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In this work, we investigate the quasinormal modes of a thick brane system. Considering the transverse-
traceless tensor perturbation of the brane metric, we obtain the Schrödinger-like equation of the Kaluza-
Klein modes of the tensor perturbation. Then we use the Wentzel-Kramers-Brillouin approximation and the
asymptotic iteration method to solve this Schrödinger-like equation. We also study the numeric evolution of
an initial wave packet against the thick brane. The results show that there is a set of discrete quasinormal
modes in the thick brane model. These quasinormal modes appear as the decaying massive gravitons for a
brane observer. They are characteristic modes of the thick brane and can reflect the structure of the thick
brane.
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I. INTRODUCTION

As the characteristic modes of a dissipative system,
quasinormal modes (QNMs) exist in every aspect of our
world. These QNMs contain the key features that are
characteristics of the physical systems. Studying them
would help us to unravel the mysteries of the physical
systems. In black hole physics, the QNMs are thought to
be able to carry information about black holes and have
attracted much attention [1–7], especially after the detec-
tion of gravitational waves [8]. In other physical systems
such as leaky resonant cavities, QNMs also play an
important role [9]. So we are curious about what role
QNMs might play in the braneworld model.
The braneworld models were originally introduced as a

solution to the hierarchical problem between the weak and
Plank scales. Among them, the warped extra dimension
models proposed by Randall and Sundrum (RS) have
attracted a lot of interest [10,11]. They consist of one
brane (RS-II model) or two branes (RS-I model) embedded
in a five-dimensional anti–de Sitter spacetime. Since the RS
models were proposed, they have been studied in many
realms such as particle physics, cosmology, and black hole
physics. The applicability has gone far beyond its original
scope [12–17]. Combining the RS-II model [11] and the
domain wall model [18,19], the thick brane models were
developed [20–22]. It is a smooth extension of the RS-II
model. The inclusion of brane thickness gives us new
possibilities. Usually, most thick branes are generated by

one or more scalar fields, but they can also be generated by
a vector or spinor field [23–25]. In order to recover the
physics in our four-dimensional world, the zero modes of
various fields should be confined on the brane. In previous
literature, some thick brane models and the localization
of various matter fields on the brane were investigated
[26–42]. Besides these zero modes, there are massive
Kaluza-Klein (KK) modes that might propagate along
extra dimensions. These massive KK modes provide the
possibility of detecting extra dimensions. In addition,
cosmological thick brane solutions were also investigated
[43–45].
Quasinormal modes in higher dimensional theories also

attract the interest of researchers [46–52]. It is expected that
the signatures of extra dimensions can be extracted from
QNMs of black holes on the brane. These signals can be
used to constrain the extra dimensional models [53–59].
But these researches are mainly focused on the QNMs of
black holes on the brane. Does a brane have a characteristic
sound? That is, does it have a set of discrete QNMs as
characteristic modes of a braneworld model? For the RS-II
model, the answer is yes [60,61]. Seahra studied the
scattering of KK gravitons in the RS-II model and found
that the brane possesses a series of discrete QNMs [60,61].
Reference [62] investigated the evolution of massive

modes in the thick brane model and found that the
evolution behavior is similar to QNMs. This arouse our
interest in QNMs in thick brane models. As far as we know,
the QNMs of a thick brane have not been investigated.
As the characteristic modes of a brane, it can reflect the
structure of the thick brane. On the other hand, since the
QNMs dominating the time evolution of some initial
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fluctuations from the physic system’s equilibrium state,
they can be used to verify the stability of the brane [63]. It is
undoubtedly interesting to study the QNMs of a thick
brane. We will use semianalytical and numerical methods
to study QNMs in a thick brane model.
The organization of the rest of this paper is as follows.

In Sec. II, we review a solution of the thick brane and the
linear metric tensor perturbation. Based on this solution,
we solve for the QNMs of this thick brane. In Sec. III, we
compute the quasinormal frequencies of the thick brane by
using semianalytical methods. We also compare them with
the results of numerical evolution. Finally, Sec. IV gives the
conclusions and discussions.

II. BRANEWORLD MODEL IN GENERAL
RELATIVITY

In this section, we will briefly review the thick brane
solution and its gravitational perturbation. Usually, a thick
brane can be generated by a wide variety of matter fields
like scalar fields and vector fields. Here we choose a
canonical scalar field to generate the brane. The action of
this thick brane model is the Einstein-Hilbert action
minimally coupled to a canonical scalar field,

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ25
R −

1

2
gMN

∂Mφ∂Nφ − VðφÞ
�
; ð1Þ

where κ5 is the five-dimensional gravitational constant.
Hereafter, capital latin letters M;N;… ¼ 0; 1; 2; 3; 5 label
the five-dimensional indices, while greek letters μ; ν… ¼
0; 1; 2; 3 and latin letters i; j… ¼ 1; 2; 3 label the four-
dimensional ones and three-dimensional space ones on the
brane, respectively. The dynamical field equations are

RMN −
1

2
RgMN ¼ −gMNκ

2
5

�
1

2
∂
Aφ∂Aφþ VðφÞ

�
þ κ25∂Mφ∂Nφ; ð2Þ

gMN∇M∇Nφ ¼ ∂VðφÞ
∂φ

: ð3Þ

The five-dimensional metric ensuring the four-dimensional
Poincaré symmetry is [22]

ds2 ¼ e2AðyÞημνdxμdxν þ dy2; ð4Þ

where ημν ¼ diagð−1; 1; 1; 1Þ is the four-dimensional
Minkowski metric. Now, the specific dynamical equations
can be written as

6A02 þ 3A00 ¼ −
κ25
2
φ02 − κ25V; ð5Þ

6A02 ¼ κ25
2
φ02 − κ25V; ð6Þ

φ00 þ 4A0φ0 ¼ ∂V
∂φ

; ð7Þ

where a prime denotes the derivative with respect to the
extra dimensional coordinate y. By using the first-order
formalism, the thick brane solution was investigated in
Ref. [21],

AðyÞ ¼ −b ln ðcoshðkyÞÞ; ð8Þ

φðyÞ ¼
ffiffiffiffiffiffi
3b
κ25

s
arcsin ðtanh ðkyÞÞ; ð9Þ

VðφÞ ¼ 3bk2

4κ25

 
1 − 4bþ ð1þ 4bÞ cos

 ffiffiffiffiffiffiffi
4κ25
3b

r
φ

!!
: ð10Þ

Here, b is a dimensionless parameter and k is a parameter
with mass dimension one. If we choose κ5 ¼

ffiffiffi
2

p
, the

above solutions for the scalar field φ and potential V are
the same to Ref. [21] because arcsin ðtanh ðkyÞÞ ¼ 2 arctan
ðtanh ðky=2ÞÞ [64]. Besides, the warp factor (8) differs from
the one in Ref. [21] by a factor 2 in front of coshðkyÞ. It
does not matter, because this factor can be absorbed into a
new four-dimensional coordinate. Next, we consider the
linear transverse-traceless tensor perturbation of the metric.
The perturbed metric is given by

gMN ¼
�
e2AðyÞðημν þ hμνÞ 0

0 1

�
; ð11Þ

where hμν satisfies the transverse-traceless condition,

∂μhμν ¼ 0 ¼ ημνhμν: ð12Þ

Substituting the perturbed metric (11) into the field
equation (2), we obtain the linear equation of the tensor
fluctuation,

ðe−2A□ð4Þhμν þ h00μν þ 4A0h0μνÞ ¼ 0; ð13Þ

where □
ð4Þ ¼ ηαβ∂α∂β. Introducing the following coordi-

nate transformation dz ¼ e−Ady, the metric (4) can be
written as

ds2 ¼ e2AðzÞðημνdxμdxν þ dz2Þ; ð14Þ

and Eq. (13) becomes

½∂2z þ 3ð∂zAÞ∂z þ□
ð4Þ�hμν ¼ 0: ð15Þ

The perturbation hμν can be written as [61]

hμν ¼ e−
3
2
AðzÞΦðt; zÞe−iajxjϵμν; ϵμν ¼ constant: ð16Þ
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Substituting the above decomposition (16) into Eq. (15),
we obtain a one-dimensional wave equation of Φðt; zÞ,

−∂2tΦþ ∂
2
zΦ −UðzÞΦ − a2Φ ¼ 0; ð17Þ

where

UðzÞ ¼ 3

2
∂
2
zAþ 9

4
ð∂zAÞ2 ð18Þ

is the effective potential and a is a constant coming from
the separation of variables. Furthermore, separability
means that the function Φðt; zÞ can be decomposed as

Φðt; zÞ ¼ e−iωtϕðzÞ: ð19Þ

So we can obtain a Schrödinger-like equation of the extra
dimensional part ϕðzÞ,

−∂2zϕðzÞ þ UðzÞϕðzÞ ¼ m2ϕðzÞ; ð20Þ

where m2 ¼ ω2 − a2 is the mass of the KK modes.
Equation (20) supports a bound zero mode ϕ0ðzÞ ∝ e

3
2
AðzÞ

that is localized on the brane for the solution (8) with b > 0,
and a series of massive KK modes. Usually, the massive
KK modes stay on the brane for a finite time and eventually
escape to infinity of the extra dimension. Thus, the thick
brane is a dissipative system for the massive KK modes.
Similar to QNMs in the black hole system, there are also
characteristic modes with complex frequencies in the thick
brane model. These modes can also reflect the properties of
the thick brane model. We will discuss them in the next
section.

III. QUASINORMAL MODES OF THICK BRANE

In this section, we will use some semianalytical methods
to solve the QNMs of the thick brane. As can be seen from
the Schrödinger-like equation (20), it is the effective
potential UðzÞ that determines the QNMs. Substituting
the thick brane solution (8) into the effective potential (18),
we can obtain the specific form of the effective potential.
Note that we only consider b ¼ 1, because the coordinate
transformation relation between y and z is analytical for
this case. The specific forms of the warp factor AðzÞ, the
effective potential UðzÞ, and the zero mode ϕ0ðzÞ are
given by

AðzÞ ¼ −
1

2
lnðk2z2 þ 1Þ; ð21Þ

UðzÞ ¼ 3k2ð5k2z2 − 2Þ
4ðk2z2 þ 1Þ2 ; ð22Þ

ϕ0ðzÞ ¼
1

ð1þ k2z2Þ3=4 : ð23Þ

We plot the effective potential and the zero mode in Fig. 1.
It can be seen that the effective potential is volcanolike
and UðzÞ → 0 when jzj → ∞. This potential is a smooth
extension of the effective potential in the RS-II model. In
the thin brane scenario, the general solution of the massive
KK modes is the Hankel function. So the QNMs can be
analytically obtained by imposing the outgoing boundary
condition to the Hankel function [60]. But there is not
any analytical solution of massive KK modes for this thick
brane. So we use some semianalytical method to obtain
the QNMs of the thick brane. Unlike the case of a black
hole, there is a potential well but not a pure barrier for
our brane case. Therefore, some methods of solving the
QNMs commonly used in black holes, such as the Wentzel-
Kramers-Brillouin (WKB) approximation [65], cannot
solve the QNMs of this thick brane directly. But we notice
that the Schrödinger-like equation (20) can be factorized as
a supersymmetric form,

QQ†ϕðzÞ ¼ m2ϕðzÞ; ð24Þ

where Q and Q† are

Q ¼ ∂z þ
3

2
∂zA; Q† ¼ −∂z þ

3

2
∂zA: ð25Þ

The above Eq. (24) has a corresponding Schrödinger-like
equation with the supersymmetric partner potential,

Q†QeϕðzÞ ¼ ð−∂2z þ UdualðzÞÞeϕðzÞ ¼ m2ϕ̃ðzÞ; ð26Þ

where

UdualðzÞ ¼ −
3

2
∂
2
zAþ 9

4
ð∂zAÞ2 ¼

3k2ðk2z2 þ 2Þ
4ðk2z2 þ 1Þ2 : ð27Þ

(a) (b)

(c)

FIG. 1. The shapes of the effective potential (22), the dual
effective potential (27), and the zero mode (23).
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According to the supersymmetric quantum mechanics,
the Schrödinger-like equations (20) and (26) have the same
spectrum of massive KK modes [66]. So the effective
potential and the supersymmetric partner potential have the
same spectrum of QNMs [67]. Plot of the supersymmetric
partner potential (27) is shown in Fig. 1(b). We can see that
the shape of the dual potential is similar to the effective
potentials in the case of the Schwarzschild black hole, for
which the QNMs can be solved by the asymptotic iteration
method [68–70] and the WKB approximation. Therefore,
we can obtain the quasinormal frequencies of the thick
brane by using the dual potential (27).

A. Solve the QNMs of thick brane by using
the asymptotic iteration method

First, we use the asymptotic iteration method to solve the
QNMs of the thick brane. Then we compare the results with
those obtained by the WKB approximation. At the begin-
ning, we give a brief review on the idea of the asymptotic
iteration method. Consider a second-order homogeneous
linear differential equation for the function yðxÞ,

y00ðxÞ ¼ λ0ðxÞy0ðxÞ þ s0ðxÞyðxÞ; ð28Þ

where λ0ðxÞ ≠ 0 and s0ðxÞ are C∞ functions. Based on the
symmetric structure of the right-hand side of Eq. (28), a
general solution can be solved. Indeed, differentiating
Eq. (28) with respect to x, we find that

y000ðxÞ ¼ λ1ðxÞy0ðxÞ þ s1ðxÞyðxÞ; ð29Þ

where

λ1ðxÞ ¼ λ00 þ s0 þ λ20; ð30Þ

s1ðxÞ ¼ s00 þ s0λ0: ð31Þ

Iteratively, the ðn − 1Þth and nth differentiations of Eq. (28)
give

yðnþ1ÞðxÞ ¼ λn−1ðxÞy0ðxÞ þ sn−1ðxÞyðxÞ; ð32Þ

yðnþ2ÞðxÞ ¼ λnðxÞy0ðxÞ þ snðxÞyðxÞ; ð33Þ

where

λnðxÞ ¼ λ0n−1 þ sn−1 þ λ0λn−1; ð34Þ

snðxÞ ¼ s0n−1 þ s0λn−1: ð35Þ

The asymptotic aspect is introduced as follows for suffi-
ciently large n:

snðxÞ
λnðxÞ

¼ sn−1ðxÞ
λn−1ðxÞ

¼ βðxÞ: ð36Þ

We can obtain the QNMs from the “quantization condition,”

snðxÞλn−1ðxÞ − sn−1ðxÞλnðxÞ ¼ 0: ð37Þ

To be more precise, we adopt the improved version of the
asymptotic iteration method by Cho et al. [70]. The original
asymptotic iteration method has the “weakness” that for each
iteration one must take the derivative of the sðxÞ and λðxÞ
terms of the previous iteration. This might bring difficulties
for numerical calculations. Cho et al. reduced the asymptotic
iteration method into a set of recursion relations that no
longer require derivative operators. This greatly improves the
speed and precision of numerical calculation. In the asymp-
totic iterationmethod, when solving Eq. (37), we should take
a specific point χ. The two functions λn and sn can be
expanded in a Taylor series at the point χ,

λnðxÞ ¼
X∞
i¼0

cinðx − χÞi; ð38Þ

snðxÞ ¼
X∞
i¼0

dinðx − χÞi: ð39Þ

Here, cin and din denote the i-th Taylor coefficients of λn and
sn, respectively. Substituting the above expressions into
Eqs. (34) and (35), we can obtain a set of recursion relations,

cin ¼ ðiþ 1Þciþ1
n−1 þ din−1 þ

Xi
k¼0

ck0c
i−k
n−1; ð40Þ

din ¼ ðiþ 1Þdiþ1
n−1 þ

Xi
k¼0

dk0c
i−k
n−1: ð41Þ

Now the “quantization condition” (37) can be rewritten as

d0nc0n−1 − d0n−1c
0
n ¼ 0: ð42Þ

In this way, the “quantization condition” (37) reduced to a
set of recursion relations which do not require derivative
operators.
The Schrödinger-like equation with the dual potential is

−∂2zϕ̃ðzÞ þ
�
3k2ðk2z2 þ 2Þ
4ðk2z2 þ 1Þ2 −m2

�
ϕ̃ðzÞ ¼ 0: ð43Þ

The boundary conditions are

ϕ̃ðzÞ ∝
�
eimz; z → ∞:

e−imz; z → −∞:
ð44Þ

Obviously, there is no first derivative term in the above
equation, which means λ0 ¼ 0. The asymptotic iteration
method cannot be used directly in this situation. We need to
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transform our coordinates to obtain the equation whose first
derivative term is nonvanishing. On the other hand, trans-
forming the infinity to be finite is necessary. So we perform

the transformation u ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4k2z2þ1

p
−1

2kz . Then, Eq. (43) becomes

ðu2 − 1Þ3ððu4 − 1Þϕ̃00ðuÞ þ 2uðu2 þ 3Þϕ̃0ðuÞÞ
ðu2 þ 1Þ3

þ
�
m2

k2
−
3ðu2 − 1Þ2ð2u4 − 3u2 þ 2Þ

4ðu4 − u2 þ 1Þ2
�
ϕ̃ðuÞ ¼ 0; ð45Þ

where −1 < u < 1. The boundary conditions (44) can be
rewritten as

ϕ̃ðuÞ ∝
(
e−

im=k
2u−2; u → 1.

e
im=k
2uþ2; u → −1.

ð46Þ

Thus, ϕ̃ðuÞ can be written in the form,

ϕ̃ðuÞ ¼ ψðuÞe−im=k
2u−2e

im=k
2uþ2: ð47Þ

Now the boundary condition becomes that the function
ψðuÞ is finite at u → �1. Substituting the expression (47)
into Eq. (45), we have

ψ 00ðuÞ ¼ λ0ðuÞψ 0ðuÞ þ s0ðuÞψðuÞ; ð48Þ

where

λ0ðuÞ ¼ −
2uðu4 þ 2iðu2 þ 1Þ mk þ 2u2 − 3Þ

ðu2 − 1Þ2ðu2 þ 1Þ ; ð49Þ

s0ðuÞ ¼
1

4ðu2 þ 1Þðu6 − 2u4 þ 2u2 − 1Þ2

×

�
−4ðu4 − u2 þ 1Þ2ðu2 þ 1Þm

2

k2

þ 8iðu2 − 1Þðu4 − u2 þ 1Þ2 m
k

þ 3ð2u4 − 3u2 þ 2Þðu2 þ 1Þ3
�
: ð50Þ

With λ0 and s0 obtained, we can solve the quasinormal
frequencies of the thick brane using the reduced “quanti-
zation condition” (42). Using this method we obtain several
QNMs of the thick brane. Plot of the first twenty QNMs
obtained by the asymptotic iteration method is shown in
Fig. 2. It can be seen that all the QNMs obtained by the
asymptotic iteration method have a negative imaginary
part. This means that the QNMs will dissipate.
We also compute the quasinormal frequencies through

the WKB approximation [71]. In black hole physics, the
WKB method was first applied to the scattering problem
around black holes by Schutz and Will [72]. The method is

based on matching of the asymptotic WKB solutions at the
event horizon and spatial infinity with the Taylor expansion
near the peak of the potential barrier through the two
turning points. Since the shape of the dual potential in the
thick brane is similar to the effective potential in the case
of the Schwarzschild black hole, the QNMs of the thick
brane can be solved by the WKB approximation. Here, we
use the sixth order WKB approximation to solve the QNMs
of the thick brane. The form of the sixth order WKB
formula is

i
ω2 −Umaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2U00
max

p −
X6
j¼2

Λj ¼ nþ 1=2; n ¼ 1; 2; 3.::; ð51Þ

where Umax is the maximum value of the dual potential, Λj

is the correction term of the jth order that depends on the
value of the dual potential and its derivatives at the peak
value. The explicit form of the correction term Λj can be
found in Refs. [52,73,74]. We can solve the QNMs of the
thick brane using the above expression. The results are
listed in Table I. Since the WKB approximation is more
applicable to low overtones, i.e., QNMs with a small
imaginary part. When the overtone number n is moderately
higher, the results of the WKB approximation become
discredited [1]. Therefore, we neglect n ≥ 4 for the results
of the WKB approximation. We can see that for the first
three QNMs, the results of the asymptotic iteration method
are in good agreement with the results of the WKB

FIG. 2. The first twenty quasinormal frequencies of the thick
brane solved by the asymptotic iteration method. The iteration of
asymptotic iteration method is 150.

TABLE I. Low overtone modes using the asymptotic iteration
method and WKB method.

Asymptotic iteration method WKB method

n Reðm=kÞ Imðm=kÞ Reðm=kÞ Imðm=kÞ
1 0.997018 −0.526362 1.04357 −0.459859
2 0.581489 −1.85128 0.536087 −1.71224
3 0.306005 −3.53366 0.279715 −3.70181
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approximation. This increases the credibility of our results.
For higher overtone modes, we expect to explore new
methods to compare with the results of the asymptotic
iteration method.

B. Evolution of initial wave packet

Now we consider the numeric evolution of an initial
wave packet against the thick brane. We use the u − v
coordinate, where u ¼ t − z and v ¼ tþ z, to perform the
evolution of Eq. (17). Then Eq. (17) can be written as�

4
∂
2

∂u∂v
þ U þ a2

�
Φ ¼ 0: ð52Þ

The incident wave packet is assumed to be a Gaussian
pulse,

Φð0; vÞ ¼ e
−ðv−vcÞ2

2σ2 ; Φðu; 0Þ ¼ e
−v2c
2σ2 : ð53Þ

Here, we focus on the Gaussian pulse with kvc ¼ 5 and
kσ ¼ 1. The parameter a is set to a=k ¼ 1. u and v belong
to ð0; 90=kÞ. The evolution of the Gauss pulse is shown in
Fig. 3. In the early time, the waveform is affected by the
initial data. Then the waveform evolves into a plane wave.
The frequency and the maximum amplitude of the plane
wave do not vary with time. From Figs. 3(a), 3(c), and 3(e),

we can see that the frequencies of the plane waves do not
depend on the extracting points. But the maximum ampli-
tudes of the plane waves depend on the extracting points.
Observing the maximum amplitude at each extracting
point for the same Gauss pulse, we can see that the final
maximum amplitude decreases with kzext. That is to say, the
further away from the brane, the smaller the amplitude. We
compare the maximum amplitudes extracted from different
points with the profile of the zero mode (23). The result is
shown in Fig. 4, which shows that the maximum amplitude
as a function of kz is consistent with the analytical zero mode
(23). Thus, after the pulse hits the brane, the incident pulse
excites the zero mode localized on the brane. According to
the expression (19), we can obtain the function of the plane
wave: Φ0ðt; zÞ ¼ e−iωtϕ0ðzÞ. In addition, from the relation
ω2 ¼ m2 þ a2, we know that the frequency becomes ω ¼ a
for the zero mode with m ¼ 0.
On the other hand, because the potential is symmetric,

the wave functions are either even or odd. Specially, the
bound zero mode is even. To investigate the character of the
odd QNMs, we give an odd initial wave packet,

Φð0; vÞ ¼ sin

�
kv
2

�
e
−k2v2

4 ; ð54Þ

Φðu; 0Þ ¼ sin

�
ku
2

�
e
−k2u2

4 : ð55Þ

Plots of the evolution of the waveform are shown in Fig. 5.
To study the effect of the parameter a, we choose a=k ¼ 0
and a=k ¼ 1. Obviously, there are two stages through the
evolution for the case of a=k ¼ 0. a) The exponentially
decay stage. The frequency and damping time of these
oscillations in this stage depend only on the characteristic
structure of the thick brane. They are completely indepen-
dent of the particular initial configuration that causes the
excitation of such vibrations. b) The power-law damping
stage. This situation is similar to the case of a massless
field around a Schwarzschild black hole. Because the first

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Left panel: Time evolution of the Gauss pulse at different
locations. The signals are extracted at the points kzext ¼ 0, 3, 10.
Right panel: Same as left panel but in a logarithmic scale.

FIG. 4. Comparing the results of the zero mode (the blue dots)
exited by the Gauss pulse with the analytical zero mode (23) (the
red curve) obtained from the Schrödinger-like equation (20) or
equivalently the linear perturbation equation (15).
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QNM dominates the evolution process, we can obtain
the frequency of the first QNM by fitting the evolution
data. For the case of Fig. 5(a), the frequency is ω=k ¼
1.01079 − 0.501256i. This result is good agree with the
result of the asymptotic iteration method. For the case of the
a=k ¼ 1, we can see that the quasinormal ringing governs
the decay of the perturbation all the time. This is similar
to the case of a massive field around a Schwarzschild
black hole. It seems that the QNMs in the thick brane model
has both two tail characteristics, which is an interesting
property. Wewill investigate the tails of the QNMs for more
braneworld models in detail in the future. The above results
indicate that there is a normal mode called the zero mode
and a series of discrete QNMs in this thick brane model.
These modes are the characteristic modes of the brane. The
detection of these QNMs can reflect the structure of the
brane. From this perspective, these modes are the finger-
prints of the brane. This provides a new way for the
investigation of the gravitational perturbation in thick brane
models.
To more intuitively understand the character of these

modes, following the method of Ref. [61], we consider a
wave packet on the brane,

δhμν ∼ ϵμν

Z
da

�
αðaÞ

X
n

cn exp½iðωnt − axÞ�
�
: ð56Þ

Here, we consider a motion in the x-direction, where αðaÞ
denotes the amplitude of each modes, cn is the expansion
coefficient determined by the initial extra dimensional
pulse profile, and n runs over the zero mode and
QNMs. Obviously, the zero mode acts like it is traveling
in a vacuum with the speed of light since ω0 ¼ a. Besides
the zero mode, since ωn has a negative imaginary part, the
behavior of each massive mode is that it is propagating
in an absorptive medium with a speed slower than light. If
the amplitude αðaÞ is peaked sharply around some value
a ¼ a0, then the frequency ωnðaÞ can be expanded at that
value of a. So, we can define the lifetime τn and the group
velocity [75],

τn ¼
1

Imωn
; vn ¼ Reð∂aωnÞ ¼ Re

�
a
ωn

�
: ð57Þ

Then we can obtain

dn ¼ vnτn ¼
aReωn

ImωnððReωnÞ2 þ ðImωnÞ2Þ
; ð58Þ

which is the distance that a massive mode propagates on
the brane before its amplitude decreases by a factor of e.
Since ωn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þm2

n

p
, so the real part of ωn increases

with a, while the imaginary part ImðωnÞ decreases with a.
It can also be seen from Fig. 6. This distance is very
short for the QNMs with a smaller a. For example, when
k ¼ a ¼ 10−3 eV, the distance dn of the first QNM is about
0.2 mm. If the distance is of the Galactic scale, i.e., 1021 m,
the frequency of the first QNM is of order 1039 Hz for
k ¼ 10−3 eV. Obviously, it is impossible to find these
massive modes from laser interferometer gravitational
wave detectors currently in use or under construction
[76]. These results are consistent with thin brane [61].
Furthermore, Ref. [61] pointed out that, these QNMs might
play an important role in the early Universe. We expect that
the stochastic gravitational wave background could carry
potentially information of massive KK modes. In addition,
other thick brane models might support long-lived QNMs.
In the future, we will investigate the properties of these
long-lived modes.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Left panel: Time evolution of the odd wave packet at
different selected extraction points for a=k ¼ 0. Right panel:
Time evolution of the odd wave packet at different selected
extraction points for a=k ¼ 1.

(a) (b)

FIG. 6. Left panel: The relations of the real parts of the first
three frequencies ωn and the parameter a. Right panel: The
relations of the imaginary parts of the first three frequencies ωn
and the parameter a.
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IV. CONCLUSION AND DISCUSSION

In this paper, we investigated the QNMs of the thick
brane model by the semianalytical and numerical methods.
The results obtained by these methods are in good agree-
ment with each other. It shows that there is a zero mode
(normal mode) and a series of discrete QNMs in the thick
brane model. This is consistent with the results of the RS-II
brane [61]. As the characteristic modes of the thick brane,
these QNMs play an indispensable role on understanding
the structure of the thick brane. This is a new way for the
investigation of the gravitational perturbation in thick brane
models. It also may provide new ideas for studying thick
brane models.
Starting from the solution and the linear metric tensor

perturbation given in Ref. [21], we obtained the wave
equation (17) and the Schrödinger-like equation (20). Since
the Schrödinger-like equation can be factorized as a
supersymmetric form, we can obtain the supersymmetric
partner potential which provides the same spectrum of
QNMs of the brane. The supersymmetric partner potential
is similar to the effective potentials in the case of the
Schwarzschild black hole. Some semianalytical methods
can be used to solve the QNMs. In this way, the QNMs of
the thick brane were obtained indirectly. We used the
asymptotic iteration method and the WKB approximation
to solve the QNMs. The results of the two methods agree
with each other in the low overtone region, which can be
seen from Table I. To further confirm the above results, we
studied the numerical evolution of the wave equation (17).
The results show that a zero mode is excited by the incident
Gaussian pulse. And the evolution of the odd wave packet
reveals the property of the QNMs, which can be seen from
Fig. 5. In addition, the frequency extracted from the data is

consistent with the frequency of the first QNM obtained
using the asymptotic iteration method and the WKB
approximation. This enhances the credibility of our results.
Finally, we investigated the propagation distance dn of the
massive mode on the brane. We found that, for the same
mn, the distance dn increases with the parameter a. If the
propagation distance is of the Galactic scale, the frequency
of the massive mode is extremely high, far beyond the
ability of the current detectors. However, the massive mode
might play a key role in the early Universe. It might be
detected as a stochastic gravitational wave background.
Our work could be strengthened in a number of ways.

First,we need to develop more methods to calculate higher
overtone modes and compare with the asymptotic iteration
method. Second, some thick brane models might support
long-lived QNMs, which deserve further study. Third, the
QNMs of other test fields could be investigated in the
future.
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