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fðQÞ gravity is an extension of the symmetric teleparallel equivalent to general relativity. We
demonstrate the Hamiltonian analysis of fðQÞ gravity with fixing the coincident gauge condition. Using
the standard Dirac-Bergmann algorithm, we show that fðQÞ gravity has 8 physical degrees of freedom.
This result reflects that the diffeomorphism symmetry of fðQÞ gravity is completely broken due to the
gauge fixing. Moreover, in terms of the perturbations, we discuss the possible mode decomposition of these
degrees of freedom.
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I. INTRODUCTION

General relativity (GR) is a well-known classical theory
for describing gravity, where Einstein starts with a few
convincing physical assumptions; for instance, GR depicts
gravity as a geometric theory of space-time, which is curved
by any form of energy. For a given distribution of matter, the
structure of space-time is determined by the Einstein field
equations [1,2]. However, we face a troublesome problem:
There is more than one way to describe gravity equivalent to
GR. GR can be represented in three equivalent representa-
tions which are equivalent to each other at their background
level, up to a total derivative (boundary term) linear in the
Lagrangian: the curvature representation for ordinary GR,
which geometrically describes thevariation of the orientation
of a vector in the parallel transport; the teleparallel repre-
sentation for the teleparallel equivalent to general relativity
(TEGR), where the location of a vector will change in the
parallel transport [3,4]; the nonmetricity representation for
the symmetric teleparallel equivalent to general relativity
(STEGR), where the length of a vector will change in the
parallel transport [5–7].
Moreover,we alreadyknow the shortcomings of the above

theories; they cannot adequately describe the late-time
accelerated expansion of the Universe. The situation became
more desperate with the improvement of the accuracy of
observations [8–10]. In order to solve this problem, we have
to introduce the concept of dark energy (DE). In the frame-
work of the above three basic theories, dark energymanifests
itself in the form of exotic matter with negative pressure,
implying that it violates the strong energy condition.

Although the cosmological constant provides the simplest
way to account for DE, it also causes notorious problems,
such as fine-tuning and coincidence problems.
Another way to avoid such issues is to modify the

gravitational theories. Straightforward modifications of the
Lagrangian of GR, TEGR, and STEGR give us fðRÞ, fðTÞ,
and fðQÞ gravity, respectively. These have infinite possibil-
ities due to the arbitrary Lagrangian function, which could
provide us with solutions to the DE problem. This work
sheds light on fðQÞ gravity [11]. One notable advantage
of ordinary GR is that the field equations of fðQÞ gravity
remain second order of the derivative, regardless of the
Lagrangian function. Furthermore, it is also notable that
fðQÞ gravity is not equivalent to fðRÞ gravity. This inequal-
ity stems from the total derivative term, which no longer
remains linear, and thus the boundary term cannot be
dropped by the integral [12]. These two properties of
fðQÞ gravity are the same as those of fðTÞ gravity, and
one expects different outcomes in fðQÞ gravity from those in
fðRÞ or fðTÞ gravity even for the same function form.
Recently, fðQÞ gravity has been intensively investigated.

As it applies to cosmology and astrophysics, for instance,
cosmological perturbations [12–14], cosmography appli-
cations [15,16], spherically symmetric solutions [17,18],
and gravitational waves [19,20] have been studied. For the
development of the theory itself, the covariant formulation
of fðQÞ gravity has been investigated in [18,21,22].
Moreover, the construction of a conformal invariant theory
[23] and a generalization to the so-called general tele-
parallel quadratic tensor theories [24] and its Hamiltonian
analysis have been proposed [25]. To perform a canonical
quantization procedure for fðQÞ cosmology, a Hamiltonian
formulation has been established in the cosmology back-
ground (nonperturbation level) [26].
Despite extensive research on fðQÞ gravity, many

aspects of this theory have not yet been studied; for

*Corresponding author.
qiutt@hust.edu.cn

†T. K. contributed equally to this work.
‡taishi@mail.ccnu.edu.cn
§hukun@mails.ccnu.edu.cn

PHYSICAL REVIEW D 106, 044025 (2022)

2470-0010=2022=106(4)=044025(16) 044025-1 © 2022 American Physical Society

https://orcid.org/0000-0002-9286-2956
https://orcid.org/0000-0002-1557-669X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.044025&domain=pdf&date_stamp=2022-08-10
https://doi.org/10.1103/PhysRevD.106.044025
https://doi.org/10.1103/PhysRevD.106.044025
https://doi.org/10.1103/PhysRevD.106.044025
https://doi.org/10.1103/PhysRevD.106.044025


example, it has not been thoroughly investigated how many
degrees of freedom (d.o.f.) it possesses. This issue is essential
because it will not only have a direct effect on its cosmo-
logical perturbation theory but it will reveal the implicit
symmetry in fðQÞ gravity that we might not have noticed
before. The above is the primary purpose of this paper.
To find out the number of d.o.f. in fðQÞ gravity, the best

way is to apply the Hamiltonian formulation [27,28].
Following Dirac’s procedure [29,30], one can analyze the
constraint structure strictly and obtain the independent
dynamical variables straight from the Lagrange or field
equations. The above is the approach we take in this paper.
For the sake of simplicity, we concentrate on the framework
of the coincident gauge (CG), in which the inertial con-
nection can be trivialized by diffeomorphism (diff.); hence
there is no curvature or inertial concept in coincident general
relativity (CGR). Regarding physical d.o.f., we know that
TEGR and CGR have 2 d.o.f. due to their equivalence of GR
[31–34]. On the other hand, fðTÞ gravity has 5 d.o.f., and the
extra 3 comes from the violation of local Lorentz invariance
[35–37]. Moreover, in the coincident gauge, the general
covariance is broken, which will affect the d.o.f. in general.
Therefore, physical d.o.f. in fðQÞ gravity are highly non-
trivial and totally different from those in the fðRÞ or fðTÞ
gravity theories studied before.
As was briefly argued, this work potentially contributes to

the mode decomposition of the cosmological perturbations
as well as gravitational waves in fðQÞ gravity. Although the
existing works have shown features of fðQÞ gravity with
specific models assumed, the Hamiltonian analysis can
clarify the structure of the fðQÞ gravity in a model-inde-
pendent way. From theoretical viewpoints, the analysis of
propagating modes can provide us with a guideline for
calculations; that is, how many perturbations we take into
account andwhat kind of perturbationswe considerwhenwe
go beyond the background-level analysis. Moreover, from
phenomenological viewpoints, the perturbation or polariza-
tion unique to fðQÞ gravity are probes to distinguish fðQÞ

gravity from other modified gravity theories. For instance, a
comparison of the fðRÞ and fðTÞ gravity theories is helpful
to reveal the specific feature of fðQÞ gravity. The fðRÞ and
fðTÞ gravity theories have been investigated for several
decades, and we can utilize the known results in these two
theories as references for studying fðQÞ gravity.
The present paper is organized as follows: The geometric

background, the gravitational action, and a brief review of
the Hamiltonian formulation of CGR are presented in
Sec. II. We investigate Arnowitt-Deser-Misner (ADM)
foliation of fðQÞ gravity in Sec. III. In Sec. IV we apply
standard Hamiltonian analysis to fðQÞ gravity. In Secs. V
and VI, we count the d.o.f. in fðQÞ gravity and give a brief
discussion about the physical meaning of our conclusion.
For clarity of notation, we adopt the conventional symbol
for the indices in this paper. The latin indices ði; j; k; � � �Þ
running from 1 to 3 represent the spatial indices, and greek
indices ðα; β; � � �Þ running from 0 to 3 represent the space-
time indices. We define some special symbols in Table I.

II. COINCIDENT GENERAL RELATIVITY

In this section, we briefly review the underlying geo-
metrical background that will be used throughout this work
in Sec. II A. Then, in order to recall the standard Dirac’s
procedure for constrained systems in field theory, we also
review the Hamiltonian formulation and encapsulate the
main conclusion of [34] in Sec. II B, which performed a
rigorous Hamiltonian analysis of CGR.

A. Geometrical foundations

To start with, we extend the Riemannian geometry by
treating the metric and connection as two independent
variables. Moreover, the connection is not necessarily
symmetric or compatible, which means that besides the
curvature, torsion and nonmetricity can also be nonvanish-
ing in the manifold. This implies that the decomposition of
a general affine connection can be written as

TABLE I. Conventions and notations.

f α
μνg Levi-Civita connection

Γ̂α
μν General affine connection

Γi
jk Levi-Civita connection with respect to hij

∇μ Covariant derivative with respect to Levi-Civita connection

∇̂α Covariant derivative with respect to general affine connection
Di Covariant derivative with respect to hij
LN⃗ Lie derivative with respect to the vector field
R̂ Curvature scalar with respect to general affine connection
R Curvature scalar with respect to Levi-Civita connection
3R Three-dimensional curvature scalar with respect to Levi-Civita connection
3Q Three-dimensional nonmetricity scalar with respect to hij

3Qjkl Nonmetricy tensor projected onto spatial hypersurface
3Qi Three-dimensional nonmetricity contracted by induced metric, 3Qi ≡ 3Qjklhijhkl
3Q̃i Same as 3Qi, 3Q̃i ≡ 3Q̃kjlhjihkl
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Γ̂α
μν ¼

n α

μν

o
þ Kα

μν þ Lα
μν; ð1Þ

where f α
μνg is the Levi-Civita connection which can be

uniquely determined by the first-order derivatives of the
metric

n α

μν

o
¼ 1

2
gαλðgλν;μ þ gμλ;ν − gμν;λÞ: ð2Þ

Moreover, Kα
μν and Lα

μν are the contortion tensor and
deformation tensor respectively, both describing non-
Riemannian properties in the manifold

Kα
μν ¼

1

2
gαλðTλμν þ Tμνλ − TνλμÞ; ð3Þ

Lα
μν ¼ −

1

2
gαλðQμλν þQνλμ −QλμνÞ; ð4Þ

where we define the torsion tensor Tμ
αβ and the non-

metricity tensor Qαμν as

Tμ
αβ ≡ 1

2
ðΓ̂μ

αβ − Γ̂μ
βαÞ;

Qαμν ≡ ∇̂αgμν ¼
∂gμν
∂xα

− gνσΓ̂σ
μα − gσμΓ̂σ

να: ð5Þ

Note that the indexes are raised and lowered by the metric,
for example

Qα
μν ¼ gαβQβμν ¼ gαβ∇̂βgμν ¼ ∇̂αgμν: ð6Þ

Here and after, we impose the condition that the
connection is symmetric, so that the torsion tensor Tα

μν

and the contortion tensor Kα
μν ¼ 0 vanish, and Eq. (1)

turns into

Γ̂α
μν ¼

n α

μν

o
þ Lα

μν; ð7Þ

so we can rewrite the Riemann curvature tensor in terms of
the general connection

R̂α
βμνðΓ̂Þ ¼ ∂μΓ̂α

νβ − ∂νΓ̂α
μβ þ Γ̂α

μλΓ̂λ
νβ − Γ̂α

νλΓ̂λ
μβ

¼ Rα
βμν þ ð∂μLα

νβ − ∂νLα
μβ þ Lα

μλLλ
νβ − Lα

νλLλ
μβÞ

þ
n α

μλ

o
Lλ

νβ þ
n λ

νβ

o
Lα

μλ −
n λ

μβ

o
Lα

νλ −
n α

νλ

o
Lλ

μβ þ
�n λ

νμ

o
Lα

λβ −
n λ

μν

o
Lα

λβ

�
¼ Rα

βμν þ ð∇μLα
νβ −∇νLα

μβ þ Lα
μλLλ

νβ − Lα
νλLλ

μβÞ; ð8Þ

where Rα
βμν is the usual Riemann tensor in GR composed

by the Levi-Civita connection

Rα
βμνðfgÞ¼∂μ

n α

νβ

o
−∂ν

n α

μβ

o
þ
n α

μλ

on λ

νβ

o
−
n α

νλ

on λ

μβ

o
:

ð9Þ

Moreover, the contraction form of (8) is

R̂ ¼ Rþ ðLμ
μλLλ

ν
ν − Lμ

νλLλ
μ
νÞ þ∇μLμ

ν
ν −∇νLμ

μ
ν;

ð10Þ

noticing that last two terms are total derivative terms which
can be eliminated after the integral.
For the sake of generality, here we will investigate the

action of coincident gauge gravity [11]. We start from
action of the general quadratic theory1 [6,38]

SGQ ¼
Z

d4xð ffiffiffiffiffiffi
−g

p
QαμνPαμν þ λα

βμνR̂α
βμν þ λa

μνTα
μνÞ:

ð11Þ

The last two terms represent the Lagrange multipliers to
impose the symmetric teleparallelism condition R̂α

βμν ¼
Tα

μν ¼ 0. We define the first term Q ¼ QαμνPαμν as the
nonmetricity scalar, where Pαμν is called the superpotential.
Defining the trace of the nonmetricity tensor Qα ≡Qαμ

μ

and Q̃α ≡Qμ
αμ, Pαμν is written as

Pαμν ¼ c1Qαμν þ c2Qμαν þ c3Qαgμν þ c4gαμQ̃
ν

þ c5
2
ðQ̃αgμν þ gανQμÞ: ð12Þ

The symmetric teleparallelism condition restricts the
general connection to be total inertia; thus in an arbitrary
coordinate system xα, the connection should be [11]

Γ̂α
μβ ¼

∂xα

∂ξλ
∂
2ξλ

∂xμ∂xβ
: ð13Þ1For simplicity, we have ignored the 1=ð16πGÞ in the front of

the action, which will not affect our final results.
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One can verify this point by substituting (13) into (8). We
can always choose a coordinate xα ¼ ξλ by utilizing general
coordinate transformation, where the general affine con-
nection Γ̂α

μν ¼ 0. This spatial frame is also known as the
coincident gauge. Under such consideration, the Palatini
formalism turns into metric formalism, while the metric
becomes the only variable. Equation (7) gives

Lα
μν ¼ −

n α

μν

o
¼ −

1

2
gαλðgλν;μ þ gμλ;ν − gμν;λÞ: ð14Þ

As we will show below, under this gauge, in order to
meet the requirement that action (11) is equivalent to that of
GR, one needs to choose the coefficients in the super-
potential Pαμν as c1 ¼ −1=4, c2 ¼ 1=2, c3 ¼ 1=4, c4 ¼ 0,
c5 ¼ −1=2; therefore the action (11) turns out to be

SCGR ¼ 1

4

Z
d4x

ffiffiffiffiffiffi
−g

p ð−QανρQανρ þ 2QανρQραν − 2QρQ̃ρ

þQρQρÞ: ð15Þ

As is well known, the Hilbert-Einstein action is

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
RðfgÞ; ð16Þ

whereRðfgÞ is obtained by contracting the Riemann tensor
in (9). On the other hand, in standard GR, the second
derivatives of the metric in the Ricci scalar can be
eliminated by an integration by parts or by adding a
suitable boundary or total derivative term, but at the
expense of general covariance. Dropping the total deriva-
tive, one finds the gravitational action (16) can be reformu-
lated in a form2 as [39,40]

SEH ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
gμν

�n α

σμ

on σ

να

o
−
n α

σα

on σ

μν

o�
þ
Z

d4x∂αð
ffiffiffiffiffiffi
−g

p
ωαÞ; ð17Þ

in which ωα ¼ gμνΓα
μν − gμαΓν

μν. Substituting Eq. (14)
with (17) and eliminating the boundary term, we will have

S ¼ −
Z ffiffiffiffiffiffi

−g
p

gμνðLα
σμLσ

να − Lσα
αLμν

σÞd4x; ð18Þ

which is nothing but the nonmetricity scalar in action (15),
namely

Q ¼ gμνð−Lα
σμLσ

να þ Lα
σαLσ

μνÞ: ð19Þ

But we have to notice, Eq. (18) is not the standard
Einstein-Hilbert action as in Eq. (17), and the difference
between these two equations exists by the presence of a
total derivative term. Thus, the nonmetricity scalar and
Ricci scalar also differ from each other due to this total
derivative term, namely

RðfgÞ ¼ Q −∇αðQα − Q̃αÞ: ð20Þ

However, the situation will be significantly different if we
move to fðQÞ gravity because the total derivative term in
the CGR action will no longer be a boundary term in fðQÞ
gravity.

B. Hamiltonian formulation

In this section, we will encapsulate the Hamiltonian
analysis for CGR by following Ref. [34]. In ADM
formalism, the space-time metric is written as

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð21Þ

where N, Ni, hij are the lapse function, the shift function,
and the three-dimensional spatial metric. Using the above
variable, it is straightforward to represent a four-dimen-
sional metric as follows:

gμν ¼
�−N2 þ NiNi Ni

Ni hij

�
;

gμν ¼
� −N−2 N−2Ni

N−2Ni hij − NiNj

N2

�
: ð22Þ

Inserting the above metric into (15) and dropping the
boundary terms bring the CGR Lagrangian into the form3

S½g� ¼
Z

d4x
ffiffiffi
h

p
N½3Q −Dlð3Ql − 3Q̃lÞ þ KijKij − K2�;

ð23Þ

where 3Q¼hikðΓm
ilΓl

km−Γl
ikΓm

lmÞ is the three-dimensional
nonmetricity scalar, Kij ¼ 1

2N ð _hij −DiNj −DjNiÞ is the
extrinsic curvature of the hypersurface, and K ¼ hijKij is
the trace ofKij. However, not all canonical ADM variables in
(22) are independent. Theywill be related through the primary
constraints2The first term of action (17) is known as Einstein action

because Einstein himself formulated it in the first place. Variation
of Einstein action toward metric directly gives the Einstein tensor
without adding any applicable boundary term, for example, the
Gibbons-Hawking-York boundary term. However, this property
is at the expense of general covariance.

3Partial integration would not affect the numbers of d.o.f. of
the system, and we shall see in Sec. III, the action (23) can be
obtained more efficiently by using (35) than applying direct
decomposition.

KUN HU, TAISHI KATSURAGAWA, and TAOTAO QIU PHYS. REV. D 106, 044025 (2022)

044025-4



πN ¼ δS

δ _N
¼ 0;

πi ¼ δS

δ _Ni

¼ 0: ð24Þ

Therefore, canonical Hamiltonian density can be constructed
in the following structure:

H ¼
Z
Σt

d3xðλπN þ λiπi þH0Þ

¼
Z
Σt

d3xðλπN þ λiπi þ NC0 þ NiCiÞ; ð25Þ

where λ; λi are Lagrange multipliers which can be ignored
since πN and πi are first-class (FC) constraints. Moreover,
C0; Ci provide secondary constraints [34]

C0 ≔ −
ffiffiffi
h

p �
3Q −Dlð3Ql − 3Q̃lÞ

−
1

h

�
πijπ

ij −
1

2
ðπiiÞ2

��
≈
!
0;

Ci ≔ −2Djπ
j
i ≈
!
0: ð26Þ

We can see that the above has a very similar form to GR. The
demand for preservation over time requests Poisson brackets
(PBs) between the Hamiltonian and secondary constraints
equal to zero; this leads to the following equations:

fC0ðxÞ; Hg ¼
Z
Σt

d3yðNðyÞfC0ðxÞ; C0ðyÞg

þ NiðyÞfC0ðxÞ; CiðyÞgÞ;

fCiðxÞ; Hg ¼
Z
Σt

d3yðNðyÞfCiðxÞ; C0ðyÞg

þ NjðyÞfCiðxÞ; CjðyÞgÞ: ð27Þ

To obtain the constraint algebra efficiently, we consider the
quantities in the following way:

CSðNÞ ≔
Z
Σt

NC0d3x;

CVðN⃗Þ ≔
Z
Σt

NiCid3x: ð28Þ

After elaborate calculations, the following PBs can be written
in the form of the Lie derivative. After using (28) and (26), the
constraint algebra turns out to be zero

fCSðNÞ; CVðN⃗Þg ¼ −CSðLN⃗NÞ ¼ 0;

fCVðN⃗1Þ; CVðN⃗2Þg ¼ CVð½N⃗1; N⃗1�Þ ¼ 0;

fCSðN1Þ; CSðN2Þg ¼ CVððN1∂
iN2 − N2∂

iN1Þ∂iÞ ¼ 0:

ð29Þ
That means the consistency conditions (27) are auto-

matically satisfied after using the secondary cons-
traints, and (29) show all eight constraints are FC,4 and
the Lagrange multipliers λ; λi remain arbitrary. Thus, the
d.o.f. of the CGR is 10 − 8 ¼ 2, which is the same as the
number of propagating modes with GR. This result con-
firms that the CGR and GR are somewhat equivalent.
Actually, (23) is identical to the Gauss-Codazzi form of the
Hilbert-Einstein action, as we will prove in the next section.

III. ADM DECOMPOSITION OF f ðQÞ GRAVITY

In this section, we attempt to apply the approach deve-
loped in the preceding section to fðQÞ gravity. To establish
the 3þ 1 decomposition of a generic fðQÞ gravity theory,
we decompose the space-time onto a three-dimensional
manifold Σt and express the nonmetricity scalar restricted
to the hypersurfaces. We start by recalling the corres-
ponding Gauss-Codazzi action in GR. Then, we utilize its
results and the relationship between the nonmetricity scalar
and Ricci scalar to establish ADM formalism in the fðQÞ
scenario.
In this sense, depending on the corresponding prescription,

the direction of time Tμ can be decomposed into components
tangential and orthogonal to the hypersurface Σt,

Tμ ¼ Nnμ þ Nμ;

where nμ is defined as a unit vector normal to the hypersur-
face, satisfying the normalization condition nμnμ ¼ −1, and
all indices are raised and lowered by gμν. The explicit form of
nμ and nμ in terms of their components can be written as

nμ ¼ ð−N; 0; 0; 0 Þ;
nμ ¼ ð 1=N; −Ni=N Þ: ð30Þ

We choose the ADM metric Eq. (22) where the induced
metric hij lying onΣt orthogonal to normal vector hμνnν ¼ 0,
also fulfilling the relation

hμν ¼ gμν þ nμnν ¼
�
NiNi Ni

Ni hij

�
;

hμν ¼ gμν þ nμnν ¼
�
0 0

0 hij

�
;

4In phase space, a dynamical variable is called FC if it has
weakly vanishing PBs with all constraints. If one is not FC, we
call it second class (SC).
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hence the four-dimensional Ricci scalar defined by the
connection compatible with the spacetime metric can be
expressed in terms of the intrinsic and extrinsic curvature on
the hypersurface Σt as follows [41]:ffiffiffiffiffiffi

−g
p

R ¼
ffiffiffi
h

p
Nð3Rþ KijKij − K2Þ

þ 2
ffiffiffiffiffiffi
−g

p ½∇μðnμ∇νnνÞ −∇νðnμ∇μnνÞ�: ð31Þ

In order to facilitate our further calculations, it is con-
venient to rephrase fðQÞ gravity as a scalar-nonmetricity
theory, with the assistance of an auxiliary scalar field [42]

SfðQÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½f0ðφÞQþ fðφÞ − φf0ðφÞ�; ð32Þ

where f is an arbitrary function of auxiliary field φ, and the
0 is the derivative with respect to φ. On the other hand, we
know from Eq. (20) that the nonmetricity scalar can be
written in terms of the Ricci scalar up to the total derivative
term. Inserting (20) into (32) gives

SfðQÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½f0Rþ f0∇αðQα − Q̃αÞ þ f − φf0�:

ð33Þ

Combining it with (31), we can express the fðQÞ action by
the spatial curvature scalar in following form:

SfðQÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½f0ð3Rþ KijKij − K2

þ 2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞÞ
þ f0∇αðQα − Q̃αÞ þ f − φf0�: ð34Þ

Furthermore, we prove that there exists an analogous
relationship between the intrinsic nonmetricity scalar 3Q
and the intrinsic curvature 3R, which we have explicitly
shown in Appendix A

3R ¼ 3Q −Dlð3Ql − 3Q̃lÞ: ð35Þ

Inserting (35) into (34) and after tedious calculations to the
boundary terms presented in Appendix B, we give the
action to the following form:

SfðQÞ ¼
Z

d4x

	
N

ffiffiffi
h

p
½f þ f0ð3Qþ KijKij − K2 − φÞ

−Dl½f0ð3Ql − 3Q̃lÞ�� þ
ffiffiffi
h

p

N
_φf00ð∂iNiÞ −

ffiffiffi
h

p

N
_Ni
∂if0

−
ffiffiffi
h

p

N
∂if0ðNi

∂jNj − Nk
∂kNiÞ



: ð36Þ

This is the final decomposed action of fðQÞ gravity which
we will pursue in the following sections.

IV. HAMILTONIAN FORMULATION
IN f ðQÞ GRAVITY

In this section, we apply the standard Dirac-Bergmann
algorithm [29,30] to fðQÞ gravity. First of all, it is useful to
note that the relation of _Ni and _Ni can be expressed as

_Ni
∂if0 ¼ ∂if0 _ðNjhijÞ ¼ ∂if0 _Njhij þ ∂if0Nj

_hij

¼ ∂
if0 _Ni − ∂

if0Nj _hij: ð37Þ

Moreover, by defining Aij ≔
ffiffi
h

p
N Nj

∂
if0 and Bi ≔ ðNi

∂jNj−
Nj

∂jNiÞ, we rephrase action (36) into following form:

SfðQÞ ¼
Z

d4x

	
N

ffiffiffi
h

p
½f þ f0ð3Qþ KijKij − K2 − φÞ

−Dl½f0ð3Ql − 3Q̃lÞ�� þ
ffiffiffi
h

p

N
_φf00ð∂iNiÞ

−
ffiffiffi
h

p

N
ð∂if0Þ _Ni þ Aij _hij −

ffiffiffi
h

p

N
ð∂if0ÞBi



: ð38Þ

There are 11 dynamical variables in total, N, Ni, hij, φ.
Note that Ni has three components, and hij has six
components because of the index symmetry. In order to
perform the Hamiltonian formalism of a dynamical system,
we introduce, in the usual way, the corresponding con-
jugate momenta which are defined by

πN ≡ δS

δ _N
¼ 0;

πi ≡ δS

δ _Ni

¼ −
ffiffiffi
h

p

N
∂
if0;

πij ≡ δS

δ _hij
¼

ffiffiffi
h

p
½f0ðKij − hijKÞ� þ Aij;

p≡ δS
δ _φ

¼
ffiffiffi
h

p

N
f00ð∂iNiÞ: ð39Þ

The fundamental PBs5 among the canonical variables in
phase space are given by

fNðxÞ; πNðyÞg ¼ δð3Þðx⃗ − y⃗Þ;
fNiðxÞ; πjðyÞg ¼ δijδ

ð3Þðx⃗ − y⃗Þ;
fhijðxÞ; πmnðyÞg ¼ δmðiδ

n
jÞδ

ð3Þðx⃗ − y⃗Þ: ð40Þ

5The PBs between two functions FðxÞ and GðxÞ of the phase-
space variables fN;Ni; hij;φ; πN; πi; πij; pg are defined as [34]

fFðxÞ; GðyÞg ≔
Z
Σt

d3z
X
k

�
δFðxÞ
δΦkðzÞ

δGðyÞ
δΠkðzÞ

−
δGðyÞ
δΦkðzÞ

δFðxÞ
δΠkðzÞ

�
:
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According to the Dirac-Bergmann algorithm, the conjugate momenta in Eq. (39) will become constraints of the system if
they do not contain the corresponding velocities, which means that the latter cannot be obtained inversely. To see how many
constraints there are in Eq. (39), we check the following matrix6:

Wab ¼
∂Πa

∂ _qb
¼

0
BBBBBBBBBBBBBBBBBB@

0 0 � � � 0 0 � � � 0 0

0 0 � � � 0 0 � � � 0 0

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0 � � � 0 0

0 0 � � � 0 f1 � � � 0 0

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0 � � � f6 0

0 0 � � � 0 0 � � � 0 0

1
CCCCCCCCCCCCCCCCCCA

9>>=
>>;3

9>>=
>>;6

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
6

;
a¼ ð 0

z}|{πN

;0;…;0
zfflfflffl}|fflfflffl{πi

;0;…;0
zfflfflffl}|fflfflffl{πij

; 0
z}|{p

Þ : ð41Þ

Note that Wab is an 11 × 11 symmetric matrix with all
components zero, except for these six diagonal elements.
So the rank of Wab is M ¼ 6, that give rise to 11 − 6 ¼ 5
primary constraints

ϕa∶ πN ≈
!
0;

ϕi∶ πi þ
ffiffiffi
h

p

N
∂if0 ≈

!
0;

ϕc∶ p −
ffiffiffi
h

p

N
f00ð∂iNiÞ ≈! 0; ð42Þ

where the symbol ! stands for demand. The linear com-
bination of the primary constraints (42) defining the
hypersurface intersection Σ1 guarantees the phase-space
variables are weakly equal7 to zero.
The independence checking8 of these primary con-

straints are given by Jacobian matrix Jn0n ¼ ∂ϕn0
∂ðqn;pnÞ. If

the rank of matrix Jn0n equals M0, it means there only
exist M0 independent primary constraints among (42) [27].
In our case, it is not hard to check Jn0n is a full rank matrix,
so that M0 ¼ 5, and it suggests the Σ1 is a phase-space
submanifold of dimension 2N −M0 ¼ 17.
Since ϕi and ϕc are dependent on N and φ, all PBs

between different primary constraints remain nonvanishing.

The nonvanishing PBs are listed below

fϕaðxÞ;ϕiðyÞg ¼
ffiffiffi
h

p

N2
∂if0δ3ðx − yÞ;

fϕaðxÞ;ϕcðyÞg ¼ −
ffiffiffi
h

p

N2
f00ð∂iNiÞδ3ðx − yÞ;

fϕcðxÞ;ϕiðyÞg ¼ −
ffiffiffi
h

p

N
f000∂iφδ3ðx − yÞ

− 2

ffiffiffi
h

p

N
f00∂iδ3ðx − yÞ: ð43Þ

On the other hand, the remaining six equations can
be inversely solved to get _hij. Defining π ¼ hijπij and

A ¼ hijAij, from (39) we can get π ¼ −2
ffiffiffi
h

p
f0K þ A,

K ¼ A−π
2
ffiffi
h

p
f0
. Substituting back to (39) yields the following

relationships:

Kij ¼ 1ffiffiffi
h

p
f0

�
πij − Aij þ 1

2
hijðA − πÞ

�
;

KijKij − K2 ¼ 1

hf02

�
ðπij − AijÞðπij − AijÞ −

1

2
ðA − πÞ2

�
;

ð44Þ
hence

_hij ¼ 2NKij þ 2DðiNjÞ

¼ 2Nffiffiffi
h

p
f0

�
πij − Aij þ

1

2
hijðA − πÞ

�
þ 2DðiNjÞ: ð45Þ

Now we return to further development of the
Hamiltonian formalism. We define the total Hamiltonian
in the traditional form

6Some papers call it Hessian: Hab ¼ ∂
2L

∂ _qa∂ _qb, which is exactly
same as matrix Wab.

7If the restriction of phase-space variables vanishes on ϕðp; qÞ,
we say ϕðp; qÞ is weakly equal to zero, and we label it by ≈. In
addition, if function ϕðp; qÞ and all its first derivatives vanish on
Σ1, then we say ϕðp; qÞ is strongly equal to zero, labeled by ¼.

8Under general consideration, the primary constraints (42)
may be reducible; thus we can split them into an independent part
and dependent part. If the matrix Jn0n is full rank then it is called a
regularity condition.
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H ¼
Z
Σt

H d3x

¼
Z
Σt

d3xðλaπN þ λiϕi þ λcϕc þH 0Þ; ð46Þ

in whichH 0 represents the canonical Hamiltonian density

H 0 ≔ πij _hij þ πi _Ni þ p _φ −L

¼ NCþ 2DðiNjÞðπij − AijÞ þ
ffiffiffi
h

p

N
∂if0Bi

¼ NCþ 2DiNjπ
ij −

ffiffiffi
h

p

N
∂if0ðNj

∂
iNj − Ni

∂jNj

þ 2Nj
∂jNiÞ;

C ¼ 1ffiffiffi
h

p
f0

�
ðπij − AijÞðπij − AijÞ −

1

2
ðA − πÞ2

�
−

ffiffiffi
h

p
ff þ f0ð3Q − φÞ −Dl½f0ð3Ql − 3Q̃lÞ�g; ð47Þ

while λa, λi, and λc are arbitrary Lagrangian multipliers. In
order to find out the evolution of the constraints (39), we
need to check whether the consistency conditions for these
constraints could be satisfied. The consistency conditions
require that the time derivative of these constraints, which
can be transformed into the PBs between the constraint
functions with the Hamiltonian, also vanish on a new
hypersurface Σ2 of lower dimension than Σ1. This leads to
the following equations:

_ϕn0 ¼ fϕn0 ;H g
≈ fϕn0 ;H 0g þ fϕn0 ;ϕngλn ≈! 0; n ∈ ða; i; cÞ: ð48Þ

Such conditions can be satisfied if they have solutions for
all the multipliers. To check this, we have to compute the
rank of the following matrix:

Cn0n ¼ fϕn0 ;ϕng ¼

0
BBBBB@

0 A1 A2 A3 −B
−A1 0 0 0 C1

−A2 0 0 0 C2

−A3 0 0 0 C3

B −C1 −C2 −C3 0

1
CCCCCA;

ð49Þ

where we defineffiffiffi
h

p

N
f00ð∂iNiÞ ≔ S;

ffiffiffi
h

p

N
∂if0 ≔ Vi;

fπN; Vig≡ Ai ¼ ðA1; A2; A3Þ;
fVi; pg þ fS; πig≡ Ci ¼ ðC1; C2; C3Þ: ð50Þ

We find the detðCn0nÞ ¼ 0 and its rank is 4, which is
consistent with the fact that Cn0n is an antisymmetric matrix
of odd order. This means the multipliers are not yet
uniquely determined, and we need to find another con-
straint condition. Such a constraint condition can be made
by contracting the null eigenvector of matrix Cn0n,

ξn ¼ ð 0; A½3C2�; A½1C3�; A½2C1�; 0 Þ; ð51Þ

and hn ≡ ðfϕn;H 0gÞ, namely,

χ ¼ ξnhn ¼ ξiðfπi;H 0g þ fVi;H 0gÞ≈
!
0: ð52Þ

The extra constraint imposed by the null eigenvector should
be the secondary constraint [43,44].
The presence of secondary constraints are independent

of previous constraints ϕn and restrict the motion in phase
space to a new hypersurface Σ2 of lower dimension than Σ1.
Now, we have five primary constraints and one secondary
constraint; these six constraints ought to be preserved
during the evolution of the system. Hence the consistency
equation for the above six constraints leads to

0 ≈ _ϕa

¼ fϕa;H 0g þ fϕa;ϕngλn
¼ fπN;H 0g þ fπN;ϕigλi þ fπN;ϕcgλc
¼ fπN;H 0g þ fπN; Vigλi − fπN; Sgλc; ð53Þ

0 ≈ _ϕi

¼ fϕi;H 0g þ fϕi;ϕngλn
¼ fπi;H 0g þ fVi;H 0g − fπN; Vigλa
þ fS; πigλc þ fVi; pgλc; ð54Þ

0 ≈ _ϕc

¼ fϕc;H 0g þ fϕc;ϕngλn
¼ fp;H 0g − fS;H 0g þ fπN; Sgλa − fS; πigλi
− fVi; pgλi; ð55Þ

0 ≈ _χ

¼ fχ;H 0g þ fχ;ϕngλn: ð56Þ

From the above consistency evolution treatment of
constrained dynamics, we hope that some initially under-
mined Lagrange multipliers can be eventually determined
by Eqs. (53)–(56). We will check this point in the next
section.
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V. DEGREES OF FREEDOM OF f ðQÞ GRAVITY

A. Counting the degrees of freedom

In this section, we will test whether the hypersurface surfaces Σ̄ ¼ Σ1 ∩ Σ2
9 are final constraint surfaces. This

consideration drive us to combine the consistency condition of secondary constraint (56) with the previousCn0n to consist of
a new matrix Φmn,

ðΦmnÞ≡
�

Cn0n

fχ;ϕng

�
¼

0
BBBBBBBB@

0 A1 A2 A3 −B
−A1 0 0 0 C1

−A2 0 0 0 C2

−A3 0 0 0 C3

B −C1 −C2 −C3 0

fχ;ϕag fχ;ϕxg fχ;ϕyg fχ;ϕzg fχ;ϕcg

1
CCCCCCCCA
: ð57Þ

At this stage, we are facing two possibilities. If the rank of Φmn is still 4, it means there must exist a column vector ζn,
which satisfying the relation Cn0nζ

n ≈ 0 and fχ;ϕngζn ≈ 0, leads us to construct a new constraint ϕ0 ¼ ζnϕn. By a linear
combination of primary constraints, one can prove this constraint ϕ0 must be FC [27,43]. Then, the consistency condition of
ϕ0 must be checked further.
On the other hand, if the rank of Φmn is maximum, i.e., equal to 5, it means the consistency conditions (53)–(56) contain

five linearly independent equations for the Lagrange multipliers, so that the five Lagrange multipliers can be solved as a
function of the phase-space variables. Inserting these Lagrange multipliers back into Eqs. (53)–(56), we will certainly see
that the consistency conditions for all constraints are automatically satisfied. Based on the above discussion, we check the
specific form of Eq. (52)

χ ¼ ξiðfπi;H 0g þ fVi;H 0gÞ
¼ ξxðfπx;H 0g þ fVx;H 0gÞ þ ξyðfπy;H 0g þ fVy;H 0gÞ þ ξzðfπz;H 0g þ fVz;H 0gÞ
¼ ðA3C2 − A2C3Þfπx þ Vx;H 0g þ ðA1C3 − A3C1Þfπy þ Vy;H 0g þ ðA2C1 − A1C2Þfπz þ Vz;H 0g: ð58Þ

Although very complicated in the details, if we analyze (58) carefully we will find that it possesses good symmetry
in its components. The possibility that ðΦmnÞ becomes a reducible (nonfull rank) case requires at least the

fχ;ϕxg; fχ;ϕyg; fχ;ϕzg vanish simultaneously, which we note are very strict conditions. For example, ϕx ¼ πx þffiffi
h

p
N ∂xf0 means that χ cannot contain the corresponding Nx; πij, and πN . This is very easily disproved: We consider the first
term of χ from (47), variate H 0 with respect to Nx and πij respectively

Z
Σt

δH 0jNx ¼ −
Z
Σt

2
ffiffiffi
h

p
Dj

�
πjxffiffiffi
h

p
�
δNx −

Z
Σt

Fxðhij; N;φ; NiÞδNx;Z
Σt

δH 0jπij ¼
Z
Σt

Nffiffiffi
h

p
f0
ð2πij − πhijÞδπij þ

Z
Σt

2DiNjδπij; ð59Þ

where Fx is a function of hij, N, φ, and Ni with a very complicated form. Then we can express the following PBs as

fπxðxÞ;H 0ðyÞg ¼
�
2

ffiffiffi
h

p
Dj

�
πjxffiffiffi
h

p
�
þ Fxðhij; N;φ; NiÞ

�
δ3ðx − yÞ;

fVxðxÞ;H 0ðyÞg ¼
�
π

2
−

ffiffiffi
h

p
DjNj

�
∂x ln f0δ3ðx − yÞ: ð60Þ

We can see that fπx þ Vx;H 0g contains terms like Nj; π, and so on, while the term ðA3C2 − A2C3Þ is nonvanishing. This
indicates that Nx; πij must appear in χ, which gives rise to

9Σ̄ is the constraint surface determined by Eqs. (42) and (52).

ADM FORMULATION AND HAMILTONIAN ANALYSIS OF … PHYS. REV. D 106, 044025 (2022)

044025-9



fχ;ϕig ≠ 0: ð61Þ

Therefore, the rank of Φmn is 5, which shows that all five Lagrange multipliers can be uniquely determined by (53)–(56);
thus there is no further secondary constraint, all consistency conditions are exhausted, and the algorithm is finished.
Moreover, by Eqs. (43) and (61), we know by definition that all the primary and secondary constraints are SC. Finally, we
can determine the number of d.o.f. in fðQÞ gravity,

D:o:f : ¼ 1

2
·

�
Number of original

canonical variables
−

Total number

of constraints
−

Number of

gauge conditions

�

¼ 1

2
·

�
Number of original

canonical variables
− 2 ×

Number of

FC constraints
−

Number of

SC constraints

�

¼ 1

2
· ð22 − 0 − 6Þ ¼ 8: ð62Þ

B. Interpretation of degrees of freedom

In this subsection, we discuss the origin of 8 d.o.f. in fðQÞ
gravity, and then, wemake a comparison between fðQÞwith
the other two in the geometrical trinity of gravity namedfðTÞ
and fðRÞ gravity. Starting from Sec. II, we have shown
that there are eight FC constraints in CGR, which cause all
the Lagrange multipliers to stay arbitrary. As a consequence,
the evolution of dynamical variables in phase space cannot
be uniquely determined by their initial values, and it cor-
responds to the fact that CGR possesses the same gauge
symmetry as that in GR. As a matter of fact, four constraints
(26) describe general coordinate transformation, and the
rest of the four FC constraints (24) can be utilized to fix
the nondynamical fields N and Ni. Then it reduces the total
variables from ten to two. However, when we extend the
action of CGR to the general case, the situation becomes
quite different: When we remove the inertial connection
Γ̂α

μβ ¼ ∂xα
∂ξρ ∂μ∂βξ

ρ bymeans of diff. (xα ¼ ξρ), the connection
vanishes, and the nonmetricityQαμν is no longer a tensor in a
general sense (it does not follow the transformation rules
under the general coordinate transformation), and the action
is only invariant when the boundary term shows up [21]. We
can see this point more clearly if we consider the arbitrary
gauge Γ̂α

μβ ¼ ∂xα
∂ξρ ∂μ∂βξ

ρ and coincident gauge Γ̂α
μβ ¼ 0 for

two circumstances. By using (8), each condition gives us a
noncurvature condition. CombiningEqs. (19) and (10) yields

Rþ∇μðQ̃μ −QμÞ −Q ¼ Rþ∇μð ˜̂Qμ − Q̂μÞ − Q̂ ¼ 0:

ð63Þ

To differentiate, here we use Q̂ðgμν; Γ̂α
μβÞ to represent the

nonmetricity scalar for the arbitrary gauge andQðgμν; 0Þ for
the coincident gauge. It follows that

ffiffiffiffiffiffi
−g

p
Qðgμν; 0Þ ¼

ffiffiffiffiffiffi
−g

p
Q̂ðgμν; Γ̂α

μβÞ þ ∂μ½
ffiffiffiffiffiffi
−g

p ðBμ − B̂μÞ�;
ð64Þ

in which Bμðgμν; 0Þ ¼ Q̃μ −Qμ and B̂μðgμν; Γ̂α
μβÞ ¼

˜̂Q
μ − Q̂μ. It explicitly shows that the boundary term is

eliminated by integration and gives a covariant Qðgμν; 0Þ,
but this is only for the case when fQQ ¼ 0.
Let us consider the general case of fðQÞ gravity, where

namely fQQ is not necessarily zero. In this case, the action is
no longer diff. invariant x0μ ¼ xμ þ εμðxÞ in the coincident
gauge. From the consideration of this point, it follows that no
FC constraints should exist in this theory, which is consistent
with the findings that all six constraints ϕa, ϕi, ϕc, and χ are
SC. Moreover, one can easily find that the noncommutativity
of these constraints is mainly caused by the fact that the
canonical momenta of Ni and φ are nonvanishing. Recalling
the action (38), we find that the action contains the terms
linear to the velocity of the variables Ni and φ. In the
Lagrangian formulation, such linear terms suggest that the
equation of motion only involves the first-order time deriv-
atives ofNi and φ. Since the wave equation requires second-
order time derivatives, we can interpret that Ni and φ are
dynamical but do not propagate; in other words, Ni and φ
carry a half d.o.f. In Hamiltonian formulation, the six SC
constraints ðϕa;ϕi;ϕc; χÞ can be regarded as determining any
six phase-space variables that appear in the given constraints.
Hence, one can choosewhich variables are expressed in terms
of the others.10 Finally, four of ten variables (N;Ni;φ;
πN; πi; p) are dynamical ones, and if we choose Ni and φ
as independent variables, we can again interpret that each of
the variables in Ni and φ carries a half degree of freedom.
We observe that the above situation is very different from

the case of GR or CGR, or even fðRÞ and fðTÞ gravity.
Note that in fðRÞ gravity, the scalar field momentum p is

10It can be proved that with the help of Eq. (15), we can
change the form of action (15) by applying ADM decomposition
toward the action (38) straightforwardly. In such a way the
variable without a time derivative in Lagrangian transforms from
a lapse function N to auxiliary field φ. However, this is only a
mathematical transformation without any real physical meaning.
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not a constraint [45], but rather a real dynamical variable.
fðRÞ gravity has 10þ 1 ¼ 11 apparent d.o.f. While it pre-
serves the diff. symmetry, all eight constraints (primary and
secondary) are FCs and fðRÞ gravity has 3 physical d.o.f.
[45]. In fðTÞ gravity, where the building blocks are tetrad
rather than metric, there are 16þ 1 ¼ 17 apparent d.o.f. It
preserves diff. symmetry but breaks down the local Lorentz
symmetry (six SC constraints), while they need an additional
two SC constraints to eliminate the auxiliary scalar field. So,
we have eight FC constraints and eight SC constraints, and
fðTÞ gravity has 5 physical d.o.f. [35].We compare the three
gravitational theories explicitly in Table II.
Although the above three theories show different features,

we can also find similarities among them, giving us a better
understanding of the dynamics in fðQÞ gravity. In contrast to
fðRÞ gravity, the other two theories show the SC constraints.
As was discussed, we have eight SC constraints in fðTÞ
gravity, where six of eight reflect the breakdown of the local
Lorentz symmetry, and two of eight reflect the nondynamical
scalar field. In the same way, we can interpret six SC
constraints in fðQÞ gravity; that is, four of six reflect the
breakdown of the diff. symmetry and two of six reflect the
nondynamical scalar field. On the other hand, the symmetry
is manifest, and the scalar field is dynamical in fðRÞ gravity.
This is because the equation of motion in fðRÞ gravity
includes a fourth-order derivative, which is decomposed into
two second-order derivative equations, and thus both metric
and scalar fields are dynamical.
As a side remark, we would like to make speculations on

what type of d.o.f. these might be. From the viewpoint of
space-time decomposition, the induced metric hij contains
2 scalar (S), 2 vector (V), and 2 tensor (T) d.o.f. Due to the
breakdown of diff. symmetry, all of these 6 d.o.f. are
preserved. While the shift function Ni can be decomposed
into the gradient of a scalar plus a divergenceless vector, N
and Ni contain a total of 2 scalar and 2 vector d.o.f.
However, variables only carry a half d.o.f. as we discussed.
Thus, we have in total three possible interpretations of these
8 d.o.f.; they correspond to (2S, 4V, 2T), (3S, 3V, 2T), and
(4S, 2V, 2T) respectively. However, determining which is
the right choice is beyond the scope of our paper, and we
will handle it in a future study.

VI. CONCLUSIONS AND DISCUSSION

In gauge theories, redundant d.o.f. may exist, some of
which are closely related to the gauge symmetry, i.e., invari-
ance under the gauge transformation. In the Hamiltonian

formalism, they are characterized by the presence of con-
straints. The symmetries inherent in a theory can be explored
by performing a Hamiltonian analysis.
The three gravity theories, namely GR, TEGR, and

STEGR, are well known to be equivalent to each other,
despite a total derivative acting as a boundary term.
Therefore, they have the same number of physical d.o.f.
That is why people call them the “geometrical trinity.”
However, their variants, namely fðRÞ, fðTÞ, and fðQÞ, will
not be equivalent to each other because, in a functional form,
the total derivative term can no longer be a boundary term.
While the d.o.f. of the first two theories are already known, in
this paper, we developed the Hamiltonian formalism for
fðQÞ gravity in the framework of the coincident gauge.
Making use of the ADM formalism and after tedious

calculations, we succeeded in expressing the action in
terms of ADM variables. We found that different from
the widely studied fðRÞ and fðTÞ gravity theories, the
ADM action of fðQÞ gravity contains terms linear to
the velocity of its variables Ni and φ, which will have
significant effects on its geometric structure. These varia-
bles cannot be seen as dynamical ones because of the lack
of their kinetic terms; however, their canonical momenta do
not vanish as usual constraints in GR. Therefore, we can
interpret these variables as dynamical but nonpropagating
d.o.f., which will also contribute to the physical degree of
freedom, but lack the capability to propagate. Then we
performed the standard Dirac-Bergmann algorithm to the
action and notably showed there are five primary con-
straints (ϕa;ϕi, ϕc) and one secondary constraint χ in the
whole system. After calculating the nonvanishing PBs
between all constraints, we proved all of them are SC,
which implies that the diff. symmetry is broken. Therefore,
we concluded that in four dimensions, the physical d.o.f. in
general coincident relativity is 8. The richness of the
physical d.o.f. is not only due to the broken diff. symmetry
but due to the contributions from nonpropagating variables
such as Ni and φ. We also presented a comparison of our
results with fðRÞ and fðTÞ gravity theories.
We further note a possible analogy to massive gravity

in light of symmetry breaking [46–48]. Massive gravity
describes the self-interacting massive spin-2 field theory
(so-called massive graviton), and the mass term explicitly
breaks diff. symmetry. Consequently, we have no FC
constraint, but two SC constraints show up in massive
gravity. Thus, massive gravity predicts 5 physical d.o.f.
corresponding to the five helicities of the massive spin-2
field. As seen above, we have no FC constraint but we have

TABLE II. d.o.f. comparison of geometrical trinity of gravity.

Number of basic variables Degrees of freedom Symmetry breaking

fðRÞ 10þ 1 ðgμν;ϕÞ ð22 − 8 × 2 − 0Þ=2 ¼ 3 No symmetry is broken
fðTÞ 16þ 1 ðeμa;ϕÞ ð34 − 8 × 2 − 8Þ=2 ¼ 5 Local Lorentz is broken
fðQÞ 10þ 1 ðgμν;ϕÞ ð22 − 0 − 6Þ=2 ¼ 8 Diff. is broken
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the SC constraints in fðQÞ gravity with the coincident
gauge. In the same way as massive gravity, we can restore
the diff. symmetry by introducing the Stukelberg fields to
compensate for the symmetry [42], which several works
have argued as the covariant formulation of fðQÞ gravity.
The covariant formulation of fðQÞ gravity can complete

our analysis of the mode decomposition in the present
work. Although we determined the number of physical
d.o.f. and demonstrated possible interpretations for each
mode, we cannot uniquely determine the mode decom-
position. Based on the covariant formulation, we will be
able to discuss the origin of each mode clearly, which
provides us with the complete information of physical d.o.f.
We hope our work will reveal the dark side of exploring the
basic perception of fðQÞ gravity and provide new insights

into cosmological perturbation theory, which is also a
project we plan to undertake in the future.
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APPENDIX A: RELATION BETWEEN 3R AND 3Q

We try to determine whether there exists an analog
relationship between 3R and 3Q as they are in four
dimensions. First, we expand 3R by its definition.

ffiffiffiffiffiffi
−g

p
f0ðφÞ3R ¼ ffiffiffiffiffiffi

−g
p

f0ðφÞhikRik

¼ ffiffiffiffiffiffi
−g

p
f0ðφÞhikð∂lΓl

ik − ∂kΓl
il þ Γl

ikΓm
lm − Γm

ilΓl
kmÞ

¼ ffiffiffiffiffiffi
−g

p
f0ðφÞhikð∂lΓl

ik − ∂kΓl
ilÞ −

ffiffiffiffiffiffi
−g

p
f0ðφÞ3Q: ðA1Þ

We can apply a partial integral to the first two terms of the right-hand side due to the integral of the action

ffiffiffiffiffiffi
−g

p
f0ðφÞhik ∂Γ

l
ik

∂xl
¼ ∂

∂xl
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikΓl
ikÞ − Γl

ik
∂

∂xl
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikÞ;
ffiffiffiffiffiffi
−g

p
f0ðφÞhik ∂Γ

l
il

∂xk
¼ ∂

∂xk
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikΓl
ilÞ − Γl

il
∂

∂xk
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikÞ: ðA2Þ

Making use of a useful expression

Γm
imhil − hikΓl

ik ¼
1

2
hmkhil∂ihmk − hikhlm

�
∂khmi −

1

2
∂mhik

�
¼ hmkhilð3Qimk − 3Q̃kimÞ
¼ 3Ql − 3Q̃l; ðA3Þ

we note that for the rhs of the two lines in Eq. (A2), the first terms are total derivative terms. Therefore, their difference gives
rise to

∂

∂xl
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikΓl
ikÞ −

∂

∂xk
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikΓl
ilÞ ¼

ffiffiffi
h

p
½∂lðNf0Þ�ðhikΓl

ik − hilΓk
ikÞ þ Nf0∂l½

ffiffiffi
h

p
ðhikΓl

ik − hilΓk
ikÞ�

¼ ffiffiffiffiffiffi
−g

p
f0Dl½ð3Q̃l − 3QlÞ� þ

ffiffiffi
h

p
½∂kðNf0Þ�ð3Q̃k − 3QkÞ; ðA4Þ

while the difference of the last terms becomes

Γl
il

∂

∂xk
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikÞ − Γl
ik

∂

∂xl
ð ffiffiffiffiffiffi

−g
p

f0ðφÞhikÞ

¼ Γm
im½

ffiffiffi
h

p
hik∂kðNf0Þ þ Nf0∂kð

ffiffiffi
h

p
hikÞ� − Γl

ik½∂lðNf0Þ
ffiffiffi
h

p
hik þ Nf0hik∂l

ffiffiffi
h

p
þ Nf0

ffiffiffi
h

p
∂lhik�

¼ 2
ffiffiffiffiffiffi
−g

p
f03Q −

ffiffiffi
h

p
ð3Q̃k − 3QkÞ∂kðf0NÞ: ðA5Þ

Combining Eqs. (A2), (A4), and (A5), Eq. (A1) give rise to

3R ¼ 3Q −Dlð3Ql − 3Q̃lÞ: ðA6Þ
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APPENDIX B: THE ACTION

We will compute the boundary terms of Eq. (36) in detail. Integration by parts bringsZ
d4xN

ffiffiffi
h

p
f0½∇αðQα − Q̃αÞ −Dlð3Ql − 3Q̃lÞ þ 2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞ�

¼
Z

d4xf0∂α½
ffiffiffiffiffiffi
−g

p ðQα − Q̃αÞ� −
Z

d4xNf0∂l½
ffiffiffi
h

p
ð3Ql − 3Q̃lÞ� þ

Z
d4xN

ffiffiffi
h

p
f0½2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞ�

¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
∂αf0ðQα − Q̃αÞ þ

Z
d4x

ffiffiffi
h

p
∂lðNf0Þð3Ql − 3Q̃lÞ þ

Z
d4xN

ffiffiffi
h

p
f0½2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞ�: ðB1Þ

We divide it into three parts. The second part is already completely spatial. Therefore, in the next step, we should
decompose the first and third terms carefully.

1. Decomposition of the Qα − Q̃α

We apply 3þ 1 decomposition to the first term in (B1)

−
ffiffiffiffiffiffi
−g

p
∂αf0ðQα − Q̃αÞ ¼ −

ffiffiffiffiffiffi
−g

p
∂0f0ðQ0 − Q̃0Þ − ffiffiffiffiffiffi

−g
p

∂if0ðQi − Q̃iÞ; ðB2Þ

which have been separated into two terms, but we have to notice that each term still contains the four-dimensional index. To
clarify this, we expand them correspondingly.
0 − 0 component:

Q0 − Q̃0 ¼ g0αgβγð∂αgβγ − ∂βgαγÞ ¼ g00gβγð∂0gβγ − ∂βg0γÞ þ g0igβγð∂igβγ − ∂βgiγÞ
¼ g00giγð∂0giγ − ∂ig0γÞ þ g0ig0γð∂ig0γ − ∂0giγÞ þ g0igjγð∂igjγ − ∂jgiγÞ
¼ g00gijð∂0gij − ∂ig0jÞ þ g0ig0jð∂ig0j − ∂0gijÞ þ g0igj0ð∂igj0 − ∂jgi0Þ þ g0igjkð∂igjk − ∂jgikÞ: ðB3Þ

Inserting Eq. (22) into the above equation:

Q0 − Q̃0 ¼
�
−

1

N2

��
hij −

NiNj

N2

�
ð _hij − ∂iNjÞ þ

Ni

N2

Nj

N2
ð∂iNj − _hijÞ þ

Ni

N2

Nj

N2
ð∂iNj − ∂jNiÞ

þ Ni

N2

�
hjk −

NjNk

N2

�
ð∂ihjk − ∂jhikÞ

¼ −
_hijhij

N2
þ ∂

jNj

N2
þ
�
Nihjk − Njhik

N2

�
∂ihjk

¼ −
_hijhij

N2
þ hij

N2
ðhkj∂iNk þ Nk

∂ihkjÞ þ
�
Nihjk − Njhik

N2

�
∂ihjk

¼ −
_hijhij

N2
þ ∂iNi

N2
þ hjkNi

N2
∂ihjk: ðB4Þ

Since the contraction of the symmetric tensor and the antisymmetric tensor is equal to zero, we eliminate some terms in
the second step. Note that hijhjk ¼ giαgαk ¼ δik and the indices of three-dimensional tensor on hypersurface Σt can be raised
and lowered by the induced metric hij.
a − a component:

Qa − Q̃a ¼ gaαgβγð∂αgβγ − ∂βgαγÞ ¼ ga0gβγð∂0gβγ − ∂βg0γÞ þ gaigβγð∂igβγ − ∂βgiγÞ
¼ ga0giγð∂0giγ − ∂ig0γÞ þ gaig0γð∂ig0γ − ∂0giγÞ þ gaigjγð∂igjγ − ∂jgiγÞ
¼ ga0gi0ð∂0gi0 − ∂ig00Þ þ ga0gijð∂0gij − ∂ig0jÞ þ gaig00ð∂ig00 − ∂0gi0Þ
þ gaig0jð∂ig0j − ∂0gijÞ þ gaigj0ð∂igj0 − ∂jgi0Þ þ gaigjkð∂igjk − ∂jgikÞ: ðB5Þ
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Inserting Eq. (22) into the above equation and after tedious calculation, it leads to

Qa − Q̃a ¼ Na

N2
hijð _hij − ∂iNjÞ −

hai

N2
∂iðNjNj − N2Þ þ hai

N2
_Ni þ

haiNj

N2
ð∂iNj − _hijÞ þ

2haiNj

N2
∂½iNj�

þ haihjk∂ihjk − haihjk∂jhik − hai
NjNk

N2
∂ihjk þ hai

NjNk

N2
∂jhik −

2NaNihjk

N2
∂½ihj�k

¼ Na

N2
hij _hij −

haiNj

N2
_hij −

�
Na

N2
hij∂iNj þ

haiNj

N2
∂jNi

�
þ 2N

hai

N2
∂iN þ hai

N2
_Ni

þ hai
NjNk

N2
∂jhik −

NaNihjk

N2
∂ihjk þ

NaNihjk

N2
∂jhik þ ð3Qa − 3Q̃aÞ

¼ Na

N

�
hij _hij
N

−
Nihjk

N
∂ihjk −

∂iNi

N

�
−
Nj

N2
∂jNa þ 2∂aN

N
þ

_Na

N2
þ ð3Qa − 3Q̃aÞ: ðB6Þ

On the other hand we note that

K ¼ ∇νnν ¼ hijKij ¼
hij

2N
ð _hij −DiNj −DjNiÞ ¼

hij _hij
2N

−
hjkNihjk;i

2N
−
Ni

;i

N
; ðB7Þ

which, upon use of the above formula, leads the 0 − 0 and a − a components to a more condensed form

(
Q0 − Q̃0 ¼ − 2K

N − ∂iNi

N2 ;

Qi − Q̃i ¼ Ni

N

�
2K þ Nj

;j

N

�
− Nj

N2 ∂jNi þ 2∂iN
N þ _Ni

N2 þ ð3Qi − 3Q̃iÞ:
ðB8Þ

So the 3þ 1 decomposition to the first part of Eq. (B1) should be

Z
d4x½− ffiffiffiffiffiffi

−g
p

∂αf0ðQα − Q̃αÞ� ¼
Z

d4x

� ffiffiffiffiffiffi
−g

p
∂0f0

�
2K
N

þ ∂iNi

N2

�
−

ffiffiffiffiffiffi
−g

p
∂if0

×

�
2KNi

N
þ Ni

∂jNj

N2
−
Nj

N2
∂jNi þ 2∂i lnN þ

_Ni

N2
þ 3Qi − 3Q̃i

��
: ðB9Þ

2. Decomposition of the ∇μðnμ∇νnν − nν∇νnμÞ
The third term of Eq. (B1) comes from 3þ 1 decomposition of GR; it contains two partsZ

d4xN
ffiffiffi
h

p
f0½2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞ�: ðB10Þ

By using K ¼ ∇νnν, integration by part brings the first part toZ
d4x2N

ffiffiffi
h

p
f0∇μðnμ∇νnνÞ ¼

Z
d4x2f0∂μðN

ffiffiffi
h

p
nμKÞ

¼ −
Z

d4x2∂μf0N
ffiffiffi
h

p
nμK

¼ −
Z

d4x2KN
ffiffiffi
h

p
ð∂0f0n0 þ ∂if0niÞ

¼
Z

d4x2K
ffiffiffi
h

p
ð∂if0Ni − f00 _φÞ: ðB11Þ
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For the second part, nμ∇μnα ¼ aα is called “acceleration” for an arbitrary vector Vα,

Vαaα ¼ Vαnμ∇μnα ¼ −Vαnμ∇μðN∇αtÞ ¼ −Vαnμ∇μN∇αt − VαNnμ∇μ∇αt

¼ Vα

N
nαnμ∇μN þ VαNnμ∇α

�
−
1

N
nμ

�
¼ Vα

N
nαnμ∇μN þ Vα

N
∇αNðnμnμÞ − Vαnμ∇αnμ

¼ Vα

N
ð∇αN þ nαnμ∇μNÞ ¼ Vα

N
hμα∇μN

¼ Vα

N
DαN ¼ Vi

N
DiN ¼ ViDi lnN; ðB12Þ

where we have used the torsion-free character of the connection ∇ to write ∇μ∇αt ¼ ∇α∇μt, and the use of the
normalization relation nμnμ ¼ −1 and nμ∇αnμ ¼ 1

2
∇αðnμnμÞ ¼ 0 in the second line. So the second part of Eq. (B10) equals

−
Z

d4x2N
ffiffiffi
h

p
f0∇νðnμ∇μnνÞ ¼

Z
d4x2N

ffiffiffi
h

p
Djf0Dj lnN: ðB13Þ

Combining Eqs. (B11) and (B13) we get to the decomposition of Eq. (B10)Z
d4xN

ffiffiffi
h

p
f0½2∇μðnμ∇νnνÞ − 2∇νðnμ∇μnνÞ� ¼

Z
d4x½2

ffiffiffi
h

p
KðNjDjf0 − f00 _φÞ þ 2N

ffiffiffi
h

p
Djf0Dj lnN�

¼
Z

d4x½2
ffiffiffi
h

p
KðNj∂

jf0 − f00 _φÞ þ 2N
ffiffiffi
h

p
∂if0∂i lnN�: ðB14Þ

3. The whole boundary term

Inserting Eqs. (B9) and (B14) into Eq. (B1)

ðB15Þ

The extrinsic curvature scalarK in the first and third term exactly eliminate each other, which means no time derivative of
the spatial metric appears in the boundary term. Finally, we reach the action (36).
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