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In this article, we describe and numerically implement a method for relativistic location in slightly
curved but otherwise generic spacetimes. For terrestrial positioning in the context of Global Navigation
Satellite Systems, our algorithm incorporates gravitational as well as tropospheric and ionospheric effects
modeled by the Gordon metric. The algorithm is implemented in the SQUIRREL.JL code, which employs a
quasi-Newton Broyden algorithm in conjunction with automatic differentiation of numerical geodesics.
Our work provides a practical solution to the relativistic location problem in a generic spacetime and
consolidates relativistic and atmospheric effects in a single framework. Though optimization is not our
primary focus, our implementation is already fast enough for practical use, establishing a position from five
emission points in < 1 s on a desktop computer for reasonably simple spacetime geometries. In vacuum,
our implementation can achieve submillimeter accuracy considering the Kerr metric with terrestrial
parameters and submeter accuracy including tropospheric and ionospheric effects.
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I. INTRODUCTION

Global Navigation Satellite Systems (GNSSs) have
become an indispensable tool in modern life. From civil
aviation to ridesharing, the applications of GNSSs continue
to increase in scope and usage. The increasing dependence
of our modern economy on GNSSs has led to the develop-
ment of an expansive infrastructure aimed at achieving
more reliable, accurate, and precise location systems.
Traditional GNSSs are based on a Newtonian frame-

work, particularly on the simple principle of trilateration in
Euclidean space, i.e., the use of three sources to determine
the position of a given user. However, a purely Newtonian
framework is not enough; when one proceeds naively
with the calculation of the position of the user employing
standard Newtonian mechanics, even neglecting sources
of errors associated with the signal transmission, one is
faced with large accumulative errors [1,2]. Such errors are
mainly sourced by two effects. The first is the difference
in clock rates due to the relative motion of the user and
the satellites, while the second is due to the gravitational
time dilation effects; the latter contribution is more than
six times larger than the former. Combined with other

relativistic effects, they amount to about a 40 microsecond
delay per day. Translated into location error, this offset
would amount to an error of about 10 km for every day
of activity of the GNSS system. Correcting for relativistic
effects is therefore crucial for achieving an accurate
positioning system. At present, the relativistic offset is
compensated by simply designing the clocks on the
satellites to be slower by about 40 microseconds (increas-
ing the number of emitters aside). In addition, the ground
stations and receivers have to be provided with a micro-
computer able to process any additional calculation
required and to periodically reset the positioning system
[1,2]. Relativistic corrections therefore increase the size of
the ground GNSS infrastructure (see, e.g., [3,4] for some
details in this matter), which in turn increases the general
cost and maintenance burden of the system itself.
In this context, it makes sense to design a positioning

system based directly on relativistic principles. The concept
of a relativistic positioning system (RPS) employs emission
coordinates as the primary coordinates for spacetime [5,6].
Emission coordinates are formed from the timestamps of
proper time broadcasts for a system of satellites, so that the
location of the user in emission coordinates is immediately
established upon signal reception. Moreover, the satellite
coordinate positions become trivial in emission coordi-
nates, consisting of the satellite clock times and timestamps
of concurrently received signals. Of course, what is less
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trivial is the transformation to a standard coordinate system
and the specification of satellite and user positions in terms
of physical distances.
The simplicity of an RPS based on emission coordinates

offers several advantages over traditional implementations
of GNSSs. Since the user and satellite positions in emission
coordinates are expressed directly in terms of proper time
broadcasts received by the users and satellites, an imple-
mentation of an RPS in terms of emission coordinates has
the potential to reduce the post processing, number of
emitters, and number of ground stations, which would
permit a significant reduction in the size and scope of the
infrastructure required without compromising (and pos-
sibly improving) the performance and accuracy of the
service. Additionally, an RPS might be employed equally
well for positioning in space. Finally, RPSs can be used as
key scientific tools; there are, for instance, proposals to use
an RPS network for relativistic geodesy as well as the
detection of gravitational waves (see, e.g., [7]).
In recent years, efforts in the definition and development

of a consistent RPS has led to the development of a number
of different approaches [8–30]. Much effort has been
devoted to establishing a transformation between emission
coordinates and a standard coordinate system. The majority
of the approaches in this direction are limited to a small
class of geometrical backgrounds and require the inversion
of transcendental equations. One exception is that of [31],
which is applicable for general backgrounds, but this
approach still requires numerically solving the (curved
spacetime) Eikonal equation, a partial differential equation.
Thus a key point in the development of RPSs is the
development of calculational methods applicable to more
general spacetime geometries that are efficient enough to be
performed on standard hardware such as that available in
handheld devices or satellites.
Another issue that is often neglected in the development

of RPSs is the modeling of nongravitational effects, such
as the interaction of the signal with the troposphere and
ionosphere. These phenomena are typically thought to
require methods independent of the general relativistic
formalism. For this reason, despite the relevance of the
phenomena to the performance of the positioning system,
and the fact that they are among the largest contributors to
typical GNSS error budgets [32] (see for instance Tables 24
and 25 therein for typical error budgets), they are often
excluded in the framework of RPSs.
In this paper, we propose a new approach to the relativistic

location problem, applicable in generic, slightly curved,
spacetimes, which can by way of analog gravity models
incorporate the interaction of light signals with the tropo-
sphere and ionosphere in a fully relativistic framework. We
will then compare the performance of our method with
respect to the standard performance of the Galileo system,
showing that our method can in principle achieve similar
results. Our approach requires solving at minimum four

ordinary differential equations (ODEs), greatly reducing
the computational complexity of calculations compared to
partial-differential-equation-based approaches. Our work
can be seen as complementary to the recent work [20] and
earlier works [26,33–35] that address instead satellite
ephemeris errors (another large contributor to GNSS error
budgets), which we neglect here.
In the following, lists of symbols contained in the curly

brackets fx1; x2;…g denote sets, and lists of more than
two symbols contained in the round brackets ðv1; v2;…Þ
denote vectors, with vI either representing components or
lower-dimensional vectors. In the latter case, ðv1; v2;…Þ
represents a vector formed from the concatenation of vec-
tors v1, v2, etc. Greek indices represent spacetime coor-
dinate indices and take values from the set f0; 1; 2; 3g.
Lowercase latin indices from the middle of the alphabet
fi; j; k; lg represent spatial coordinate indices and take
values from the set f1; 2; 3g. Unless otherwise indicated,
Einstein summation convention is employed on coordinate
indices. Uppercase latin indices (I, for instance) and the
lowercase latin indices fa; bg are not treated as tensor
indices, and are used to label emitters and emission points;
the uppercase indices take values from the set f1; 2;…; Ng,
and the lowercase indices fa; bg take values from the set
f1; 2; 3g. Lowercase bold latin letters (such as b, v, and x)
are reserved for three-component quantities; when compo-
nents of such letters are displayed explicitly (for instance
x1, x2

3), raised indices always represent the value of the
coordinate index and the lowered indices represent the
value of the emission point label. Uppercase bold latin
letters (such as A and J) are reserved for matrices.
In Sec. II, we discuss the problem of relativistic location

in flat spacetime. Our algorithm for relativistic location in
curved spacetime is described in Sec. III. In Secs. IVand V,
we describe the spacetime metrics and index of refraction
models used in tests of our implementation of the algo-
rithm. Tests and benchmarks of our implementation are
described in Sec. VI. We conclude with a summary and
brief discussion in Sec. VII.

II. RELATIVISTIC LOCATION
IN FLAT SPACETIME

A. Relativistic positioning and relativistic location

Relativistic positioning systems are based on the concept
of emission coordinates (a detailed discussion of which
may be found in [5,6]; see also [36] for the two-dimen-
sional case), which correspond to the broadcasted proper
times of a system of at least four satellites. Each value of
proper time τI broadcasted by a satellite I defines a (null)
hypersurface corresponding to events at which an observer
receives the broadcasted value τI; this surface forms the
future pointing light cone for the spacetime position Xμ

I of
satellite I at the moment the broadcast is emitted. Given
four satellites, each with a single broadcast of proper time
(which we collectively write as τ ¼ fτ1; τ2; τ3; τ4g), one
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may define four such hypersurfaces, the intersection of
which is (generically) a single point in an appropriate
region of a well-behaved spacetime geometry. Locally,
points in such regions are distinguished by different values
of proper time broadcasts; the collection of proper times τ
broadcasted by the four satellites may then be used as
coordinates in certain regions of spacetime.
A central problem in relativistic positioning system is that

of transforming between emission coordinates τ and a more
standard coordinate system in a given spacetime geometry. If
the ephemerides of the satellites are known in a standard
coordinate system (Cartesian coordinates for flat spacetime,
for instance), then the emission coordinates τ may be
converted into the coordinates for the emission points XI
(which we collectively write as X ¼ fX1; X2; X3; X4g), or
the spacetime positions of the satellites at themoments when
the broadcasted values τ were emitted. To perform the
coordinate transformation, one must find in the standard
coordinate system the coordinates for the intersection point
Xc of the future light cones of four emission points X,
assuming a unique pointXc exists in some appropriate region
of spacetime. We refer to the problem of finding the
coordinates Xc, given the coordinates of the emission points
X as the relativistic location problem.
In Cartesian coordinates t, x, y, z on flat spacetime, the

coordinates for the intersection point Xc must satisfy the
following constraint, which can in principle be solved using
root-finding methods in a brute-force approach:

ðXμ
I − Xμ

cÞðXν
I − Xν

cÞημν ¼ 0; ð1Þ
where here, I ∈ f1; 2; 3; 4g, and ημν are the components of
the Minkowski metric:

η ¼

2
6664
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
7775: ð2Þ

In flat spacetime, several methods for computing such
points, which avoid brute-force root-finding methods,
may be found in the literature, for instance [37,38]
(implemented in [12]) and [26,34].

B. Transformation algorithm

Here, we describe an algorithm for computing the
intersection point Xc from four emission points based on
Lorentz transformations. To our knowledge, this algorithm
has not been explicitly described in the literature before,
though some of the methods may in principle be inferred
from the diagrams presented in [38] (which we reproduce
here in Figs. 1 and 2). Since this algorithm distinguishes
geometrically different configurations of the emission
points, it is physically intuitive and of conceptual utility,
and worth describing in detail here. Additionally, although
this algorithm is not the most optimal one for the flat

spacetime case, our implementation of it yields an improve-
ment over a straightforward implementation of the formula
of [37,38] discussed below.
The algorithm we describe requires that the emission

points X are spacelike separated, or that

ðXμ
I − Xμ

JÞðXν
I − Xν

JÞημν ≥ 0; ð3Þ

for all I, J. The frame in which the emission points X are
defined will be called A. From these points, one may
construct three spacelike vectors E1, E2, E3 in the following
manner:

FIG. 1. 2þ 1 illustration for the relativistic location algorithm
in the case of a spacelike configuration hyperplane Σ in an
adapted frame. If the configuration hyperplane Σ is spacelike,
then one can perform a Lorentz transformation so that the
emission points lie on a surface of constant time coordinate
t ¼ X00 (the corresponding t axis is vertical) with a value t ¼ t0.
In this frame, the emission points lie on a sphere S (represented
here as a circle) in the configuration hyperplane Σ. The problem
consists of first finding the circumcenter xc and the circumradius
rc. In this frame, the time it takes for light to travel the distance rc
is Δt ¼ rc in units where the speed of light is unity. The
intersection point is then given by Xc ¼ ðt0 þ Δt;xcÞ.

FIG. 2. 2þ 1 illustration for the relativistic location algorithm
in the case of a timelike configuration hyperplane Σ in an adapted
frame (as in Fig. 1, the t axis is vertical). If Σ is timelike, then one
can perform a Lorentz transformation so that the emission points
lie on a surface of constant coordinate z ¼ X03, with the value
z ¼ z0. In this frame, the emission points lie on a hyperboloid H
(represented here as a hyperbola). The problem consists of first
finding the coordinates of the vertex vc in this frame and the
distance R, the latter being the distance between the vertex vc and
a point on H. The distance between the z ¼ z0 plane and the
intersection point Xc is given by R ¼ Δz. With these quantities in
hand, one may obtain the intersection point Xc ¼ ðvc; z0 � ΔzÞ.
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E1 ¼ X2 − X1;

E2 ¼ X3 − X1;

E3 ¼ X4 − X1: ð4Þ

These three vectors span a hyperplane Σ, called the
configuration hyperplane; from these three vectors, one
may construct a vector normal to the configuration
hyperplane Σ in the following manner (ϵναβδ being the
Levi-Civita tensor):

Nμ ¼ ημνϵναβδEα
1E

β
2E

δ
3; ð5Þ

and a unit normal vector:

nμ ¼ qffiffiffiffiffiffiffiffiffiffiffiffi
NσNσ

p Nμ; ð6Þ

where q ¼ �1, with the sign specified by the requirement
that n be future pointing if timelike.

1. Spacelike configuration hyperplane

We first consider the case where the configuration
hyperplane Σ is spacelike, so that the normal vector is
timelike. In this case, one may write:

n ¼ ðγ; βr̂Þ; ð7Þ

where r̂ ¼ ðr̂x; r̂y; r̂zÞ is a unit vector. γ ≔ n0 and

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=γ2

p
. One may then perform a Lorentz trans-

formation to a frame in which the spatial components of the
unit normal n vanish. The Lorentz transformation matrix
takes the form

Λ ¼
�

γ −βγr̂
−βγr̂ ðI þ ðγ − 1Þr̂ ⊗ r̂Þ

�
; ð8Þ

where I is the identity matrix and ⊗ denotes a tensor
product.
Since the Lorentz transformationΛ transforms to a frame

in which n0 ¼ Λ · n has no spatial components, it follows
that since the vectors E1, E2, and E3 are orthogonal to n, the
time component of their transformed counterparts E0

1, E
0
2,

and E0
3 must vanish. From Eq. (4), it follows that the time

components of the transformed emission points X0 ¼
fX0

1; X
0
2; X

0
3; X

0
4g are all equal; in this frame, the emission

points all lie on the same constant time slice t ¼ t0. The
primed frame will be called B.
The problem of finding the intersection point of the light

cones from four points is simply a matter of finding the
point spatially equidistant from the four emission points. To
see this, consider four signals emitted from four points at
the same instant. We seek the spatial point at which the
signals simultaneously arrive. The preceding analysis
establishes that one can find a reference frame (frame B)

where the four emission points all lie on the same time
slice. Since the speed of light is constant in all frames, the
point where the signals simultaneously arrive must be
spatially equidistant from the four emission points. If the
distance between the simultaneous arrival point and each of
the emission points is rc, then the time coordinate in frame
B is given by the time it takes for light to travel a distance rc
(which has a value rc in units where the speed of light
is c ¼ 1).
In a three-dimensional Euclidean space, this is a straight-

forward task. Generically, four points that do not all lie
in the same plane form the corners of a tetrahedron. It is
well known that, for any tetrahedron, one can construct a
circumsphere S that passes through all the corners of a
tetrahedron. The coordinates of the circumcenter xc specify
the spatial coordinates of the intersection point in frame B,
and the circumradius determines the time coordinate. Given
four (spatial) points fx1;x2;x3;x4g, one can compute the
coordinates of the circumcenter xc using the following
formulas [39]:

xc ¼ A−1u; ð9Þ

where the 3 × 3 matrix A and the vector u are defined as

A ≔

2
664
½x2 − x1�T
½x3 − x1�T
½x4 − x1�T

3
775 u ≔

1

2

2
664
x2
2 − x2

1

x2
3 − x2

1

x2
4 − x2

1

3
775: ð10Þ

The circumradius rc may then be computed using the
formula:

rc ¼ jxc − xIj1=2: ð11Þ

The intersection of light cones in the frame B is then
given by

X0
c ¼ ðt0 þ rc;xcÞ: ð12Þ

To obtain the intersection of the light cones Xc in the
original frame A, simply invert the Lorentz transformation:

Xc ¼ Λ−1X0
c: ð13Þ

There are instances in which this algorithm fails. For
instance, the algorithm may fail when the matrix A
becomes degenerate, which can occur if the emission
points are collinear or coplanar (in which case rc diverges)
[38]; these cases are discussed in detail in [40,41].

2. Timelike configuration hyperplane

We now turn to the case in which the configuration
hyperplane Σ is timelike, which corresponds to a spacelike
unit normal vector nμ. In this case, the adapted frame is
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constructed differently; one first performs a Lorentz trans-
formation such that the spacelike nμ is tangent to a surface
of constant t ¼ X00 (here, t ¼ X00, x ¼ X01, y ¼ X02,
z ¼ X03). Then, one performs a spatial rotation so that
nμ is aligned with the z axis. The configuration hyperplane
Σ in the resulting frame is characterized by a constant
z ¼ z0 coordinate. The points will lie on an elliptic
hyperboloid H formed by the intersection of the past light
cone for the solution point and the configuration hyper-
plane Σ (see Fig. 2). The main task is to find the coordinates
for the vertex vc ¼ ðtc; xc; ycÞ of the cone which the
hyperboloid asymptotes to, as well as the distance R
satisfying the following set of equations:

ΦI ¼ −R2; ð14Þ

where

ΦI ≔ ðxI − xcÞ2 þ ðyI − ycÞ2 − ðtI − tcÞ2: ð15Þ

By eliminating R, one may write this as a set of three
equations:

Φ1 ¼ Φ2;

Φ2 ¼ Φ3;

Φ3 ¼ Φ4; ð16Þ
which can then be solved for the vertex coordinates vc by
way of a computer algebra system (we use Mathematica
[42] to obtain explicit expressions).
The vertex coordinates provide the ðt; x; yÞ coordinates

for the intersection of future pointing light cones. The z
coordinate for the intersection of light cones is given by

zc ¼ z0 � R: ð17Þ

In this case, one does not have a unique point for the
intersection of light cones—this is the bifurcation problem,
which is discussed in detail in [38].

C. Unified four emission point formula

It is also possible to calculate the intersection point Xc
using a closed-form formula that applies regardless of the
geometrical configuration of the four emission points. Such
a formula was presented in [37,38] and it is given by

Xμ
c ¼ Xμ

1 þ yμ� −
yν�y�νNμ

yσ�Nσ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðyσ�NσÞ2 − yσ�y�σNτNτÞj

p ; ð18Þ

where Xμ
1 is one of the emission points, Nμ is defined in

Eq. (5), and yμ� is given by

yμ� ≔
1

ξνNν
ðiξHÞμ: ð19Þ

Here, ξ is any vector satisfying ξμNμ ≠ 0, and iξH is the
interior product of ξ and the two form H [explicitly
ðiξHÞμ ¼ ημνξσHσν]. Given the definition for the frame
vectors in Eq. (4), the two-form H may be expressed as

H ≔ Ω1hðE2; E3Þ þ Ω2hðE3; E1Þ þ Ω3hðE1; E2Þ;
Ωi ≔ ημνE

μ
i E

ν
i ; hðU;VÞαβ ≔ −εαβμνUμVν; ð20Þ

with no sum on i in the expression for Ωi.
Note that the � sign in (18) means that there are always

two candidate solutions, even if the geometrical configu-
ration leads to just one. This complicates a straightforward
use of the formula. The determination of the correct sign is
somewhat involved—especially when the bifurcation prob-
lem mentioned in the previous section is present [38].

D. Five emission points

The bifurcation problem may be solved most easily by
including an additional point. If five emission points are
available, then one can obtain the intersection point in a
straightforward way. Following [21], one begins with the
constraint function:

ΨI ≔ ðXμ
I − Xμ

cÞðXν
I − Xν

cÞημν; ð21Þ

where now I ∈ f1; 2; 3; 4; 5g. One can take the differences
to form four unique equations of the following form:

ΨI − ΨJ ¼ ημν½2Xμ
cðXν

J − Xν
IÞ þ Xμ

I X
ν
I − Xμ

JX
ν
J�; ð22Þ

which are linear in Xμ
c ; one can reduce this to a straight-

forward linear algebra problem, provided that the matrix
Xν
J − Xν

I of emission point differences is nondegenerate.
One may observe that the matrix of emission point dif-
ferences becomes degenerate when any two emission
points are brought together—for this reason, one might
encounter a loss of precision for closely separated emission
points. Though this formula requires an additional emission
point, it is preferred due to its computational simplicity and
accuracy.

E. Implementation, evaluation, and discussion

The new algorithms we have presented here, as well
as the formulas described in [37,38] and the five-point
algorithm of [21] [which we have described in Eqs. (21)
and (22)], have been implemented in the CEREAL.JL code,1

available at [43]. We have written CEREAL.JL to accom-
modate abstract datatypes; this allows user-specified float-
ing point precision. In the tests we perform, we consider
two types of floating point variables, the default FLOAT64

double precision, and the DOUBLE64 “double double”

1The name is derived from the pronunciation of the acronym
SRL for special-relativistic locator.
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precision variables implemented in the DOUBLEFLOATS

library [44].
Included in CEREAL.JL are test routines that perform tests

of the code by stochastically generating a set of N emission
points on the past light cone of some intersection point Xc,
and comparing the results Xr generated by the algorithms in
CEREAL.JL with the true value for Xc. The points Xc and Xr

are compared according to Euclidean L2 norms (with jVj ¼ffiffiffiffiffiffiffiffiffiffiffi
V · V

p
for some vector V):

ε ¼ jXr − Xcj=jXcj: ð23Þ
In our tests, the most accurate algorithm is the five-point

formula of [21], which for 106 test cases satisfies ε < 10−9

with double precision (FLOAT64), and ε < 10−23 with
extended precision (DOUBLE64). The accuracy of the new
algorithm presented in Sec. II B and the formula in Sec. II C
[37,38] are comparable to each other, but both are less
accurate than the formula of [21]. For 106 test cases, the
errors for the four-point methods in Secs. II B and II C
typically satisfy ε < 10−5 with double precision (FLOAT64),
and ε < 10−14 with extended precision (DOUBLE64).
Execution times differ greatly between the algorithms.

On a standard desktop computer (with an Intel i5-7500
processor), the five-point formula of [21] typically per-
forms the computation in <1.5 μs. The four-point algo-
rithms that we have implemented in CEREAL.JL are
significantly slower, despite only requiring four emission
points. For four emission points, our implementation of the
formula in [37,38] typically requires ∼150 μs to perform
the computation. The algorithm we have presented here has
improved performance, requiring a computation time of
∼36 μs. Since the five-point formula is faster and yields
results with significantly higher accuracy, we employ it
when computing the initial guess for the curved spacetime
algorithm that we will describe in the next section.
We note that the algorithms described here may be used in

conformally flat spacetimes, since flat spacetimes and con-
formally flat spacetimes share the same null cone and null
geodesic structure on regions where the conformal factor
remains nonsingular. In particular, the intersection point for
four null cones in a conformally flat spacetime will be the
same as that for the underlying flat spacetime (underlying in
the sense that the metric for the conformally flat spacetime
differs from the flat spacetime by a conformal factor). This
class of spacetimes include cosmological spacetimes, such as
de Sitter, anti–de Sitter and the more general Friedmann-
Lemaitre-Robertson-Walker spacetimes.

III. RELATIVISTIC LOCATION
IN CURVED SPACETIME

A. Geodesics

For general spacetime geometries, described by a metric
tensor gμν and its inverse gμν, the problem of finding the

intersection point Xc of four future pointing light cones
(provided that such a point exists) amounts to finding
the intersection of four null geodesics from the emission
points X; this follows from the fact that for some emission
point XI, a point Xp in the future pointing null cone lies
on a geodesic connecting Xp and XI. Note also that the
emission points X lie on the past light cone of Xc. Given
some inverse metric gμν ¼ gμνðxÞ describing the spacetime
geometry, an affinely parametrized null geodesic may be
described by the Hamiltonian

H ≔
1

2
gμνpμpν; ð24Þ

where the four-momenta are given by

pμ ¼ gμν
dxν

dλ
; ð25Þ

and the associated Hamilton equations are

dxμ

dλ
¼ ∂H

∂pμ
;

dpμ

dλ
¼ −

∂H
∂xμ

: ð26Þ

For null geodesics, the initial data at λ ¼ 0 is given by an
initial point xμ0 and an initial three velocity vi, with the
initial four-momentum pμjλ¼0 satisfying the following
(with i ∈ f1; 2; 3g):

δiμ
dxμ

dλ

����
λ¼0

¼ vi; gμνðx0Þ
dxμ

dλ
dxν

dλ

����
λ¼0

¼ 0: ð27Þ

The solution to Hamilton’s equations is formally given
by xμ ¼ xμðλ; x0; vÞ. Since λ is an affine parameter, one can
redefine λ up to linear transformations—it is therefore
always possible to rescale λ so that it takes values in the
domain λ ∈ ½0; 1�, with λ ¼ 1 being the final point.

B. Geodesic intersection

The problem of finding the intersection of light cones in
a slightly curved spacetime may be reformulated in terms
of null geodesics [27]. Consider four formal solutions to
Hamilton’s equations (26), distinguished by the indices
I ∈ f1; 2; 3; 4g, that have end points xμI , which are func-
tions of the initial data XI and vI:

xμI ¼ xμI ðXI; vIÞ ¼ xμI ð1; XI; vIÞ: ð28Þ

Then define the following vector valued function:

F ≔ ðx1 − x2; x1 − x3; x1 − x4Þ: ð29Þ

where F ¼ FðX; vÞ [with v ¼ ðv1; v2; v3; v4Þ]. Observe
that upon evaluation, the function F yields a 12 component
vector. The intersection of four null geodesics is given by
the condition
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FðX; vÞ ¼ 0: ð30Þ

The problem of solving the system of 12 equations in
Eq. (30) is a standard root-finding problem. In particular,
given a set of four emission points X ¼ fX1; X2; X3; X4g,
one solves Eq. (30) for the 12 quantities v ¼ ðv1; v2; v3; v4Þ
that constitute the initial data.

C. Initial data

From here on, we write fðvÞ ¼ FðX; vÞ for simplicity,
suppressing the dependence on emission points X. The
specific root finding algorithm we intend to employ will be
based on an iterative quasi-Newton method, which requires
an initial guess. It is therefore appropriate to begin by
assuming that the spacetime geometry is slightly curved;
the flat spacetime algorithms described earlier may then be
used to construct an initial guess for v.
Initial data for the geodesics is constructed from the

emission points X ¼ fX1; X2; X3; X4g and the flat space-
time intersection point Xc. From these, one obtains the
initial guess for the vector v ¼ ðv1; v2; v3; v4Þ:

viI ≔ Xi
c − Xi

I; ð31Þ

in units of dimensionless affine parameter. From v and X,
one may construct the initial data for the geodesics by first
constructing the vector VI for each geodesic:

VI ¼ ðV0
I ; v

1
I ; v

2
I ; v

3
I Þ; ð32Þ

where V0
I is determined by the condition

Vμ
I V

ν
I gμνðXIÞ ¼ 0: ð33Þ

The conjugate momenta are given by

pI
μ ¼ Vν

I gμνðXIÞ: ð34Þ

The initial positions XI and initial conjugate momenta pI

provide initial data for Eq. (26), which may then be solved
to compute the value of fðvÞ according to Eq. (29).

D. Root finding

In general, one does not possess analytical solutions
to the geodesic equation (26) for a generic metric gμν. To
evaluate the function (29), one must therefore solve the
geodesic equation (26) numerically for each emission
point. One might expect a root finding algorithm for
Eq. (30) to be computationally expensive, particularly in
the computation of a Jacobian.
However, libraries for efficiently computing the Jacobian

of generic functions have become available in recent years,
in particular those that employ automatic differentia-
tion methods. Automatic differentiation refers to a set of

methods which, by way of the chain rule, exploit the
fact that all numerical computations can in principle
be broken down into finite compositions of elementary
arithmetic operations. These methods can in principle be
used to numerically compute the derivatives of programs to
machine precision with a minimal computational overhead.
A detailed discussion of automatic differentiation may be
found in [45,46]. In our approach, we obtain the Jacobian
of ¼ FðX; vÞ by automatic differentiation of numerical
solutions to the geodesic equation in a generic slightly
curved spacetime.2

The specific root finding algorithm we employ is based
on an iterative quasi-Newton Broyden method [49,50],
which we summarize here. The task at hand is to obtain the
root of some function fðvÞ. In the initial iteration, the
Jacobian of fðvÞ is computed using automatic differentia-
tion methods. We also employ automatic differentiation in
computing the gradient of the Hamiltonian, a strategy also
employed in [51] for solving the geodesic equation in
Hamiltonian form. Given the Jacobian J and its inverse J−1,
at some iteration i, one can update v according to the
Newton prescription:

viþ1 ¼ vi þ J−1i fðviÞ: ð35Þ

In the standard Broyden method (alternatively referred to as
the “good” Broyden method), the first iteration is given by
Eq. (35), with the Jacobian computed by differentiation.
For the subsequent iterations, one computes the following:

Δvi ¼ vi − vi−1

Δfi ¼ fðviÞ − fðvi−1Þ; ð36Þ

The inverse Jacobian J−1 is then updated according to the
Sherman-Morrison formula:

J−1iþ1 ¼ J−1i þ ΔvTi − J−1i Δfi
ΔvTi J−1i Δfi

ΔvTi J−1i : ð37Þ

One may then use Eq. (37) in conjunction with (35) to
iteratively solve for the root of fðvÞ. The termination of the
algorithm is determined by the behavior of fi; if a local
minimum is detected within a specified range of iterations,
the algorithm terminates and the results corresponding to
the minimum are returned. In case the algorithm does not
converge, a hard termination limit is used.
Given a root for fðvÞ, one can obtain the intersection

point by solving the geodesic equations once more with the

2We note that automatic differentiation methods have been
previously proposed for reducing the computational complexity
for relativistic location in the Schwarzschild spacetime [47], and
we also note that, in [48], automatic differentiation methods have
been proposed as a way to obtain Taylor expansions of the initial
value problem for the geodesic equation.
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updated values for the initial data constructed from v and X,
and averaging over the end points (which are assumed to
be close).

E. The squirrel algorithm

We now summarize the curved spacetime algorithm
employed in the SQUIRREL.JL code3:
(1) First, apply a flat spacetime algorithm (either that of

Secs. II B or II D) to the emission points X to obtain a
guess for the intersection point and initial velocities.

(2) Apply a root finding algorithm to the function
fðvÞ ¼ FðX; vÞ to obtain the initial velocities v
for subsets of four emission points.

(3) Integrate the geodesics with the resulting initial
velocities v and emission points X to find the
intersection point.

As indicated, steps 2 and 3 of the above algorithm are applied
to a subset of four emission points. If additional emission
points are available, an outlier algorithm, described in the
next subsection, is employed to exclude large errors.

F. Outlier detection

There are instances in which the algorithm described in
this section can generate large errors, which can result from
a combination of large errors in the initial guesses provided
by the flat spacetime algorithm and convergence failures in
the Broyden algorithm. One might expect such errors to
occur, since the function FðX; vÞ is generally nonlinear. To
increase the reliability of the algorithm, we describe here
methods that can mitigate the effects of these errors when
additional emission points are available.
As discussed before, given N > 4 emission points, one

can choose up to CðN; 4Þ combinations of four emission
points X, and for each set X, the previously described
algorithm can be applied to obtain a total of CðN; 4Þ
intersection points. Since there is only one receiver for the
emission data, all CðN; 4Þ intersection points should agree.
If errors in the algorithm are assumed to be rare, one can
employ an outlier detection algorithm that can identify the
intersection points that strongly deviate from the others.
We employ a simple outlier detection algorithm, which

begins by first computing the median values for the
intersection points, and then computes the deviation of
each intersection point from the median. The points which
deviate from the median beyond a user-specified threshold
are then discarded. The final intersection point is then
computed from the remaining intersection points.

G. Remarks on implementation

The algorithm described here is implemented in the
SQUIRREL.JL code (available at [52]). The SQUIRREL.JL code

is written in the Julia language, which is ideal for
implementing the squirrel algorithm due to the state
of the art automatic differentiation and ODE solver
libraries available. Automatic differentiation is handled
using the FORWARDDIFF.JL forward-mode automatic differ-
entiation library [53], and geodesics are integrated using
the recommended Verner seventh order Runge-Kutta inte-
grator AUTOVERN7 [54] in ORDINARYDIFFEQ.JL [55], which
features stiffness detection and automated switching to a
specified stiff integrator (we use the fifth order Rosenbrock
method integrator RODAS5 [56]). Though our system is
Hamiltonian, we have avoided symplectic integrators in
favor of integrators with adaptive time stepping in order to
minimize execution time.
The Broyden algorithm is implemented directly,

depending only on standard Julia libraries. The default
termination limit is set to 24. The initial guess is
provided by one of the flat spacetime algorithms imple-
mented in the CEREAL.JL code, depending on the number
of emission points available; if N ¼ 4 emission points are
available, then the flat spacetime algorithm presented in
Sec. II B is employed (in which case, our implementation
returns two points), but if N ≥ 5 emission points are
available, then the formula of [21] reviewed in Sec. II D
is employed. The outlier detection algorithm becomes
active for N ≥ 5 emission points, and is applied to the
location algorithm of SQUIRREL.JL to remove results with
large errors.
Since there is now widespread availability of devices

with multithreading capabilities, the SQUIRREL.JL code
employs multithreading on loops containing the inte-
gration of geodesics and the automatic differentiation of
geodesic solutions. With multithreading enabled on a
desktop computer with four cores and four threads
(Intel i5-7500), the SQUIRREL.JL code can establish a position
from five emission points in under 1 s for reasonably simple
spacetime geometries—benchmarks will be discussed
in Sec. VI C.

IV. CURVED SPACETIME GEOMETRIES

A. The Kerr-Schild metric

In this section, we describe some specific choices for the
spacetime metric gμν used in our tests. In general relativity,
the spacetime geometry surrounding a stationary rotating
object in a vacuum is given by the Kerr geometry [57],
described by the following metric in Kerr-Schild coordi-
nates [58]:

gμν ¼ ημν þ fkμkν;

kμ ¼
�
1;
rxþ ay
r2 þ a2

;
ry − ax
r2 þ a2

;
z
r

�
;

f ¼ 2GMr3

r4 þ a2z2
; ð38Þ3The name is derived from the pronunciation of the acronym

SCuRL for slightly curved relativistic locator.
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where G is the gravitational constant, M is the mass, and a
is the spin parameter. The radius r may be compactly
expressed as the solution to

x2 þ y2

r2 þ a2
þ z2

r2
¼ 1: ð39Þ

At the surface of the Earth, the spacetime curvature is
small, so onemight askwhether the flat spacetime algorithms
suffice for positioning, neglecting tropospheric and iono-
spheric corrections. To determine whether this is indeed the
case, we test the five-point algorithm in Eqs. (21) and (22)
against the Kerr geometry. Recalling that emission points lie
on the past light cone of the intersection point Xc, we
stochastically generate intersection points Xc, then construct
initial data for past directed null geodesics. To obtain the
emission points X ¼ fX1; X2; X3; X4; X5g, we integrate the
geodesic Hamilton equations for five sets of initial data for
the null geodesics. The resulting emission points X are used
with the formula of [21] to obtainXc, the intersection point in
flat spacetime. The positioning error is givenby (with vertical
bars denoting the L2 Euclidean distance norm)

ϵKSc ¼ jP̂ðxtar − xcÞj: ð40Þ

Here, P̂ð·Þ is a projection operator (projecting to hori-
zontal or vertical directions relative to some surface), xc
form the spatial components of Xc, and xtar denotes the
spatial components of Xtar, which is the true intersection
point for the future light cones of X with respect to the Kerr-
Schild metric.
We consider a Kerr-Schild metric with parameter choices

GM ¼ 1 and a ¼ 738 (the latter corresponding to the

angular momentum for the Earth). We perform a test with
105 randomly generated target points Xtar on the WGS-84
reference ellipsoid [59] (settingM to be the Earth mass) and
randomly generated initial datasets for null geodesics. The
result, illustrated in Figs. 3 and 4, indicates that the error
satisfies ϵKSc ≤ 2 cm for 95% of the points in the vertical
direction (the direction orthogonal to the reference ellipsoid),
and ϵKSc ≤ 3 mm in the horizontal direction. In a vacuum,
the five emission point algorithm in flat spacetime suffices
for positioning to an accuracy on the order of a centimeter.
This result is consistent with those of [10], where it is also
argued that the dominant errors from spacetime curvature
come from the determination of satellite orbits, rather than
the bending of photon trajectories.

B. The Gordon metric

If one seeks centimeter-scale accuracy in a vacuum on
terrestrial scales, then flat spacetime algorithms suffice.
However, for terrestrial positioning, tropospheric and
ionospheric effects significantly affect the propagation of
electromagnetic signals and introduce errors in the com-
puted position. From a general relativistic perspective, one
might be tempted to dismiss tropospheric and ionospheric
effects as ancillary (practical considerations aside), as the
underlying spacetime geometry does not depend to a
significant degree on tropospheric and ionospheric profiles.
However, in a positioning system based on the exchange of
electromagnetic4 signals, such effects will deform the
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FIG. 3. Horizontal positioning errors for our implementation of
the five emission point algorithm of [21] relative to the Kerr-
Schild geometry for 105 test cases. The closely spaced vertical
lines correspond to the rms values and 95% confidence level for
the errors, with respective values of 0.0226 and 0.0227 cm. Out of
105 samples, two samples (0.002%) have an error >2 cm with
the largest error being 3.3 cm.
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FIG. 4. Vertical positioning errors for our implementation of the
five emission point algorithm of [21] relative to the Kerr-Schild
geometry for 105 test cases. The vertical lines correspond to the
rms values and 95% confidence level for the errors, with
respective values of 1.56 and 2.00 cm. Out of 105 samples, 11
samples (0.011%) have an error >5 cm with the largest error
being 15.0 cm.

4Signals encoded in weakly interacting particles such as
neutrinos may offer a possible alternative for relativistic position-
ing that would avoid the need to consider tropospheric and
ionospheric effects.
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emission coordinates, and, in this sense, tropospheric and
ionospheric effects should still be taken into consideration
even if one insists on a fundamentally relativistic approach.
Fortunately, as indicated in [60], the framework of

general relativity can by way of analog spacetime geom-
etries incorporate the effects of dielectric media on electro-
magnetic signal propagation. In dielectric media, light
propagation may under certain conditions be described
with the geodesics of the Gordon metric [61–63], which has
the form

ḡμν ¼ gμν þ
�
1 −

1

n2

�
uμuν; ð41Þ

where uμ corresponds to the four-velocity of the medium,
and n is an effective index of refraction. To simplify the
analysis, we will neglect the rotation of the Earth (in
general, the corotation of the medium can be included
through the four-velocity uμ). The tropospheric index of
refraction has a sea level value of natm − 1 ∼ 2.7 × 10−4,
and the effective index of refraction for the ionosphere has a
maximum value on the order of nion − 1 ∼ 4.0 × 10−5. It
follows that the tropospheric and ionospheric corrections to
the metric are of the respective orders 10−4 and 10−5. In
contrast, the difference fkμkν between the components of
the Kerr-Schild metric and the Minkowski metric is roughly
on the order of 10−9 at the surface of the Earth, so
tropospheric and ionospheric effects dominate.

C. Weak field metric

At this point we emphasize that when performing tests
with the analog Gordon metric, we incorporate gravita-
tional effects with the weak-field metric, rather than the
Kerr metric. The weak field metric has the form

gμν ¼ ημν − 2Vδμν; ð42Þ

where V is the gravitational potential of the Earth, which
takes the form

V ¼ −
GM
r

�
1 − J2

�
a2ell
r2

P2ðcos θÞ
��

; ð43Þ

where r2 ¼ x2 þ y2 þ z2, P2 is a Legendre polynomial of
degree 2, J2 is a quadrupole moment of the Earth, which
takes a value of [2]

J2 ¼ 1.0826300 × 10−3: ð44Þ

The quantity aell is the equatorial radius of the Earth and is
one of the parameters of the reference ellipsoid, which
approximates the Earth’s geoid up to roughly 100 m.
Following [2], the reference ellipsoid we use is the WGS-
84 standard [59], which corresponds to the following values
for the semimajor axis aell and the semiminor axis bell:

aell ¼ 6378.137 km;

bell ¼ 6356.752314245 km: ð45Þ

V. INDEX OF REFRACTION MODELS

We now turn to the construction of models for the
effective index of refraction, which we will use in the
analog Gordon metric (41) for our tests of the algorithm.
The effective index of refraction is then given by the
following expression

neff ¼ 1þ Δnatm þ Δnion: ð46Þ

In this section, we describe the construction of sim-
plified profiles for Δnatm and Δnion, which we will use
in evaluating the SQUIRREL.JL code.

A. Atmospheric model

Given the pressure and temperature profiles for the
atmosphere, the profile for the atmospheric index of
refraction (here excluding contributions from the iono-
sphere) can be computed from the revised Edlén equation
[64] for the refractive index of air:

Δnair ¼
Δns½P=Pa�
96095.43

×
1þ 10−8ð0.601 − 0.00972½T=°C�Þ½P=Pa�

1þ 0.0036610½T=°C� ; ð47Þ

where Δnair ¼ nair − 1, and Δns is given by

Δns × 108 ¼ 8342.54þ 2406147

130 − 1=λ2
þ 15998

38.9 − 1=λ2
: ð48Þ

Following [65], one may obtain standard atmospheric
temperature and pressure profiles from one of several atmo-
spheric models, for instance the U.S. Standard Atmosphere
model [66], or the more detailed NRLMSISE-00 model
[67]. Using the former, atmospheric index of refraction
profiles up to 80 km are computed, and we fit the computed
values to a function of the form:

Δnatm ¼ A1

B1 þ C1ðh −H1ÞÞ
þ A2

B2 þ C2ð½h� −H2ÞÞ
; ð49Þ

with h denoting altitude (in km) from an appropriate
reference ellipsoid. The fitted parameter values are

A1 ¼ −222.666; A2 ¼ −253.499;

B1 ¼ 99.0621; B2 ¼ 112.757;

C1 ¼ 0.157823 km−1; C2 ¼ 0.179669 km−1;

H1 ¼ −7.1541 km; H2 ¼ −7.15654 km: ð50Þ
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Though it would be aesthetically preferable to employ
exponential functions in our model, we refrain from
using them to avoid potential instabilities in the libraries
we used for the integration of ODEs. Since the con-
tributions from Δnatm are concentrated in the troposphere,
the contributions from Δnatm will be referred to as
tropospheric.

B. Ionospheric model

The effective index of refraction for electromagnetic
wave propagation the ionosphere is given by the
AppletonHartree equation [68,69]. We consider here an
approximation which assumes a collisionless plasma,
and signal frequencies ω ≔ 2πf much greater than the
gyrofrequency ωg ≔ jqbE=mej with bE being the Earth’s
magnetic field, and q, me being the respective charge and
mass of the electron. For GNSS signals, f ∼ 109 Hz, and
ωg=ω ≈ 3 × 10−3, so this approximation is reasonable. The
corrections to the effective index of refraction nion from the
gyrofrequency are in fact proportional to ωg=ω, and depend
on the angle between the direction of radio wave propa-
gation and bE. If gyrofrequency corrections become
important, then nongeometrical corrections to the geo-
desic equation may be needed, in which case the Gordon
metric alone does not suffice for characterizing the
propagation of electromagnetic signals. However, one
may nonetheless suppress such corrections with higher
signal frequencies.
Under the assumptions in the preceding paragraph, the

Appleton-Hartree formula for the ionospheric phase index
of refraction nph may be approximated as

Δnph ≈ −
ω2
p

f2
¼ −ð4.024 × 10−17Þ ½Ne=m−3�; ð51Þ

where Δnph ¼ nph − 1, and ω2
p ¼ q2Ne=2ϵ0me is the

squared plasma frequency, with ϵ0 being the vacuum
permittivity, and Ne the electron density in m−3. Since
the corrections from the gyrofrequency ωg are linear, we
assume that the index Δnph can only be modeled up to
a precision of 0.3% for signals in the GHz range. It should
be mentioned that since nph < 1, nph can only be the index
of refraction associated with the phase velocity. To obtain
the index of refraction associated with the group velocity,
one employs the dispersion relation ω2 ¼ k2 þ ω2

p for
cold, collisionless plasmas [68] to obtain the following
expression for the group index of refraction (with
Δnion ¼ nion − 1)

Δnion ≈ −Δnph: ð52Þ

The electron density Ne can be determined by meas-
urement and modeling; the Global Positioning System
employs the Klobuchar model [70] and the Galileo

GNSS makes use of the NeQuick-G ionospheric model
detailed in [71] (which is a revised version of the
NeQuick model in [72]). In these models, the ionospheric
profile is described in terms of the dimensionless Epstein
function:

Epðh; hc; BÞ ≔
4 expðh−hcB Þ

ðexpðh−hcB Þ þ 1Þ2 ; ð53Þ

which has the form of a line shape function. One may
approximate the above with the pseudo-Epstein function:

Ẽpðh; hc; BÞ

≔
1

16

��
1þ

�
h − hc
2B

�
2
�
−1

þ
�
1þ

�
h − hc
4B

�
2
�
−2

þ
�
1þ

�
h − hc
6B

�
2
�
−3

þ
�
1þ

�
h − hc
7B

�
2
�
−4
	

2

; ð54Þ

which differs from the Epstein function by roughly one part
in 103; this suffices, since the approximation for the
AppletonHartree equation is only valid to 3 × 10−3 for
GNSS signal frequencies.
For simplicity, we construct a simple model for the

electron density Ne consisting of a sum of pseudo-Epstein
functions:

Ne ≔ ½αDẼpðh; hD; bDÞ þ αEẼpðh; hE; bEÞ
þ αFẼpðh; hF; bFÞ�: ð55Þ

The subscripts D, E, F on the parameters correspond to
the respective ionospheric layers. Of course the precise
profiles for the ionospheric layers are rather complicated
and time dependent, depending on the time of day and
calendar date; in practice, such detailed profiles are
provided by the aforementioned ionospheric models
(see for instance [71] for a detailed description of the
NeQuick-G model employed in the Galileo system).
However, a simplified model for the ionospheric layers
will suffice for demonstrating the viability of our algorithm.
We choose the parameter values:

αD ¼ 1012 m−3; hD ¼ 75 km; bD ¼ 5 km;

αE ¼ 2.5× 1011 m−3; hE ¼ 130 km; bE ¼ 30 km;

αF ¼ 1011 m−3; hF ¼ 300 km; bF ¼ 50 km: ð56Þ

C. Perturbation model

To evaluate the potential accuracy of our algorithm, we
will introduce perturbations to simulate the effect of
uncertainties and errors in modeling the effective index
of refraction. The perturbations we introduce are simple
rescalings of the form:
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neff ¼ 1þ Δnatmð1þ δ1p̃1ðhÞÞ
þ Δnionð1þ δ2p̃2ðhÞÞ; ð57Þ

where p̃AðhÞ (A ∈ f1; 2g) denotes a perturbation function
−1 < p̃AðhÞ < 1 and δ1 and δ2 correspond to the respective
fractional perturbations to Δnatm and Δnion. For the tests,
we choose p̃AðhÞ to have the form

p̃AðhÞ ¼
X
i

αiLsðh; h0;i; σiÞ; ð58Þ

where αi are coefficients and Lsðh; h0; σÞ represents a line
shape function centered at h ¼ h0 with a width σ. We
choose for the line shape function the following:

Lsðh; h0; σÞ ¼
σ2

σ2 þ ðh − h0Þ2
σ4

σ4 þ ðh − h0Þ4
; ð59Þ

which qualitatively resembles a Lorentzian function, but
with a faster falloff. For the coefficients, we choose αi ¼
þ1 (to maximize the refraction of the geodesics), and for h⃗0
and σ⃗, we choose for p1ðhÞ the following:

h⃗0 ¼ ð0; 4; 8; 12; 16Þ;
σ⃗ ¼ ð2.0; 1.5; 1.8; 1.7; 1.5Þ; ð60Þ

and for p2ðhÞ

h⃗0 ¼ ð150; 200; 250; 300; 350Þ;
σ⃗ ¼ ð21; 15; 18; 21; 10Þ; ð61Þ

all in units of km.
We now discuss estimates for δ1, which corresponds to

the magnitude of fractional uncertainties in Δnatm due to
variations in humidity and measurement uncertainties in
the temperature and pressure profiles near the surface
of the Earth. Humidity variations contribute ∼2 × 10−4

in δ1 (see [73] for a formula from which one may derive
this estimate). Achievable uncertainties [74] of up to
δP ¼ 15 Pa and δT ¼ 0.2°C at sea level correspond to a
contribution of ∼7 × 10−4 in δ0. After including humidity
variations (with addition in quadrature), one arrives at
an uncertainty of ∼7.4 × 10−4, which we round up to
obtain δ1 ¼ 10−3.
For uncertainties in the ionosphere, we consider several

values for δ2, the magnitude of fractional uncertainties in
Δnion, which is determined by uncertainties in the iono-
spheric electron density. One might expect to model the
ionospheric electron density to an accuracy of a few
percent, as uncertainties of <10% in the total electron
content (the electron density integrated along a path) can
in principle be achieved [75]. In our tests, we will con-
sider values up to δ2 ¼ 0.10, which corresponds to an

uncertainty of 10% in the magnitude of fractional uncer-
tainties in Δnion.

VI. CODE TEST AND BENCHMARKS

A. Test description

The tests of the SQUIRREL.JL code are performed in a
manner similar to the comparison tests in Sec. IVA of the
CEREAL.JL code with Kerr-Schild geodesics. In particular,
we generated a set of 105 target points Xtar on the WGS-84
reference ellipsoid and initial data for a spray of N ≥ 5 null
geodesics from each of the target points (with the exception
of the benchmark tests, which include N ¼ 4 emission
points). We consider up to six emission points in our tests
since GNSS satellite constellations are typically designed
with the requirement that six satellites are in view at any
given time [76,77]. We then integrate each geodesic to a
radial coordinate value of ∼26.5 × 103 km, the endpoints
of which are then used as inputs for the locator functions in
the SQUIRREL.JL code. The output of the SQUIRREL.JL code
is then compared with the target points Xtar.
The effective geometry is described by the Gordon

metric (41) with the effective index of refraction given
by Eqs. (46), (49), (51), and (52). For the “background”
spacetime geometry, we use the weak field metric (42),
which incorporates gravitational effects.
All test calculations were performed with double floating

point precision (FLOAT64) to reduce execution time, though
SQUIRREL.JL is written to accommodate extended precision
calculations (DOUBLEFLOATS[44], for instance). For the
generation of test cases, the tolerance (both relative and
absolute) for the ODE solvers is chosen to be 10−14, and a
high order integrator is employed, in particular the ninth
order AUTOVERN9 in ORDINARYDIFFEQ.JL (as opposed to
the seventh order AUTOVERN7 integrator used in the locator
functions in the SQUIRREL.JL code). A basic validation test
was performed for the generation of test cases, where the
outputs have been compared for different tolerances; in all
cases, relative differences were on the order of machine
precision. For the location code, the (user specified)
tolerances are chosen to be 10−10 to reduce execution time.

B. Test results

Test results for n ¼ 5 emission points are presented in
Figs. 5–12. The vertical errors correspond to errors pro-
jected in the direction orthogonal to the WGS-84 reference
ellipsoid, and the horizontal errors correspond to errors
projected along directions tangent to the WGS-84 ellipsoid.
For the Kerr metric, the SQUIRREL.JL code can achieve
in most cases submillimeter accuracy, demonstrating a
potential for extreme precision in vacuum environments;
the methods presented in the SQUIRREL.JL code may be
ideal for relativistic location in space navigation. When
tropospheric and ionospheric effects are included, the
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SQUIRREL.JL code yields errors on the order of a centimeter,
as illustrated in Figs. 7 and 8.
Figures 9–12 illustrate positioning errors when including

uncertainties in the determination of the tropospheric and
ionospheric index of refraction. These tests were performed
using the perturbation model described in the preceding
section; the test cases were generated with the unperturbed
metric, and for the tests themselves, the perturbed metric
is used in the locator functions of the SQUIRREL.JL code
(which take the metric functions as an input). Errors
resulting from an uncertainty of 1% in the determination

of the ionospheric refractive index are illustrated in Figs. 9
and 10; this is the best result one can realistically expect
to achieve with the approximation (51) for GNSS signal
frequencies of ∼1 GHz (but we reiterate that higher
signal frequencies can achieve improved accuracy with
the same approximation). Even then, the horizontal posi-
tioning errors are for the most part confined to less than
∼10 cm to a 95% confidence level, while the vertical errors
exhibit a systematic shift of ∼20 cm, which corresponds to
the fact that the perturbations to the index of refraction in
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FIG. 5. Horizontal positioning errors (n ¼ 5 emission points) in
the Kerr geometry for 105 test cases. The vertical lines correspond
to the 95% confidence level and rms values for the errors, with
respective values of 0.0608 and 0.277 mm. Note that the results
here are expressed in units of millimeters. Out of 105 samples,
four samples (0.004%) have an error>2 cm with the largest error
being 3.39 cm.
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FIG. 6. Vertical positioning errors (n ¼ 5 emission points) in
the Kerr geometry for 105 test cases. The vertical lines correspond
to the 95% confidence level and rms values for the errors, with
respective values of 0.0862 and 0.286 mm. Note that the results
here are expressed in units of millimeters. Out of 105 samples, 1
sample (0.001%) has an error >2 cm with the largest error
being 2.40 cm.
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FIG. 7. Horizontal positioning errors (n ¼ 5 emission points) in
the analog geometry incorporating tropospheric and ionospheric
effects (105 test cases). The vertical lines correspond to the
95% confidence level and rms values for the errors, with
respective values of 0.418 and 0.693 mm. Out of 105 samples,
13 samples (0.013%) have an error >2 cm with the largest error
being 3.20 cm.
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FIG. 8. Vertical positioning errors (n ¼ 5 emission points) in
the analog geometry incorporating tropospheric and ionospheric
effects (105 test cases). The vertical lines correspond to the
95% confidence level and rms values for the errors, with
respective values of 0.618 and 1.02 mm. Out of 105 samples,
58 samples (0.058%) have an error >2 cm with the largest error
being 3.59 cm.
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our perturbation model are positive, and that the index of
refraction profiles vary primarily in the radial direction.
Errors from an uncertainty of 10% in the ionospheric

profile are illustrated in Figs. 11 and 12, which increases
the horizontal errors to ∼1 m and the systematic shift in the
vertical errors to ∼2 m. Upon comparison with the single
frequency errors reported in the latest Galileo quarterly
report [78] for the first three months of 2021, we note that
the rms and 95% confidence level values are somewhat

comparable to the performance of Galileo (rms and 95%
C.L. ∼1 m), albeit for a smaller sample size in our case. Of
course, the results presented here do not take into account
other GNSS errors, such as multipath, satellite timing and
ephemeris errors, the latter two of which have been
addressed in [20,26,33–35]. In the Galileo error budget,
such errors [referred to as signal in space errors (SISE)] are
on the order of half a meter [78] and, for single-frequency
users, are smaller in magnitude than the error contributions
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FIG. 9. Horizontal positioning errors (n ¼ 5 emission points) in
the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 1% (δ2 ¼ 0.01) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 6.27 and 9.70 cm. Out of 105 samples, seven samples (0.007%)
have an error >2 m with the largest error being 3.42 m.
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FIG. 10. Vertical positioning errors (n ¼ 5 emission points) in
the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 1% (δ2 ¼ 0.01) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 25.6 and 39.0 cm. Out of 105 samples, 10 samples (0.01%)
have an error >2 m with the largest error being 4.56 m.
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FIG. 11. Horizontal positioning errors (n ¼ 5 emission points)
in the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 10% (δ2 ¼ 0.1) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 59.4 and 93.1 cm. Out of 105 samples, six samples (0.006%)
have an error >20 m with the largest error being 31.9 m.
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FIG. 12. Vertical positioning errors (n ¼ 5 emission points) in
the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 10% (δ2 ¼ 0.1) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 2.44 and 3.70 m. Out of 105 samples, 10 samples (0.01%) have
an error >20 m with the largest error being 42.5 m.
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from ionospheric and tropospheric effects. To compare the
errors presented in this article with those of [78], one should
add in quadrature a ∼0.5 m contribution from SISE; even
with such a correction to the rms and 95% C.L. values
presented in Fig. 11 for horizontal positioning, our cor-
rected errors (0.776 m [rms] and 1.06 m [95% C.L.])
remain smaller than those reported in [78], and with fewer
errors ≥20 m in proportion. This indicates a potential for
improved performance, even with an uncertainty5 of 10%
in the determination of the ionospheric free electron
density and for the stated uncertainties in the determination
of atmospheric parameters in the lower troposphere.
Moreover, reduced uncertainties in the determination of
the ionospheric electron density profile to the 1% level can
reduce the 95% C.L. errors by a factor of 10, to roughly a
decimeter.
One can obtain improved accuracy with additional

emission points. With n ¼ 6 emission points, the largest
errors are significantly reduced, as indicated in Figs. 13–16
for the cases with 1% and 10% fractional uncertainty in
the ionospheric electron density Ne. These two cases are
chosen since they form the boundary cases for the accuracy
that one might expect to be achievable with the SQUIRREL.JL

code at GNSS signal frequencies of ∼1 GHz. In both cases,
we find a significant reduction in the number of large errors
for n ¼ 6 emission points. There were no errors above the
stated thresholds for the n ¼ 5 cases (2 m for the 1% case

and 20 m for the 10% case); for the n ¼ 6 cases, we find
only one sample with an error >1 m threshold for a 1%
uncertainty in Ne, and seven samples with horizontal errors
>5 m a 10% uncertainty in Ne. The rms and 95% con-
fidence level errors are roughly the same for the vertical
errors (owing to the systematic shift that the perturbations
introduce), but are reduced by a factor of 2 for the
horizontal errors. This result indicates that, in principle,
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FIG. 13. Horizontal positioning errors (n ¼ 6 emission points)
in the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 1% (δ2 ¼ 0.01) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 3.27 and 5.81 cm. Out of 105 samples, 1 sample (0.001%) has
an error >1 m (none greater than 2 m) with the largest error
being 1.56 m.
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FIG. 14. Vertical positioning errors (n ¼ 6 emission points)
in the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 1% (δ2 ¼ 0.01) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 24.2 and 35.0 cm. Out of 105 samples, 1 sample (0.001%) has
an error >1 m (none greater than 2 m) with the largest error
being 1.10 m.
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FIG. 15. Horizontal positioning errors (n ¼ 6 emission points)
in the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 10% (δ2 ¼ 0.1) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 33.5 and 61.1 cm. Out of 105 samples, seven samples (0.007%)
have an error >5 m with the largest error being 14.6 m.

5An interesting question worth investigating (left for future
work) is whether one can construct simple, high-accuracy iono-
spheric models which reduce this uncertainty—see [75,79].
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the inclusion of additional emission points can significantly
reduce the number of large errors in the SQUIRREL.JL code.

C. Benchmarks

Some basic benchmarks have been performed for various
situations; the results are displayed in Table I. The results
we report were obtained on standard desktop computer
with an Intel i5-7500 processor, and with four threads
enabled. The benchmarks were performed for three geom-
etries: the Kerr-Schild metric, the unperturbed Gordon
metric (representing tropospheric and ionospheric effects),
and the perturbed Gordon metric corresponding to a 10%
uncertainty in the ionospheric profile. We consider three
cases, with N ¼ 4, 5, 6 emission points. We note that the
N ¼ 4 Kerr-Schild case has an execution time comparable
to that reported in [26,35] for a Schwarzschild location
method. In the case of N ¼ 4 emission points, the flat
spacetime methods of [37,38] and Sec. II B return two
guesses due to the bifurcation problem, so the squirrel

algorithm is applied twice (one for each guess) for N ¼ 4
emission points. This is seen in the fact that the execution
time for N ¼ 4 is longer than one might expect from the
number of combinations Cð5; 4Þ ¼ 5, which is supported
by the execution times for the Gordon and perturbed
Gordon cases.6 Comparing the N ¼ 5 and N ¼ 6 cases,
we find a scaling roughly consistent with the number of
combinations Cð5; 4Þ ¼ 5, Cð6; 4Þ ¼ 15, which suggests
an increase in computational complexity by a factor of 3.

VII. SUMMARY AND DISCUSSION

In this article, we have described and demonstrated a
new method for relativistic location in slightly curved, but
otherwise generic spacetime geometries. Though such
methods may be of primary interest for high precision
space navigation in regions beyond the ionosphere, we
have demonstrated, by way of simple analog gravity
models, that our method can nonetheless be used to
incorporate tropospheric and ionospheric effects in terres-
trial positioning. Though one might regard such effects as
ancillary from a purely general relativistic perspective, we
argue that they are still of fundamental importance in the
sense that the placement of emission coordinates near
the surface of the Earth will depend on the knowledge of
the profile for the effective tropospheric and ionospheric
refractive index.
The methods we have described and implemented [80]

make use of state of the art automatic differentiation and
ODE libraries available in the Julia language, which permit
the efficient evaluation of the derivatives of numerical
solutions of the geodesic equation performed with respect
to initial data. Combined with a quasi-Newton root-finding
algorithm, we have demonstrated that our methods can,
with guesses provided by the flat spacetime relativistic
location formula of [21], accurately and efficiently compute
the intersection point of future pointing null cones from a
set of spacelike separated emission points. In particular, our
implementation, the SQUIRREL.JL code [52], can with five
emission points achieve submillimeter accuracy for terres-
trial positioning (satellite orbits at ∼26.5 × 103 km, target
point at surface of Earth) in a vacuum Kerr-Schild metric.
When tropospheric and ionospheric effects are included by
way of the Gordon metric, the SQUIRREL.JL code can
achieve horizontal errors of less than ∼1 m (according
to the rms and 95% C.L. values for 105 samples) for a 10%
uncertainty in the ionospheric free electron density profile,
and to less than ∼10 cm for a 1% uncertainty, with an
execution time of <1 s on a desktop computer for five
emission points. An interesting question for future inves-
tigation is whether multifrequency methods may be used in
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FIG. 16. Vertical positioning errors (n ¼ 6 emission points) in
the perturbed analog geometry corresponding to a fractional
uncertainty of 0.1% (δ1 ¼ 10−3) in the tropospheric index of
refraction and 10% (δ2 ¼ 0.1) in the ionospheric electron density
(105 test cases). The vertical lines correspond to the rms and
95% confidence level values for the errors, with respective values
of 2.32 and 3.24 m. Out of 105 samples, five samples (0.005%)
have an error >7 m with the largest error being 10.4 m.

TABLE I. Benchmarks performed with SQUIRREL.JL. N is the
number of emission points. Tests were performed with the Kerr-
Schild metric, the unperturbed Gordon metric, and the perturbed
Gordon metric corresponding to a 10% uncertainty in the iono-
spheric profile.

Execution time for SQUIRREL.JL

N Kerr-Schild Gordon Perturbed Gordon

4 27 ms 193 ms 223 ms
5 101 ms 553 ms 588 ms
6 358 ms 1.74 s 1.95 s

6The discrepancy in the Kerr-Schild case may be due to
overhead related to the different methods employed by the
SQUIRREL.JL code between the N ¼ 4 and N ¼ 5 cases.
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conjunction with our algorithm to constrain the electron
density profile.
Our test results indicate that the relativistic location

algorithm implemented in the SQUIRREL.JL code can achieve
extreme precision for space navigation in vacuum regions
beyond the ionosphere; we will describe in detail the
applications of our methods to deep space navigation else-
where. Our tests also indicate that implementations of our
method have the potential for performance comparable to
or exceeding the single-frequency performance of Galileo,
assuming that the local atmospheric properties of the
troposphere are known to typical measurement uncertainties
and the ionospheric free electron profile is known to an
uncertainty of 10% or less. Alternatively, the methods
presented in this article may perhaps be of interest as an
additionalmethod for atmospheric tomography (see [81] and
references therein for an overview of methods in GNSS
tomography).
The results we have presented here are complemen-

tary to those of [20,26,33–35], which address the pro-
blem of incorporating general relativistic effects in the
determination of satellite ephemerides; satellite ephem-
eris and timing errors (SISE) are some the largest con-
tributors to GNSS error budgets. A more comprehensive

collection of methods for relativistic positioning will
require at the minimum a relativistic location algorithm
and an algorithm for determining satellite ephemerides
and for mitigating clock errors. These issues can in
principle be addressed in a more general optimization
framework based on emission coordinates, as discussed
in [60]; the implementation of this framework using
modern machine learning methods will be explored in
future work.
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