PHYSICAL REVIEW D 106, 044024 (2022)

Multihorizons black hole solutions, photon sphere, and perihelion shift
in weak ghost-free Gauss-Bonnet theory of gravity
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Among the modified gravitational theories, the ghost-free Gauss-Bonnet (GFGB) theory of gravity has
been considered from the viewpoint of cosmology. The best way to check its applicability could be to elicit
observable predicts which give guidelines or limitations on the theory, which could be contrasted with the
actual observations. In the present study, we derive consistent field equations for GFGB and by applying
the equations to a spherically symmetric space-time, we obtain new spherically symmetric black hole (BH)
solutions. We study the physical properties of these BH solutions and show that the obtained space-time
possesses multihorizons and the Gauss-Bonnet invariants in the space-time are not trivial. We also
investigate the thermodynamical quantities related to these BH solutions and we show that these quantities
are consistent with what is known in the previous works. Finally, we study the geodesic equations of these
solutions which give the photon spheres and we find the perihelion shift for weak GFGB. In addition, we
calculate the first-order GFGB perturbations in the Schwarzschild solution and new BH solutions and show
that we improve and extend existing results in the past literature on the spherically symmetric solutions.
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I. INTRODUCTION

Although more than 100 years have passed after the
construction of Einstein’s theory of general relativity (GR),
GR is still the most established macroscopic theory of
gravity that is widely accepted. In spite of its vast success in
both weak and strong couplings [1,2], however, there is still
no harmonic way to link the macroscopic theory of GR to a
quantum field theory. Moreover, GR predicts space-time
singularity which has mathematical results in its construc-
tion. The problem of singularity leads scientists to search
for other theories of gravity that could coincide with GR in
the scale of daily life and/or the scale of the solar system. It
is interesting to note that Lovelock’s theory [3] has
explained that in four dimensions, Einsteins GR is the
unique metric theory of gravity that could yield symmetric,
covariant second-order field equations. Therefore, one of
the attempts to amend Einstein’s GR is to work in space-
times with extra dimensions [4]. In these attempts, the most
general set of theories could be the Lovelock theories
which yield symmetric, covariant second-order field equa-
tions regarding the metric tensor in any space-time
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dimensions [5]. The Lagrangian of the Lovelock theory
is given as follows:

L==g(—2A+R+aG+ ), (1)

with G=R?—4R,,R" + R4, R** being the Gauss-
Bonnet (GB) invariant which yields the first-order correc-
tion to the action of Einstein’s theory with a cosmological
constant A. Although the GB invariant yields nontrivial
effects when the space-time dimensions are larger than
four, the invariant is topological in four dimensions [6].
Regardless of being quadratic in curvatures, the GB
invariant has theoretical wide advantages from the view-
points of string theory [7-13].

Many researchers have been tempted by the idea of
harmony merging the effect of the GB invariant in a four-
dimensional theory of gravity, which could yield equations
of motions different from GR, avoiding Lovelock’s theo-
rem. Glavan and Lin [14] have investigated the idea to
rescale the GB coupling constant y in N dimensions as
y = y/(N —4), so that there remains the contribution
from the GB invariant in the limit N — 4. After that, there
have appeared works, where spherical black hole solu-
tions [15-18], the construction of cosmological solutions
[19,20], the radiation of black holes and the collapse to the
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black hole [21-23], starlike objects [24], the extension to
more higher-curvature Lovelock theories [25], the thermo-
dynamical behavior of black hole solutions [26-29], and
the physical properties of such objects [25,30—41] have
been investigated. In spite of all of these researches,
the regularization method used in the four-dimensional
Einstein-GB theory [14] has been shown to be inconsistent
for many reasons [42-52], which yield to the construction
of different models of the regularized (harmonic) four-
dimensional Einstein GB theories [20,53-57].

Due to several reasons, some researchers are suspicious
about the procedure proposed in [14]. One reason is that the
field equations of the Einstein-GB theory defined in higher
dimensions can be divided into two various sets. One set
yields the field equations which always come from higher
dimensional theories and this set makes the specific action
in the limit of N — 4 nontrivial [42-45,49,58]. The tree-
level graviton scattering amplitude was also investigated in
this frame, apart from the Lagrangian, and it turned out that
the dimensional continuation, N — 4, does not make the
GB amplitude create any new four-dimensional GB gravi-
tational amplitude [59]. All of these attempts yield the fact
that the existence of the solution in the limit of N — 4 does
not mean that there is a four-dimensional theory as
proposed in [14]. In spite of this situation, it could be
important to mention that the field equations different from
the four-dimensional Einstein GB gravity [20,53—56] sup-
port the same static spherically symmetric BH solution as
constructed in [14]. Following the N — 4 regularization of
the scalar and vector type gravitational perturbation of the
N > 4 FEinstein-GB BH [60,61], it has been investigated
that the asymptotically flat or AdS/dS BHs are unstable for
large positive values of the GB coupling parameter [62,63].
The quasinormal modes of the four-dimensional Einstein
GB BH in the asymptotically AdS/dS space-time due to
scalar, electromagnetic, and Dirac perturbations have been
investigated in [40,41]. The quasibound states of massless
scalar, electromagnetic, and Dirac fields in the asymptoti-
cally flat four-dimensional Einstein GB BH and the
associated stability issue have been studied in [64].

Because of the significance of the theories involving the
GB scalar, which are encouraged by string theories in many
cases, in this study, we shall briefly discuss the drawback
of these theories, specifically the existence of ghosts.
Generally, higher-derivative gravitational theories involve
ghost degrees of freedom due to the Ostrogradskya’s
instability [65]. It was explained in [66], that ghost degrees
of freedom could happen at different levels of the theory,
despite the cosmological perturbations level of f(R, Q)
theories. It is the aim of the present study to derive the
spherically symmetric BH solutions in the ghost-free f(G)
gravitational theory proposed in [67,68].

This paper is organized as follows: In Sec. II, we present
the basic tools for the ghost-free f(G) gravitational theory
that is capable to describe the formulation of BH horizons.

In Sec. III, we apply the field equations of ghost-free
Gauss-Bonnet (GFGB) to the spherically symmetric space-
time and derive BH solutions with multihorizons. In
Sec. IV, we study the relevant physics of the BH solutions
derived in Sec. III by showing their asymptote at r — oo.
Moreover, we show that by studying the thermodynamical
behavior of these BH solutions by calculating their ther-
modynamical quantities like Hawking temperature, heat
capacity, and the Gibbs’s free energy, we show that all
these quantities related to the BHs derived in Sec. II are
consistent with the results presented in the past literature.
In Sec. V, we study the particle motion phenomenology for
these BHs and derived their potential for the Schwarzschild
background. Moreover, we derive the deviation from
Einstein’s general relativity of the photon sphere and the
perihelion shift. We close our study with the conclusion of
the main results in Sec. VL

Throughout the present study, we assume the relativistic
units, 1.e., G = ¢ = 1.

II. BRIEF SUMMARY OF GHOST-FREE f(G)
GRAVITATIONAL THEORY

In the present section, we will present briefly the ghost-
free f(G) gravity in the formulation using the Lagrange
multipliers. Moreover, we shall investigate how to obtain a
ghost-free f(G) gravity, and we shall employ the Lagrange
multipliers formalism in order to achieve this. Before going
to the details of the formalism, we will start the derivation
by showing in detail how ghost modes could exist in f(G)
gravity at the field equations level, and then construct the
ghost-free model construction of the theory.

A. Ghosts in f(G) gravity

Nojiri et al. [67,68] have constructed a ghost-free f(G)
gravity theory by using the Lagrange multiplier field. The
original f(G), whose action has the following form,

5= / d*x /=g (ﬁR +1(9) + ﬁmmr), (2)

has ghost as we show below. Here L ., is the Lagrangian
density of the matters. The above action (2) can be rewritten
as follows,

s- | d4x\/_—g<§ze L hG)G- V() + cm), ()

where R is the Ricci scalar, y is an auxiliary field, G is the
GB invariant, V(y) is the potential, and /() is a function of
the auxiliary field. The variation of the action (3) with
respect to y gives

0="n0)G=V (). (4)
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Equation (4) can be solved with respect to y as a function of
the GB invariant G, y = y(G). Then by substituting the
obtained expression of y(G) into Eq. (4), one can reobtain
the action of Eq. (2) where f(G) is defined as

f(9) = h(x(9))G = V(x(9))- (5)
Furthermore, the varying of the action (4) with respect to
the metric tensor yields

1 1 1 1
0= 2_1('2 _Rﬂl/ + EgmzR + ETrnatter/w - Egﬂv‘/()()

DV V,h(x). (6)
where the tensor D/ is defined as

Dl = (5/5,,’7 +6,%6," — ZQ”DgT”)R
+ (—49°76,"3,7 — 4¢°°5,"5,” + 49,,9” "R,
+ 4leg‘”7 - 2Rpﬂm/<g/ﬂgo‘n + gpngm’)' (7)

Since the auxiliary field y can be rewritten as a function of
the GB G, then Eq. (6) is a fourth-order differential equation
for the metric which may contain ghost modes.

In order to eliminate the ghost modes, we may add a
canonical kinetic term of y in the action (3)

/d4x\/_( sR+h(x)G —;a,,;(aﬂ;(—vu)Jrﬁmm),
(8)

where we have chosen the mass dimension of y to be unity.
Then variation of the action (8) with respect to y and metric
gives [67-69]

0=0Cy+H"()G-V(y). )

1 1 1
0= 27(_2 <_R;w + Zg;wR) + 5 Tmatter;w + 5 ay)(av)(

1 1
- Eg/w (5 ap)(ap)( + VO()) + Dﬂumvrvﬂh(}()' (10)

The equations derived in Eq. (9) do not have higher order
except the second-order derivatives which mean that we
could not have ghosts.

The model (8) has a new dynamical degree of freedom,
i.e., y; however, if we like to minimize the dynamical
degrees of freedom, we can insert a constraint as in the
mimetic theory [70-72], by using the Lagrange multiplier
field A, as follows,

/d4x\/_<—R+/1( aﬂ;(é”)(—i—'lg)

-0+ MGV + L) (1)

where y is a constant which has a mass dimension. Thus, by
varying action (11) with respect to 4, we obtain

4

1 1%
0 =0,y +—. 12
59 +5 (12)

Because of the fact that the kinetic term becomes a
constant, the kinetic term in Eq. (11) can be absorbed
by using the redefinition of potential V(y),

- 1 ut
V(;()Eiay;(af‘)(+ V(y) :—?%—V(;(). (13)
Now, the action of Eq. (11) can be rewritten as follows:

/d“x\/_(—R + /1( 0,00y +%4>
G- V() + cmamr). (14)

The action given in Eq. (14) yields, in addition to Eq. (12),
the following two equations of motion:

0= r 0,k x)g"

+§/1a)’()()g””0”)(0,, : (15)

“V=90.0) + W ()G = V()

1 1 1 1
0= e A2 ( R/u/ +5 2 g/wR> + 5 Tmatter = 5/10;4)(61/)(

1 -
- Eg;wv()() + Dyumvrvnh()()' (16)

We should note that the absence of the ghost in the model
(16) has been established in [67,68].

It has been shown that the constraint (12), which is
related to the mimetic condition, is not consistent with the
formation of BH horizons [73]. Therefore, we need to
introduce a function w in the term of the mimetic constraint
so that the resulting field equations can describe the
construction of the BH horizon [73]. Applying this phi-
losophy, we rewrite the action (14) in the following form:
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5= /d4x¢——g(2171e +z<%w(x)aﬂaﬂx +“§>
G- V() + cmam). (17)

Variations of the action (17) with respect to the Lagrange
multiplier 4, the auxiliary field y, and the metric give

1 u
Ozia)(;()aﬂ)(d“)(—i-i, (18)
1 -
0=———0,(Ao(y) ¢ v=gdx) + K ()G - V'
1
+ Ezw’(;()gﬂ”aﬂm;(, (19)
1 1 1 1
0= W _R/w + Eg;wR + 5 Tmatter/w - E’lw()()ap)(ay)(
1 -
- Eglwv()() + Dﬂbmvrvnh()()' (20)

In the following, we forget the matter energy-momentum
tensor because we are interested in vacuum solution. We are
going to apply the field equations (18), (19), and (20) to a
spherically symmetric space-time.

III. SPHERICALLY SYMMETRIC BH SOLUTIONS
IN GHOST-FREE f(G) GRAVITY

spherically symmetric BH solutions.

A. Schwarzshild-type black hole solutions

Now, we investigate how the field equations for the
theory (17) behave in the case of the spherically symmetric
metric with the following line element:

ds> = —f(r)dt* —l——drz + r2dQ?
f(r)
where dQ? = d6” + sin? Odg?. (21)
For this metric, we have,
Fr_fZFt __f21'*r _lff/ FH _F¢ _l
tt— tr — rr_2 ’ rg — r(/)_r’
Y P gy _ cosd
% " sin2 0 ’ o9 sinf@ sin@’
4 12 + A

I

where ' = f'(r) = %@. Moreover, we assume that A, o,
and y only depend on the radial coordinate r, i.e., A = A(r),
o = w(r), and y = y(r).

Actually, the (z,¢) component, (r,r) component, and
(0,0) = (¢, ¢) components of the field (20) give

AR -8R+ PPV A rf A 8fR =112 f'H 4 f

0 }"2 ’ (23)
FAHAf W +r flwy?> + 12V +rf =1 =12ff'I
0= 5 . (24)

r

B 2’»‘/ + Zf/ + rf// _ 8h/f/2 _ Sh/ff// _ Sff/h//

In this section, we will study the spherically symmetric 0 2 (25)
space-time created by solving Egs. (18), (19), and (20)
given by the ghost-free f(G) gravitational theory defined by ~ On the other hand, Egs. (18) and (19) yield
(17). Specifically, we investigate if it is possible to derive
0=u"+wfy? (26)
SH ' (f — 1) =2rfAwy'y" — ry*2riwf + f{2rod + (4w + ro')}] + 8f%h —2rV’ 27)

0

2ry/

Equations (23)—(27) are five nonlinear differential equations in six unknown functions f, i, V, A, w, and y; therefore, we are
going to fix some of these unknown functions to derive the other ones. First, we solve Eq. (26) and obtain

XY =Ccor = w = —

Substituting Eq. (28) into Eqs. (23)-(27), we obtain

it

Cozf.

(28)
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2M
fe1-"m4 542
1 ro(cir* + 10c,)
V= 2Y(r)Y d
(BMr? —2r%, —4r3¢,) { () (r) / Yi(r)2Mr — 5 — ¢ — ¢3) BMP = 2¢,1r* — 4¢5) "
—8c3Y(r)Y (r) = r'' (PMc, +25rMc, — 8C16‘2)},

r(cir* + 10c,)

¢ _C”/ Tl(r)(/ 47, (r)(r°

+cirt + ¢y = 2MP)(3MP = 2¢1* — 4¢,)

dr — 4c3> dr,

6 4 10
r°(c;r* 4 10¢,) dr

202M7P — ¢y, — %)
rSut(3Mr —22c1r 4 —4c,) {4T1(r)r2(r)/T1(r)(

2MP — 10 — c1r* — 4¢,))(BMP = 211t — 4¢,)

=T (T3() = (eart 41067 (29)
where
Y(r) = 2M*r'® —2M(2¢; + 3M?)r'S + (15M%c; + ¢;2)r'* — 10MrBc¢;? + 2¢,°r'? + (T9M? ¢y + 12¢;¢,)r!°
—32Mr' ey —80M P cicy + 20218 cy + 3¢22r% — 62M ¢y + 30c it ey? + 12¢53),
f(12M~+5(1)r10—4Mr11—ZlM; 1 +8¢1 284270 O=7TM P ¢y +48¢) ¢y +48¢, 2 dr
Tl(r) =e @MP =0 —cyrt—cp)3MP —2¢| 4 —4cy) ,
Y,o(r) = 4Mr't — (12M? + 5¢,)r'% + 21M P ¢c; — 8¢, 2r® — 27¢,r® +TTMP ¢y — 48¢ 1ty — 48¢,2. (30)
The curvature invariants associated with solution (28) take the following form:
48M?* 96Mc, 56c¢,> 488Mc, 608cic, 1912c,>
K= R(l/f}’l’Raﬁyp - 7o N r + e N ril + 712 + AT
4c¢? 80 500¢,>
RyR™ = =5+ =2+
r r r
20
R=-=, (31)
r
8(6M?r'0 — 12Mc,7r° — 56Mcyrd + 5¢,%r8 + 36¢ cr* + 39¢,?)
G = = ) (32)

r

Equation (31) shows that the BH solution given by Eq. (28)
has a hard singularity when » — 0 compared with the
Schwarzschild solution of GR [74] where the Kreschmann
scalar K behaves as K ~ 5.

B. More general black hole

Now, let us investigate how the field equations in the
theory (17) behave in the case of a spherically symmetric
metric with the following line element:

2

dr
_ dr?
St 7 6
d6? + sin” Od¢?.

ds* = — r2dQ?

where dQ? = (33)

|
For this metric, we have

1
Ch=ffil=—f T, =5 1f . Thy=T7,=-.
o0 Y%,  coso
r_ _ bt _
00~ §in20 fire Loy sin’d sin@’
C2(AHN =AU HBA-US A =21 1= f1))
g_ 212 )
r°f
(34)
where f| = f(r) = df 411) We assume that A, @, and y only

depend on the radial coordlnate roie, A =Ar), o = o(r),
and y = y(r), again.
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The (¢, 1) component, (r, r) component, and (6, 0) = (¢, ¢») components of the field equation (20) have the following
forms:

fi=1+rfy +8f1h =8f 20" + 4f1h + PV = 12f  fi I

0= > : (35)
0L/ FAfLfH P f ey + PV rfuf = f = 1202 (36)
prm—y fr2 9
O_2f2f/1 FArfPV 21 fof = 24F A = fP R 2rf L R 8F S = 16 PR = 16fF 2R (37)
N 4rf? :
|
On the other hand, Egs. (18) and (19) yield Equations (35)—-(39) are five nonlinear differential equa-
tions in seven unknown functions f, f, h, V, 4, , and y;
0=u*+wfy> (38)  therefore, we are going to fix some of these unknown
functions to derive the other ones. By using Eq. (38), we
1 .
0= £ 1(F1=1) =27 deo'2 obtain
2r iy it
—rfx?firdof + f{riof| + f1[2roX + A(4o+ro’)] } ] X=Cr=0=- 1 (40)

T4 f (A= f1)+ff1(4f - 1)]_2r2fzvl}' (39) By substituting Eq. (40) into Egs. (35)—(39), we obtain
|

ar’ a p

:l —_—, :1 — =,
/ Jrﬂ+r3 h +rJrr3

B 1 P (2p* = 27ar’ + 413 + 2r°)
V= S G T3 T P [ e s s e

— 16¢5Y4(r)aY5(r) = 4r*BPa + 701" fa + 20r'°Ba + 1212 8% + 24 % + 12/85% + 54ﬂr9a2},

B P (27ar’ =27 — 43 — 2r%)
A=cot / (ﬁ/ 16T (7 1 H)Bar + 276+ 2 (Pt prad) CS>T3(r)dr’

1 (2% = 27ar’ + 4r°p + 2r°)
A= Ti(r)Y d
23 (F + P)r (Bars + 277 + 2/7) {ﬁ“ (0)¥s(r) / T3P + A Bar + 27+ 28)(F + p+ar)
— 16acsY5(r)Ys(r) + 16r8a + 10r.84% + 458r°a% + 10r24* + 20753 + 1043 a + 53r7ﬂ2a}, (41)
where
f]Zazrlo—]5a2r7/}+10/13ar2+19r5a,/i2+l7r8a/}+8rl1a+l8/)’4+48r3,/)'3+42r6[i2+12r9/idr
T3( r) —e 2(3ard +213 +26%) (3 +p+ar?) r(r +5) s (42)

Yu(r) = 12738 = 2r'ta — 3a%r'0 — dpPar? + 44rap? — 4p* + 18r°4% + 19r8ap + 24a%r B + 2178, (43)

Ts(r) = 8r08% + 8r8ap + 21a%r'f— B + 138383 + 4p3ar’ + 34raf? + 4p* — 4r'la — 6a°r'°, (44)

and the functions y and @ have the same form as given by Eq. (29). Calculating the curvature invariants of solution (41) we
obtain
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3
K = Ropy R = 55— CEYL {16020 — 4002pr"> + 2430?2110 + 76077 + 2002 r* + 80apr® + 44/
+ 664712 + 661" + 1564 r° + 80apr'* + 80ap*r'! + 160ap’r® + 1964°r> + 80ap’r*},  (45)
2
R R = 800 1 {11642r5 + 4043 + 198* + 801a*r'0 + 7612 4 93ar!! + 764r° + 198far
r r
+ 117afr? + 1122 r" + 882 4% r*}, (46)
6 5 3 _ 2 2
. B8 + 21ar2 —};(lgﬂlﬂ)faﬂr + 8p%) ’ (47)
r-\r
2a(6ar® + 10pr° = 27par’ — 314%r* — 148° — 6a8°r?)
g= 257 + p)2 : (48)
Th_e above invariants show that there is no singularity at w="(1 L c L @) (50)
r=0. 2 r2 0

IV. RELEVANT PHYSICS AND
THERMODYNAMICS OF THE BHS (28), (29) AND
(40), (41)

In this section, we are going to investigate the essential
physics of solutions (28), (29) and (40), (41).

A. Relevant physics and thermodynamics
of the BH (28), (29)

For the BH (29), we write the line element as

dr?
_2M 4 ¢4 &
1 r +r2+r°

+ r2(d6* + sin*0dgp?). (49)

¢ C 0
+ =4+ —=|dt” +
2,6

The metric of the line element (49) has multihorizons as
Fig. 1(a) shows. These multihorizons, three of them, are
created due to a specific value of the constant ¢, and other
values will create two horizons only. These three multi-
horizons are created from the constants M, ¢, and ¢, and the
vanishing of the dimensional parameter ¢, reproduces
geometry with two horizons. Moreover, when the dimen-
sional parameters ¢ and c, vanish, the geometry with one
horizon, i.e., the Schwarzschild geometry, is reproduced.
As Eq. (32) shows, the BH solution (49) gives a nontrivial
form of the GB invariant, whose behavior is shown in
Fig. 1(b). The behavior of the physical quantities i (y), V(y),
and the Lagrange multiplier field A for the BH solution (29)
are shown in Figs. 1(c), 1(d), and 1(e). Using Eq. (49), we
obtain M as a function of the redial coordinate r,

Now we investigate the thermodynamics for the BH (29).
The Hawking temperature is defined as [75-78]

_ fl(n)
Ty==*. (51)

where r, is the event horizon located at » = r, which is the
largest positive root of f(r,) =0 which satisfies
f'(ry) # 0. Using Eq. (51), we obtain the Hawking temper-
ature of the BH solution in the form

Mr25 —C]r24—3C2

T, = 52
2 27zr27 ( )
The Hawking entropy is defined as [75-80]
1
S(ry) = ZA(rz)v (53)

where A is the area of the event horizon.

To show the number of horizons of the BH solution
Eqg. (28), we plot gq in Fig. 2(a). As Fig. 1(a) shows that for
the specific value of ¢,, we have three horizons and for
other values ¢, or when ¢, = 0 we have two horizons as in
Fig. 2(a). Also in Fig. 2(a), we show the region where the
black hole has no singularity, i.e., the naked singularity.

Using Eq. (53), the entropy of the BH (28) is computed as

SZ = 71'7'22. (54)

We plot Eq. (54) in Fig. 2(b). As this figure shows, we have
always positive entropy. The Hawking temperature asso-
ciated with the BH solution (28) is plotted in Fig. 2(c).
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FIG. 1. Schematic plots of the radial coordinate r (a) vs the function f given by Eq. (29); (b) vs the GB invariant given by Eq. (32);

(c) the function h vs y; (d) the potential V' vs y; and (e) the Lagrange multiplier A(r) given by Eq. (29) vs r.

From this figure, one can show that we have always a
positive temperature for r,. To investigate the thermody-
namical stability of BHs, the formula of the heat capacity
H(r,) at the event horizon should be derived. The heat
capacity is defined as follows [81-83]:

HCEH<7‘2)

-1
s O (0T s

o 0T2 - 6r2 6r2

The BH will be thermodynamically stable if its heat capacity
H,. is positive. On the other hand, it will be unstable if H,. is
negative. As is well known, the heat capacity of the
Schwarzschild black hole in GR is negative and therefore
the solution is unstable, which corresponds to the Hawking
evaporation. Substituting (50) and (52) into (55), we obtain
the heat capacity as follows:

2 4 _ .6 5
g (c1r* = 1° +5¢)

= . 56
¢ 2Mr25—3c1r24—2lcz ( )

The free energy in the grand canonical ensemble, which is
called the Gibbs’s free energy, can be defined as [80,84]

G(ry) = E(r2) = T(r2)S(r2) (57)
where E(r,), T(r,), and S(r,) are the quasilocal energy, the
temperature, and entropy at the event horizons, respectively.

Substituting Eqgs. (50), (52), and (53) into (57), we obtain the
Gibbs’s free energy of the BH (28) in the following form:

% +3cir* +7c,

G(rZ) = 4/‘25

(58)

We plot the behavior of the Gibbs’s free energy in Fig. 2(e),
which shows that the BH solution (28) with r, is unstable.

B. Thermodynamics of the BH (40), (41)

In this section, we will study the thermodynamics of the
BH solution in (40), (41). For this aim, by assuming r is
large, we rewrite the metric as
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FIG. 2. Schematic plot of (a) the horizons, r; and r,, of the BH solution (28); (b) entropy of the BH solution (28); (c) Hawking
temperature of the BH solution (28); (d) heat capacity of the BH solution (28); finally, (e) Gibbs’s free energy of the BH solution (28).

ar? “1 2M  2MpB  2Mp?

Fr) = P+p r rt rl
where a = —2M.

By using Egs. (59) and (40) we obtain

2M  2MpB 2Mp?
ds2=— 1—T+ 7‘4/ — I"7/ dlz
dr? 20402 & sin20dd?
+ m +r (d9 -+ sin 9d¢ ), (60)

r r

which asymptotically approaches flat space-time but is not
equal to the Schwarzschild space-time due to the contri-
bution of the extra term including . It is easy to check that
when the term f vanishes, the geometry reduces to the
Schwarzschild space-time. From Eq. (60), we obtain an
expression of M in terms of the radial coordinate r as

(122

2 r r’

(61)

The metric of the line element given by (60) has two horizons
as shown in Fig. 3(a). These two horizons are created by the
constants M and . When f vanishes, the geometry of the
Schwarzschild geometry is reproduced. The behavior of
the metric is drawn in Fig. 3(b), which shows clearly that
there are two horizons related to the BH solution (40). As
Eq. (48) shows, the BH solution (60) has a nontrivial
expression of the GB invriant, whose behavior is shown
in Fig. 3(c). The behavior of the physical quantities related to
the BH solution (41) like h(y), V(y), and the Lagrange
multiplier field A are shown in Figs. 3(d), 3(e), and 3(f). To
show how many horizons appear in the BH solution of
Eq. (40), we plot the metric gy, in Fig. 4(a). As Fig. 4(b)
shows that in the case f = 0.3," we have two horizons and
when f = 1.3, we have no horizon. Also in Fig. 4(b), we
show the region where the black hole has naked singularity,
i.e., when f > 1.3.

By using Eq. (51), we obtain the Hawking temperature
of the BH solution (40) in the following form:

'In this study we use Eq. (59) and put o = —2 which yields
M=1.
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FIG. 3.

Schematic plots of the radial coordinate r (a) vs the function f; (b) vs the metric potentials; (c) vs the GB invariant given by

Eq. (48); (d) the function & vs y; (e) the potential V vs y; and (f) the Lagrange multiplier A(r) vs r.

3

, = er(zg I 2) ) (62)
n(ry* + B)
We show the behavior of Eq. (62) in Fig. 4(b). From this
figure one can show that we have a positive temperature for
r, > ry and negative temperature for r, < r; where ry is
the degenerate horizon as shown in Fig. 4(a). Substituting
(61) and (62) into (55), we obtain the heat capacity as
follows:

2B 1) () + )

He=— 6 3 2N (63)

rya(r® =1pry” + f7)

We show the behavior of Eq. (63) in Fig. 4(c). By

substituting Eqgs. (53), (61), and (62) into (58), we obtain

the Gibbs’s free energy of the BH (40) in the following
form:

4r29 + 12ﬁr26 + 12[)’2r23 +4/}3 - ocr28 + 2aﬂr25

G(ry)= 4r2(ry + )

(64)

We plot the behavior of the Gibbs’s free energy in Fig. 4(d),
which shows that the BH solution (40) with r, is unstable.

V. MOTION OF PARTICLE

To show the effect of modified GB theory on observ-
ables, we study the motion of a test particle in the
background solution given by the metric (28) and (40).
We consider the photon sphere around the BH and the
perihelion shift of circular orbits. For the time being, the
photon sphere becomes of particular interest because it
explains the edge of the shadow of a BH while the
perihelion shift was already derived in [85,86].

A. Geodesic equation and effective potential

In this subsection, we study the geodesic equation in the
space-time given by Eq. (28). For this aim, we define the
worldline ¢(z) of a test particle in a curved space-time by
the Euler-Lagrange equations which is defined by

oL

d (oL
i) w0 o
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FIG. 4. Schematic plot of (a) horizons r; and r, of the BH solution (40); (b) Hawking temperature of the BH solution (40); (c) heat
capacity of the BH solution (28); and (d) the Gibbs’s free energy of the BH solution (40).

for the Lagrangian

",2

()

with ¢*(z) = (¢(7), r(z),0(z), (7)) and ¢ refers to the
derivative of g* with respect to the affine parameter 7.

We solve the Euler-Lagrange equations (65) in the
spherically symmetric space-times and we focus on the
motion of the equatorial plane with @ = z/2. Under that
assumption, we obtain the conserved quantities, i.e., the
energy E and angular momentum L, as

2L = ,,q"q" = f(r)? ———— 20" — sin? 04>, (66)

_aﬁ_ B _2M ¢y ¢y
E_dif(r)t<l — +_r2+ 6)1‘, (67)
oL,

Using the above conserved quantities (67) and (68),
we obtain the effective potential in classical mechanics.

Because 2L = 0 for the massless particle and 2L = 1 for
the massive particle, by deleting 7 and ¢ by using Egs. (67)
and (68), and by putting @ = /2 (constant), we obtain

E? i? L?

- —_—— =0

_2M 4 ¢y & _2M 1y & 2 ’
1 r+r2+rﬁ 1 r—l-rz—l-rﬁ r

(69)

where ¢ = 0 for massless particles and ¢ = 1. We rewrite

Eq. (69) as
¢ O
2" Tt o +r2+r6)

+l 1 2M+C1+C2
26 r 2o

from which we can read off the effective potential V(r),

1 2M Cq Cy L2 1
= — ]—— — = — __E2
V(r) 2< r+r2+r6><rz+0) S B

112 (1 M

(70)

(71)
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and we rewrite (70) as

%iz +V(r) =0. (72)

For the study of the perihelion shift, we reparametrize r(z)
as r(¢), which yields

12 1 1 /dr\? 4
5%+?vm =2<d;> —i—%V(r) —0. (73)

B. Photon sphere and perihelion shift of space-time (28)
For a circular orbit where r = const, r = 0, the effective
potential and its derivative have to vanish i.e., we have to

solve both equations ¥V =0 and V' = 0.
When ¢, = ¢ = 0, the effective potential V(r) reduces to

1 2M ¢\ L* 1,

When ris large, V(r) is a monotonically decreasing function
of r. On the other hand, when r is small, V(r) behaves as

V(r) ~ Czlff and therefore if ¢; > 0, V(r) goes to positive
infinity and if ¢; < 0, V(r) goes to negative infinity.
For circular photon orbits, by solving the equations

V(r) = V'(r) = 0 for the potential V(r) in Eq. (74), we

find
3 | B S ——
r:EM:I:E 9M2—8C1,
(3M + \/9M? — 8¢, )*E (75)
2\/6M2 +2M+\/OM? — 8¢, — 4c,

where the value of r given in the first equation of Eq. (75) is
used in the second equation of (75). Equation (75) gives the
value of the Schwarzschild when ¢; =0, ie., r=3M
and L, = 3v3ME.

The expression of r in (75) tells us that when ¢; < 0,

Li:i

there is only one extremum r = %M + % 9M? — 8c,. The

behavior of the potential tells us that the extremum is a
|

VMryS —cir* =3c,r

maximum and therefore the orbit r is unstable. On the
other hand, when % > ¢ > 0, there are two extrema

r=3M +3/9M* - 8c,. The behavior of the potential

shows that the larger extremum r = %M + % VOM? — 8¢,
is a local maximum and therefore the orbit corresponding to
the extremum is unstable but the smaller extremum

r=3M —1\/9M? — 8¢, is a local minimum and therefore
the orbit corresponding to the extremum is stable.

For circular timelike orbits ¢ = 1 for a massive particle,
it is also possible to solve the equations V = 0 and V' = 0.
The obtained expressions are, however, not so insightful.
We consider a perturbation around a circular orbit r = r,
and by plugging in the ansatz r(¢) = re. + 1, () for (73),
we obtain

d 2 CrC+ 4
(ﬁ) _ U 1) h2r¢) V(e +14).  (76)

Assuming that the ratio /7, is small, the right-hand side
can be expanded into powers of this parameter to second
order

dry\ 2 Fee <o r,3
() =-Tvewre+o(it). o)

where we use the fact that V(r.,.) = 0 and V'(r.) = 0 for
circular orbits, as discussed above. The above equation,
which represents a simple harmonic oscillation, shows
that the solution of ry oscillates with a wave number

K = /"5 V"(re) and thus the perihelion shift is given as

Aj = 2ﬂ<é_ 1) - zﬂ<rcm2\/+ﬁ(7rm)— 1). (78)

Now, we derive the explicit form of the perihelion shift for
massive objects where the potential is )V with 6 = 1. We
evaluate the equations V(ry.) =0 and V'(ry.) = 0 with
L =Ly+eL;and E = E; + eE|. The zeroth order behav-
iors of these equations determine L(r.) and Eg(rq.) as
follows:

Ly:=

:I: 9
\/rcrc6 - 31‘4"ch5 + 2Cl rcrc4 + 4C2

Ey =

=+ \/4M2 rcrcs - 26‘1 rcrc4M_4rcrc6M + rcrc7 + Colere + Cq rcrcs - 2CZA/[

Fere — 3Mrcrc

3 (79)

Having obtained the constants of motion for the circular orbit, we derive the perihelion shift by plugging the values into
V" (Feres Lo, Eg) to obtain V" (r,. ) alone. Due to the different solutions for the constants of motion, there exist two options to

derive the perihelion shift,

Ap(Loy),

Ap(Ly-), (80)
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which are related to each other through

Ap(Ly-) = —4m = Ap(Ly, ).

(81)

By expanding the perihelion shift into a power series in the variables ¢ = rﬂ q, = rc—‘z, and ¢, = rc—zé, we obtain

n(va—qy =39+ g+ 12¢,) n

cre

AflEo-) = 12( (q + 124,)° )

(q+ 12q2>2> o
(g +12q,))(4q, -

187(\/q —q, =3¢, +
+ 52
(g + 12¢,)

3q) 3ﬂ(72q—96q2)} 3
- 1

4(q + 12Q2)2

4(Vq—q1 =3¢ +Va+ 12q,) 3

4
- 7T
(q + 12¢, (q + 12g,)3?

PESEAE (8[24¢2% — qq» + 64°] +3(4q> — 39)?)

N 3n(v/q—q1 =3¢ + V/q + 12¢,) (1929, — 8qq, + 484> + (12¢, — 9Q)2)>q12

4(q + 12¢,)%?

<’T(12(]2 =9q9) 3a(vVq—q1 =39 + g+ 12q;)(4q, = 3q)  97(244:* — 99, + 64°)(4q; — 3q)

—q—12q,

+

(q+12¢,)%?

2(—q — 12¢,)*

2(q +12¢,)%?

372(vq — q1 = 3¢5 + Vg + 12¢5)(24¢5> — qq> + 64%)(12¢, — 961)) .
1

N 5 27(Va = a1 =342 + V4 + 12q)) N 3n(vVqg—q1 = 3q; + Va + 12¢,)(24¢,* — qq, + 6¢%)*

vV q + 12q2

4(q + 12¢,)%?

_3a(244° — 942 +64°)° (Vg — a1 =342 + Vg +12¢,)(249,* — 995 + 64°)

4(—q = 12¢,)*
_ 7(249,° — 94, + 64°)

+ 0((99192)*).

Equation (82) when ¢; = ¢, =0, i.e., c; = ¢, = 0, yields

AP(Ly_) = 6nq +277q* + O(q?), (83)
which coincides with the perihelion of the Schwarzschild
solution.

The qualitative behavior of the perihelion shift is always
the same, only the numerical values differ. Equation (82)
shows that ¢ > ¢g; + 3¢», and the higher ¢; and ¢,, the
smaller the influence of the perturbation and corrections to
the perihelion shift appear only in higher orders in gq.

Now we repeat the above perihelion of the BH solution
(28) to the BH (40).

C. Photon sphere and perihelion shift in space-time (40)
For the Lagrangian
",2
Ji(r)
with ¢*(7) = (¢(z), r(z),0(z), p(z)), and ¢* refers to the
derivative of ¢* with respect to the affine parameter .

To solve the Euler-Lagrange equations, we apply the
same procedure used above for the BH (28). For the BH

2L =g,,q"q =f(r)i — 20> = 2sin?0¢%,  (84)

(q+12¢,)%?

(82)

solution (40), we obtain the energy E and angular momen-
tum L as follows:

oL . 2y,
E =5 = f(r)i = <1+r3“iﬁ>t, (85)
L= % = r2¢. (86)

Using the above expressions, we obtain the effective
potential by rewriting the Lagrangian (84),

E2 ",2 L2
(AR A 87
e F T3

The corresponding effective potential of the BH solution
(40) takes the form

2
V(r) —L—<1 +%+§) +g<1 +§+%>

S22
CB(1+4+5) (88)
ar2
2(1 r3+/i)

For circular photon orbits, ¢ = 0, solving the zeroth
order equations yields
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O = —2}’03L02 + 3r02ﬁE02 + 6r02ML02 - 5ﬂL02,

3
ro +ﬂ
Lo = £Eyro) | —5—o——s. 89
0% 0N 3 + = 2Mry? (89)

Equation (89) shows that when the dimensional constant # vanishes, we obtain the zeroth order terms of r( and L of the
Schwarzschild space-time when ¢ = 0, i.e., ry = 3M and L. = +3+v/3ME,. The above equation has three roots for ry; one

of them has a real value and takes the form

/P E® — 10BL° + 68’ Ey*Lo*M + 12BE\>Ly*M? — 8L°M> — 16SL,)>

"0 2L,

(BEy* +2Ly*M)?

PE* +2ML,>

(90)

+
2L/ P EY — 10BL° + 62Ey*Ly*M + 12BEy*Ly*M? — 8L °M> — 16SL,>

2L

where S = \/58(Lo°M> + 5BL° — P E® — 6°Ey*Ly>M + 12BE,>Ly*M?). The above equation gives the value of the

Schwarzschild space-time when f = 0.

Now we derive the explicit form of the perihelion shift
for massive particles for the BH (40) by using the potential
V (88) with ¢ = 1. We evaluate the equations V(r.rc.) =0
and V'(ry.) = 0 by considering the perturbation with L =
Lo + €hy and k = k( + ek;. The zeroth order terms of these
equations determine L (7..) and Ey(ry.) as

\/z(rcrc3 - 2Mrcrc3 + :B)

EOi = :t N
\/2’"<:rc6 - 6]urcrc5 + "’:B"‘crc3 + 2ﬁ2

S OMr.> +4MB
0+ N2 — 6Mr.S + 4Pro + 25

(1)

By using the obtained constants of motion for the circular
orbit, we derive the perihelion shift by plugging in the
expressions of Eqg=FEy, and Ly= L. into V"' (ree, Eq, Lg)-
Corresponding to the signatures & in the expressions of
Ey = Ey; and Ly = L, there exist two options to derive
the perihelion shift,

Ap(Loy), Ap(Ly-), (92)

which are related to each other through

Ap(Lo-) = —4n — Ap(Lo). (93)

By expanding the perihelion shift into a power series of

g =M and ¢, = -2, we obtain
rCl‘C . c

cr

_,VT=2¢ - V1-69+1lg, - 8¢’

Ap(Lo
(Lo-) V1—6q+11q, -84,

(94)

Equation (94) when ¢, = 0 yields

Ap(Ly_) = 6rnq + 27rq* — 13nq, — 1057qq,

B2 0((gan ). (95)

4
which coincides with the perihelion shift of the
Schwarzschild solution when ¢; = 0.

The qualitative behavior of the perihelion shift is not so
changed, only the numerical values differ. As for the
photon sphere, the higher ¢;, the higher the influence of
the perturbation and corrections to the perihelion shift

appear.

+

VI. CONCLUSIONS

In this study, we constructed a consistent ghost-free
modified GB gravitational theory capable of describing a
BH with horizons. The field equations of this theory are
applied to a spherically symmetric space-time and we
succeeded to derive BH solutions with multihorizons.
We showed that for the Schwarzschild BH type metric
(21), we obtained a BH solution with three horizons and the
curvature invariants of this BH show a true singularity at
r =0. Moreover, we calculated the thermodynamical
quantities associated with this solution and showed that
all the thermodynamical quantities and the heat capacity
and Gibbs’s free energy tell us that this solution is not
stable.

We repeated our calculations for a more general case
whose metric is given by (33) and showed that the solution
has two horizons in spite of the fact that the field equations
do not include a cosmological constant nor is there any
source of charge to reproduce such two horizons. Moreover,
we also showed that such BH yields a true singularity at
r = 0. We also calculated the thermodynamical quantities
and showed that the Gibbs’s free energy is negative.
Furthermore, for both BH solutions in (21) and (33), we
calculated all of the physical quantities which appear in the
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GFGB theory, that is, the potential, the Lagrange multiplier,
and the function f and showed their behaviors in
Figs. 1 and 3.

We should note that the present study is a first trial
in the direction of a full phenomenological classification of
observables, which is derived in the weak GFGB gravity, to

compare them with observations. The future work in this
direction could be to study axially symmetric perturbations
around rotating space-time, to obtain the shift in the photon
regions, that will give an important imprint on the pre-
dictions of the shape of the BH shadow. This case will be
studied elsewhere.
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