
Timelike orbits around accelerating black holes

Mohammad Bagher Jahani Poshteh *

School of Physics, Institute for Research in Fundamental Sciences (IPM),
P.O. Box 19395-5531, Tehran 19538-33511, Iran

(Received 27 May 2022; accepted 8 August 2022; published 17 August 2022)

We study the geodesics of massive particles around an accelerating Schwarzschild black hole. We show
that the radius of the innermost stable circular orbit and the angular momentum of a particle at this orbit
decrease by increasing the acceleration. Apart from quantitative influence, the acceleration qualitatively
changes the physics. We show that in accelerating black hole spacetime there exists an outermost stable
circular orbit in flat, de Sitter, and anti–de Sitter backgrounds. Investigations of radial geodesics show that
the acceleration acts like a repulsive force in the sense that test particles around accelerating black holes can
move radially outward, unless there exists a large negative value of cosmological constant in the
background to compensate the repulsive force. We also investigate the precession of perihelion of orbits
around accelerating black holes. The precession would be larger compared to the nonaccelerating case. It is
also shown that the precession in anti–de Sitter background could be opposite to the particle motion.
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I. INTRODUCTION

The study of the relativistic motion of particles in
gravitational fields began shortly after the general theory
of relativity was introduced [1–3]. In light of the inves-
tigations of lightlike geodesics, we have found many
interesting phenomena, e.g., gravitational lensing [4–9]
and black hole shadow [10–12]. These features are in
common among black holes and naked singularities [13,14]
and ultracompact objects [15,16].
The investigation of timelike geodesics around massive

objects could help us understand the nature of the objects.
In this paper we are interested in timelike geodesics in
accelerating black hole spacetime. The motion of massive
test particles around nonaccelerating black holes in general
relativity has been thoroughly studied in [17]. In [18–20]
fundamental frequencies of particles’ motion around Kerr
black holes have been investigated. Circular motions on
equatorial plane around Kerr-Newman black holes and
Kerr-Newman naked singularities are compared in [21]. In
[22] null and timelike geodesics on the equatorial plane of a
distorted Schwarzschild black hole are studied. In [23], for
a class of naked singularity spacetimes, it has been shown
that the perihelion precession can be in the opposite
direction of a particle’s motion. Precession of timelike
bound orbits in Kerr spacetime has also been studied and it
is found that the precession is positive [24].
Black holes can be pair produced on cosmic strings

[25–27] as well as in a de Sitter [28–30] or magnetic field
[31–33] background (see [34] for the black hole production

rate on the cosmic string in a de Sitter space with a
background magnetic field). On the other, hand we might
have primordial black holes become attached to cosmic
strings in the early Universe [35]. All of these black holes
will be accelerating (due to the tension of the cosmic string
[35] and/or the force exerted by the positive cosmological
constant and/or the magnetic field [34]).
Accelerating black holes could evolve to supermassive

black holes [36] (see also [37]). However, if these black
holes have played a role in structure formation, their
velocity should be small [36], which means that the
acceleration should be small. It has been speculated, from
an observational point of view, that the black hole at the
center of our Galaxy is connected to the cosmic string [38].
A study of null geodesics around accelerating black

hole has recently attracted some attention [39–41]. The
shadow of the accelerating black hole has been studied in
[42,43]. On the other hand, thermodynamics of these
black holes have been investigated in [44–46]. Near
horizon symmetries of accelerating black holes have also
been studied [47].
Accelerating black holes are described by the C metric.

In [48], for the particles coaccelerating with the black hole
at constant distance, null and timelike geodesics are found
in the standard fx; yg coordinates [49] as well as Weyl
coordinates [50] and the coordinates adapted to the boost-
rotation symmetry [51]. Generalization to the AdS C
metric [52] and to the spinning C metric [53] have also
been done. In [54], by studying the effective potential of
test particles around the black hole, accessible regions for
null/timelike geodesics are presented. Stability of geo-
desics is also discussed.*jahani@ipm.ir
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The aim of this paper is to study the motion of massive
particles in accelerating black hole spacetime with cosmo-
logical constant. We would like to study radial geodesics
as well as the innermost stable circular orbit (ISCO) of
particles around accelerating supermassive black holes. We
would also like to investigate the perihelion precession of
such orbits. In our examples we consider a nonrotating
black hole with the same mass as the black hole at the center
of Milky Way Galaxy, Sgr A*. We also use the orbital data
of S2 star around Sgr A*. Considering the upper bound on
the acceleration of supermassive black holes [36], we show
that we can take S2 to be nearly on the equatorial plane of
the accelerating black hole during one complete period.
The study of radial motion of test particles in accelerat-

ing black hole spacetime shows that these particles can
move radially outward. This means that accelerating black
holes exert some sort of repulsive force on test particles. We
also find the interesting result that there exists an upper
bound on the radius of stable circular orbits around the
accelerating black hole. These features are in common
among accelerating black holes and black holes in de Sitter
spacetime.
We also investigate the precession of orbits around

accelerating black holes. We show that the precession of
perihelion is larger for larger values of black hole accel-
eration. However, for black holes in anti–de Sitter (AdS)
background, the precession can be negative (the orbit
precesses in the opposite direction of the motion).
The outline of our paper is as follows. In the next section

we present the Lagrangian of motion on a plane
perpendicular to the direction of acceleration (equatorial
plane) and study the radial motion on this plane. Stable
circular orbits on the equatorial plane are studied in Sec. III.
In Sec. IV we study the precession of the orbits. We
conclude our paper in Sec. V. We work in geometric units
whereG ¼ c ¼ 1 and use mostly positive signatures for the
spacetime metric.

II. RADIAL MOTIONS ON EQUATORIAL PLANE

It has been shown in [36] that the velocity of super-
massive black holes connected to the cosmic string
should be less than 100 km=s so that they could be
captured by galaxies during the structure formation.
This, in turn, constrains tension of the cosmic string to
μ≲ 10−19

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=M⊙

p
, where M is the mass of supermassive

black hole connected to the cosmic string. For the black
hole at the center of our Galaxy, with MSgr A� ≃ 4.23 ×
106 M⊙ [55], the tension of the cosmic string attached to it
would be μ≲ 2.06 × 10−16. Therefore, we find from
Newton’s second law, μ ¼ αMSgr A� , that the acceleration
is α≲ 3.29 × 10−26 m−1.
The orbital period of S2 star around Sgr A* is about

16 years [56,57]. We take the acceleration of Sgr A* to be
α ¼ 10−26 m−1—this is about the largest value allowed by

[36]. Assuming the initial velocity of the black hole to be
zero, the displacement of the black hole during the period
of S2 is 2.29 × 108 m. This is much smaller than the
Schwarzschild radius of the black hole that is of the order of
1010 m. Therefore, we can assume that, if S2 starts its
period near the equatorial plane of the black hole, it will
remain near this plane during one period of the orbit around
the slowly accelerating black hole.
The spacetime around uniformly accelerating black

holes is described by the C metric.1 The (A)dS C metric
has been studied in, for example, [29,59–62]. For a black
hole of massm and uniform acceleration α, in a background
spacetime with cosmological constant Λ, the metric can be
written in the following form [63]:

ds2 ¼ 1

ð1þ αr cos θÞ2
�
−QðrÞdt2 þ dr2

QðrÞ þ
r2dθ2

PðθÞ

þ PðθÞr2sin2θdϕ2

�
; ð1Þ

where

QðrÞ ¼ ð1 − α2r2Þ
�
1 −

2m
r

�
−
Λ
3
r2;

PðθÞ ¼ 1þ 2αm cos θ: ð2Þ

The coordinate t ranges over all of R and 0 ≤ θ ≤ π. The
periodicity of ϕ is −C0π ≤ ϕ ≤ C0π. One can choose C0 so
as to eliminate the conical singularity at one of the poles.
We take C0 ¼ ð1þ 2αmÞ−1 to eliminate the singularity at
θ ¼ 0 [54].2

We would like to study the geodesics on the equatorial
plane of the accelerating black holes. We assume that the
direction of acceleration is perpendicular to this plane. On
the equatorial plane the metric (1) reduces to

ds2 ¼ −Qdt2 þ dr2

Q
þ r2dθ2 þ r2dϕ2; ð3Þ

with the metric function given by Eq. (2).
The metric function Q has been plotted in Fig. 1. We

have taken some large values of acceleration and cosmo-
logical constant so that we could better illustrate the
behavior of the metric function in different cases. For
the case of flat and de Sitter backgrounds the metric
function has two zeros for positive r and has a maximum

1This spacetime is of algebraic type D. It has been proved in
[58] that vacuum type D spacetimes admit Killing and Killing-
Yano tensors if (and only if) they are without acceleration.

2Setting C0 ¼ ð1þ 2αmÞ−1, on the other hand, eliminates the
singularity at θ ¼ 0 [54]. For other choices of C0 neither the
singularity at θ ¼ 0 nor the one at θ ¼ π would be eliminated and
one has cosmic strings at both poles.
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between them. The behavior of the metric function in the
case of the anti–de Sitter background is more interesting.
ForΛ > −3α2 there are two zeros for positive r; however, if
Λ < −3α2 there would be only one zero and the metric
function goes to þ∞ as r increases.3

The region between the two zeros of Q—one associated
to the event horizon of the black hole, the other to the
acceleration horizon—is the domain of outer communica-
tion in which Q > 0. For Λ < −3α2 this domain contains
any radius larger than the radius of the black hole’s event
horizon. The motion of the test body around the black hole
is in the region of outer communication. Therefore we only
consider the range of r which is in the domain of outer
communication.
The Lagrangian governing the geodesic motion is

2L ¼ gγσ _xγ _xσ ¼ −μ2, where μ is the rest mass of the
infalling particle and the dot, for timelike geodesics,
represents differentiation with respect to the proper time

(for a detailed study of timelike geodesics in Schwarzschild
and Kerr background see [17]). Using the metric (3) the
Lagrangian on equatorial plane would be

L ¼ 1

2

�
−Q_t2 þ _r2

Q
þ r2 _ϕ2

�
: ð4Þ

The canonical momenta pt ¼ − ∂L
∂_t and pϕ ¼ ∂L

∂ _ϕ
are

conserved because of the symmetry of the metric, i.e., _pt ¼
− ∂L

∂t ¼ 0 and _pϕ ¼ ∂L
∂ϕ ¼ 0. They are the energy and angular

momentum of the infalling particle and can be found to be

E ¼ pt ¼ Q_t; Lz ¼ pϕ ¼ r2 _ϕ: ð5Þ

We note here that if the acceleration has a component
parallel to the equatorial plane which is of the same order or
larger than the perpendicular component, then the third
component of the angular momentum is no longer a
constant of motion. In this case geodesic equations cannot
be analytically integrated. By using these quantities we can
rewrite Eq. (4) as

_r2 ¼ Ẽ2 −Q

�
1þ L̃2

z

r2

�
; ð6Þ

where Ẽ and L̃z are, respectively, the energy and angular
momentum per unit rest mass and the dot now represents
differentiation with respect to proper time per unit rest
mass. Note also that the second term on the right-hand side
of Eq. (6),

Ṽ ¼ Q

�
1þ L̃2

z

r2

�
; ð7Þ

is the effective potential.
Now we consider radial motion in accelerating black

hole spacetime.4 For radial geodesics we have L̃z ¼ 0.
Therefore, Eq. (6) reduces to

_r2 ¼ Ẽ2 −Q: ð8Þ

If a test particle is falling from rest at r0 we find
Ẽ2 ¼ Qðr0Þ.
For the nonaccelerating Schwarzschild black hole in anti–

de Sitter background it has been shown that the test particle
always plunges into the black hole [64]. This is due to the
attractive force generated by the negative cosmological
constant. However, for the nonaccelerating Schwarzschild
black hole in de Sitter background, it is known that the test
particle can move radially outward/inward if r0 is larger/
smaller than a specific value [65].

FIG. 1. Top: The metric function of an accelerating black
hole in flat (dashed blue plot) and de Sitter with m2Λ ¼ 10−4

(solid red plot) backgrounds. Bottom: The metric function of an
accelerating black hole in anti–de Sitter background with m2Λ ¼
−10−3 (dashed blue plot) and m2Λ ¼ −10−6 (solid red plot). We
have taken mα ¼ 10−2.

3For Λ > −3α2 there is a maximum between two zeros of the
metric function. As Λ → ð−3α2Þþ the point at which the
maximum appears goes to þ∞.

4For a black hole accelerating in the z direction, we consider
radial motion in the x-y plane.
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The acceleration of the test particle which is at rest at r0
is given by [65]

̈r ¼ Q0ðrÞ½_r2 −Qðr0Þ�
2QðrÞ : ð9Þ

For Λ > −3α2 the metric function Q has two zeros at
positive r (see Fig. 1). Let us denote the smaller root by rþ
and the larger one by rþþ. Between these two roots the
metric function has a maximum at rM. Suppose a test particle
starts its motion at r0. For rþ < r0 < rM the slope of the
metric function is positive; therefore, the initial acceleration
̈r ¼ −Q0ðr0Þ=2 is negative. This means that the test particle
plunges into the black hole. For rM < r0 < rþþ, however,
the acceleration is positive and the test particle moves
radially outward. On the other hand, in anti–de Sitter
background withΛ < −3α2, the test particle always plunges
into the event horizon.
Therefore we find that acceleration acts like a positive

cosmological constant. Similarity between a positive cos-
mological constant and cosmic strings has already been
claimed in the context of black hole pair production in the
author’s earlier work [34]. We also see that a negative
cosmological constant can compensate the acceleration
(Λ ¼ −3α2 completely compensate the effect of α).

III. STABLE CIRCULAR ORBITS

Here we consider the circular geodesics for which
L̃z ≠ 0. We have plotted the effective potential in Fig. 2
for different values of the angular momentum in the region
near the event horizon of the black hole (we take approx-
imately the observed value of the cosmological constant,
Λ ≃ 10−52 m−2 [66]). In this region, we see that for L̃z

slightly above L̃z;ISCO there are a minimum and a maximum
in the plot of the potential which are associated to stable and
unstable circular orbits, respectively. The minimum gets
closer to the black hole as L̃z decreases. For L̃z ¼ L̃z;ISCO

we have the ISCO which is at the inflection point of the
effective potential.
We find that the radius of ISCO and the angular

momentum of the particle at this orbit depends on the
acceleration. In Fig. 3, using numerical techniques, we have
plotted the radius of ISCO and the angular momentum at
ISCO as a function of the acceleration. We see that both of
them decrease by increasing the acceleration. This means
that if the black hole is accelerating, the infalling particle
can orbit on a stable circular orbit around the hole with a
smaller radius and angular momentum.
For nonaccelerating black holes, it is known that there

exists an outermost stable circular orbit (OSCO) in a
background spacetime with a positive cosmological con-
stant [67,68]. We have find that, for accelerating black
holes, OSCO exists for flat and AdS backgrounds as well as
in dS spacetime. This point has been presented in Fig. 4. Let
us call the region in which the OSCO takes place as the far
region. We see that for L̃z slightly below L̃z;OSCO there are a
minimum and a maximum in the plot of the potential which
are, respectively, associated to stable and unstable circular
orbits. The minimum goes away from the black hole as L̃z

increases. For L̃z ¼ L̃z;OSCO we have the OSCO which is at
the inflection point of the effective potential.

FIG. 2. The effective potential for different values of angular
momentum in the region near the black hole horizon. We have
taken mα ¼ 10−26, m2Λ ¼ 10−52, and L̃z ¼ 3m (dotted black
plot), L̃z ¼ L̃z;ISCO ≈ 3.4641m (dashed red plot), and L̃z ¼ 4m
(solid blue plot). The maximum and minimum of the solid blue
plot are, respectively, at r ≈ 4m and r ≈ 12m. The inflection point
of the dashed red plot is at r ≈ 6m.

FIG. 3. Top: The radius of ISCO as a function of the accel-
eration of the black hole. Bottom: The angular momentum of the
particle on ISCO. We have taken m2Λ ¼ 10−52.
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In Fig. 5 we see that the radius of OSCO and the angular
momentum of the particle at this orbit decrease by
increasing the acceleration. We also note that there is a
critical value of acceleration for which OSCO and ISCO
would be on top of each other. (For the value of the
cosmological constant taken in Figs. 3 and 5 the critical
acceleration is mα ≃ 1.61466 × 10−2.)

Behavior of the potential in both the near and the far
regions is presented in Fig. 6. For the case in which L̃z <
L̃z;ISCO (L̃z > L̃z;OSCO) the potential has a maximum in the
far (near) region. If the energy of the particle coming from
infinity is larger than the maximum value of the potential it
will plunge into the black hole. The case in which L̃z;ISCO <
L̃z < L̃z;OSCO is more interesting and has been presented in
the middle (dashed red) plot of Fig. 6. In this case there are
two maxima at rmax1 and rmax2 [assuming rmax1 < rmax2 and
Ṽðrmax1Þ > Ṽðrmax2Þ] and one minimum between them
at rmin.
Ignoring the particles confining to r < rmax1 , depending

on the energy of the particle, the following cases could
happen:

(i) For a particle approaching the black hole, if the
energy satisfies Ẽ2 > Ṽðrmax1Þ, the particle would
plunge into the black hole.

(ii) If Ṽðrmax2Þ < Ẽ2 < Ṽðrmax1Þ, the particle reaches a
minimum radius in the range rmax1 < r < rmin and
then escapes to infinity.

(iii) If ṼðrminÞ < Ẽ2 < Ṽðrmax2Þ, and if the particle is
coming from infinity, it reaches a minimum radius of
r > rmax2 . The other possibility is that the particle
rotates around the black hole in a bound orbit with
radius rmax1 < r < rmax2 .

(iv) If Ẽ2 < ṼðrminÞ the particles coming from infinity
would reach a minimum at r > rmax2 [here r is larger
than the case in which ṼðrminÞ < Ẽ2 < Ṽðrmax2Þ]
and then escape to infinity.

Also if Ẽ2 ¼ Ṽðrmax1Þ or Ẽ2 ¼ Ṽðrmax2Þ the particle will
rotate the black hole on an unstable circular orbit, and if
Ẽ2 ¼ ṼðrminÞ the particle will rotate the black hole on a
stable circular orbit.

FIG. 4. The effective potential for different values of angular
momentum in the region far from the black hole horizon. We have
taken mα ¼ 10−3, Λ ¼ 0, and L̃z ¼ 7.05800m (dotted black
plot), L̃z ¼ L̃z;OSCO ≈ 7.06232m (dashed red plot), and L̃z ¼
7.06700m (solid blue plot).

FIG. 5. Top: The radius of OSCO as a function of the
acceleration of the black hole. Bottom: The angular momentum
of the particle on OSCO. We have taken m2Λ ¼ 10−52.

FIG. 6. The effective potential for different values of angular
momentum in the near and far regions from the black hole
horizon. We have taken mα ¼ 10−2, Λ ¼ 0, and L̃z ¼ 3.4m <
L̃z;ISCO (dotted black plot), L̃z;ISCO < L̃z ¼ 3.6m < L̃z;OSCO

(dashed red plot), and L̃z ¼ 3.7m > L̃z;OSCO (solid blue plot).
Qualitatively similar behaviors take place in the de Sitter and
anti–de Sitter background as well.
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We also note that for Λ < −3α2 the potential goes toþ∞
as r increases. However forΛ > −3α2 (whether in de Sitter,
flat, or anti–de Sitter backgrounds) the potential goes to
−∞ as r increases. These points have been illustrated
in Fig. 7.

IV. PRECESSION OF PERIHELION

In this section we investigate the precession of perihelion
for orbits around accelerating black holes. Equation (4) can
be written as

�
dr
dϕ

�
2

¼ r4Ẽ2

L̃2
z

−
Qr4

L̃2
z
−Qr2: ð10Þ

At the perihelion and aphelion we have dr=dϕ ¼ 0. If we
denote the radius of the perihelion and aphelion, respec-
tively, by rp and ra, we can write the energy and angular
momentum per unit rest mass as

Ẽ2 ¼ QðraÞQðrpÞðr2p − r2aÞ
QðraÞr2p −QðrpÞr2a

; ð11Þ

L̃2
z ¼

r2ar2p½QðrpÞ −QðraÞ�
QðraÞr2p −QðrpÞr2a

: ð12Þ

As we mentioned earlier, the periodicity of ϕ is 2C0π,
with C0 ¼ ð1þ 2αmÞ−1. Therefore, the precession can be
found, by using Eq. (10), as

Δϕ ¼ 2½ϕðraÞ − ϕðrpÞ� − 2ð1þ 2αmÞ−1π

¼ 2

Z
ra

rp

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4Ẽ2

L̃2
z
− Qr4

L̃2
z
−Qr2

q − 2ð1þ 2αmÞ−1π; ð13Þ

where Ẽ2 and L̃2
z are given by Eqs. (11) and (12).

The radius of the perihelion and aphelion are related to
the eccentricity e and semimajor axis a of the orbit through
rp ¼ ð1 − eÞa and ra ¼ ð1þ eÞa. As an example we take
the semimajor axis and eccentricity of S2 in its orbit around
Sgr A*. They are a ¼ 1.543 × 1014 m and e ¼ 0.88 [69].
In the top panel of Fig. 8 we have plotted the precession

(13) as a function of acceleration for S2. We see that the
precession angle increases by increasing the acceleration of
the central black hole. Also in the bottom panel of Fig. 8 we
see that the precession increase by increasing the cosmo-
logical constant. It is very interesting that the precession
angle is negative for m2Λ≲ −1.51363 × 10−16.

V. CONCLUDING REMARKS

We have studied the geodesics of massive particles on
equatorial plane of accelerating black holes. We have only
considered the component of the acceleration which is
perpendicular to the plane of the particle motion. If the
component parallel to this plane is considerably large, then
the angular momentum of the particle is no longer a
constant of motion and we would only have one constant
of motion (the energy). In that case the geodesic equations
cannot be solved analytically.
We have found several new and interesting results. The

study of radial geodesics and stable circular orbits around an

FIG. 7. The effective potential for mα ¼ 10−6 and m2Λ ¼
−10−3 (solid blue plot) and mα ¼ 10−2 and m2Λ ¼ −10−10
(dashed red plot). The solid blue plot satisfies Λ < −3α2, while
for the dashed red plot Λ > −3α2. We have taken L̃z ¼ 3m in
both plots.

FIG. 8. Top: Precession of perihelion as a function of the
acceleration. We have taken Λ ¼ 0. Bottom: Precession of
perihelion as a function of the cosmological constant. We have
taken α ¼ 0.
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accelerating black hole show that there exists some sort of
similarity between accelerating black holes and black holes
in de Sitter background. The radially outward motion of test
particles in accelerating black hole spacetime points out that
acceleration, like a positive cosmological constant, gener-
ates a repulsive force. (However, in the case of de Sitter
space, the “cosmic acceleration” is spherically symmetric,
whereas here in acceleration is in the z direction.) Another
similarity is the existence of OSCO in accelerating black
hole spacetimes which also exists for particles orbiting a
black hole in de Sitter background.
We have found that the precession of perihelion is larger

around an accelerating black hole. It is also shown that in

anti–de Sitter background the precession can be negative.
We postpone a detailed study of the precession in anti–de
Sitter background to a future work. It would also be very
interesting to study the timelike geodesics around rotating
accelerating black holes.
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