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The worldline of a spinning test body moving in curved spacetime can be provided by the Mathisson-
Papapetrou-Dixon equations when its centroid, i.e., its center of mass, is fixed by a spin supplementary
condition (SSC). In the present study, we continue the exploration of shifts between different centroids
started in a recently published work [Iason Timogiannis et al., Phys. Rev. D 104, 024042 (2021).],
henceforth paper I, for the Schwarzschild spacetime, by examining the frequencies of circular equatorial
orbits under a change of the SSC in the Kerr spacetime. In particular, we examine the convergence in the
terms of the prograde and retrograde orbital frequencies, when these frequencies are expanded in power
series of the spin measure and the centroid of the body is shifted from the Mathisson-Pirani or the Ohashi-
Kyrian-Semerák frame to the Tulczyjew-Dixon one. Since in paper I we have seen that the innermost stable
circular orbits (ISCOs) hold a special place in this comparison process, we focus on them rigorously in this
work. We introduce a novel method of finding ISCOs for any SSC and employ it for the Tulczyjew-Dixon
and the Mathisson-Pirani formalisms. We resort to numerical investigation of the convergence between the
SSCs for the ISCO case, due to technical difficulties not allowing paper I’s analytical treatment. Our
conclusion, as in paper I, is that there appears to be a convergence in the power series of the frequencies
between the SSCs, which is improved when the proper shifts are taken into account, but there exists a limit
in this convergence due to the fact that in the spinning body approximation we consider only the first two
lower multipoles of the extended body and ignore all the higher ones.
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I. INTRODUCTION

The two-body problem is a fascinating yet challenging
problem in general relativity. Having to simultaneously
determine the motion and the gravitational field of a binary
system, which are governed by the field equations [1,2],
pushes both analytical and numerical methods to their
limits [3–5]. Technical and conceptual challenges arise
even in the case that the presence of one of the bodies is
prescribed by a fixed spacetime background, while the
other is approximated as a test body. In this seemingly
simple limit, one has to still find a way to describe the
motion of an extended test body in a curved spacetime
background. To tackle this issue, the pioneering works of
Mathisson [6], Papapetrou [7], and Dixon [8] have pro-
vided a theoretical framework, in which the extended
body’s structure is described by a series of multipole
moments. In the simplest setup of this framework, only

the first two multipoles are taken into account, i.e., the pole
and the dipole, while the quadrupolar as well as higher
moments are neglected. In this pole-dipole approxima-
tion, the body has apart from its mass an internal angular
momentum, i.e., a spin. The equations of motion of this
spinning test body, if we consider only gravitational
interactions, reduce the Mathisson-Papapetrou-Dixon
(MPD) equations1 [9] to the following set of equations:

Dpμ

dλ
¼ −

1

2
Rμ
νκλu

νSκλ; ð1Þ

DSμν

dλ
¼ pμuν − uμpν; ð2Þ

which evolve the four-momentum pμ along with the spin
tensor Sμν of the test body and where D

dλ ≔ uμ∇μ denotes the
covariant derivative in the direction of the four-velocity

uμ ¼ dzμðλÞ
dλ , since we choose λ to be the proper time; zμðλÞ is
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1The MPD equations can be obtained through the covariant
conservation of the stress-energy tensor Tμν of the extended body.
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the coordinate position of the representative worldline of
the test body. The rest mass of the extended spinning body
can be dually defined, either with respect to the four-
momentum μ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−pνpν

p
(dynamical mass) or with respect

to the four-velocity m ≔ −pνuν (kinematical mass). The
measure of its spin, by contrast, is uniquely defined as

S2 ¼ 1

2
SμνSμν; ð3Þ

which discloses the spacelike character of the antisym-
metric spin tensor Sμν.
The underdetermination issue of the MPD set of equa-

tions has been thoroughly examined since the initial
derivation of the equations. As a result, a great abundance
of different constraints, known as spin supplementary
conditions (SSCs), has been developed in order to address
it (see, for instance, [10], which can serve as a relatively
recent review on SSCs). In brief, the SSCs required to close
the MPD system of equations fix the centroid of the body,
whose evolution in time forms the representative worldline.
The centroid serves as the point against which the spin is
calculated. All the established SSCs can be written cova-
riantly in the form VμSμν ¼ 0, where Vν stands for the
reference timelike vector, which is often normalized to
VνVν ¼ −1, like the test body’s four-velocity does. Once a
SSC is imposed, it is possible to introduce a spin four-
vector by means of the Levi-Civita tensor ϵμνρσ, that is,

Sμ ≔ −
1

2
ϵμνρσVνSρσ; ð4Þ

while the inverse relation of Eq. (4) reads

Sρσ ¼ −ϵρσνκSνVκ: ð5Þ

The pole-dipole version of the Mathisson-Papapetrou-
Dixon formalism appears to be adequate for modeling an
extreme mass ratio inspiral (EMRI) [11,12], i.e., a compact
astrophysical object, like a neutron star or a stellar mass
black hole, captured into an inspiral orbit, around a central
supermassive black hole. The latter are extremely massive
objects residing at the core of many galaxies, including our
own Milky Way. EMRIs are among the prime targets for
space-based gravitational wave detectors like the Laser
Interferometer Space Antenna [13] and, as such, play a vital
role in the gravitational research which will be conducted in
the couple of decades to come until its launch.
In paper I [14], we probed the impact of the centroid’s

alteration, on the characteristic features of an extended
spinning test body, expanded in power series with respect to
its spin measure, within the context of EMRIs. Namely, we
examined whether the orbital frequency of an inspiralling
body, moving in an arbitrary circular equatorial orbit
around a massive nonrotating uncharged black hole, is
preserved under the transition to another centroid of the

same physical body governed by a different SSC. One of
the main concluding remarks of paper I was that the
appropriate shift between centroids is not a gauge trans-
formation as in flat spacetime for the pole-dipole approxi-
mation, and, consequently, the convergence between the
discussed SSCs holds only up to quadratic spin terms and
cannot be achieved for the whole power series. The primary
objective of the present work remains almost the same.
More precisely, we extend our investigations to a more
general spacetime, i.e., the Kerr spacetime background, by
testing if the spherical symmetry breaking affects the
degree of this convergence between three particular SSCs:

(i) the Tulczyjew-Dixon (TD) SSC [15,16], which uses
Vν ≔ pν=μ as a future-oriented timelike vector and
under which μ and S are constants of motion,
independently of the background spacetime [17,18];

(ii) the Mathisson-Pirani (MP) SSC [6,19], which uses
Vν ≔ uν as a future-oriented timelike vector and
under which m and S are constants of motion, inde-
pendently of the background spacetime [17,18]; and

(iii) the Ohashi-Kyrian-Semerák (OKS) SSC [10,20,21],
which promotes Vν to an additional variable of the
system and an evolution equation DVν

dλ ¼ 0 is defined
for it. Under this SSC, the two different notions of
mass are identical, i.e., μ ¼ m, and constant upon
evolution along with S [10,17]. Moreover, under the
OKS SSC, the test body’s four-momentum and four-
velocity are correlated linearly, or, in other words,
pν ¼ μuν ¼ muν, in complete analogy to the geo-
desic limit.2

Besides the SSC-dependent constants of motion, there are
the spacetime-dependent integrals of motion originating
from a Killing vector ξμ, which expresses a background’s
symmetry. For an extended test body, such an integral of
motion reads

C ¼ ξμpμ −
1

2
ξμ;νSμν; ð6Þ

(see [15] for a derivation). Hence, the stationarity and the
axisymmetry of the Kerr metric lead to the conservation of
the energy E and of the z component of the total angular
momentum of the spinning body Jz, respectively. These
quantities can be written as [22]

E ¼ −pt þ
S
2

ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
ðgtϕ;rVt − gtt;rVϕÞ; ð7Þ

Jz ¼ pϕ þ
S
2

ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
ðgtϕ;rVϕ − gϕϕ;rVtÞ ð8Þ

2Note that for spinning bodies pν and uν are not necessarily
parallel. Their relation is given by pν ¼ μuν þ uμ DSμν

dλ , with the
second term on the right-hand side known as the hidden
momentum.
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in the special case of circular equatorial orbits and hold for
any stationary, axisymmetric spacetime with reflection
symmetry along the equatorial plane (SAR spacetime).
The structure of this article is organized as follows.

Section II revisits the issue of determining the innermost
stable circular orbit (ISCO) of a spinning test body in
curved spacetime, by suggesting a novel method to
calculate it. Such a revision is necessary for contrasting
the ISCO frequencies, as functions of the Kerr spin param-
eter, produced under three different formalisms, the TD, MP,
and OKS SSCs, analyzed numerically in Sec. III. The
technical details concerning the power series expansion
method or the analytical algorithm constructed for finding
circular equatorial orbits are kept at a minimal extent, since
the respective discussions in paper I were presented in a
rather general form, valid for the Kerr spacetime aswell. As a
result, Sec. IV includes the comparisons of the orbital
frequencies for generic circular equatorial orbits, whereas
the appropriate shifts between the different SSCs are applied
and discussed in Sec. V. Finally, Sec. VI summarizes the
primary findings of this work.

A. Units and notation

The symbolism of paper I has been followed throughout
the pages of this study, where the central Kerr black hole’s
mass is denoted byM and the conserved notion of mass on
each case (μ under TD and OKS SSCs or m for the MP
SSC) is identified with the rest mass of the inspiralling
body, while M ≫ μ and M ≫ m is satisfied, respectively.
For future reference, let us also underline that the Kerr spin
parameter is normalized with respect to the central black
hole’s mass, similar to the circular equatorial orbit radius,
i.e., â ≔ a

M and r̂ ≔ r
M. As for the remaining physical

quantities involved in the present work, we use the common
conventions, introduced in Refs. [14,22,23], under which
the dimensionless orbital frequency and the test body’s spin
are given by Ω̂ ≔ MΩ as well as σ ≔ S

μM (TD and OKS

SSCs) or σ ≔ S
mM (MP SSC), correspondingly. In Sec. V,

though, an alternative notation has been chosen, with σ̃
representing the dimensionless spin of the extended test
body under the TD SSC. In any case apropos of EMRIs,
jσj ≪ 1 appears to be a quite reasonable conception. Last
but not least, all calculations have been made in geometric
units, in which the speed of light and the gravitational
constant are set to c ¼ G ¼ 1. Moreover, the Riemann
tensor is defined as Rμ

νκλ ¼ Γμ
καΓα

λν− ∂λΓ
μ
κν−Γμ

λαΓα
κνþ ∂κΓ

μ
λν,

while the Christoffel symbols are computed from the
metric with signature ð−;þ;þ;þÞ, expressed in terms
of the standard Boyer-Lindquist coordinates ft; r; θ;ϕg.
Einstein’s summation convention has been followed, with
all indices running from 0 to 3. The Levi-Civita tensor is
given by ϵμνρσ ¼ ffiffiffiffiffiffi−gp

ϵ̃μνρσ, with the Levi-Civita symbol
ϵ̃trθϕ ¼ 1, and g is the determinant of the background
metric.

II. INNERMOST STABLE CIRCULAR ORBITS

The innermost stable circular orbit constitutes a stability
limit for circular equatorial motion of a particle around a
black hole. Namely, orbits with r > rISCO are stable, while
the ones with r < rISCO are unstable. The techniques
implemented to determine the radius of this particular orbit
for geodesic motion in a Kerr spacetime span from the
important analytical contribution of Bardeen, Press, and
Teukolsky [24] to more recent endeavors like Ref. [25]. In
the case of a spinning body, the first works dealing with the
issue can be tracked back to Refs. [26,27]. Since then,
many papers have dealt with the ISCO issue either numeri-
cally [22,28] or analytically [29]. In particular, in the latter
work, a spinning body’s ISCO radius has been evaluated in
a Taylor expansion form for the general Kerr background,
with emphasis given on the Schwarzschild and extreme
Kerr examples.
The present section provides an alternative insight to the

problem, by using a post-Newtonian analogy, where the
ISCO of an equal mass spinning binary is defined in terms
of the minimum Bondi binding energy circular orbit (see
for instance, [30]). Thus, the derivation of the ISCO radius
follows from the demand that dE

dr ¼ 0, or, equivalently,
dJz
dr ¼ 0, for the energy and the z component of the total
angular momentum of circular equatorial orbits around a
Kerr black hole. This can be seen in Figs. 1 and 2 for the
TD, MP, and OKS SSCs.
Although the proposed procedure lowers the differ-

entiation rank—when compared to the effective potential
method—its implementation entails a series of major
technical setbacks, particularly under the OKS SSC.
Consequently, along the following lines we will give

FIG. 1. The plot illustrates the dimensionless energy of an
extended spinning test body moving in circular equatorial orbits
of different radii, for σ ¼ −0.9 and â ¼ −0.9, under the TD, MP,
and OKS SSCs. The minimum of these functions corresponds to
the ISCO radius, which is in agreement with the values and the
methods provided in Ref. [31]. Note also that the curves
associated with the TD as well as MP SSCs are nearly indis-
tinguishable, for the whole range of dimensionless radii.
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(a) a subtle description of the analytical algorithm con-
structed to determine the ISCO radius, in the case of the
Kerr geometry, for each SSC separately and (b) numerical
results for the TD and MP SSCs.

A. Tulczyjew-Dixon SSC

To find the ISCO radius under the TD SSC, one replaces
the reference four-vector Vν ≔ pν=μ in Eqs. (7) and (8), for
the spinning body’s energy and z component of its total
angular momentum, respectively, a process that yields

E ¼ ðaMS − μr3Þpt þMSpϕ

μr3
; ð9Þ

Jz ¼
SðMa2 − r3Þpt þ ðμr3 þ aMSÞpϕ

μr3
: ð10Þ

In addition, the time and azimuthal covariant components
of the four-momentum are substituted by its contravariant
counterparts, i.e., pμ ¼ gμνpν, that are given by Eqs. (22)
and (23) in paper I, with the orbital frequency Ω� expres-
sed in terms of the orbital radius, through Eq. (21) in the
above-mentioned paper as well. We wish to underline at this
point that theþ sign corresponds to corotation,whereas the−
sign is related to counterrotation, with respect to the total
angular momentum Jz as in paper I. Consequently, the
desirable result arises, which is that the energy and the total
angular momentum along the z axis have transformed into
functions of r. The procedure discussed above alludes that
the issue of finding the ISCO radius has been addressed
for the TD SSC, since it allows the computation of the
minima of the functions Eðr; a; SÞ and Jzðr; a; SÞ. The exact

expressions of theses functions can be found in Refs. [11,32]
and in the Supplemental Material Mathematica notebook
NotebookTDSSC [33] of the present article. As an example
of the novel technique, we provide the ISCO radius for
different values of the dimensionless spin andKerr parameter
in Table I. These values are in agreement with the results
found in other works; see, e.g., [22,23,31].

B. Mathisson-Pirani SSC

Under the imposition of the MP condition, the observer
comoves in a reference frame, which coincides with the
rest frame of the extended spinning body. Thus, the
reference four-vector corresponds to the test body’s four-
velocity, or, in other words, Vν ≔ uν, and Eqs. (7) and (8)
take the form

E ¼ MSðuϕ þ autÞ − r3pt

r3
; ð11Þ

Jz ¼
S½ðMa2 − r3Þut þMauϕ� þ r3pϕ

r3
: ð12Þ

Similarly to the TD SSC, pt as well as pϕ have to be
expressed with the aid of the metric selected to characterize
spacetime, pμ ¼ gμνpν, while an analogous association,
uμ ¼ gμνuν, is also taken into consideration. These con-
straints combined with the definition equation of the orbital
frequency, Ω ¼ uϕ=ut, and relations (8), (25), and (26) in
paper I as well, provide the test body’s energy together
with the z component of its total angular momentum as
functions of r and Ω. For the last step of the derivation, the
orbital frequency is substituted, by solving Eq. (27) in
paper I, for the case of the Kerr background. An extensive
discussion regarding the physically accepted solutions is
presented in Ref. [34] for the Schwarzschild black hole
limit, the arguments of which can be generalized to the
Kerr black hole background as well. Finally, from the
proposed analysis, one acquires the expressions Eðr; a; SÞ

FIG. 2. The panel depicts the z component of the total angular
momentum in appropriate units (Ĵz ¼ Jz

μM or Ĵz ¼ Jz
mM based on the

SSC chosen to close the MPD equations; see, for instance,
[14,22,23]) of a spinning body, as computed under the TD, MP,
and OKS conditions, versus its distance from a Kerr black hole’s
center, for σ ¼ −0.9 and â ¼ −0.9. Once again, the ISCO radius
is detected at the minima of the three curves, whereas the TD and
MP prescriptions appear to be very similar.

TABLE I. The location of the last stable orbit r̂ISCO for a
spinning body rotating around a Kerr black hole, described by the
TD SSC, presented with four-digit accuracy. These values were
acquired within theMathematica environment by determining the
minima of the Eðr; a; SÞ function. More technical details are
provided in a Mathematica notebook as Supplemental Material
[33] of the present article called NotebookTDSSC.

â

σ −0.9 0.0 þ0.9

−0.9 10.0629 7.2135 3.1472
−0.5 9.5171 6.7294 2.8411
−0.1 8.8903 6.1594 2.4294
þ0.1 8.5365 5.8325 2.2155
þ0.5 7.7104 5.0633 1.8726
þ0.9 6.6062 4.0834 1.6632
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and Jzðr; a; SÞ,3 with the ISCO radius determined by the
minima of each function. By implementing this method,
we were able to derive the ISCO radius for a spinning test
body moving in Kerr spacetime as can be seen from the
numerical examples in Table II, which are in complete
accordance with the results presented in Refs. [22,23].

C. Ohashi-Kyrian-Semerák SSC

In the OKS framework, we use the standard notation for
the reference four-vector Vν, associated to the observer of
the spinning test body. Under this assumption, Eqs. (7) and
(8) for the energy and the total angular momentum along
the z direction become

E ¼ MSðVϕ þ aVtÞ −mr3ut
r3

; ð13Þ

Jz ¼
S½ðMa2 − r3ÞVt þMaVϕ� þmr3uϕ

r3
: ð14Þ

In paper I, we presented a novel analytical technique for
finding the orbital frequency of a spinning test body,
moving in circular equatorial orbits around a central,
massive Schwarzschild black hole, under the OKS SSC.
In this work, we generalize to the case of a Kerr black hole.
As a result, the combination of the orbital frequency

definition relation Ω ¼ uϕ=ut with Eqs. (15) and (16) in
paper I reads

Mð1 − aΩÞðVt − aVϕÞ ¼ r3ΩVϕ; ð15Þ
along with the equation

mr2ut½Mð1 − aΩÞ2 − r3Ω2� ¼ −3MSað1 − aΩÞðVt − aVϕÞ þMSr2½2Vϕð1 − aΩÞ þ ΩðVt − aVϕÞ�: ð16Þ
The emergence of the ðVt − aVϕÞ terms in Eqs. (15) and (16) is crucial for the derivation of the polynomial equation
satisfied by the extended, spinning test body’s orbital frequency. This is achieved by taking advantage of the normalization
condition of the reference four-vector Vν, i.e., VνVν ¼ −1, apart from relations (15) and (16), which gives

Ω6fm2r13 − 2Mm2r12 − 4Mm2a2r10 þM2r9ð3m2a2 þ S2Þ þ a2M2r7ð5m2a2 þ 7S2Þ þ 6a2M3S2r6 þ 15a4M2S2r5

− 2M3a4r4ðm2a2 − 14S2Þ − a4M2r3½M2ðm2a2 − 12S2Þ− 9a2S2� þ 30M3a6S2r2 þ 28a6M4S2rþ 8a6M5S2g
þ 2MaΩ5f3m2r10 − 3Mm2r9 −Mr7ð8m2a2 þ 3S2Þ− 6M2S2r6 − 12Ma2S2r5 þ 5a2M2r4ðm2a2 − 8S2Þ
þ 3Ma2r3½M2ðm2a2 − 8S2Þ− 3a2S2�− 54a4M2S2r2 − 68a4M3S2r− 24a4M4S2g þMΩ4½−2m2r10 þ 3Mm2r9

þMr7ð18m2a2 − S2Þ þ 6M2S2r6 þ 3Ma2S2r5 − 4a2M2r4ð5m2a2 − 18S2Þ− 3a2M3r3ð5m2a2 − 24S2Þ
þ 132a4M2S2r2 þ 260a4M3S2rþ 120a4M4S2� þ 2aM2Ω3f−4m2r7 þ 3S2r5 þ 2Mr4ð5m2a2 − 4S2Þ
þ r3½2M2ð5m2a2 − 12S2Þ þ 9a2S2�− 24Ma2S2r2 − 120a2M2S2r− 80a2M3S2g
þM2Ω2fm2r7 − 2Mr4ð5m2a2 þ 2S2Þ− 3r3½M2ð5m2a2 − 4S2Þ þ 3a2S2�− 18Ma2S2r2 þ 100a2M2S2rþ 120a2M3S2g
þ 2aM3Ωðm2r4 þ 3Mm2r3 þ 6S2r2 − 4MS2r− 24M2S2Þ−M4ðm2r3 þ 4S2r− 8MS2Þ ¼ 0: ð17Þ

Just for a brief cross-check note that Eq. (17) is identical
to the corresponding polynomial included in paper I, when
a ¼ 0. Contrary to the Schwarzschild black hole limit, the

presence of the Kerr parameter in the general case renders
the sextic equation technically unsolvable. The latter
contrast is well understood, if we notice that for the
Schwarzschild background spacetime the odd coefficients
vanish, and Eq. (17) reduces to a cubic polynomial equation
with respect to Ω2. Thereby, the lack of a Ωðr; a; SÞ
function suggests that the discussed algorithm of Sec. II

TABLE II. The table illustrates the location of the last stable
orbit r̂ISCO for a spinning body rotating around a Kerr black hole,
described by the MP SSC, given with four-digit accuracy. The ×
symbol denotes the failure of the algorithm for large spin values
and â > 0. The same pattern is also observed in the effective
potential method; see, for instance, Table I in Ref. [23]. We
employ the FindRoot routine of Mathematica in order to locate
the last stable orbits, by limiting the search region to the
corresponding values of the TD SSC in Table I. A more thorough
analysis is also included in a Mathematica notebook called
NotebookMPSSC as Supplemental Material [33].

â

σ −0.9 0.0 þ0.9

−0.9 10.0617 7.2084 ×
−0.5 9.5170 6.7290 2.8147
−0.1 8.8903 6.1594 2.4294
þ0.1 8.5365 5.8325 2.2154
þ0.5 7.7089 5.0575 1.8412
þ0.9 6.5704 3.8774 ×

3The lengthy expressions of Eðr; a; SÞ and Jzðr; a; SÞ can be
found in the Supplemental Material Mathematica notebook
NotebookMPSSC [33].
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for finding ISCOs is not applicable under the OKS SSC.
Thus, the effective potential method introduced in
Refs. [22,23] is a necessity rather than a choice for this
specific SSC, unless one is able to solve a generic sextic
polynomial equation.

III. ISCO COMPARISONS

The notion of ISCO is important for the study of compact
object mechanics, since it divides the equatorial orbits
with respect to their stability. Noticeably, ISCO apparently
marks the maximum regime of convergence for spinning
test bodies’ orbital frequencies, among different SSCs,
according to our findings in paper I. The latter fact origi-

nates from the dynamically invariant nature of the last
stable orbit, which is described in depth in our previous
work. As a result, we prefer to start the comparisons from
the ISCO frequencies, based on the analysis of Sec. III
in paper I. With that being said, the discussion of Sec. II
indicates that the numerical manipulation of the problem is
unavoidable. Regarding the power series expansion method,
we recall the orbital frequency form Ω̂ ¼ Ω̂nσ

n þOðσ5Þ,
with n varying from 0 to 4.
The expansion coefficients Ω̂n for each SSC are com-

puted by substitution in Eqs. (21) and (27) in paper I as well
as Eq. (17) of the present work. Particularly, for the ISCO
orbital frequency investigated here, we employ the effective
potential method, introduced in Refs. [22,35], in order to
evaluate numerically the location of the last stable orbit, in
terms of a power series expansion. As a consequence, the

FIG. 3. The top panel represents the alteration of the Oðσ3Þ
term for the ISCO orbital frequency of a spinning test body, due
to the presence of the Kerr parameter (in appropriate units),
computed under the three examined SSCs, respectively. Fur-
thermore, the bottom panel illustrates the absolute value of the
relative difference of the Ω̂3;ISCO measured in the OKS reference
frame, compared to the corresponding term of the TD SSC, on the
logarithmic scale. The comparison between the MP and the TD
SSC has been omitted, since the relative discrepancies appear at
higher order.

FIG. 4. The top panel depicts the Oðσ4Þ term of the extended
test body’s orbital frequency at the ISCO radius versus the
dimensionless Kerr parameter â, under the TD, MP, and OKS
formalisms correspondingly. In addition, the bottom panel
demonstrates the absolute value of the relative difference of
the Ω̂4;ISCO, determined in the MP and OKS reference frames,
contrasted to the TD SSC, on the logarithmic scale.
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power series of the ISCO orbital frequency is derived from
the power series of the circular equatorial orbit frequency,
when the replacement r̂ ¼ r̂ISCO takes place. The results are
summarized in Figs. 3 and 4, where we recover the same
trend that governed the Schwarzschild case as well [14];
that is, the TD and MP SSCs are identical up to Oðσ3Þ
terms, while the convergence of the OKS SSC is weaker
and limited to quadratic spin terms. In an effort to argue
quantitatively, we established the relative differences
ΔΩ̂3;ISCO and ΔΩ̂4;ISCO given by the relations:

ΔΩ̂3;ISCO ¼ Ω̂3;OKS;ISCO − Ω̂3;TD;ISCO

Ω̂3;TD;ISCO

; ð18Þ

ΔΩ̂4;ISCO ¼ Ω̂4;SSC;ISCO − Ω̂4;TD;ISCO

Ω̂4;TD;ISCO

: ð19Þ

We use logarithmic scale for the graphs, since the relative
discrepancies of the OKS SSC increase for positive values
of the Kerr parameter. It is also worth noticing that the cusp
appearing in both lower panels in Figs. 3 and 4 just
corresponds to an alteration of sign of the relative differ-
ence and, therefore, is not related to any singularity. Let us
now focus our interest on the frequency of arbitrary circular
equatorial orbits (CEOs).

IV. CEO COMPARISONS

In the present section, we implement the power series
expansion method, introduced in paper I, in order to
determine the orbital frequency of an extended test body,
moving in circular equatorial orbits around a Kerr black
hole, under the TD, MP, and OKS SSCs, respectively.
Namely, we wish to test if the fundamental findings of
paper I are affected by the change of type of the background
spacetime. The basic mathematical tools employed for the
comparison can be found in paper I (given in a generalized
SAR version), with a quick review also included in Sec. III.
For the sake of completeness, we note that the solution of
the system of Eqs. (21) and (27) in paper I and Eq. (17)
of the current work yields a pair Ω̂�ðr̂; âÞ, with the upper
sign corresponding to prograde orbits, while the lower sign
is related to retrograde orbits. The results are listed in
Table III.
Table III provides a first indication concerning the linear

agreement of all examined SSCs, without the application of
any centroid corrections, since all Ω̂1� terms are identical.
The lengthy expressions for the higher-order contributions
of the expansion are included in the Appendix, where we
can verify that the TD andMP SSCs have a stronger level of
convergence, being compatible up to Oðσ2Þ terms. For an
assessment of the produced results, note that when â
vanishes the columns of Table I in paper I are recovered,
while the Ω̂� of Table III are also valid in the geodesic
limit. We would like to mention at this point that a similar

analysis is given in Ref. [36], where the authors derive
quadratic in spin expansions of the orbital frequency of a
test body moving in circular equatorial orbits around a Kerr
black hole, under the TD and MP SSCs. Although our
findings are in accordance with Eq. (34) in Ref. [36], the
authors state that the Ω̂2� for the TD and MP SSCs are
different. In fact, this is inaccurate, since Eq. (40) in
Ref. [36] can be further simplified in order to match with
our proposed result.

V. CENTROID CORRECTIONS

The discussion in Secs. II and III designates that the
maximum convergence of the test body’s orbital frequen-
cies under the examined SSCs is attained at ISCO. For that
reason, in the present section, we improve the agreement of
the expansions in Table III by shifting properly from the
MP or OKS reference frames to the TD frame. This choice
has been made in order to avoid undesirable consequences
correlated with the MP and OKS SSCs, like the notorious
helical motion of the MP SSC (for further explanations, see
paper I). The mathematical idea behind the centroid shift
can be found in Ref. [21] and has been employed in paper I
for the Schwarzschild case. In brief, the spin tensor is
transformed through the equation

S̃μν ¼ Sμν þ pμδzν − pνδzμ; ð20Þ
when the centroid’s worldline is shifted toward z̃ν ¼ zν þ
δzν with

δzν ¼ p̃μSμν

μ̃2
; ð21Þ

and μ̃2 ¼ −g̃κσpκpσ defined as the dynamical rest mass. We
remind at this point that the tilde symbol denotes the
quantities measured in the TD reference frame, whereas
the rest quantities are computed within the MP or OKS
frameworks, respectively. Following the main structure of
paper I, we consider the option of radial shifts of the
centroid, justified by the analysis which can be found in
Appendix B of the aforementioned work. Namely, this

TABLE III. The power series expansion coefficients for the
frequencies Ω̂� of circular equatorial orbits around a central Kerr
black hole, for the TD, MP, and OKS SSCs. The lengthy
expressions of Ω̂2; Ω̂3; Ω̂4 are given in the Appendix.

Ω̂n TD SSC MP SSC OKS SSC

Oðσ0Þ 1

â�
ffiffiffi
r̂3

p 1

â�
ffiffiffi
r̂3

p 1

â�
ffiffiffi
r̂3

p

Oðσ1Þ 3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

Oðσ2Þ Ω̂2;TDðr̂; âÞ Ω̂2;MPðr̂; âÞ Ω̂2;OKSðr̂; âÞ
Oðσ3Þ Ω̂3;TDðr̂; âÞ Ω̂3;MPðr̂; âÞ Ω̂3;OKSðr̂; âÞ
Oðσ4Þ Ω̂4;TDðr̂; âÞ Ω̂4;MPðr̂; âÞ Ω̂4;OKSðr̂; âÞ
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analysis showed that other center of mass shifts either lead
to unphysical effects or are not practical for calculations.

A. Radial linear corrections

The introduction of the correction in Eq. (21) can dras-
tically improve the power series convergence, summarized
in Table III. This is achieved by considering a radial shift of
the form

r̃ ¼ rþ δr; ð22Þ

with δr described by Eq. (21). In our first approximation,
we assume that the spin measure of the test body is
preserved under the alteration of SSC, i.e., σ̃ ¼ σ. The
expansion of Eq. (21) in terms of the shift δr, for the
generic Kerr case, leads to

δr ¼ ptStr þ pϕSϕr

μ2
þ δr
μ2ðgttgϕϕ − gtϕ2Þ

�
½gtt;rðgϕϕpt − gtϕpϕÞ þ gtϕ;rðgttpϕ − gtϕptÞ�Str þ ½gtϕ;rðgϕϕpt − gtϕpϕÞ

þ gϕϕ;rðgttpϕ − gtϕptÞ�Sϕr þ
�

ptStr þ pϕSϕr

μ2ðgttgϕϕ − gtϕ2Þ
�
½gtt;rðgϕϕpt − gtϕpϕÞ2 þ 2gtϕ;rðgϕϕpt − gtϕpϕÞðgttpϕ − gtϕptÞ

þ gϕϕ;rðgttpϕ − gtϕptÞ2�
�
þOðδr2Þ: ð23Þ

The fundamental correction of the position of the
centroid arises by neglecting the OðδrÞ term in the rhs
of Eq. (23), for the sake of simplicity. In paper I, we
delineate the algorithmic process followed to derive δr in
terms of a power series expansion, in a form that is valid for
every SAR spacetime and, therefore, can be applied for the
Kerr metric as well (the interested reader can find a more
sophisticated analysis in Sec. IVA in paper I). As a result,
the radial distance in the first column in Table III is adjusted
accordingly based on Eq. (22), for the TD-MP and TD-

OKS pair of SSCs. The results are demonstrated in
Tables IV and V, the lengthy expressions of the higher-
order than Ω̂1 terms of the expansion are given in the
Appendix.
Tables IV and V confirm the pattern shown for the

Schwarzschild background spacetime, which was dis-
cussed in paper I. Namely, the imposition of the centroid’s
shift fixes the discrepancies in the Oðσ3Þ terms of the TD-
MP pair of SSCs and removes the dissimilarity in theOðσ2Þ
terms for the TD-OKS pair of conditions. The inclusion of
the complete expression of δr from Eq. (23) leads to the
quantities Ω̂000

4;TDðr̂; âÞ (TD-MP pair) as well as Ω̂00
3;TDðr̂; âÞ

(TD-OKS pair)4 but does not further improve the degree of
convergence among the examined SSCs.

B. Spin measure corrections

An exhaustive analysis on the behavior of the centroid of
a spinning test body should take into account the firmly
SSC-dependent nature of the spin measure. In other words,
the transition between different SSCs alters the represen-
tative worldline with respect to which the moments are
evaluated, a process that affects the measure of the spin
itself. In the present section, we consider the case σ̃ ≠ σ,
and we produce the corresponding power series expansions
for the Ω̂� orbital frequencies. The latter is achieved by
combining Eqs. (3) and (20) for a spinning test body
moving in circular equatorial orbits around a supermassive
Kerr black hole. Recall that for that kind of orbit the only
nonvanishing components of the spin tensor are Str ¼ −Srt
along with Srϕ ¼ −Sϕr. The described expansion pro-
cedure yields

TABLE IV. The power series expansion coefficients for the
frequencies Ω̂� of circular equatorial orbits around a central Kerr
black hole, for the TD and MP pair of SSCs, when r̃ ≠ r.

Ω̂n TD SSC MP SSC

Oðσ0Þ 1

â�
ffiffiffi
r̂3

p 1

â�
ffiffiffi
r̂3

p

Oðσ1Þ 3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

Oðσ2Þ Ω̂2;MPðr̂; âÞ Ω̂2;MPðr̂; âÞ
Oðσ3Þ Ω̂3;MPðr̂; âÞ Ω̂3;MPðr̂; âÞ
Oðσ4Þ Ω̂0

4;TDðr̂; âÞ Ω̂4;MPðr̂; âÞ

TABLE V. The power series expansion coefficients for the
frequencies Ω̂� of circular equatorial orbits around a central Kerr
black hole, for the TD and OKS pair of SSCs, when r̃ ≠ r.

Ω̂n TD SSC OKS SSC

Oðσ0Þ 1

â�
ffiffiffi
r̂3

p 1

â�
ffiffiffi
r̂3

p

Oðσ1Þ 3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

3ð�â−
ffiffî
r

p Þ
2
ffiffî
r

p ðâ�
ffiffiffi
r̂3

p
Þ2

Oðσ2Þ Ω̂2;OKSðr̂; âÞ Ω̂2;OKSðr̂; âÞ
Oðσ3Þ Ω̂0

3;TDðr̂; âÞ Ω̂3;OKSðr̂; âÞ
Oðσ4Þ Ω̂00

4;TDðr̂; âÞ Ω̂4;OKSðr̂; âÞ
4The functions Ω̂000

4;TDðr̂; âÞ and Ω̂00
3;TDðr̂; âÞ are presented in the

Appendix.

IASON TIMOGIANNIS et al. PHYS. REV. D 106, 044039 (2022)

044039-8



S̃2 ¼ S2 þ δr

�
grr½gϕϕ;rðSrϕÞ2 − 2gtϕ;rSrϕStr

þ gtt;rðStrÞ2 þ 2ðptStr − pϕSrϕÞ� þ
S2grr;r
grr

�

þOðδr2Þ: ð24Þ

For the next step of the derivation, we shall make
all quantities appear in Eq. (24) dimensionless, which
is a subject that is discussed in the following para-
graphs, for the pair of TD-MP and TD-OKS SSCs,
respectively.

1. TD-MP relation

In order to acquire a σ̃ ¼ fðσÞ relation for the shift from
the MP to the TD centroid, we should divide both sides of
Eq. (24) by μ̃2M2. We also notice that the linear approxi-
mation in δr of the spinning body’s inverse square of the
dynamical rest mass reads

1

μ̃2
¼ 1

μ2

�
1þ δr

μ2ðgttgϕϕ − gtϕ2Þ2
½gtt;rðgϕϕpt − gtϕpϕÞ2

þ 2gtϕ;rðgϕϕpt − gtϕpϕÞðgttpϕ − gtϕptÞ

þ gϕϕ;rðgttpϕ − gtϕptÞ2�
�
þOðδr2Þ: ð25Þ

Since σ̃ and σ are not identically defined, i.e., σ ¼ S
mM,

while σ̃ ¼ S̃
μ̃M, one needs to correlate the dynamical rest

mass μ with the kinematical rest mass m, both measured
in the MP reference frame. Such a link is provided in
Ref. [34]; more precisely,

μ2 ¼ m2 þ SακSκβpβpα

S2
¼ m2 −

grrðptStr − pϕSrϕÞ2
S2

;

which coincides with the expression derived in Eq. (44) in
Ref. [14] for the Schwarzschild background spacetime.
Consequently, the desirable relation between σ̃ and σ in
terms of a power series expansion takes the form

σ̃ − σ ¼ 3ðâ∓ ffiffiffî
r

p Þ½4â4 ∓ 16â3
ffiffiffî
r

p þ 16â2r̂� 4â3
ffiffiffiffiffi
r̂3

p
− 4â2r̂2 ∓ 2âðâ2 þ 4Þ

ffiffiffiffiffi
r̂5

p
�σ4

r̂8½2â� ffiffiffî
r

p ðr̂ − 3Þ�2

þ 3ðâ∓ ffiffiffî
r

p Þ½3â2r̂3 � 8â
ffiffiffiffiffi
r̂7

p
−ðâ2 þ 6Þr̂4 ∓ 2â

ffiffiffiffiffi
r̂9

p
þ5r̂5 − r̂6�σ4

r̂8½2â� ffiffiffî
r

p ðr̂ − 3Þ�2 þOðσ5Þ; ð26Þ

which reduces to Eq. (47) in paper I in the Schwarzschild black hole limit. Equation (26) implies that the orbital frequency
expansion coefficients that satisfy the inequality Ω̂n� ≤ Oðσ3Þ are not influenced by the alteration of the spin measure. By
substituting the function σ̃ ¼ fðσÞ to the Ω̂000

4;TDðr̂; âÞ, we extract the quantity Ω̂⁗
4;TDðr̂; âÞ (included in the Appendix), which

remains indifferent to the Ω̂4;MPðr̂; âÞ term. The latter fact provides a concrete indication that the convergence of the
frequency power series cannot be further improved.

2. TD-OKS relation

The constancy of the dynamical rest mass under the OKS SSC simplifies drastically the process of deriving a σ̃ ¼ hðσÞ
correlation, which governs the transition from the OKS frame of reference to the TD frame. The division of both sides of
Eq. (24) by μ̃2M2, combined with Eq. (25), implies that

σ̃2 − σ2 ¼ δr

�
grr½gϕϕ;rðσrϕÞ2 þ 2gtϕ;rσrϕσtr þ gtt;rðσtrÞ2 þ

2

μM
ðptσ

tr − pϕσ
rϕÞ�

þ σ2
�
grr;r
grr

þ 1

μ2ðgttgϕϕ − gtϕ2Þ2
½gtt;rðgϕϕpt − gtϕpϕÞ2 þ 2gtϕ;rðgϕϕpt − gtϕpϕÞ

× ðgttpϕ − gtϕptÞ þ gϕϕ;rðgttpϕ − gtϕptÞ2�
��

þOðδr2Þ; ð27Þ

where we introduced the normalized (but not necessarily dimensionless) spin tensor σκν ¼ Sκν
μM, for the sake of brevity. The

complicated expression in Eq. (27) takes a more compact form, when one is limited in the case of circular equatorial orbits;
more specifically,
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σ̃ − σ ¼ 3ðâ∓ ffiffiffî
r

p Þ½�4â4 − 16â3
ffiffiffî
r

p � 16â2r̂þ 4â3
ffiffiffiffiffi
r̂3

p ∓ 4â2r̂2 þ âðâ2 − 8Þ
ffiffiffiffiffi
r̂5

p
�σ3ffiffiffiffiffiffi

r̂13
p

½2â� ffiffiffî
r

p ðr̂ − 3Þ�2

þ 3ðâ∓ ffiffiffî
r

p Þð2â
ffiffiffiffiffi
r̂7

p ∓â2r̂4 þ â
ffiffiffiffiffi
r̂9

p
�2r̂5 ∓ r̂6Þσ3ffiffiffiffiffiffi

r̂13
p

½2â� ffiffiffî
r

p ðr̂ − 3Þ�2
þOðσ4Þ: ð28Þ

In correspondence with the former set of SSCs, we exploit
the σ̃ ¼ hðσÞ relation in order to produce the Ω̂000

3;TDðr̂; âÞ
function from the Ω̂00

3;TDðr̂; âÞ function (look in the
Appendix for the full expressions). It is also clear from
the form of Eq. (28) that it applies modifications only to the
cubic or higher contributions, but the gap between the TD
and OKS SSCs remains unbridgeable.

VI. CONCLUSIONS

In the present article, we continue the investigation of the
equivalence of the Mathisson-Papapetrou-Dixon equations
under different spin supplementary conditions, a project
that started in Ref. [14]. More specifically, we examine the
orbital frequencies produced by an extended spinning body
moving in circular orbits around the equatorial plane of a
supermassive Kerr black hole, under the Tulczyjew-Dixon,
the Mathisson-Pirani, and the Ohashi-Kyrian-Semerák spin
conditions. For this reason, we exploit the general frame-
work, which has been founded in Ref. [14] for an arbitrary,
stationary, axisymmetric spacetime with reflection sym-
metry. The results of the frequencies comparison summa-
rized in Table III indicate that the aforementioned spin
supplementary conditions converge up to linear order
in spin, while the Tulczyjew-Dixon and the Mathisson-
Pirani SSCs appear to have a stronger level of convergence.
It should be stressed that throughout our work only the
nonhelical Mathisson-Pirani centroid was studied and
the obtained results hold only for this centroid choice.
The introduction of the centroid position corrections can
adequately improve the agreement by one order of spin, as
is clear from Tables IVand V. Hence, the central conclusion
of Ref. [14] for the Schwarzschild spacetime is also valid
for the more general Kerr background; that is, the examined
spin supplementary conditions are in accordance up to
quadratic spin terms.

The ISCO frequencies play a significant role in under-
standing the physical reason behind the observed discrep-
ancies among the Tulczyjew-Dixon, the Mathisson-Pirani,
and the Ohashi-Kyrian-Semerák spin supplementary con-
ditions. As a stability limit, the innermost stable circular
orbit marks the maximum level of convergence among the
orbital frequency expansions within the pole-dipole regime.
The latter claim becomes more apparent in Figs. 3 and 4,
where we confirm that the Tulczyjew-Dixon compared to
the Mathisson-Pirani spin supplementary condition agree
up to cubic spin terms, whereas the Tulczyjew-Dixon and
the Ohashi-Kyrian-Semerák conditions diverge more rap-
idly. In the process of performing the frequency compari-
son between the SSCs at ISCO, we were able to formulate a
novel method for finding the radial position of these
marginally stable circular orbits. Even if there should be,
in principle, a way to provide analytical expressions in the
case of the TD and MP SSCs, we restrict our confirmation
on numerical results. The reason behind this decision is
extremely long and complicated analytical formulas.
Actually, in the case of the OKS SSC, the problem of
determining the ISCO using this novel method is more
fundamental, since one has to obtain analytically the roots
of a sextic polynomial equation.
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APPENDIX: EXPANSION COEFFICIENTS

The present section of the article contains large expres-
sions related to the orbital frequency power series expan-
sions, demonstrated in Secs. IV and V.

Ω̂2;TDðr̂; âÞ ¼
3ðâ∓ ffiffiffî

r
p Þð∓9â2 − â

ffiffiffî
r

p
−3â

ffiffiffiffiffi
r̂3

p ∓7r̂2Þ
8

ffiffiffiffiffi
r̂5

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ3

;

Ω̂2;MPðr̂; âÞ ¼
3ðâ∓ ffiffiffî

r
p Þð∓9â2 − â

ffiffiffî
r

p
−3â

ffiffiffiffiffi
r̂3

p ∓7r̂2Þ
8

ffiffiffiffiffi
r̂5

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ3

;

Ω̂2;OKSðr̂; âÞ ¼
3ðâ∓ ffiffiffî

r
p Þð∓6â3 þ 25â2

ffiffiffî
r

p ∓ 21â r̂−3â2
ffiffiffiffiffi
r̂3

p
� 6âr̂2 − 3

ffiffiffiffiffi
r̂5

p ∓ 3âr̂3 þ 5
ffiffiffiffiffi
r̂7

p
Þ

8
ffiffiffiffiffi
r̂5

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ3½2â� ffiffiffî

r
p ðr̂ − 3Þ�

;
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Ω̂3;TDðr̂;âÞ¼
3ðâ∓ ffiffiffî

r
p Þð�45â4−3â3

ffiffiffî
r

p ∓16â2r̂þ36â3
ffiffiffiffiffi
r̂3

p
�42â2r̂2−26â

ffiffiffiffiffi
r̂5

p
�9â2r̂3þ9â

ffiffiffiffiffi
r̂7

p
�8r̂4Þ

16
ffiffiffiffiffi
r̂9

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ4

;

Ω̂3;MPðr̂;âÞ¼
3ðâ∓ ffiffiffî

r
p Þ½�90â5−117â4

ffiffiffî
r

p ∓23â3r̂þ117â4
ffiffiffiffiffi
r̂3

p
�21â3r̂2−170â2

ffiffiffiffiffi
r̂5

p
�18âr̂3ð3â2−1Þ�

16
ffiffiffiffiffi
r̂9

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ4½2â� ffiffiffî

r
p ðr̂−3Þ�

þ3ðâ∓ ffiffiffî
r

p Þ½57â2
ffiffiffiffiffi
r̂7

p
�11âr̂4þ9ðâ2−8Þ

ffiffiffiffiffi
r̂9

p
�9âr̂5þ32

ffiffiffiffiffiffi
r̂11

p
�

16
ffiffiffiffiffi
r̂9

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ4½2â� ffiffiffî

r
p ðr̂−3Þ�

;

Ω̂3;OKSðr̂;âÞ¼
3ðâ∓ ffiffiffî

r
p Þ½−96â5�437â4

ffiffiffî
r

p
−3â3r̂ð209þ12â2Þ∓6â2ð−48þâ2Þ

ffiffiffiffiffi
r̂3

p
þ318â3r̂2∓3â2ð158þ9â2Þ

ffiffiffiffiffi
r̂5

p
�

16r̂4ðâ�
ffiffiffiffiffi
r̂3

p
Þ4½2â� ffiffiffî

r
p ðr̂−3Þ�2

þ3ðâ∓ ffiffiffî
r

p Þ½−99âr̂3ð−2þâ2Þ�413â2
ffiffiffiffiffi
r̂7

p
−363âr̂4�12ð6−7â2Þ

ffiffiffiffiffi
r̂9

p
þ168âr̂5�

16r̂4ðâ�
ffiffiffiffiffi
r̂3

p
Þ4½2â� ffiffiffî

r
p ðr̂−3Þ�2

þ3ðâ∓ ffiffiffî
r

p Þ½�3ð−28þ3â2Þ
ffiffiffiffiffiffi
r̂11

p
−39âr̂6�32

ffiffiffiffiffiffi
r̂13

p
�

16r̂4ðâ�
ffiffiffiffiffi
r̂3

p
Þ4½2â� ffiffiffî

r
p ðr̂−3Þ�2

;

Ω̂4;TDðr̂;âÞ¼
3ðâ∓ ffiffiffî

r
p Þ½∓945â6þ207â5

ffiffiffî
r

p �573â4r̂−â3ð67þ1269â2Þ
ffiffiffiffiffi
r̂3

p ∓909â4r̂2þ1305â3
ffiffiffiffiffi
r̂5

p
�

128
ffiffiffiffiffiffi
r̂13

p
ðâ�

ffiffiffiffiffi
r̂3

p
Þ5

þ3ðâ∓ ffiffiffî
r

p Þ½∓3â2r̂3ð225â2−59Þ−603â3
ffiffiffiffiffi
r̂7

p
�135â2r̂4−3âð−149þ45â2Þ

ffiffiffiffiffi
r̂9
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Þ5½2â� ffiffiffî
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p ∓â4r̂3ð12823þ8721â2Þ�
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r
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Þ5½2â� ffiffiffî
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ffiffiffiffiffiffi
r̂11

p
�9r̂6ð16þâ2Þþ57â
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ðâ�

ffiffiffiffiffi
r̂3

p
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r
p ðr̂−3Þ�3
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Þ5½2â� ffiffiffî
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r
p ðr̂−3Þ�2

:

Ω̂0000
4;TDðr̂;âÞ¼
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ffiffiffiffiffiffi
r̂11

p
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p ∓â2r̂8ð7348þ1215â2Þþ3âð5615þ49â2Þ
ffiffiffiffiffiffi
r̂17

p
�

128
ffiffiffiffiffiffi
r̂17

p
ðâ�
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ffiffiffiffiffi
r̂3

p
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