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We obtain approximate analytical solutions of the Einstein equations close to the trapping horizon for a
dynamical spherically symmetric black hole in the presence of a minimally coupled self-interacting scalar
field. This is made possible by a new parametrization of the metric, in which the displacement from
the horizon as well as its expansion rate feature explicitly. Our results are valid in a neighborhood of the
horizon and hold for any scalar field potential and spacetime asymptotics. An exact equation for the
accretion rate is also obtained, which generalizes the standard Bondi formula. We also develop a dynamical
system approach to study near-equilibrium black holes; using this formalism, we focus on a simple model
to show that the near-equilibrium dynamics is characterized by scaling relations among dynamical
variables. Moreover, we show that solutions with purely ingoing energy-momentum flux never reach
equilibrium.
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I. INTRODUCTION

In an expanding Universe, the accretion of a black hole is
determined by its interactions with the cosmological fluid
medium, whose equation of state and energy density are in
general time dependent. In general relativity, the dynamics of
black hole observables, matter fields, and the cosmological
scale factor are nonlinearly coupled: even assuming spherical
symmetry, finding a solution of the equations of motion is a
highly challenging task. Some earlier attempts are reviewed in
Ref. [1]. Standard Newtonian approximations for spherical
accretion [2] and the general relativistic Michel solution [3]
both assume a stationary fluid flow and do not take into
account cosmological expansion; they are therefore inad-
equate to study the evolution of black holes over cosmological
timescales. Moreover, there are no known exact solutions of
the Einstein equations that describe physically realistic evolv-
ingblackholeswithmatter. Thewell-knownMcVittie solution
[4–6] has several shortcomings: it describes a nonaccreting
black hole and, beyond the special case of Schwarzschild–
de Sitter, it features a spatially homogeneous energy
density while the pressure is inhomogeneous [7]. Another
possibility that is often considered is the embedding of a
Schwarzschild black hole into an otherwise homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker universe by
imposing suitable junction conditions; this is known as the

Einstein-Straus model [8,9]. The main drawback of the
Einstein-Straus model is that it is consistent only if the
cosmological background is filled with pressureless dust;
otherwise, the junction is not smooth at the matching surface
[9]. In the case of a massless scalar field, an exact nonstatic
solutionwas obtained inRef. [10] that describes a blackhole in
an expanding cosmological background; however, this sol-
ution has a timelike naked singularity, and it is not known how
to generalize it to include a potential for the scalar field.1

All these reasons motivate us to develop a new approach to
study evolving black holes in cosmology using analytical
techniques.
To illustrate our approach in the simplest yet nontrivial

case, we consider a self-interacting real scalar field as
matter. Scalar fields play an important role in cosmology,
especially in the early Universe, where they drive the
accelerated expansion during inflation. In this paper, we
study the evolution of a spherically symmetric black hole in
the presence of a minimally coupled self-interacting scalar
field. In particular, we find an exact accretion law for the
apparent horizon (more precisely, the future outer trapping
horizon [12]). By suitably matching the near-horizon
asymptotics to the cosmological evolution, our results
may find direct application to the evolution of black holes
during inflation—without imposing any simplifying

*marco.decesare@ehu.eus
†roberto.oliveri@obspm.fr

1See also Ref. [11] for exact nonstatic black hole solutions
sourced by a null fluid.
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assumptions, such as slow roll, which was used in previous
studies [13,14].
Our approach relies on a systematic expansion of the

Einstein field equations around the black hole apparent
horizon in terms of a (compact) near-horizon coordinate z.
The field equations are then solved order by order in z.
In the new coordinates, the metric explicitly depends also
on the horizon expansion rate _rH; this enables us to study
different dynamical regimes of the system analytically.
From the first-order field equations we obtain an exact
accretion equation that generalizes the standard Bondi
formula. Moreover, as an interesting example, we special-
ize to Neumann boundary conditions for the scalar field at
the horizon, which single out a unique solution charac-
terized by purely ingoing energy-momentum flux at the
horizon,2 and we explicitly solve the equations to third
order in z. We show that Neumann boundary conditions are
incompatible with the static limit for this system. In
addition, we study the approach to equilibrium by simulta-
neously expanding the field equations around a static
Schwarzschild–de Sitter solution and around the horizon.
This enables us to map the gravitational field equations to
an infinite-dimensional dynamical system; explicit solu-
tions are then obtained for a truncation of this system.
Furthermore, assuming a simple model for the decay
of the scalar field at the horizon, we show that the approach
to equilibrium is characterized by scaling relations,
independent of the functional form of the potential
or any parameters of the model. We also obtain a first
law for the evolving black hole with scalar field and
discuss the thermodynamical interpretation for this physi-
cal system.
The paper is organized as follows: In Sec. II, we

introduce a new coordinate system adapted to the evolving
horizon, derive the equations of motion, and present
our solution scheme. In Sec. III, we review basic geometric
properties of the horizon and compute the energy-
momentum fluxes in the ingoing and outgoing null direc-
tions; furthermore, we derive exact Bondi-like accretion
laws for the horizon. In Sec. IV, we impose Neumann
boundary conditions for the scalar field at the horizon and
derive the corresponding solution; moreover, we show that
this solution cannot approach equilibrium. In Sec. V, we
expand the field equations around the static Schwarzschild–
de Sitter solution and obtain a dynamical system descrip-
tion of the dynamics; particular attention is paid to the
approach to equilibrium. In Sec. VI, we derive the first law
of black hole dynamics. Finally, in Sec. VII, we review our
results and discuss prospects for future work.

II. NEAR-HORIZON DYNAMICS

To study the dynamical evolution of a black hole, it is
convenient to choose a coordinate system that is regular in a
neighborhood of the horizon. In Eddington-Finkelstein
coordinates, the metric of a general spherically symmetric
geometry can be expressed as

ds2 ¼ −e2βðv;rÞAðv; rÞdv2 þ 2eβðv;rÞdvdrþ r2dΩ2; ð2:1Þ

where r is the areal radius and v is constant along ingoing
radial null geodesics. The metric function Aðv; rÞ is para-
metrized as

Aðv; rÞ ¼ 1 −
2Gmðv; rÞ

r
; ð2:2Þ

where mðv; rÞ is the Misner-Sharp mass, measuring the
mass contained within spheres of radius r. The position of
the apparent horizon, defined as a marginally trapped
surface, is determined by the zeroes of Aðv; rÞ [16]:

r ¼ 2Gmðv; rÞ: ð2:3Þ

In turn, Eq. (2.3) implicitly defines the horizon as a
function of v, rH ¼ rHðvÞ. In general, Eq. (2.3) admits
multiple solutions, corresponding, e.g., to a cosmological
horizon in addition to the black hole horizon. Thus, in case
there are multiple horizons, in order to identify a solution of
Eq. (2.3) as the black hole horizon,3 we shall also demand
that the following conditions be satisfied: θn < 0, Lnθl < 0
[12,17]. Here la and na denote, respectively, the outgoing
and ingoing radial null vectors; θl is the expansion of la and
θl ¼ 0 at the horizon.
We introduce a near-horizon coordinate z, defined

through

rðv; zÞ ¼ rHðvÞ
1 − z

: ð2:4Þ

Compared to other possible choices of near-horizon coor-
dinates, it has the advantage of being compact, which is
convenient in numerical resolution approaches. In the static
case, a similar coordinate has been introduced earlier in
Ref. [18]. The apparent horizon4 is now located at z ¼ 0,
whereas spatial infinity is at z ¼ 1. In terms of the new
coordinate z, the function Aðv; zÞ has a zero at z ¼ 0 and
admits the following expansion:

2A purely ingoing flux at the apparent horizon Tabnanb ¼ 0
has been considered earlier as a boundary condition for a null
fluid with a traceless stress-energy tensor in Ref. [15].

3More precisely, a future outer trapping horizon that is foliated
by marginally trapped spheres with areal radius rHðvÞ.4Note that there may be coordinate singularities in the interval
0 < z < 1 if there is more than one horizon. For instance, in
Schwarzschild–de Sitter geometry, there is a cosmological
horizon located at z ¼ 1 − rHH, where H is the (constant)
Hubble rate.
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Aðv;zÞ¼
�
1−

2G∂zmjz¼0

rH

�
zþGð2∂zm−∂

2
zmÞjz¼0

rH
z2þ��� :

ð2:5Þ

The extremal case arises when the first-order term vanishes
in Eq. (2.5), whereby A has a higher-order zero at the
horizon. In this paper, we will focus specifically on
nonextremal black holes, although our method can be
generalized to the extremal case as well. When the metric
is expressed in ðv; zÞ coordinates, the horizon expansion
rate _rH also appears explicitly; this enables us to have more
direct control on the different dynamical regimes of the
system; see Sec. V:

ds2 ¼
�
−e2βðv;zÞAðv; zÞ þ 2eβðv;zÞ _rHðvÞ

1 − z

�
dv2

þ 2eβðv;zÞrHðvÞ
ð1 − zÞ2 dvdzþ r2HðvÞ

ð1 − zÞ2 dΩ
2: ð2:6Þ

The Einstein field equations, assuming a minimally
coupled self-interacting scalar field as the matter source,
read as (here κ ¼ 8πG)

Gab ¼ κTab ¼ κ

�
∂aϕ∂bϕ − gab

�
1

2
gcd∂cϕ∂dϕþ UðϕÞ

��
:

ð2:7Þ

A cosmological constant term can be reabsorbed in the
definition of the scalar potential.5 In ðv; zÞ coordinates, we
obtain after some rearrangements6

2β0 ¼ κð1 − zÞðϕ0Þ2; ð2:8aÞ

1 − A − ð1 − zÞðA0 þ Aβ0Þ ¼ κr2H
ð1 − zÞ2 UðϕÞ; ð2:8bÞ

_A
1 − z

−
_rH
rH

A0 ¼ κ

�
_rH
rH

ϕ0 −
_ϕ

1 − z

�

×

�
ð1 − zÞϕ0A − e−βrH

�
_rH
rH

ϕ0 −
_ϕ

1 − z

��
;

ð2:8cÞ

2β00Aþ A00 þ β0ð3A0 þ 2β0AÞ − 2e−βrH
1 − z

�
_rH
rH

β00 −
_β0

1 − z

�

¼ κe−βrHϕ0

1 − z

�
_rH
rH

ϕ0 −
2 _ϕ

1 − z

�
−
2κr2HUðϕÞ
ð1 − zÞ4 : ð2:8dÞ

The Klein-Gordon equation follows from Eq. (2.7) using
the contracted Bianchi identities ∇aGab ¼ 0. It reads as

_ϕ0 þ
_ϕ

1−z
−
_rH
rH

ð1−zÞϕ00 þeβð1−zÞ2
2rH

ðAϕ00 þA0ϕ0 þAϕ0β0Þ

−
eβrH

2ð1−zÞ2
∂U
∂ϕ

¼0: ð2:9Þ

We require that both the geometry and matter be regular
at the horizon. Therefore, we assume that the unknown
functions A, β, and ϕ admit a power-series expansion in z:

Aðv; zÞ ¼
X∞
n¼1

anðvÞzn; βðv; zÞ ¼
X∞
n¼1

bnðvÞzn;

ϕðv; zÞ ¼ ϕoðvÞ
�
1þ

X∞
n¼1

cnðvÞzn
�
: ð2:10Þ

Note that we can set b0ðvÞ ¼ 0 without loss of generality,
since this amounts to a z-independent redefinition
of the v coordinate. For a nonextremal black hole, we
have a1 ≠ 0. In particular, we shall assume that a1 > 0; this
condition ensures that the horizon is outer trapping—i.e.,
Lnθljz¼0 < 0; see Eq. (3.3).
Substituting the power-series expansions [Eq. (2.10)]

into the equations of motion, we find that the first-order
coefficients must satisfy7

a1 ¼ 1 − κr2HUðϕoÞ > 0; b1 ¼
1

2
κc21ϕ

2
o;

a1 _rH ¼ κðc1ϕo _rH − rH _ϕoÞ2: ð2:11Þ

Equations for the higher-order coefficients can similarly be
obtained but are omitted for brevity. By comparison with
the z-expansion of the Schwarzschild–de Sitter solution,
the solution for a1 in Eq. (2.11) shows that the quantity
κUðϕoÞ plays the role of an effective (time-dependent)
cosmological constant. Nevertheless, for generic solutions,
the correspondence with the Schwarzschild–de Sitter
spacetime is broken by higher-order corrections and there-
fore only holds in the close proximity of the horizon.

III. GEOMETRY AND MATTER IN THE
NEAR-HORIZON REGION: ACCRETION LAW

Before examining the solutions of the field equations in
the following sections, we recall some basic properties of
the apparent horizon and compute the energy-momentum
fluxes along null directions. These properties are useful in
order to physically interpret the solutions and their boun-
dary conditions; in particular, they enable us to extract an

5If required, the cosmological constant can be reinstated
explicitly by means of the shift UðϕÞ → UðϕÞ þ κ−1Λ.

6Hereinafter, derivatives with respect to z are denoted by a
prime, and derivatives with respect to v are denoted by a dot. 7We omit the time dependence to make the notation lighter.
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accretion law for the black hole solely from the first-order
solutions [Eq. (2.11)].
To study the spacetime geometry in the near-horizon

region, we introduce outgoing and ingoing radial null
vectors, denoted respectively as la and na. These are given
by (see Ref. [16], although note the different notation)

la ¼
�
∂

∂v

�
a
þ eβ

2
A

�
∂

∂r

�
a
; na ¼ −e−β

�
∂

∂r

�
a
; ð3:1Þ

with the normalization lana ¼ −1. The corresponding
expansion scalars are

θl¼
eβ

r
A¼ a1

rH
zþOðz2Þ; θn¼−

2e−β

r
¼−

2

rH
þOðzÞ:

ð3:2Þ

The Lie derivative of the expansion scalar associated with
la with respect to the ingoing radial vector na is given by

Lnθl ¼ ð1 − r∂rβÞ
A
r2

−
∂rA
r

¼ −
a1
r2H

þOðzÞ: ð3:3Þ

Since a1 > 0, this shows that the z ¼ 0 surface is indeed a
future outer trapping horizon according to Hayward’s
definition [12]. The positivity of a1 also implies that the
marginally trapped tube r ¼ rHðvÞ is spacelike; see
Ref. [19] [Eq. (2.13) therein].
In the null basis and to lowest order in z, the stress-

energy tensor has the components

Tabnanbjz¼0 ¼
c21ϕ

2
o

r2H
; Tablalbjz¼0 ¼

�
_ϕo − c1ϕo

_rH
rH

�
2

;

Tabnalbjz¼0 ¼ UðϕoÞ: ð3:4Þ

The component Tabnanbjz¼0 represents the flux of energy-
momentum along the outgoing null direction la and
vanishes if and only if c1 ¼ 0. Combining Eqs. (2.11)
and (3.4), we obtain the accretion law

_rH ¼ κr2H
1 − E

Tablalb ¼
κr2H
1 − E

ðLlϕjz¼0Þ2 ≥ 0; ð3:5Þ

where we define E ≡ κr2HUðϕoÞ, and in the last step we use
Llϕjz¼0 ¼ _ϕo − c1ϕo

_rH
rH
. It follows that the black hole

horizon is a monotonically increasing function of v. This
is in agreement with the area increase law [20], since the
scalar field satisfies the null energy condition. The accre-
tion law [Eq. (3.5)] can also be derived geometrically using
the results in Ref. [19] [Eq. (2.13) therein].8

Lastly, we can rewrite Eq. (3.5) in terms of the black hole
mass MðvÞ≡mðv; rHÞ ¼ rHðvÞ=ð2GÞ:

_M ¼ 16πG2

1 − E
M2ðLlϕjz¼0Þ2: ð3:6Þ

The accretion law [Eq. (3.6)] is exact and does not rely on
any assumptions on the scalar field dynamics; hence, it
generalizes previous results [14] obtained under the
assumption of slow-roll inflation. The behavior _M ∝ M2

is a feature of the spherical accretion process [2]. We
observe that Eq. (3.6) is reminiscent of the Bondi accretion
formula (see Refs. [21,22] and references therein), although
there are two important differences: (i) the rate of change
of the mass M on the left-hand side is measured with
respect to the null coordinate v, as opposed to proper
time distant from the hole; and (ii) the positive quantity
ðLlϕjz¼0Þ2=ð1 − EÞ, which is a local observable at the
horizon, replaces the background observable ρ=c3 in the
Bondi formula, where ρ and c are the energy density and
sound speed of the cosmic fluid, respectively.

IV. NEUMANN BOUNDARY CONDITIONS

We impose Neumann boundary conditions for the scalar
field at the horizon—namely,

ð∂zϕÞjz¼0 ¼ 0; ð4:1Þ

FIG. 1. In the figure,H is a three-dimensional spacelike surface
tracing the evolution of marginally trapped surfaces S with areal
radius rHðvÞ; see Ref. [20]. In a generic configuration, the scalar
field radiates energy-momentum in both the outgoing and in-
going null directions. In the solution with Neumann boundary
conditions at the horizon, the scalar field is drawn inside the black
hole merely by the expansion of the horizon; as a result, the flux
of energy-momentum is purely ingoing. On the other hand, for a
black hole approaching equilibrium, the fluxes are in general
nonzero in both directions.

8We thank Ivan Booth for pointing out the connection with
Ref. [19].
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which, from Eq. (2.10), amounts to c1 ¼ 0. As a conse-
quence, the gradient of the scalar field is a null ingoing
1-form at the horizon, dϕjz¼0 ¼ _ϕodv, where the subscript
omeans that the quantity is evaluated at z ¼ 0. As shown in
Eq. (3.4), the Neumann boundary condition c1 ¼ 0 singles
out a unique solution, characterized by a purely ingoing
energy-momentum flux that is entirely due to the horizon
expansion; see Fig. 1. The corresponding solutions for
the expansion coefficients are reported in Eq. (A1) in the
Appendix. An accretion law for this solution can be
obtained from the more general Eq. (3.5) with the sub-
stitution Llϕjz¼0 ¼ _ϕo.
The curvature invariants in a neighborhood of the

horizon are all regular for _rH ≠ 0; see Eq. (A2).
However, the solution becomes singular as _rH → 0 [see
Eqs. (A1) and (A2) in the Appendix], showing that this
particular solution is not suitable to approach the static
limit. In the next section, we show how this problem can be
overcome by relaxing the boundary condition [Eq. (4.1)].

V. NEAR-EQUILIBRIUM SOLUTIONS

The coordinates ðv; zÞ make the geometry explicitly
dependent on the horizon expansion rate _rH. Furthermore,
the parametrization (2.10) allows us to interpret the Einstein
equations as an infinite-dimensional dynamical system
for the variables fan; bn; cn;ϕo; rHg with evolution para-
meter v. This enables us to study the approach to equilibrium
by carrying out a systematic expansion of the field equations
around a static solution, which represents a fixed
point for the system. To this end, we introduce the following
perturbative near-equilibrium expansions for the horizon:

rHðvÞ ¼ rð0ÞH þ rð1ÞH ðvÞ þ rð2ÞH ðvÞ þ � � � ; ð5:1Þ

and for the dynamical fields,

Aðv; zÞ ¼ Að0ÞðzÞ þ Að1Þðv; zÞ þ Að2Þðv; zÞ þ � � � ; ð5:2aÞ

βðv; zÞ ¼ βð0ÞðvÞ þ βð1Þðv; zÞ þ βð2Þðv; zÞ þ � � � ; ð5:2bÞ

ϕðv; zÞ ¼ ϕð0Þ þ ϕð1Þðv; zÞ þ ϕð2Þðv; zÞ þ � � � : ð5:2cÞ

The quantities rð0ÞH ,ϕð0Þ are constant, whereas βð0ÞðvÞ is pure
gauge. Similarly, the perturbative expansion of ϕoðvÞ≡
ϕðv; 0Þ is

ϕoðvÞ ¼ ϕð0Þ þ ϕð1Þ
o ðvÞ þ ϕð2Þ

o ðvÞ þ � � � ; ð5:3Þ

where ϕðnÞ
o ðvÞ ¼ ϕðnÞðv; 0Þ. We assume the Schwarzschild–

de Sitter geometry for the background

Að0ÞðzÞ ¼ zþ κ

3
ðrð0ÞH Þ2Uðϕð0ÞÞ

�
ð1 − zÞ − 1

ð1 − zÞ2
�
;

βð0ÞðvÞ ¼ 0: ð5:4Þ

The constant background value of the scalar field must be at
a critical point for the potential [this follows from the Klein-
Gordon equation (2.9) to zeroth order in the perturbative
expansion]

∂U
∂ϕ

jϕð0Þ ¼ 0: ð5:5Þ

If the critical point ϕð0Þ is nondegenerate, the background
solution of Eq. (5.4) corresponds to a one-parameter family
of equilibria for the dynamical system, each given by a

different value for the constant9 rð0ÞH . The existence of
degenerate equilibria implies that, in order to correctly
account for the near-equilibrium dynamics of the system,
we need to include perturbative corrections of order at
least 2.
We insert the perturbative expansions [Eqs. (5.1) and

(5.2)] into the field equations (2.8), to derive the first- and
second-order equations for the perturbations. Then, at each
order in the near-equilibrium expansion we introduce
power-series expansions in z for AðnÞ and βðnÞ as in
Eq. (2.10), while for ϕðnÞ we use the parametrization10

ϕðnÞðv; zÞ ¼ ϕðnÞ
o ðvÞ þ

X∞
k¼1

lðnÞk ðvÞzk: ð5:6Þ

The solutions obtained to second order read as

Aðv; zÞ ¼
�
1 − κ

�
ðrð0ÞH Þ2

�
Uðϕð0ÞÞ þ 1

2

∂
2U
∂ϕ2

����
ϕð0Þ

ðϕð1Þ
o Þ2

�
þ 2rð0ÞH rð2ÞH Uðϕð0ÞÞ

��
z ð5:7aÞ

9On the other hand, if the potential admits nonisolated critical points, there is a two-parameter family of equilibria, parametrized by
rð0ÞH , ϕð0Þ. As an example, one may consider a massless scalar field with constant potential—i.e., a cosmological constant.

10Compared to Eq. (2.10), the parametrization (5.6) corresponds to lðnÞk ðvÞ ¼ ðϕoðvÞckðvÞÞðnÞ. This is a more convenient choice for
the near-equilibrium expansion.
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−κ
�
ðrð0ÞH Þ2

��
1 −

κ

4
ðlð1Þ1 Þ2

�
Uðϕð0ÞÞ þ 1

2
ðϕð1Þ

o þ lð1Þ1 Þϕð1Þ
o

∂
2U
∂ϕ2

����
ϕð0Þ

�
þ 2rð0ÞH rð2ÞH Uðϕð0ÞÞ þ 1

4
ðlð1Þ1 Þ2

�
z2 þ � � � ; ð5:7bÞ

βðv; zÞ ¼ κ

2
ðlð1Þ1 Þ2z − κ

4
lð1Þ1 ðlð1Þ1 − 4lð1Þ2 Þz2 þ � � � ; ð5:7cÞ

ϕðv; zÞ ¼ ðϕð0Þ þ ϕð1Þ
o þ ϕð2Þ

o Þ þ ðlð1Þ1 þ lð2Þ1 Þzþ ðlð1Þ2 þ lð2Þ2 Þz2 þ � � � : ð5:7dÞ

The coefficients lð1Þ1 and lð1Þ2 satisfy the following differential equations:

_lð1Þ1 ¼ − _ϕð1Þ
o þ rð0ÞH

2
ϕð1Þ
o

∂
2U
∂ϕ2

����
ϕð0Þ

−
lð1Þ1

2rð0ÞH

ð1 − κðrð0ÞH Þ2Uðϕð0ÞÞÞ; ð5:8aÞ

_lð1Þ2 ¼ rð0ÞH

4
ϕð1Þ
o

∂
2U
∂ϕ2

����
ϕð0Þ

þ lð1Þ1

4rð0ÞH

�
3 − ðrð0ÞH Þ2

�
κUðϕð0ÞÞ − ∂

2U
∂ϕ2

����
ϕð0Þ

��
−
lð1Þ2

rð0ÞH

ð1 − κðrð0ÞH Þ2Uðϕð0ÞÞÞ: ð5:8bÞ

The first nontrivial correction to the horizon arises at
second order in the perturbative expansion,11 which yie
lds the accretion law

_rð2ÞH ¼ κðrð0ÞH Þ2
1 − Eð0Þ ð _ϕð1Þ

o Þ2; ð5:9Þ

where Eð0Þ ¼ κðrð0ÞH Þ2Uðϕð0ÞÞ. We remark that the approxi-
mate solutions for A and β [Eq. (5.7), as well as Eqs. (5.8)
and (5.9)] only depend on the zeroth- and first-order

solutions for ϕ; for this reason, the coefficients ϕð2Þ
o and

lð2Þn have no influence on the geometry to this order of
approximation.
In contrast to the Neumann solution studied in Sec. IV,

the coefficient c1 ≃ lð1Þ1 =ϕð0Þ is not identically zero for a
generic near-equilibrium solution; its value only relaxes to
zero in the approach to equilibrium. Using the results in
Sec. III, we observe that such solutions have nonzero fluxes
in both the ingoing and the outgoing null directions: to first
order in perturbation theory, we have

Tabnanbjz¼0 ≃
ðlð1Þ1 Þ2
ðrð0ÞH Þ2

; Tablalbjz¼0 ≃ ð _ϕð1Þ
o Þ2: ð5:10Þ

Indeed, it follows from Eq. (5.8a) that the fluxes are both

zero only in the static limit _ϕð1Þ
o ; lð1Þ1 → 0. In particular, we

observe that if lð1Þ1 ¼ 0 identically, then Eq. (5.8a) implies
that the scalar field must climb up the potential, which is
incompatible with the approach to equilibrium. This result
explains why the equilibrium cannot be approached if the
flux in the outgoing null direction Tabnanbjz¼0 is

identically zero (as for the solution studied in Sec. IV).
In the remainder of this section, we determine conditions
for attaining equilibrium dynamically.

A. Approaching equilibrium

In order to fully determine the near-equilibrium solutions
using the results in Sec. V, we need to assign the functional
form of ϕð1Þ

o ðvÞ. By analogy with the structure of Eq. (5.8a),
we shall assume a simple model where _ϕð1Þ

o ðvÞ depends

linearly on ϕð1Þ
o and lð1Þ1 : rð0ÞH

_ϕð1Þ
o ¼ −γϕð1Þ

o þ ξlð1Þ1 . In this

way, using Eq. (5.8a), the dynamics of ϕð1Þ
o and lð1Þ1 are

described by the following autonomous dynamical system:

rð0ÞH
_ϕð1Þ
o ¼ −γϕð1Þ

o þ ξlð1Þ1 ; ð5:11aÞ

rð0ÞH
_lð1Þ1 ¼

�
γþ ðrð0ÞH Þ2

2

∂
2U
∂ϕ2

����
ϕð0Þ

�
ϕð1Þ
o −

1

2
ð1− Eð0Þ þ 2ξÞlð1Þ1 :

ð5:11bÞ

Here, γ and ξ are assumed to be constant dimensionless
parameters for simplicity, although generalizations are
possible; the actual values of these parameters need to
be determined by suitably matching to an outer solution
describing the spacetime far from the black hole.
Introducing a dimensionless “time” parameter T¼v=rð0ÞH

and the matrix notation

X¼
 
ϕð1Þ
o

lð1Þ1

!
; A¼

0
B@

−γ ξ

γþðrð0ÞH Þ2
2

∂
2U
∂ϕ2

����
ϕð0Þ

−1
2
ð1−Eð0Þ þ2ξÞ

1
CA;

ð5:12Þ

we can rewrite Eq. (5.11) as

11More specifically, to first order, we have _rð1ÞH ¼ 0; hence, the
constant value of rð1ÞH can be reabsorbed into rð0ÞH .
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dX
dT

¼ A ·X: ð5:13Þ

The dynamical system in Eq. (5.11) can be studied with
standard methods. The unperturbed static solution with

ϕð1Þ
o ¼ 0 ¼ lð1Þ1 is an attractive fixed point, provided that the

eigenvalues of the coefficient matrix in Eq. (5.12) are both
negative—that is,

2ðγ þ ξÞ þ 1 − Eð0Þ > 0; ð5:14aÞ

0< γð1− Eð0ÞÞ− ξðrð0ÞH Þ2 ∂
2U
∂ϕ2

����
ϕð0Þ

≤
1

8
½2ðγþ ξÞ þ 1− Eð0Þ�2:

ð5:14bÞ

Under this assumption, a scalar field initially perturbed
away from its equilibrium ϕð0Þ (assumed as nondegenerate)
will eventually settle down into its equilibrium configura-
tion. Meanwhile, the horizon evolves from its initial value

rð0ÞH according to Eq. (5.9), reaching a final value rfH > rð0ÞH .
Thus, the black hole evolution represents a transition
between two Schwarzschild–de Sitter solutions, with the
same cosmological constant Λeff ¼ κUðϕð0ÞÞ but different
masses.
Let us examine the solutions of the system (5.11) more in

detail, assuming ξ ≠ 0 for definiteness. These are given by

ϕð1Þ
o ðvÞ ¼ peλ1v=r

ð0Þ
H þ qeλ2v=r

ð0Þ
H ;

lð1Þ1 ðvÞ ¼ ξ−1pðγ þ λ1Þeλ1v=r
ð0Þ
H þ ξ−1qðγ þ λ2Þeλ2v=r

ð0Þ
H ;

ð5:15Þ

where p and q are (real) constant coefficients, while λ1 and
λ2 are solutions of the eigenvalue equation for the matrixA:

2λ2 þ ð2γ þ 2ξþ 1 − Eð0ÞÞλ

þ γð1 − Eð0ÞÞ − ξðrð0ÞH Þ2 ∂
2U
∂ϕ2

����
ϕð0Þ

¼ 0: ð5:16Þ

We consider the case where both eigenvalues are negative

real numbers, so that ϕð1Þ
o ¼ lð1Þ1 ¼ 0 is an attractive fixed

point. We also label the eigenvalues so that12 λ2 < λ1. Thus,
we have in the large-v limit

ϕð1Þ
o ðvÞ ∼ peλ1v=r

ð0Þ
H ; lð1Þ1 ðvÞ ∼ ξ−1pðγ þ λ1Þeλ1v=r

ð0Þ
H :

ð5:17Þ

Substituting in the accretion law (5.9), we obtain

_rð2ÞH ðvÞ ∼ κp2λ21e
2λ1v=r

ð0Þ
H

1 − Eð0Þ

⇒ rð2ÞH ðvÞ ∼ ΔrH þ κp2λ1
2ð1 − Eð0ÞÞ r

ð0Þ
H e2λ1v=r

ð0Þ
H ; ð5:18Þ

where we introduce the integration constant ΔrH ¼
rfH − rð0ÞH . Thus, the evolution of the apparent horizon
has the following asymptotics:

rHðvÞ ∼ rfH þ κp2λ1
2ð1 − Eð0ÞÞ r

ð0Þ
H e2λ1v=r

ð0Þ
H : ð5:19Þ

Combining the above results, we get the following scaling
laws describing the approach to equilibrium:

���� rHðvÞ − rfH
rð0ÞH

���� ∼ κðϕð1Þ
o ðvÞÞ2; lð1Þ1 ðvÞ ∼ ϕð1Þ

o ðvÞ: ð5:20Þ

Except for numerical prefactors, these scaling relations
hold regardless of the specific functional form of the scalar
potential and numerical values of parameters such as
γ and ξ.

VI. FIRST LAW OF BLACK HOLE DYNAMICS

As shown in previous sections, the evolution of the
trapping horizon is fully characterized by two dynamical
variables: rHðvÞ and ϕoðvÞ. Thus, all thermodynamical
properties of a black hole in the presence of a scalar field
and in the proximity of the horizon can be expressed in
terms of these two quantities. In this section, we derive the
first law and the Smarr formula, which hold for any
solutions of the field equations.
The surface gravity g for an evolving horizon can be

computed using the geometric definition given in Ref. [23],

gðvÞ≡ 1

2
⋆d⋆drj

r¼rHðvÞ
¼ 1

2
ð∂rAþ A∂rβÞjr¼rHðvÞ; ð6:1Þ

where ⋆ is the Hodge star operator in the two-dimensional
timelike surface orthogonal to the two spheres. Using the
approximated solution derived in the Appendix and evalu-
ating the result at z ¼ 0, this gives

g ¼ 1 − E
2rH

¼ 1 − E
4GM

: ð6:2Þ

This result can be rearranged as a Smarr formula,

M ¼ g
4πG

Aþ 3UðϕoÞV: ð6:3Þ

The mass is a homogeneous function of degree 1=2 of
A≡ 4πr2H and V2=3 ¼ ½ð4=3Þπr3H�2=3. Consistently, the first
law reads as

12We do not consider the case of degenerate eigenvalues,
which requires fine-tuning.
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δM ¼ g
8πG

δAþ UðϕoÞδV; ð6:4Þ

in agreement with the first law of black hole dynamics as
given in Ref. [24] [see Eq. (7.1) therein]. Our result,
however, contrasts with the first law derived in Ref. [14]
[see Eq. (95) therein].
Equation (6.4) also suggests an intriguing analogy with

the dynamics of elastic membranes: the scalar potential can
be interpreted as a tension (negative pressure13) τ≡UðϕoÞ.
It would be interesting to further explore this analogy
within the context of the membrane paradigm [25,26].
The first law of black hole dynamics [Eq. (6.4)] con-

siders the scalar field surrounding the black hole as an
external source. In other words, the black hole is considered
immersed in a thermal bath given by the scalar field.
The second term on the right-hand side of the first law
[Eq. (6.4)] should be interpreted as the work done by
the scalar field along the horizon. Finally, we would
like to emphasize that this thermodynamical interpretation
proposed in Eq. (6.4) reinforces the understanding
of the dynamical black hole with a scalar field in the close
proximity of the horizon as a sequence of Schwarzschild–
de Sitter black holes with a (locally defined) effective
cosmological constant, proportional to the scalar poten-
tial UðϕoÞ.

VII. DISCUSSION

We obtained for the first time approximate analytical
solutions for an evolving black hole in the presence of a
self-interacting scalar field. The solutions obtained admit a
power-series expansion in z, a radial coordinate measuring
the displacement from the black hole apparent horizon. We
derived an exact accretion law [Eq. (3.6)], which represents
a fully relativistic generalization of the Bondi accretion
formula.
In the special case of Neumann boundary conditions at the

horizon, the solution takes the simplest formand its expansion
coefficients are given explicitly in the Appendix, along with
the corresponding curvature invariants. In this solution, the
scalar field falls inside the black hole without emitting an
outward flux of energy-momentum. However, we have
shown that this solution cannot approach the static limit.
We also obtained near-equilibrium solutions in Sec. V,

obtained by solving the field equations perturbatively
around the static Schwarzschild–de Sitter solution. Our
choice of coordinates ðv; zÞ is particularly convenient for
studying the approach to equilibrium, since the metric in
these coordinates explicitly depends on the expansion rate
_rH. We show that in this regime, the evolution of the system
can be described as a dynamical system; then, we explicitly
obtain the solutions in a simple model, showing that the

approach to equilibrium is characterized by universal
scaling relations.
Future work will be devoted to the matching of the

solutions here obtained in a neighborhood of the horizon to
the region far from the black hole, where the scalar field
follows its cosmological evolution. This will enable us to
study the accretion of black holes during inflation without
simplifying assumptions, such as slow roll. In the case of
asymptotically flat solutions, it would be interesting to
study the evolution of the apparent horizon during gravi-
tational collapse in the supercritical regime (i.e., above the
threshold for black-hole formation). Both in the asymp-
totically flat and in the cosmological cases, our analytical
methods will offer a useful complement to numerical
relativity simulations. The generalization to the axisym-
metric case will be studied in a future work.
The solution techniques here illustrated have much

broader applicability: they can be applied to different
matter fields coupled to gravity (including, e.g., hydro-
dynamic matter and gauge fields), as well as modified
gravity theories. For instance, in the case of a complex
scalar field, one can follow similar steps, which lead to the
accretion law _M ¼ 16πG2=ð1 − 8πGr2HUðϕ�ϕÞÞM2jLlϕj2
instead of Eq. (3.6). Our methods can also be used to
trace the exact evolution of the black hole apparent horizon
in scalar-tensor theories, extending previous works—e.g.,
Ref. [27]. We expect that the evaporation process
due to Hawking radiation [28] or dark energy [29] can
also be described using similar methods, by including
appropriate couplings to sources that violate the energy
conditions.
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Husain, José M. M. Senovilla, and Raül Vera for helpful
comments on an earlier draft of this paper. M. dC. also
thanks Raül Vera and José M.M. Senovilla for many
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APPENDIX: COEFFICIENTS FOR THE
NEUMANN SOLUTION

Plugging the expansions of Eq. (2.10) into Eqs. (2.8) and
(2.9), we obtain equations for the unknown expansion
coefficients. As an explicit example, the coefficients for the
solution with Neumann boundary conditions are, for the
first three orders in z, given by

13This interpretation is also consistent with Tr
r ¼ −UðϕoÞþ

OðzÞ.
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a1 ¼ 1 − E > 0; a2 ¼ a1 − 1; a3 ¼ −
1

12

�
4ð3 − 4EÞE

1 − E
þ 2rHð1þ EÞ _E

K
−
r2Hð1 − EÞ _E2

K2

�
; ðA1aÞ

b1 ¼ 0; b2 ¼ 0; b3 ¼
ðð1 − EÞrH _E − 2KÞ2

24K3
; ðA1bÞ

c1 ¼ 0; c2 ¼
rH
2K

_ϕo

ϕo
−
r2Hð1 − EÞ _E _ϕo

4K2ϕo
; ðA1cÞ

and

c3 ¼
r2H

12K3ϕo
f _ϕor−1H ½r2Hð1 − EÞð _E2 − ð1 − EÞËÞ þ 2Kð1þKþ EðE þK − 2ÞÞþ

−rHð1 − EÞðKþ ð1 − EÞ2Þ _E� − ð1 − EÞð2K − 3rHð1 − EÞ _EÞϕ̈og: ðA1dÞ

We recall the definitions E ≡ κr2HUðϕoÞ and K≡ κr2Hð _ϕoÞ2. Higher-order coefficients can be computed order by order.
Note that in the _rH → 0 limit, some coefficients diverge, signaling that the static limit is singular; for instance, even in the

case of a constant potential, the coefficient b3 diverges as ∼ _ϕ−4
o .

The curvature invariants in a neighborhood of the horizon are all regular for _rH ≠ 0; their expansions read as

R ¼ 1

r2H

�
4E þ

�
2 − rHð1 − EÞ

_E
K

�
zþOðz2Þ

�
; ðA2aÞ

RabRab ¼ 1

r4H

�
4E2 þ 2E

�
2 − rHð1 − EÞ

_E
K

�
zþOðz2Þ

�
; ðA2bÞ

RabcdRabcd ¼ 4

r4H

�
3 − ð2 − EÞE −

�
2ðE − 4ÞðE − 2Þ þ rHð1 − EÞ

_E
K

�
zþOðz2Þ

�
; ðA2cÞ

CabcdCabcd ¼ 4

3r4H
ð3 − EÞ

�
ð3 − EÞ −

�
16 − 6E þ rHð1 − EÞ

_E
K

�
zþOðz2Þ

�
: ðA2dÞ

Here we recall that E ≡ κr2HUðϕoÞ and K≡ κr2Hð _ϕoÞ2.
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