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Wormhole solutions to the equations of general relativity have some spectacular local and global
properties. As these unusual features are not explicitly forbidden by known physics, wormholes are
considered in various astrophysical and cosmological scenarios. The paradigmatic traversable wormhole
models are described by static spherically symmetric Ellis-Morris-Thorne and Simpson-Visser metrics.
We show that no dynamical solution of the semiclassical Einstein equations can have these metrics as their
static limit. On the other hand, possible static limits of the dynamical solutions are not traversable.
Moreover, they lead to violation of a quantum energy inequality that bounds violations of the null energy
condition by quantum fields. This conclusion does not depend on specific properties of fields that may be
proposed for wormhole construction. As a result, spherically symmetric wormholes cannot exist in
semiclassical gravity.
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I. INTRODUCTION

Wormhole solutions in general relativity [1–3] have been
known for almost as long as the Schwarzschild metric.
However, their status is different. The black hole paradigm
explains all current observations of dark massive ultra-
compact objects. Wormholes are just one of the alternative
models. As such, they aim to describe astrophysical black
holes without causing conceptual problems inherent in the
notions of an event horizon and singularity [4–6]. Even the
revival of interest in wormholes as traversable shortcuts
between separated spacetime regions had science fiction as
its primary motivation [7,8].
Several wormhole features, even if not forbidden by the

laws of physics, are unusual enough to make their existence
unlikely [8]. The null energy condition (NEC) is theweakest
energy requirement that is used in general relativity. The
NEC is satisfied by normal classical matter [9,10]. Quantum
field theory permits its violations that are, however, con-
strained by quantum energy inequalities [11,12]. NEC
violation is a generic and universal feature of (traversable)
wormholes [13]. Creation of awormhole implies a change in
the topology of space, and using a pair of wormholes is a
simpleway to generate closed timelike loops, i.e., to create a
time machine [1–3,8].
On the other hand, the NEC could be sufficiently violated

in the early Universe to enable formation of wormholes
[1,2,14]. Its violation is a necessary condition for formation
of a trapped spacetime region, i.e., a physical black hole
(PBH) [15], in finite time of a distant observer [9,16].
Moreover, while the phantom matter that might effect the
necessary NEC violation is unphysical [17,18], asymmetric
wormhole solutions may be allowed [19]. Topology changes

are expected to occur in quantum gravity and are a basic
component of the path integral approach to it [2,20,21].
These arguments provide additional impetus for search for
astrophysical wormholes, using both electromagnetic and
gravitational radiation [4–6].
The original staticwormhole solutionswere characterized

using the embeddingdiagrams and explicit descriptionof the
two spatial sheets that are connected at the wormhole’s
throat [7,22,23]. The invariant characterization of the throat
that is valid for generic wormholes identifies it as an outer
marginal trapped surface subject to additional conditions
[13,21]. This allows us to describe dynamical wormholes
[21,24] and also to apply the self-consistent analysis of
black hole horizons [25]. In the case of spherical sym-
metry, it allows an exhaustive description of the admissible
solutions [16].
Using properties of these solutions, we find that the

standard static traversable wormhole (TWH) solutions are
not static limits of dynamical solutions. Moreover, the
admissible static limits are not only nontraversable worm-
holes, but violate the quantum energy inequalities (QEIs),
making their introduction in semiclassical physics self-
contradictory.
This article is organized as follows. In the next section,

we review the semiclassical physics of spherically sym-
metric horizons. Section III reviews the basic properties of
the static wormhole solutions and positions the Ellis-
Morris-Thorne and the Simpson-Visser metrics within a
general scheme of self-consistent solutions. Section IV
contains the main original results of this work and presents
the dynamic wormhole solutions and their static limits.
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The results, their implications, and future directions are
discussed in Sec. V.
We use the ð−þþþÞ signature and use the Planck units.

Derivatives of a function of a single variable are marked
with a prime, e.g., r0gðtÞ≡ drg=dt. Derivatives with respect
to the proper time τ are denoted by the dot, _R≡ dR=dτ.

II. THE SETUP

Properties of TWHs are usually investigated by first
designing a metric with the desired properties. This is
possible if the classical notions and semiclassical and/or
modified Einstein equations are applicable. Then the
Einstein equations

Gμν ¼ 8πTμν ≡ 8πhT̂μνiω ð1Þ
are reverse engineered to determine the energy-momentum
tensor (EMT) that is the source of this geometry [2,26]. Here
the Einstein tensor Gμν ≔ Rμν − 1

2
gμνR, where Rμν and R

are the Ricci tensor and Ricci scalar, respectively, is equated
with the effective EMT. The latter is an expectation value of
the renormalized EMToperator plus all additional curvature
terms. They appear, e.g., as a result of the renormalization
procedure or are derived from the Lagrangian of an effective
field theory of gravity [27–29]. We do not make any
assumptions about the nature of the fields or of the state ω.
A general four-dimensional spherically symmetric met-

ric in Schwarzschild coordinates is given by [30,31]

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ2: ð2Þ
These coordinates provide geometrically preferred folia-
tions with respect to Kodama time, which is derived from a
natural divergence-free vector field [31,32]. Invariantly
defined Misner-Sharp mass [31,33] Cðt; rÞ=2 allows us
to write

fðt; rÞ ≔ 1 − C=r ≔ ∂μr∂μr: ð3Þ

In asymptotically flat spacetimes, the coordinate t is the
physical time of a distant static observer (Bob). However,
our results do not depend on this interpretation.
Using the advanced null coordinate v the metric takes the

form

ds2 ¼ −e2hþðv;rÞfðv; rÞdv2 þ 2ehþðv;rÞdvdrþ r2dΩ2; ð4Þ

where f ¼ 1 − Cþðv; rÞ=r and the invariance of the
Misner-Sharp mass ensures Cþðv; rÞ≡ Cðtðv; rÞ; rÞ. The
coordinates are related via

dt ¼ e−hðehþdv − f−1drÞ: ð5Þ

In all foliations that respect spherical symmetry [34],
components of the apparent horizon (a 3D boundary of the
trapped region) [9,16,31] coincide with the roots of

fðt; rÞ ¼ 0: ð6Þ

The Schwarzschild radius rgðtÞ, being the largest root,
corresponds to the outer apparent horizon [16,31]. For the
wormhole solutions rgðtÞ is the only root on each sheet of
the radial coordinate. It corresponds to the throat of the
wormhole, and the circumferential radius is restricted to
the range rg ≤ r < ∞. Hence, constructing solutions of the
Einstein equations that satisfy Eq. (6) is the first step in
developing wormhole solutions.
The self-consistent approach to black holes jointly

identifies the forms of the EMT and of the metric functions
h and C in the vicinity of the apparent horizon [16,25]. It is
adopted here to generate the wormhole solutions. Two
requirements [16,25] allow us to describe all potential
geometries in the vicinity of rg. First, Eq. (6) is required to
have a solution for tS ≤ t ≤ t� < ∞ for some finite tS. This
allows for formation and a possible closure of the worm-
hole. It is important to note that, despite the Misner-Sharp
mass invariance, having solutions of fðv; rÞ ¼ 0 or
fðv; uÞ ¼ 0, where v and u are the advanced and the
retarded null coordinates, respectively, does not imply that
a TWH forms at the finite time of Bob.
Second, the throat at r ¼ rg is a regular two surface in a

sense that the curvature scalars that are constructed from
polynomials of components of the Riemann tensor are
finite. Apart from a minimal compliance with the cosmic
censorship conjecture, it is also part of the requirements
that ensure traversability of the wormhole [2,7]. We use
two quantities that can be obtained directly from EMT
components,

T̃ ≔ Tμ
μ; T̃ ¼ TμνTμν: ð7Þ

The Einstein equations relate them to the curvature scalars
as T̃≡ −R=8π and T̃≡ RμνRμν=64π2. For the spherically
symmetric solutions, finite values of these scalars as r → rg
ensure that all independent scalar invariants are finite [16].
It is convenient to introduce the effectiveEMTcomponents

τt ≔ e−2hTtt; τr ≔ Trr; τt
r ≔ e−hTt

r: ð8Þ

Then the Einstein equations for the components Gtt, Gr
t ,

and Grr are

∂rC ¼ 8πr2τt=f; ð9Þ

∂tC ¼ 8πr2ehτtr; ð10Þ

∂rh ¼ 4πrðτt þ τrÞ=f2: ð11Þ

To ensure the finite values of the curvature scalars, it is
sufficient to work with

DANIEL R. TERNO PHYS. REV. D 106, 044035 (2022)

044035-2



T ≔ ðτr − τtÞ=f;
T ≔ ððτrÞ2 þ ðτtÞ2 − 2ðτtrÞ2Þ=f2; ð12Þ

where the contribution of Tθ
θ ≡ Tϕ

ϕ is disregarded, and
then to verify that the resulting metric functions do not
introduce further divergences [16]. Thus, the three effective
EMT components either diverge, converge to finite lim-
its, or converge to zero in such a way that the above
combinations are finite. One option is the scaling

τt ∼ fkE; τr ∼ fkP ; τt
r ∼ fkΦ ; ð13Þ

for some powers ka > 1, a ¼ E;P;Φ. Another involves
convergence or divergence with the same k ≤ 1. For PBHs,
only solutions with k ¼ 0, 1 are relevant.
Solutions of the k ¼ 0 class satisfy

τt → τr → −ϒ2ðtÞ; τt
r → �ϒ2ðtÞ; ð14Þ

as r → rg. The negative sign of τt and thus of τr is necessary
to obtain the real-valued solutions of Eqs. (9)–(11). The
leading terms of the metric functions near the outer apparent
horizon are

C ¼ rg − 4
ffiffiffi

π
p

r3=2g ϒ
ffiffiffi

x
p þOðxÞ; ð15Þ

h ¼ −
1

2
ln
x
ξ
þOð ffiffiffi

x
p Þ; ð16Þ

where ξðtÞ is determined by the choice of time variable, and
the higher-order terms are matched with the higher-order
terms in the EMT expansion. Equation (10) must then hold
identically. Both sides contain terms that diverge as 1=

ffiffiffi

x
p

,
and their matching results in the consistency condition

r0g=
ffiffiffi

ξ
p

¼ 4ϵ�
ffiffiffiffiffiffiffi

πrg
p

ϒ; ð17Þ

where ϵ� ¼ �1 corresponds to the expansion and contrac-
tion of the Schwarzschild sphere, respectively.
Geometry near and across the Schwarzschild sphere is

conveniently expressed [16,25] in ðv; rÞ coordinates for
r0g < 0 and in ðu; rÞ coordinates (where u is the retarded
null coordinate) for r0g > 0. The extended solutions
describe an evaporating PBH (r0g < 0) and an expanding
white hole (r0g > 0). Vaidya metrics [with M0ðvÞ < 0 and
M0ðuÞ > 0, respectively] are examples of such objects
belonging to the k ¼ 0 class.
Details of k ¼ 1 solutions are given in Sec. IV and

Appendix A. Both k ¼ 0 and k ¼ 1 solutions satisfy

lim
r→rg

ehf ¼ jr0gj; ð18Þ

which ensures a finite infall time also according to a distant
Bob [16,35].

The limiting form of the ðtrÞ block of a k ¼ 1 EMT as
r → rg is

Ta
b ≈

�

ϒ2=f −ϵ�e−hϒ2=f2

ϵ�ehϒ2 −ϒ2=f

�

; ð19Þ

where a; b ¼ t, r. According to a static (outside) observer,
the local energy density, pressure, and flux diverge as r → rg.
In addition to the usual list of requirements that make a

wormhole traversable, experience with PBHs indicates
another necessary feature: absence of strong firewalls,
i.e., of divergent negative energy density and/or pressure
and flux in the frame of a traveling observer (Alice) [16,36].
These firewalls may occur even if the curvature scalars are
finite. While they indicate that the apparent horizon of a
PBH is a surface of intermediate curvature singularity, a
sufficiently strong firewall leads to a divergent integrated
energy density, violating the QEIs. In particular, along a
timelike geodesic γ with a tangent four-vector uμA, the local
energy density is

ρA ≔ hT̂ren
μν iωuμAuνA; ð20Þ

where the expectation of the renormalized EMT is evalu-
ated on an arbitrary Hadamard state [12,27] ω. The total
integrated energy is obtained along by integration along the
timelike trajectory γ of the energy density that is smeared
by a sampling function ℘ with a compact support. It can be
taken to be ℘ ≅ 1 for an arbitrarily large fraction of the
domain with ℘ > 0. Then,

Z

γ
dτ℘2ðτÞρðτÞ ≥ −Bðγ;R;℘Þ; ð21Þ

where B > 0 is a bounded function that depends on the
trajectory, Ricci scalar, and sampling function [37].
Violation of this bound by a particular solution indicates
its impossibility in semiclassical gravity. While integrated
energy densities in the case of the PBH firewalls are finite,
we will see that some potential wormhole solutions lead to
violation of this QEI.
We illustrate the issue by considering k ¼ 0 solutions.

For an incoming Alice, the energy density in her frame
remains finite. It is ρA ∝ r0g= _R at the apparent horizon [16].
On the other hand, for an outgoing observer, outside a PBH,

ρA ¼
_R2

4πrgX
þOð1=

ffiffiffiffi

X
p

Þ; ð22Þ

where X ≔ RðτÞ − rgðTðτ0Þ. The energy density is
obtained by using the expression for the EMT of k ¼ 0
solutions [Eq. (19)] and the normalization of the four
velocity in the form
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_T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_R2 þ F
p

eHF
≈
j _Rj
jr0gj

; ð23Þ

where F ¼ fðT; RÞ and H ¼ hðT; RÞ. For a PBH, this
divergence is largely a curious observation (observers that
may exit the so-called quantum ergosphere cannot have
_R > 0 at the apparent horizon [16,36]). However, if this
metric describes the neighborhood of a wormhole throat for
r≳ rg, then an exiting Alice will have _R > 0 at the throat,
and such a divergence contradicts traversability.

III. STANDARD STATIC TRAVERSABLE
WORMHOLES

In horizonless spacetimes, it is often convenient to
represent a spherically symmetric metric as

ds2 ¼ −e2Ψdt2 þ fðt; rÞ−1dr2 þ r2dΩ2; ð24Þ

where Ψ≡ hþ 1
2
ln f. Requiring gttðt; rgÞ to be finite while

f → 0 implies that, in addition to Eq. (11), the equation

∂rh ≈ −
∂rf
2f

≈ −
λ

2x
ð25Þ

holds as well, where we kept only the divergent terms. The
final expression above is a leading term in the expansion in
powers of x ≔ r − rg of f ≈ ϕðtÞxλ, where ϕðtÞ is some
function.
After substituting Eq. (25) in Eq. (11) and using Eq. (9)

we obtain a local algebraic relation between the metric
functions mass and the EMT component. IfΨ ¼ 0, then the
relation τr ¼ −Cf=ð8πr3Þ holds exactly. On the other
hand, the expansion

τr ¼ −ð8πr2gÞ−1f þ… ð26Þ

near the Schwarzschild radius is valid for a general finiteΦ.
For static wormholes, the physical distance allows to

introduce the coordinate l, −∞ < lðrÞ < ∞, that describes
both sides of the bridge via dl ¼ �dr=

ffiffiffi

f
p

. The regular
metric functions have series expansions,

C¼ b0þb1xþb2x2þ…; Ψ¼ϕ1xþϕ2x2þ…; ð27Þ

where x ≔ r − b0, and we absorbed the constant term in Ψ
by redefining the time. The leading coefficient b1 must
satisfy b1 ≤ 1 to make the throat at rg ≡ b0 a marginally
trapped surface. Then,

fðrÞ ¼ ð1 − b1Þx
b0

þOðx2Þ; ð28Þ

and

h ¼ −
1

2
ln
x
ξ
þ
�

ϕ1 þ
1 − b1 þ b0b2
2b0ð1 − b1Þ

�

xþ…; ð29Þ

where

ξ≡ b0
1 − b1

: ð30Þ

This form allows for a more convenient comparison with
PBH solutions. At the throat,

ρðrgÞ ¼
b1

8πb20
; pðrgÞ ¼ −

1

8πb20
: ð31Þ

Expansion of τt, τr, and τt
r in terms of x shows that for

b1 ≠ 0 these solutions belong to the k ¼ 1 class.
The standard Ellis-Morris-Thorne metric [7,22] corre-

sponds to Ψ ¼ 0 and

C ¼ b20=r; ð32Þ

h ¼ −
1

2
ln 2x=b0 þOðxÞ; ð33Þ

with the throat at rg ¼ b0, and thus

b1 ¼ −1; b2 ¼ 1=b0: ð34Þ
The Simpson-Visser metric [38] interpolates between the

Schwarzschild black hole and TWHs,

ds2 ¼ −
�

1 −
2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2 þ a2
p

�

dt2 þ dη2

1 − 2m
ffiffiffiffiffiffiffiffiffi

η2þa2
p

þ ðη2 þ a2ÞdΩ2; ð35Þ

where a is a parameter. The Misner-Sharp mass is
C ¼ 2mþ a2ðr − 2mÞ=r, and for a ≥ 2m the throat is
located at rg ¼ a.
Expanding the metric functions near the throat, we find

for a > 2m,

C ¼ aþ 4m − a
a

xþOðx2Þ; ð36Þ

h ¼ −
1

2
ln
2ða − 2mÞ

a
xþOðxÞ; ð37Þ

and for a ¼ 2m (the one-way wormhole [38]),

C ¼ rþ 2

a
x2 þOðx3Þ; ð38Þ

h ¼ − ln

ffiffiffi

2
p

x
a

þOðxÞ: ð39Þ

Both Ellis-Morris-Thorne and Simpson-Visser metrics
belong to the k ¼ 1 class.
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IV. DYNAMICAL WORMHOLE SOLUTIONS
AND THEIR LIMITS

There are no static k ¼ 0 solutions, as in this case the
scalar T̃ cannot be finite. On the other hand, static solutions
are not only possible in the class of k ¼ 1,

τt → EðtÞf; τr → PðtÞf; τt
r → ΦðtÞf; ð40Þ

but the two most popular static TWH metrics belong to it.
The energy density ρðt; rgÞ ¼ E and the pressure

pðt; rgÞ ¼ P are finite at the Schwarzschild radius. (This
is also true in the proper reference frame of a static
observer.) For E < ð8πr2gÞ−1, the resulting metric functions
are

C ¼ rgðtÞ þ 8πEr2gxþ… ð41Þ

and

h ¼ − ln
x

ξðtÞ þOð ffiffiffi

x
p Þ þ…; ð42Þ

for some ξðtÞ > 0. Consistency of the Einstein equations
results in

P ¼ E −
1

4πr2g
; Φ ¼ �

�

1

8πr2g
− E

�

: ð43Þ

Equation (10) implies now

r0g ¼ 8πΦξrg: ð44Þ

A static k ¼ 1 configuration can be reached from
the solution where the energy density at rg takes its
maximal possible value E ¼ 1=ð8πr2gÞ [39]. While only
such extreme k ¼ 1 solutions can describe PBHs [39], there
is no such restriction on potential wormhole solutions. In
the extreme limit P ¼ −E, Φ ¼ 0, and

Cðt; rÞ ¼ rþ c32ðtÞx3=2 þ c2ðtÞx2 þOðx3=2Þ; ð45Þ

for some coefficient c32ðtÞ < 0, and

h ¼ −
3

2
lnðx=ξÞ þOð ffiffiffi

x
p Þ; ð46Þ

while Eq. (10) implies

r0g ¼ �jc32jξ3=2=rg: ð47Þ

The static limit is possible if as t → t0 the parameters
c32ðtÞ → 0 and ξðtÞ → ξ0 (see Appendix A for details). In
this case, the static solution has f ¼ jc2jx2=rg þOðx3=2Þ
for some constant c2 < 0, while h given by Eq. (46)
with ξ ¼ ξ0.

As indicated by a different behavior of the function h
(a prefactor 3

2
instead of 1

2
), the resulting static metric is

different from the standard TWH metrics. This can be
attributed to the existence of an additional constraint: a real
solution with f ¼ 0 and finite T̃ and T̃ also has a finite
nonzero gtt. This extra requirement cannot be satisfied
dynamically while conforming to the two basic PBH
conditions.
Indeed, if 0 < jgttj < ∞, then Eq. (26) implies, since T

andT are finite, that the solution either belongs to the class
k ¼ 1 or to one of the classes with kE > 1. In the k ¼ 1

case, we find E ¼ −P ¼ 1=ð8πr2gÞ, Φ ¼ 0. Following
through, we then arrive at Eqs. (45) and (46), contradicting
Eq. (25) and thus the initial assumption. Looking at the
observable quantities, we find, e.g., that for the Ellis-
Morris-Thorne metric E ¼ þP ¼ −1=ð8πr2gÞ, which is
impossible in dynamical solutions.
Solutions with kE > 1 are possible. Consistent dynami-

cal solutions exist for half-integer values of kE ≥ 2 and
kP ¼ kΦ ¼ 1 [35]. However, in addition to the presence of
a strong firewall for some of the geodesic observers, they
do not have a static limit: the Ricci scalar Rðt; rgÞ diverges
when r0g ¼ 0 (see Appendix B for details).
So far, we have seen that the standard TWH solutions are

not the static limits of some allowed semiclassical solutions
of the Einstein equations. We now demonstrate that the
static limits of the allowed k ¼ 1 wormhole solutions are
not traversable.
For definiteness, consider an ingoing radial trajectory of

Alice, uA ¼ ð _T; _R; 0; 0Þ, u2A ¼ −1. Energy conservation on
a static background determines the radial velocity via
_R ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − fðRÞ
p

, where E ≥ 1 is Alice’s energy per
unit mass at infinity. Using the EMT that is reverse
engineered from the metric of Eqs. (45) and (46) with
c32 ¼ 0 and ξ ¼ ξ0, we find

ρA ¼ −
3E2

8πrgX
þOð

ffiffiffiffi

X
p

Þ; ð48Þ

where XðτÞ ≔ RðτÞ − rg and _X ¼ _R. We choose the sam-
pling function ℘ ¼ 1 in some vicinity of the throat and let
℘ → 0 still within the NEC-violating domain. As the
trajectory passes through X0þrg→rg, the lhs of Eq. (21)
behaves as

Z

γ
℘2ρAdτ ¼

3E
8πrg

Z

γ

1þOð ffiffiffiffi

X
p Þ

X
dX

∝ logX0 → −∞; ð49Þ

where we used _R ≈ −E in the vicinity of the Schwarzschild
radius rg. The right-hand side of Eq. (21) is finite, and thus
the QEI is violated.
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Similar firewalls occur also in dynamical solutions. For
example, exiting through the contracting (r0g < 0) throat of
the k ¼ 0 wormhole with finite radial velocity _R > 0 leads
to ρA ∝ 1=X, which is stronger than weak firewalls on
nongeodesic trajectories that approach the apparent horizon
of a PBH [36].

V. DISCUSSION

The requirement of finite time of formation according to
a distant observer not only probes the constraints that “the
laws of physics place on the activities of an arbitrarily
advanced civilization” [23], but investigates the local
implications of the topology change. The minimal regu-
larity requirement not only enforces compliance with the
cosmological censorship, but is a part of the traversability
requirement.
In spherical symmetry, these two necessary assumptions

are enough to produce an exhaustive description of
potential geometries. However, none of them leads in
the standard static TWHs.
Impossibility of wormhole formation in finite time is

different from the asymptotic nature of, say, the
Schwarzschild solution. Even if the apparent horizon
may never form according to Bob [16], the classical black
hole geometry provides an excellent description of the
exterior, while approach to it is exponentially fast. On the
other hand, the defining feature of a wormhole is its being a
shortcut between spacetime regions [1,3]. Without a throat
where the connection happens, there is no wormhole. In the
scenarios where a stationary limit can be reached, the
resulting wormhole is not traversable: Alice experiences an
infinite negative energy density. Moreover, similar to some
dynamical configurations, this divergent negative energy
violates the QEI that prescribes a finite value to the
integrated NEC violation.
Various TWH solutions were designed under the

assumption that the semiclassical gravity is valid.
Studies of the amount of the NEC violation, necessary
matter content, etc., are performed within this framework.
The self-consistent analysis of the semiclassical Einstein
equations does not use any information about the matter
content. Its main conclusion is that none of the possible
spherically symmetric wormhole solutions is a TWH. As a
result, we have to accept that existence of macroscopic
spherically symmetric wormholes requires not only a large-
scale violation of the NEC and violation of the topology
and chronology projection conjectures, but breakdown of
semiclassical gravity. It is remarkable that the analysis is
based on local considerations, despite the global implica-
tions of wormhole existence.
This work is limited to spherically symmetric solutions.

To answer the question whether existence of traversable
wormholes within the confines of known physics can be
ruled out on the basis of local considerations, more general

configurations and, in particular, axially symmetric scenar-
ios should be considered.
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APPENDIX A: SOME PROPERTIES
OF k= 1 SOLUTIONS

For the extreme solutions E ¼ 1=ð8πr2gÞ. Equation (43)
then impliesΦ ¼ 0 and P ¼ −E ¼ −1=ð8πr2gÞ. As a result,
Cðt; rÞ is given by Eq. (41), and using the next order EMT
expansion leads to Eqs. (45) and (46). A potentially
divergent term in expansion of the Ricci scalar,

Rdiv ¼
3

2
ffiffiffi

x
p

�

c32
rg

−
rgr0g
c32ξ3

�

; ðA1Þ

is identically zero due to Eq. (47). However, metrics
with C − r starting with a higher power of x, such as
f ¼ jc2jx2=rg þOðx3=2Þ can be only static: the Ricci scalar
is finite at the apparent horizon only if r0g ¼ 0.
In the static case as r → rg,

Tab ≈
1

8πrgx

�

−c2ξ30=r2g 0

0 1=ðc2xÞ

�

; ðA2Þ

while the leading-order expansion of the four velocity of a
free-falling Alice is

uμA ≈ E

�

rg
c2ξ

3=2
0

ffiffiffiffi

X
p ;�1

�

; ðA3Þ

where E ¼ const is Alice’s energy per unit mass at infinity.

APPENDIX B: SOME PROPERTIES
OF kE > 1 SOLUTIONS

Here we adopt the analysis of [35]. For the effective
EMT components with ka ≥ 1, the leading terms in the
Einstein equations become

∂rC ≈ 8πr2gEðtÞfkE−1; ðB1Þ

∂tC ≈ 8πr2gehΦðtÞfkΦ ; ðB2Þ

∂rh ≈ 4πrgðEðtÞfkE−2 þ PðtÞfkP−2Þ; ðB3Þ

for some functions EðtÞ, PðtÞ, and ΦðtÞ and the powers
kE; kΦ; kP ≥ 1.
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The leading terms of the Misner-Sharp mass are then

C ¼ rgðtÞ þ 8πEr2gxkE þ…: ðB4Þ

Solutions with kE ¼ 1 and kP > 1 and/or kΦ > 1 lead to a
divergent Ricci scalar. However, solutions with kE ≥ 3

2
are

consistent. In this case,

f ¼ x=rg þ…: ðB5Þ

Solutions with variable rgðtÞ impose via Eq. (11)
the logarithmic divergence of the function h, as it is

necessary that eh ∝ x−kΦ . It can be realized only if kP ¼ 1.
Then,

h ¼ 4πPr2g ln
x
ξ
; 4πPr2g ¼ −kΦ: ðB6Þ

Expressing this solution in ðu; rÞ or ðv; rÞ coordinates leads
to kΦ ¼ 1 and Φ ¼ �1=ð8πr2gÞ. These solutions are rather
peculiar: energy density vanishes at rg and the pressure and
the flux are determined by the Schwarzschild radius.
A potentially divergent term in expansion of the Ricci scalar,

Rdiv ¼ −
1

x

�

1

rg
þ rgr02g

ξ2

�

; ðB7Þ

and its leading coefficient is nonzero if r0g ¼ 0.
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