 150 GeV ¼ 10−16MPl. The chameleon
is already equipped with a linear coupling like Eq. (124),
and we can see from Fig. 3 that this criterion is marginally
satisfied.
The symmetron Lagrangian, on the other hand, does not

have the same linear coupling, as its leading coupling to
matter is quadratic. The linear coupling appears only after
we perturb the Lagrangian about the symmetron VEV
ϕ ¼ μ=

ffiffiffi
λ

p þ φ. The interaction term becomes

Lint ∼ −
X
ψ

μffiffiffi
λ

p
M2

ϕmψ ψ̄ψ : ð126Þ

Making the replacement 1
M → μffiffi

λ
p

M2 in Eq. (125), we find

ΔRK

RK;SM
≃
�

μffiffiffi
λ

p
M2

�
2 mtmμ

α
: ð127Þ

4The coupling ϕρ ∼ ϕmψ ψ̄ψ assumes that the fermions are
nonrelativistic, which is certainly not always the case in B decays.
The relativistic effects are not considered in the following but
should be reinstated to obtain accurate bounds on the modified
gravity parameters.
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Once again, we impose that the ratio ΔRK
RK;SM

must be less

than 10−2, and obtain the constraint

μffiffiffi
λ

p
M2

< 2.0 × 10−3 GeV−1: ð128Þ

This can be compared with Eq. (91), which shows that
when the symmetron mass is negligibly much less than the
muon mass (as has also been assumed here), we require

μffiffiffi
λ

p
M2

¼ 3.5 × 10−3 GeV−1; ð129Þ

for the symmetron model to account for the g − 2 discrep-
ancy. Our scenario is therefore in mild tension with B
meson decay. Of course, this order of magnitude should be
confirmed by an exact calculation that also accounts for the
scalar mass and the full relativistic scalar-fermion coupling.
Strong constraints on the coupling of the scalar to

fermions can also be deduced from the decay of kaons
such as Kþ → πþϕ [87–89]. In particular, the NA62 has
put bounds on the interactions between a scalar particle and
matter. That bound is given within the context of a Higgs-
mediated interaction between the scalar and SM particles,
so we must translate that bound into the direct interaction
we have here.
The relevant model for our purposes is the BC4

model [87], in which the scalar interacts only with the
Higgs:

L ⊃ gϕhϕH†H: ð130Þ
After spontaneous symmetry breaking, and integrating
out the Higgs boson, there is an effective scalar-fermion
interaction

L ⊃
θ

v
ϕ
X
SM

mψ ψ̄ψ ; ð131Þ

where the sum runs over all SM fermion fields, v is the
Higgs VEV, and the mixing angle, assumed to be small, is

θ ≈
gϕhv

m2
h

: ð132Þ

Comparing to Eq. (124), we see that the conversion to our
chameleon model parameter M is

M ¼ v
θ
: ð133Þ

The mixing angle is experimentally constrained to be
θ ≳ 10−4 [89], yielding the bound

M > 106 GeV: ð134Þ
Such a bound is incompatible with the ðg − 2Þμ scale forM
when applied to chameleon models. For symmetrons with a

mass greater than 1 MeV but smaller than 1 GeV, i.e., the
symmetrons which are not excluded by cosmology and can
play a role for ðg − 2Þμ, similar conclusions can be drawn.

Their effective coupling to matter is Meff ¼
ffiffi
λ

p
M2

μ , and we
see from Eq. (129) thatMeff ¼ 285 GeV is required for the
theory to account for the muon g − 2 result, a value that is
in tension with Eq. (134). A more rigorous analysis is
required in order to confirm that the whole symmetron
parameter space depending on ðM; μ; λÞ is ruled out by
kaon decays. This is left for future work.
Of course, taking into account all the phenomenology

of K and B decays goes beyond the present analysis.
Further study should confirm the stringent restrictions
on the parameter space of chameleon and symmetron
models compatible with ðg − 2Þμ that we have indicated
here, and a detailed analysis is currently underway [86].
Throughout this paper we have insisted on the univer-
sality of the coupling of the scalar field to matter via a
unique Jordan metric. This assumption can be lifted, and
a model where the scalar couples most strongly to muons
should favor the description of ðg − 2Þμ by screened
modified gravity, while softening the tension with other
observables such as kaon decays. This also is left for
future work.

VII. CONCLUSION

In this paper we have computed the effect of a scalar field
coupled to matter on the anomalous magnetic moment of
the muon in the Fermilab experiment. Such a scalar field
generically arises in modified gravity models. In particular,
we have shown that chameleon modified gravity could
account for the discrepancy between the experimental and
theoretical values of the anomalous magnetic moment. We
have shown that an unscreened scalar with a Yukawa
coupling to matter cannot contribute significantly to
ðg − 2Þμ, and we have demonstrated the powerful effects
of screened modified gravity models. The chameleon or
symmetron models could be verified or ruled out by
improved electron magnetic moment experiments that
are roughly 2 orders of magnitude more sensitive than
existing ones, or by precision atomic spectroscopy experi-
ments. Such experiments would delve further into chame-
leon and symmetron modified gravity parameter space and
either confirm or rule out the results we have uncovered.
As part of our work we considered in detail how the

classical effects of a scalar field influence the determination
of the anomalous magnetic moment, hitherto not consid-
ered previously; we give a detailed analysis of the scalar
field’s contribution to the precession of the spin vector. This
is crucial to the analysis although, for the chameleon and
the symmetron models considered here, the quantum
contributions turn out to give the dominant effect.
We have also considered other potential constraints

on our model parameters. Concentrating on chameleon
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models, we showed that the chameleon mass is much larger
than the typical temperature at the time of BBN, and will
therefore not disturb BBN dynamics. Similarly, the cha-
meleon models investigated here have negligible effects on
the CMB and on the time variation of masses of funda-
mental particles. We also considered the effect the chame-
leon could have on several particle physics measurements.
We showed that although Higgs decays could potentially
constrain the chameleon and symmetron g − 2 models,
demanding that the Higgs condensate does not spoil the
screening behavior necessitates decoupling the scalar and
Higgs fields from one another. We also briefly discussed
the effect the chameleon could have on B physics, but the
detailed evaluation is left to future work [86]. Similarly, we
have also pointed out that kaon decays into pions and
invisible matter are in tension with our result on ðg − 2Þμ.
This may rule out the specific chameleon and symmetron
models but leaves open other avenues for screened modi-
fied gravity. For instance, another model such as the
environment dependent dilaton [90] whose screening is
similar to the symmetron’s should be investigated. One
could also explore a violation of universality with different
coupling strengths to muons, electrons, and quarks.
The BNL/Fermilab muon magnetic moment anomaly

has now persisted for well over a decade. Although the
chameleon and symmetron models shown here are in
tension with particle physics bounds, it is possible that a
closely related model, likely with nonuniversal coupling to
matter fields, could explain this anomaly. It would therefore
be interesting to test other models against this result.
Similarly, this motivates further testing of these models
in the laboratory and raises the possibility that BNL and
Fermilab may well have just discovered modified gravity.
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APPENDIX A: THE ANGULAR VELOCITY
TENSOR

The angular velocity vector can be embedded in an
antisymmetric tensor Ωμν such that

duμ

dτ
¼ −Ωμ

νuν; ðA1Þ

with Ωa0 ¼ 0 and

ωa
c ¼ −

1

2γ
ϵabcΩbc: ðA2Þ

This is only possible as Eava ¼ 0 and ∂aϕva ¼ 0. The
spatial part of the antisymmetric tensor is

Ωab ¼ −
q
mE

Bab þ Eab: ðA3Þ

We have defined the antisymmetric tensor Bμν by

Bab ¼ ϵabcBc; B0a ¼ 0; ðA4Þ

and the antisymmetric tensor Eμν by

E0a ¼ 0; Eab ¼ ϵabcEc; ðA5Þ

where we have introduced the vector

Ea ¼ ϵabcvb
�

q
mEv2

Ec −
∂ϕ lnA

v2γ
∂
cϕ

�
; ðA6Þ

such that

ωa
c ¼ −

q
mEγ

Ba þ Ea

γ
: ðA7Þ

The two terms vary differently under Lorentz boosts.
Indeed, in terms of components we have for the angular
velocity tensor

Ωab ¼ −
q
mE

ϵabcBc −
q

mEv2
ðEavb − EbvaÞ

þ ∂ϕ lnA

γv2
ð∂aϕvb − ∂bϕvaÞ;

Ω0a ¼ 0: ðA8Þ

This decomposition makes the Lorentz transformations of
the angular velocity more transparent as we have simply
to boost Ωμν and pick the “magnetic” part of this anti-
symmetric tensor to define the boosted angular velocity
vector. The magnetic part Ba transforms as a magnetic field
while the “electric” part Ea is invariant.

APPENDIX B: A SIMPLIFIED DERIVATION OF
THE CLASSICAL FREQUENCY SHIFT

In this appendix, we present a simplified version of the
derivation of the scalar field’s classical contribution to the
spin precession frequency that was given in Sec. III. We
will assume that there is no coupling between the scalar
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field and the fermion’s angular momentum, and we drop
any terms that do not contribute to the final result. This
closely follows the discussion of spin precession in [38],
borrowing several standard expressions along the way.
Imagine a particle with electric charge q moving with

velocity v⃗ perpendicular to a uniform magnetic field B⃗. We
will begin by focusing on just the electromagnetic compo-
nent, ignoring any contributions from a new scalar field for
now. We will also drop terms involving E⃗ fields, as well as
B⃗ fields parallel to the motion of the particle, keeping only
the pieces that are nonzero in the specific case of perfect
cyclotron motion.
Focusing on the case of pure electromagnetism (that is,

no scalar field) for now, the relativistic equation of
motion is

mE
dv⃗
dτ

¼ qv⃗ ∧ B⃗: ðB1Þ

Since dτ ¼ dt=γ, we obtain

dv⃗
dt

¼ q
γmE

v⃗ ∧ B⃗: ðB2Þ

We can rewrite this as a gyroscope equation

dv⃗
dt

¼ ω⃗c ∧ v⃗; ðB3Þ

where we have identified the cyclotron frequency

ω⃗c ≡ −
q

γmE
B⃗: ðB4Þ

This is the angular velocity as the particle’s motion traces a
perfect circle.
Now we compute the rate of change of the spin s⃗ of

the particle. One is tempted to reach for the usual
expression for a magnetic moment μ⃗ ¼ gq

2m in a magnetic
field5

ds⃗
dt

¼ μ⃗ ∧ B⃗: ðB5Þ

The issue with this is that it is not a relativistic expression,
so it must be evaluated in the rest frame of the particle.
A related problem is that the rest frame of the particle is
noninertial, as it rotates with the particle. In other words,

�
ds⃗
dt0

�
rot

¼ μ⃗ ∧ B⃗0; ðB6Þ

where a prime indicates the rest frame of the particle. We
need to write this in terms of laboratory-frame quantities.
The B⃗ field is entirely perpendicular to the motion so we
have the usual Lorentz boost

B⃗0 ¼ γB⃗: ðB7Þ

(Again, we are ignoring any E⃗ fields as they do not
contribute to the final result.) Next, we convert from the
particle’s rest frame time t0 to the laboratory frame time t:

�
ds⃗
dt0

�
rot

¼ dt
dt0

�
ds⃗
dt

�
rot

¼ γ

�
ds⃗
dt

�
rot
; ðB8Þ

so that ultimately we have

�
ds⃗
dt

�
rot

¼ μ⃗ ∧ B⃗: ðB9Þ

Now we need to translate from a rotating frame to the
inertial laboratory frame. We use [38]

�
ds⃗
dt

�
nonrot

¼
�
ds⃗
dt

�
rot

þ ω⃗T ∧ s⃗; ðB10Þ

which is true of any vector when translating from a rotating
frame to an inertial one, where ω⃗T is the Thomas precession
frequency and will be given shortly. Summarizing, we have

�
ds⃗
dt

�
nonrot

¼
�
−

gq
2mE

B⃗þ ω⃗T

�
∧ s⃗: ðB11Þ

The first term results from the usual Larmor precession
while the second term is from the Thomas precession, a
relativistic correction for the nonrotating frame, given by

ω⃗T ¼ γ2

γ þ 1
a⃗ ∧ v⃗: ðB12Þ

This depends on the acceleration a⃗ of the particle in the
(nonrotating) laboratory frame. Using Eq. (B3), we can
simplify this as

ω⃗T ¼ −
γ2

γ þ 1
v⃗2ω⃗c ¼ ð1 − γÞω⃗c; ðB13Þ

where the first equality assumed that the acceleration is
orthogonal to the motion of the particle and the second
equality used the identity v⃗2 ¼ ðγ2 − 1Þ=γ2.
We now identify the spin precession frequency from

Eq. (B11):
5The vector s⃗ here is the spin vector in the rest frame of the

particle.
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ω⃗s ¼ −
gq
2mE

B⃗þ ω⃗T

¼ −
gq
2mE

B⃗þ ð1 − γÞω⃗c: ðB14Þ

The difference between the spin and cyclotron preces-
sion frequencies is the anomalous precession frequency

ω⃗a ¼ ω⃗s − ω⃗c;

¼ −
gq
2mE

B⃗ − γω⃗c: ðB15Þ

Plugging in the cyclotron frequency ω⃗c, we find

ω⃗a ¼ −
q
mE

�
g − 2

2

�
B⃗; ðB16Þ

which is exactly correct for the idealized case of perfect
cyclotron motion considered here.
Now we can examine the effects of a scalar field gradient

∇⃗ϕ that is perpendicular to v⃗. Using Eq. (18) for the
cyclotron frequency,

ω⃗c ¼ −
q

γmE
B⃗ −

∂ϕ lnA

γ2 − 1
v⃗ ∧ ∇⃗ϕ: ðB17Þ

Substituting this in to Eq. (B15) we find

ω⃗a ¼ −
q
mE

�
g − 2

2

�
B⃗þ γ

γ2 − 1
ð∂ϕ lnAÞv⃗ ∧ ∇⃗ϕ; ðB18Þ

which agrees with Eq. (53), apart from the terms that were
intentionally dropped for simplicity. The remaining terms
can be constructed in a manner analogous to the one
presented here.

APPENDIX C: DARK ENERGY
VS MODIFIED GRAVITY

There are several different criteria that could qualify a
chameleon or a symmetron model as having something to
do with dark energy. It is well-known that chameleon and
symmetron models cannot act as dynamical dark energy
alone on cosmological scales [91,92], but it is still worth
asking whether the theory can behave as dark energy on
laboratory scales. One proviso is that in the chameleon case
the quantum corrections are intrinsically field dependent
and therefore can alter the classical results significantly. For
symmetrons, the situation is simpler, and without satisfying
at least one of the options listed here, the theory is better
described as modified gravity, as it works on scales very
different from those of dark energy, Einstein gravity, and
cosmological expansion. Although a full examination of
the cosmological consequences of the symmetron models
indicated in Fig. 6 would be interesting, it is beyond the

scope of the present work so we focus mostly on whether
these modified gravity models could be associated with
dark energy. A brief sketch of some of the early universe
consequences of the symmetrons with parameters as in
Fig. 6 is given below for completeness.

1. Early universe

The physics of symmetrons in the universe depends on
the symmetry breaking energy density ρB ¼ μ2M2. As we
consider models where μ ≳ 10−6 GeV and M ≳ 10−1 GeV
(see Fig. 6), the symmetry breaking energy density is
ρB ≳ 10−14 GeV4. This energy density is always much
larger than the matter density at big bang nucleosynthesis
ρBBN ∼ 10−20 GeV4 at a redshift of z ∼ 109. As a result the
symmetron field essentially sits at the effective minimum of
the matter-dependent potential where hϕi ¼ μffiffi

λ
p with a mass

mϕ ¼ ffiffiffi
2

p
μ. For large values of 1 MeV≲ μ≲ 1 GeV, the

symmetrons are sufficiently heavy during BBN that they
play hardly any role in the early universe. For instance,
they are always nonrelativistic, and as hϕi is constant the
constraint that fermion masses do not vary in the Einstein
frame since the time of BBN on the variation of masses is
trivially satisfied. When 1 keV≲ μ≲ 1 MeV, symmetrons
could appear as a new relativistic species during BBN if
they thermalize with electrons [93]. As the symmetrons
have a me

M2 ϕ2ēe coupling to electrons, the scalar cross

section behaves as σ ≃ m2
e

M4 and the symmetrons are coupled

to the primordial plasma for T ≳ Tϕ ¼ M4

m2
eMPl

. This is larger

than 1 MeV forM ≳ 103 GeV. As a result, the lowest range
of the symmetron masses would affect BBN and could be
ruled out cosmologically.

2. Mass

One possible criterion is that the mass of the symmetron
particle is at the dark energy scale, implying μ ≈ ΛDE ≡
2.4 meV. One upside of this choice is that at one loop
the Coleman-Weinberg correction to the potential goes as
(see, e.g., Ref. [94]) ΔV ∼ μ4, generating a dark-energy-
like density. The viable symmetron parameters, we found to
explain the g − 2 discrepancy all have mass μ > 1 eV, so
this option is ruled out. For the chameleon with only a
matter coupling, this scenario would indicate a matter
coupling M ≈ 108 eV, which is in tension with collider
and electron g − 2 bounds.

3. Energy density

Another possibility is for the energy offset between the
symmetron’s false and true vacua to account for the cosmo-
logical constant, resulting in a term in the Lagrangian of
order ∼Λ4

DE. The symmetron VEV is v ¼ μ=
ffiffiffi
λ

p
. In a pure

vacuum where ρm ¼ 0, then the difference in energy density
between the false and true vacua is
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ΔVeff ¼
1

2

�
ρ

M2
− μ2

�
ϕ2 þ 1

4
λϕ4;

¼ −
μ4

4λ
: ðC1Þ

If, wewish for this to be of order the dark energy densityΛ4
DE

where ΛDE ¼ meV, then we need

λ ≈
μ4

Λ4
DE

¼
�

μ

ΛDE

�
4

: ðC2Þ

We also require λ < 1 for perturbation theory to work, so we
are restricted to μ < meV. All of the symmetron masses, we
propose to resolve the g − 2 tension are larger than this.
For chameleons, the analogous requirement would be

for the energy in the chameleon potential to match the
energy density of dark energy: VðϕÞ ≈ Λ4

DE. The chame-
leon models that resolve the g − 2 tension, shown in Fig. 3,
have M ≈ 10−16MPl. This requirement leads to Λ ≈ eV,
which is ruled out by atom interferometry.

4. Critical density

A third option, unique to the symmetron, is for the
symmetron critical density to match the critical density of
the universe:

μ2M2 ¼ 3M2
PlH

2
0; ðC3Þ

such that the field becomes tachyonic at the present day
and correspondingly mediates a very long-ranged fifth
force. Recall that for there to be any scalar effect at all,
classical or quantum, we need the symmetron to exist in the
symmetry-broken phase. That required ρvac ≪ μ2M2. But
ρvac ≈ 10−12 g=cm3, which is much larger than the critical
density of the universe (10−29 g=cm3) so it is impossible for
these densities to match in realistic laboratory experiments.

5. Fifth force strength

Another option is for the strength of the unscreened fifth
force to be comparable to ordinary gravity. The coupling

strength in the symmetry broken phase is ϕ=M2 ¼
μ=ð ffiffiffi

λ
p

M4Þ. For this coupling strength to match that of
gravity, we need

μffiffiffi
λ

p
M2

≈
1

MPl
ðC4Þ

or

λ ≈
M2

Plμ
2

M4
¼ ð1054 eV2Þ μ

2

M4
: ðC5Þ

However, the symmetron parameters that resolve the g − 2
tension are given by Eq. (91),

λ ¼ m2
μμ

2

δaμM4
¼ ð1024 eV2Þ μ

2

M4
: ðC6Þ

So the unscreened force in the symmetron models, we
uncover is much stronger than gravity. For the chameleon,
the same requirement would simply set M ≈MPl, which
is considerably removed from the chameleon models
considered in this paper.

6. Cosmological equation of state

As is well-known on large cosmological scales, the
chameleon tracks the minimum of the effective potential if
its mass is much larger than the Hubble rate m ≫ H. When
this is the case, the chameleon’s energy density (for n ¼ 1)
varies in time as a function of the scale factor as
ρϕðaÞ ∝ a−3=2, coming from ϕðaÞ ∝ a3=2, therefore imply-
ing an equation of state ωϕ ¼ −1=2 which is excluded
observationally. Hence classical chameleons cannot lead to
self-acceleration and require the addition of a cosmological
constant to generate the late time acceleration of the
universe. For symmetrons, after tuning the vacuum energy
to zero and assuming μ ≫ H0, the cosmological energy
density at the minimum of the effective potential is ρϕ ≃
μ2ρ=2M2λ ∝ a−3 which does not redshift like dark energy.
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