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We define “third-derivative” general relativity by promoting the integration measure in Einstein-Hilbert
action to be an arbitrary 4-form field strength. We project out its local fluctuations by coupling it to another
4-form field strength. This ensures that the gravitational sector contains only the usual massless helicity-2
propagating modes. Adding the charges to these 4-forms allows for discrete variations of the coupling
parameters of conventional general relativity: GN;Λ; H0, and even hHiggsi are all variables which can
change by jumps. Hence, de Sitter spacetime is unstable to membrane nucleation. Using this instability, we
explain how the cosmological constant problem can be solved. The scenario utilizes the idea behind the
irrational axion, but instead of an axion it requires one more 4-form field strength and corresponding charged

membranes. When the membrane charges satisfy the constraint
2κ2effκ

2jQij
3T 2

i
< 1, the theory which ensues

exponentially favors a huge hierarchy Λ=M4
Pl ≪ 1 instead of Λ=M4

Pl ≃ 1. The discharges produce the
distribution of the values of Λ described by the saddle point approximation of the Euclidean path integral.

DOI: 10.1103/PhysRevD.106.044023

I. INTRODUCTION

The standard formulation of general relativity employs
diffeomorphism invariant second-order partial differential
equations first formulated in [1,2].1 Allowing only two
derivatives, demanding diffeomorphism invariance, and
restricting dynamical degrees of freedom to only metric
fluctuations is very constraining. Together, these require-
ments single out general relativity as a unique covariant,
massless spin-2, second-derivative theory [4,5]. It has
dimensional constants as universal gravitational couplings:
Newton’s constant GN ¼ 1

8πM2
Pl
and the cosmological con-

stant Λ. In addition, the matter sector couplings, dimen-
sional (e.g., masses) and dimensionless (e.g., charges and
Yukawa couplings), are determined by flat space physics,
irrespective of gravity. In the minimal approach, these
parameters are spacetime constants, which could not care
less about whether gravity exists or not.
The observed great numerical variance between the

values of the gravitational dimensional parameters, and
between them and the matter sector masses, however,
remains mysterious. Attempts to decrypt these mysteries
and the curiosity to see if general relativity might be

consistently generalized have produced a vast diversity
of extended theories of gravity which typically include new
degrees of freedom.
Such models can often be understood as higher-

derivative theories, since higher-derivative terms introduce
new propagating modes (see, e.g., [6]). A tricky aspect of
these “generic” modifications of general relativity is that
they lead to new long-range forces and/or lower UV
cutoffs, which can be tightly constrained. Furthermore,
the origin of fundamental scales remains just as mysterious.
In this article, we will define what may be technically the

simplest possible modification of general relativity that
nevertheless does extend the phase space of the theory
dramatically. There are no new local degrees of freedom.
Hence, no new forces arise, and no new perturbative cutoff
scales appear. Yet the theory predicts variations of Newton’s
constant, the cosmological constant, and even the matter
sector couplings throughout spacetime—albeit discontinu-
ously and discretely. These variations affect cosmology of
(extremely large) “local” regions, and more generally, local
particle physics, and may be a link to understanding the
origin of the observed puzzling hierarchies of particle
physics.
In a sense, our formulation of pancosmic relativity, i.e.,

pancosmic general relativity, is reminiscent of Coleman’s
wormhole approach [7]. However, we work in the semi-
classical limit where the mediators of the transitions
altering the local values of the theory’s couplings do not
require direct deployment of full-blown nonperturbative
quantum gravity.
Our key new idea is that the action for general relativity,

originally given by Hilbert [1], can be generalized by
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replacing the covariant integration measure 4-form
ffiffiffi
g

p
d4x

by a more general 4-form F ¼ dA, whereA is an arbitrary
3-form potential. We preempt any new local degrees of
freedom in the measure 4-form F by introducing another
4-form G ¼ dB, which we couple to F via the actionR
F ϵμνλσffiffi

g
p Gμνλσ. This enforces the conservation law for the

Planck scale ∝ F , promoting it into an integration constant.
The total action also yields another integration constant via
the “conserved dual flux” coupled to G [8], which is
degenerate with the cosmological constant.
Thus, our conspicuously third-derivative, pancosmic

general relativity generalizes the so-called “unimodular”
two-derivative formulation of general relativity2 [9–17].
Further generalizations, where the matter sector parameters
also get contributions from integration constants, can be
obtained by allowing the matter sector integral measure3 to
also be controlled, at least in part, either by F or by
additional 4-form field strengths like F . As it turns out,
such more general theories are more easily formulated
using the magnetic duals of the new 4-forms.
We will focus on the minimal and “conformal” theories

in dual variables. The reason we focus on these two special
cases is the robustness of their form to the perturbatively
generated corrections from matter QFT to arbitrary order in
the loop expansion. For other 4-form/matter couplings, the
quantitative results would depend in principle on the loop
expansion truncation causing issues with calculational
control. In the general case, the form of the 4-form/matter
couplings could change from loop to loop. The minimal
and conformal theories, however, avoid this complication.
Although the minimal theory is the simplest-looking one,
the conformal theory is actually more straightforward to
work with since we can devise a simple proof that it can
avoid transitions which summon ghosts.
That the modifications of the measure promote the

parameters of the theory into integration constants follows
from the gauge symmetry of the 4-forms invariant under
A → Aþ dωA. Thus, the summands in the Lagrangian
multiplying those specific 4-forms are the associated
conserved fluxes [8]. Our observation shows how to add
extra dynamics to the theory without including new local
fields. We introduce objects charged under the 4-forms F
and G, which are membranes with units of charge Qi and
tension T i. Membranes can spontaneously nucleate quan-
tum mechanically, changing the values of the conjugate
variables toF and G inside the bubbles of space surrounded

by membranes. As a result, in the interior of the bubbles,
the effective strength of gravity and the value of the
cosmological constant, and also the values of the couplings
and scales of the local matter theory, jump relative to the
outside.
It follows that an outcome of a sequence of bubble

nucleations is systems of nested expanding bubbles scan-
ning over a range of values of parameters. These configu-
rations essentially realize a toy model of the multiverse of
eternal inflation [26] already at the semiclassical level of
pancosmic general relativity. This may provide a very
simple framework for describing eternal inflation in the
semiclassical limit, and in fact could be a toy model which
incorporates leading-order effects of quantum gravity at
very large scales and low energies, specifically the effects
of spacetime foam and wormholes [7,27,28].
Examples of where such effects may play an important

role include cosmological mechanisms to address various
hierarchies observed in nature (using discretely varying
parameters as in [29–31]). We will discuss in detail the
cosmological constant problem [32–34] in this article, and
show how it can be solved. In a shorter companion paper
[35], we have provided a resume of the cosmological
constant problem and its solution in this approach. To solve
the problem, we will include one more 4-form, which, on
shell, also contributes only to the cosmological constant.
When the charges of the two 4-forms have an irrational
ratio, since their contributions to the effective cosmological
constant are degenerate, we can invoke a variant of the
discretuum of the irrational axion [36] and use the
instability of the positive cosmological constant to mem-
brane discharges to show that any positive cosmological
constant eventually decays to smaller values. When the

charges satisfy
2κ2effκ

2jQij
3T 2

i
< 1 (where κ2 are linked to the

local value of Planck scale), the membrane discharges are
restricted to a subset of nucleation processes, for which the
instability invariably stops when Λ → 0þ since their
bounce actions have a pole at Λ → 0þ. In leading order,
the outcome of such a dynamical evolution effectively
realizes the Hawking-Baum distribution of terminal values
of Λ [37–40] controlled by the semiclassical, saddle point
Euclidean action on the background.
We find that when combined, these ingredients expo-

nentially favor vacua with

Λtotal

M4
Pl

→ 0 ≪ 1: ð1Þ

A very mild “weak anthropic” determination of Newton’s
constant, which needs to be near the observed value of
GN ¼ 1

8πM2
Pl
≃ 10−38 ðGeVÞ−2 to ensure that Earth is neither

charred nor frozen, is the only cameo of the anthropic
reasoning. As a result, the pancosmic general relativity
dynamics reduces the cosmological constant problem

2Unimodular formulation of general relativity simply means
that the cosmological constant term in the equations of motion
contains an additive integration constant which serves as a
counterterm for renormalizing the physical cosmological con-
stant which sources the geometry as spacetime. The properly
formulated theory is otherwise equivalent to the conventional
treatment of general relativity [9,10].

3Alternatives to minimal measure in the action were noted in
[8,18–25].
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simply to finding the answer to the “Why now?” question.
In other words, we find that effectively the cosmological
constant is as close to zero as it can be, and the question
which remains is what is the driver of the current epoch of
cosmological acceleration. We will comment on how this
might be achieved. In the Summary, we will also briefly
comment on the prospects for inflation.

A. Comparison with past work

The use of 4-forms and their fluxes to formulate contri-
butions to the cosmological constant [9,13,14,37,39] and
screen and cancel the sum total [41–45] has a substantial
past history as evidenced by the references listed here.
We feel that it will be beneficial to a reader if we stress
the main differences between those approaches and the
present work.
While we use the 4-forms and their fluxes and charges

to reduce the cosmological constant, and also change in a
similar manner the Planck scale and possibly other
dimensional parameters in nature (the latter being mostly
ignored in the previous approaches), we have discovered
a very different formulation of the theory where the
contributions of the fluxes to the cosmological constant
come as bilinear terms. Those terms in general can be
modified by adding higher powers, but as long as one of
the factors in the bilinear is the effective Planck scale–as
we find here—the additional powers of the flux, such as
the ∝ F2 terms common in the literature, are subleading.
Thus, in our case the contribution to the net cosmological
constant involves only first powers of the individual
fluxes.
This has dramatic consequences for the dynamics.

In particular, the membrane junction conditions are com-
pletely altered from those derived by Brown and Teitelboim
[41,42] (which are used by other approaches in the
literature). Those conditions control which types of instan-
tons can mediate the membrane nucleation processes that,
in turn, control the cosmological constant decay rates. In

particular, when the tension is large, such that
2κ2effκ

2jQij
3T 2

i
< 1,

the only possible instanton transitions are two: one medi-
ating dS → dS and one mediating dS → AdS. Further,
since in these two cases the relevant instantons have bounce
actions which feature a pole at Λ → 0þ, the terminal
Minkowski space is absolutely stable and a quantum
dynamical attractor of the evolution. Thus, for any initial
value of the cosmological constant in the Universe, the
evolution will bring it to Λ → 0þ and stop there.
This does not happen in any of the previously studied

cases which have ∝ F2 terms as dominant fluxes contrib-
uting to the cosmological constant without severe fine-
tunings. When ∝ F2 terms dominate, other instantons
which are dominated by charge contributions instead of
tensions will occur, which have a bounce action without the
pole at Λ → 0þ, and which will simply run through Λ ¼ 0

and allow the system to evolve to Λ < 0. For those
approaches, one must use anthropic selection to pick a
small positive terminal Λ. In our case, those instantons are
robustly excluded by the altered junction conditions when
the tension is sufficiently big, the evolution relaxes Λ to 0þ
by quantumBrownian drift, and it stops atΛ → 0þ, favoring
a tiny cosmological constantwithout any need for anthropics.
We carefully and meticulously go over the details in the rest
of the manuscript showing precisely what it takes to set a
system which ensures such new evolution of Λ.
Our mechanism also evades naturally the venerated

Weinberg’s no-go theorem [34] for the adjustment of the
cosmological constant by exploiting loopholes in the
assumption of the theorem. Since the adjustment occurs
by quantum Brownian drift instead of smooth field varia-
tion, the semiclassical field theory arguments do not apply.
Further, since the evolution involves a special point in
phase space, the quantum attractor Λ ¼ 0þ where the
bubble nucleation stops, Weinberg’s premise of smooth
and self-similar evolution in field space is circumvented. As
a result, the no-go theorem of [34] does not apply.

II. VARIATIONS ON AND OF THE ACTIONS(S)

A. Volumes and 4-forms

As noted above, we start with replacing the covariant
integration measure in the gravitational sector of Einstein-
Hilbert action

ffiffiffi
g

p
d4x with a completely general 4-form

F ¼ dA. Here, A is an arbitrary 3-form potential. Our
motivation is simply that we can; there are no symmetries
or principles prohibiting it. So, we substituteZ

d4x
ffiffiffi
g

p M2
Pl

2
R →

Z
FR; ð2Þ

effectively promoting the Planck scale M2
Pl controlling the

strength of gravity to a single independent component of
the spacetime filling flux of the 4-form F . This follows,
since by antisymmetry, F ∝ ffiffiffi

g
p

d4x. The “ratio” of these
two 4-forms is a completely arbitrary scalar function,
which must be determined by additional dynamics. Since
both

ffiffiffi
g

p
d4x and F transform as scalars under diffeo-

morphisms, (2) is guaranteed to be covariant. However,
since Fffiffi

g
p

d4x ¼ Φ is an a priori arbitrary scalar function, it

can fluctuate. The field Φ would behave exactly like the
Brans-Dicke scalar field with w ¼ 0. Even its engineering
dimension is mass squared. Since here we restrict our
interest to the framework(s) with only the usual helicity-2
propagatingmodes in thegravitational sector, we project out4

all the local fluctuations in Φ by introducing the second
4-form G ¼ dB, where B is another arbitrary 3-form

4It is interesting to explore what happens if Φ is left in, having
both local and discrete variations. Some analysis of only local
variations can be gleaned in [18].
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potential. We couple G to the measure 4-form F via the
action

S ∋ −
1

4!

Z
F
ϵμνλσffiffiffi

g
p Gμνλσ: ð3Þ

Wenote that sinceF¼ 1
4!
F μνλσdxμ…dxσ¼−d4x

4!
ϵμνλσF μνλσ , a

straightforward manipulation yields

F
ϵμνλσffiffiffi

g
p Gμνλσ ¼ −

d4x
4!

F αβγδϵ
αβγδ ϵ

μνλσffiffiffi
g

p Gμνλσ

¼ −
d4x
4!

Gαβγδϵ
αβγδ ϵ

μνλσffiffiffi
g

p F μνλσ ¼ G
ϵμνλσffiffiffi

g
p F μνλσ;

ð4Þ
and hence,

−
1

4!

Z
F
ϵμνλσffiffiffi

g
p Gμνλσ ¼ −

1

4!

Z
G
ϵμνλσffiffiffi

g
p F μνλσ ¼

Z
GΦ: ð5Þ

As long as we allow G only in this term in the full action,
to be given shortly, the variation with respect to B
guarantees that on shell, ∂μΦ ¼ 0, which precisely proj-
ects out all the local fluctuations of Φ, as desired.
However, the value of Φ is left as a completely arbitrary
integration constant. We note that while Φ is introduced
here heuristically as a ratio of two 4-forms, in what
follows we will show that it can be interpreted as the
magnetic dual of the 4-form F .
As the final ingredient, we include the matter sector. In

principle, we could just add the matter minimally, using the
action with the standard measure

R
d4x

ffiffiffi
g

p
L. However, as

long as the total action contains the contribution (3), we can
replace the measure d4x

ffiffiffi
g

p
according to

d4x
ffiffiffi
g

p
→ d4x

ffiffiffi
g

p þ c
F
M2

¼
�
1þ c

Φ
M2

� ffiffiffi
g

p
d4x; ð6Þ

where the last equality follows from the definition ofΦ, and
M2 is a new UV scale normalizing the flux F . Likewise,
we could replace gμν in the Lagrangian with gμνð Φ

M2Þα. On
shell, these represent constant rescalings of the matter
sector variables and can be absorbed away by parameter
redefinitions and/or wave function renormalizations. The
numbers c and α are, in principle, arbitrary. As a special
example, we can write down the matter sector as

SQFT ¼ −
Z

F
M2

L
�
Ψ;

gμνffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Φ=M2

p �
; ð7Þ

such that ðF=M2Þ1=4 plays the role of a conformally
coupled spurion on shell, when Φ is constant by virtue of
the field equations.
In what follows, we will work with two special cases,

which preserve their 4-form/matter couplings in the QFT

loop expansion.5 These two setups are the theory with the
minimally coupled matter, which does not include any
direct 4-form/matter coupling, and the theory with the
conformal coupling (7). For these two special cases, the
couplings will not be altered by radiative corrections
generated in the loop expansion as long as the UV regulator
of the matter sector depends on F in the same way [46,47].
In other cases, the couplings will change order by order, as
it should be obvious from power counting.
For simplicity’s sake, in the mathematical derivations to

follow, we will mainly use the minimally coupled matter
action. However, our main physical interest will be in the
conformally coupled theory, because it will turn out that we
can devise a simple proof that this variant of pancosmic
general relativity has a safe behavior in the semiclassical
limit and avoids a potential problem with ghosts. Our
singling out this example is of technical nature, as we will
discuss later. Other types of theories may also be ghost-
safe, but we have not found a general argument yet.
Note that in the case of conformal coupling, the simplest

realization is when the ratio of the matter sector mass scales,
and the effective Planck scale set inside each local region of
constant κ2 does not change from region to region even if a
bubble wall is crossed. I.e., this corresponds toM2

Pleff ¼ κ2.
Infrared quantities may still change, such as the sizes of
objects, and ultimately, bubble sizes measured from the
inside and out. We can, however, add the standard Einstein-
Hilbert term∝ M2

PlR to the action, so that the effective Planck
scale isM2

Pleff ¼ M2
Pl þ κ2. This will change the mass ratios

(mass=MPleff) in the matter sector as a membrane is crossed,
and yield different QFT hierarchies from bubble to bubble.
Since we treat gravity only semiclassically, the dynamical
equations are altered only minimally.
Working with our simplest total action generalizing

Einstein-Hilbert’s [1,2], we have

S ¼
Z

F
�
R −

1

4!

ϵμνλσffiffiffi
g

p Gμνλσ

�
−
Z

d4x
ffiffiffi
g

p
LQFT: ð8Þ

Note that this action is formally third derivative, as
F ¼ dA. Nevertheless, this theory is locally indistinguish-
able from general relativity, as we now show. The simplest
way to proceed is to write down the field equations
extremizing the action (8). Varying with respect to A
and B [keeping in mind the identity (5)] yields

∂μ

�
R −

1

4!

ϵμνλσffiffiffi
g

p Gμνλσ

�
¼ 0;

∂μ

�
−
1

4!

ϵμνλσffiffiffi
g

p F μνλσ

�
¼ ∂μΦ ¼ 0; ð9Þ

5We will treat perturbative gravity semiclassically only, ignor-
ing graviton loops, as in, e.g., [46,47].
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where we already alerted the reader to the last equation.
These two equations are the conservation laws for the
dual magnetic fluxes of the theory, which follow from
the 3-form potential gauge symmetries A → Aþ dωA,
B → B þ dωB, where ωk are arbitrary 2-forms (see, e.g.,
[8]). Since these are the statements that the two 0-forms are
closed, they can be readily integrated locally, introducing
two integration constants λ and κ2,

R −
1

4!

ϵμνλσffiffiffi
g

p Gμνλσ ¼ 2λ; −
1

4!

ϵμνλσffiffiffi
g

p F μνλσ ¼ Φ ¼ κ2

2
:

ð10Þ

The final set of gravitational sector field equations follows
from variations of (8) with respect to the metric gμν. Since
the metric now appears only in R, in the denominator of the
term ∝ ϵμνλσGμνλσ, and in the matter sector, the variational
equations will differ from their counterpart in standard
general relativity. The variation of the action is

δgS ¼
Z

F
�
−Rμν þ ϵαβλσ

2 · 4!
ffiffiffi
g

p Gαβλσgμν
�
δgμν

þ 1

2

Z
d4x

ffiffiffi
g

p
Tμνδgμν þ

Z
Fffiffiffi
g

p ∂μð
ffiffiffi
g

p
JμÞ; ð11Þ

where ∂μð ffiffiffi
g

p
JμÞ= ffiffiffi

g
p ¼ gμνδgRμν is the textbook metric

variation of the Ricci tensor, well known to be a local
4-divergence. Here, Tμν is the standard symmetric matter
stress energy tensor Tμν ¼ 2ffiffi

g
p δSmatter

δgμν
, which is covariantly

conserved, ∇μTμν ¼ 0, by virtue of flat space matter field
theory equations which remain unchanged.6 To proceedwith
extracting the gravitational field equations from the action,
we can use the field equations which we already obtained,
specifically (9). Using the second of those equations, after
integrating by parts and using ∂μð− 1

4!
ϵμνλσffiffi

g
p F μνλσÞ ¼ 0,

Z
Fffiffiffi
g

p ∂μð
ffiffiffi
g

p
JμÞ ¼ −

1

4!

Z
d4x

ϵαβλσF αβλσffiffiffi
g

p ∂μð
ffiffiffi
g

p
JμÞ

¼ −
1

4!

Z
dSμJμ

ϵαβλσF αβλσffiffiffi
g

p ; ð12Þ

where the last equality follows from Gauss’s theorem. Thus,
since the last term in (11) is a boundary term, it does not
contribute to the field equations and we can drop it. Further
using F ¼ − 1

4!
ϵμνλσffiffi

g
p F μνλσd4x

ffiffiffi
g

p
on shell, we obtain that

δgS ¼ 0 leads to

−
2

4!

ϵρζγδffiffiffi
g

p F ρζγδ

�
Rμ

ν −
ϵαβλσGαβλσ

2 · 4!
ffiffiffi
g

p δμν

�
¼ Tμ

ν; ð13Þ

where for convenience we are using the mixed tensor
representation for Rμ

ν and Tμ
ν.

So to recapitulate, our field equations are the set of (13)
and the 3-form variations (9) or equivalently their first
integrals (10), which we collect here for clarity:

− 2

4!

ϵρζγδffiffiffi
g

p F ρζγδ

�
Rμ

ν −
ϵαβλσGαβλσ

2 · 4!
ffiffiffi
g

p δμν

�
¼ Tμ

ν;

R −
1

4!

ϵμνλσffiffiffi
g

p Gμνλσ ¼ 2λ; −
1

4!

ϵμνλσffiffiffi
g

p F μνλσ ¼
κ2

2
: ð14Þ

At first glance, these equations do not look like general
relativity.7 However, this is not so: Indeed, a simple
substitution of the last two equations into the first ones
readily yields

κ2
�
Rμ

ν −
1

2
Rδμν

�
¼ −κ2λδμν þ Tμ

ν; ð15Þ

which are structurally just the field equations of general
relativity, but with one very important new physical
ingredient. In (15), both the strength of gravity and the
vacuum curvature, i.e., the effective Planck scale and the
cosmological constant, are set by two, so far completely
arbitrary, integration constants κ2 and λ. As they stand,
Eqs. (14) and (15) do not describe just one general
relativity, but an infinity of them parametrized by the
values of κ2, λ.
When we include modified measures in the matter sector,

the values of the local matter scales and couplings would
also vary from one theory to another. This means that our
third-derivative general relativity is in fact a further
extension of the “unimodular gravity” formulation of
general relativity, which included an a priori integration
constant contribution to only the cosmological constant
term [9–17].
One might be tempted to dismiss this point as a mere

curiosity, since after all the integration constants of the
“metatheory” given by the action (8), or its more general
cousins which feature modified matter sector measure as
well, are constant after all. One picks their values by
measurement, fixes the theory, et voilà, the parameters are

6The story looks more complicated when the theory involves
couplings nonlinear in F . However, as long as transformations
are analytical, the dual theory can be formulated readily, and the
same conclusions hold.

7For example, one would think that the structure of general
relativity field equations is fixed by local gauge invariance, whose
first check is provided by Bianchi identities. Equations (14)
nevertheless do satisfy Bianchi identities, as follows: denoting
− 1

4!
ϵμνλσffiffi

g
p F μνλσ ¼ κ2

2
, subtracting and adding ðR=2Þδμν in the

parentheses, taking 4-divergence, and using ∂μλ ¼ ∂μκ
2 ¼ 0

indeed yields ∇μTμ
ν ¼ 0 on shell. Which is why the substitution

of Eqs. (14) reproduces (15).
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selected. In a sense, this is even justified by renormalization
in QFT, where the UV-sensitive quantities must be regu-
lated, and their physical values determined by measurement
(see, e.g., [48]).8 Thus, different general relativities gov-
erned by the meta-action (8) might appear like a set of
superselection sectors in QFT, which remain forever dis-
tinct and separated from each other. However, consider for
a moment matter sectors which contain a multiplet of QFT
vacua, with phase transitions between them. Such proc-
esses link asymptotically different superselection sectors
of the metatheory (8). Not all physical parameters in the
(renormalized) Lagrangian will forever remain the same
when phase transitions are turned on. Common examples
are the transitions which change vacuum energy (and lead
to the ideas of string landscape [41–45]). In quantum
gravity, in principle all parameters may be subject to such
variations [7,27,28,39,50–54]. Thus, given that the meta-
theory (8) brings in an infinity of general relativities, which
appear to be classically mutually disconnected like uni-
verses with a different cosmological constant in unimodular
formulation of general relativity (or multirelativity [55]), it
is interesting to explore possible channels which allow such
universes to evolve into each other.
The generalization of (8), which opens up the channels

for the general relativities with different κ2 and λ to evolve
into each other, while retaining their local spectrum of
propagating modes, turns out to be very straightforward
in our case. Since κ2 and λ are conserved dual magnetic
fluxes of the gauge fields F ¼ dA and G ¼ dB, we can
“unfreeze” them by introducing objects which are charged
underA and B. When the charge carriers nucleate quantum
mechanically, they change discretely the fluxes in their
vicinity. The fluxes can discharge by charge emission: The
charges open the possibility that the fluxes can be relaxed
by the production of charge carriers. Because A and B are
3-forms, the charge carriers must be membranes. So, we
add membranes charged under A, B to the action (8):

S ¼
Z

F
�
R −

1

4!

ϵμνλσffiffiffi
g

p Gμνλσ

�
−
Z

d4x
ffiffiffi
g

p
LQFT

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A −QA

Z
A

− T B

Z
d3ξ

ffiffiffi
γ

p
B −QB

Z
B: ð16Þ

Here, T i, Qi are the membrane tension and charge,
respectively, and ξα are the restriction of the membrane
embedding maps xμ ¼ xμðξαÞ to the membrane world
volumes. The term Sboundary denotes the boundary terms

which properly covariantize the bulk actions in the pres-
ence of boundaries. It is a straightforward generalization of
Israel-Gibbons-Hawking boundary terms of standard gen-
eral relativity [56,57], including also contributions from the
4-form sector. We will give their explicit general form
shortly.
Note that the presence of membranes alters the theory

even at the classical level. We would have background
geometries which are made up of many regions in the huge
metaverse, with classical parameters changing discretely
from one region to another. In the absence of the local
matter sources, those regions would be de Sitter or anti–de
Sitter patches with, in general, different strength of gravity
in each, and separated by expanding spherical walls. The
distribution of these regions would be set by the classical
“initial conditions” on some Cauchy surface, and classi-
cally “frozen” forever.
In quantum mechanics, however, new membranes can

nucleate, changing the number and the distribution of
bubbles, and also changing how bubble interiors evolve.
The various classical “initial surfaces” frozen in the limit
ℏ → 0 would evolve into each other. The membrane
nucleation processes would be described by Euclidean
instantons, which are subsequently analytically continued
to a Lorentzian signature spacetime. We will work with this
in mind here, using quantum-mechanical effects to leading
order to understand the dynamics of the space of “vacua” of
pancosmic general relativity introduced above.
The gauge couplings ∝

R
A are integrated over the

membrane world volumes,Z
A ¼ 1

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ; ð17Þ

and likewise for B. Note that these couplings can des-
cribe both positively and negatively charged membranes
accommodated by the change of the winding direction of
xμ ¼ xμðξαÞ. We will take the tensions T i to be strictly
positive, however, to enforce local positivity of energy. Our
membranes could be fundamental objects generalizing
electrically charged fundamental particles. Alternatively,
they could be “emergent,” arising as the composite boun-
daries, i.e., walls, in strongly coupled gauge theories at low
energies. We can be agnostic about their microscopic
nature9 and imagine that they can be described in the
thin-wall approximation as in (16) regardless.
It is now clear that the nucleation of membranes can

mediate variation of the “integration constants” κ2 and λ.
To illustrate this, consider membranes with QB ≠ 0.
Rewriting the second term in the bulk action (16) as
− 1

4!

R
F ϵμνλσffiffi

g
p Gμνλσ ¼ − 1

4!

R
G ϵμνλσffiffi

g
p F μνλσ and varying (16)

with respect to B now yields
8One may hope that the UV completion of the theory might go

beyond the renormalization procedure of QFT and actually
predict this value, or at least predict that the favored values
feature a large hierarchy (see, e.g., [49]).

9Membranes might arise at low energies as a thin-wall
approximation of domain walls in systems with a discrete system
of a very large number of vacua [58].
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−
�
ϵμνλσ

4!
ffiffiffi
g

p F μνλσ

�����
out

þ
�
ϵμνλσ

4!
ffiffiffi
g

p F μνλσ

�����
in

¼ 1

2
κ2out −

1

2
κ2in ¼ QB ð18Þ

across a membrane moving out in the direction of the local
normal. In other words, the emission of a membrane with
the charge QB yields a discrete jump of the Planck scale
between the exterior (out) and the interior (in) by 2QB.
Similarly, λ changes discretely by an emission of a charge
QA. In the next section, we will consider these processes in
detail, outline the possible transition channels, and estimate
their rates.

B. Canonical transformation to magnetic duals

Before we proceed with the study of general transitions
between different vacua of three-derivative general rela-
tivity (i.e., the metatheory of general relativities) given by
(16), it is instructive to rewrite the meta-action in terms of
the magnetic dual variables toF and G. This transformation
is a generalization of canonical transformations in classical
mechanics trading generalized coordinates and generalized
momenta [59].
Using this formulation, we will see even more clearly

how the parameters of standard general relativity are
promoted to dynamical, albeit nonpropagating, degrees
of freedom. We will also be able to immediately discern the
explicit form of the boundary terms Sboundary. Finally, this
form of the action will come in handy in the calculation of
on-shell Euclidean actions which control the membrane
nucleation rates, to be considered below.
The dualization procedure starts with recasting the

4-form sector of (16) into the first-order formalism, where
each variable in both pairs F , A and G, B is treated as an
independent dynamical variable to be integrated over in
the path integral. The relations F ¼ dA and G ¼ dB are
enforced with the help of Lagrange multipliers, PA, PB.
These Lagrange multipliers are also integrated over in the
path integral,

Z ¼
Z

…½DA�½DB�½DF �½DG�½DPA�½DPB�

× eiSðA;B;F ;G;…Þþi
R

PAðF−dAÞþi
R

PBðG−dBÞ… ð19Þ

Then, simply changing the order of integration of variables
yields different dual pictures. This technique was utilized in
supergravity [60,61], and has been a mainstay in the for-
mulation of flux monodromy models of inflation [62–64].
Explicitly, the idea is that after transitioning to the first-
order variables, we integrate out the 4-form field strengths,
and recognize that in the resulting action the scalar
Lagrange multipliers are in fact precisely the magnetic
duals of F and G. This procedure is the same regardless of
the direct 4-form/matter couplings, although the specifics

can complicate the explicit transformation formulas
(as in, for example, hybrid monodromy inflation models
[65]). We will therefore work with the minimal matter
action, and simply generalize the result after the fact in the
obvious way.
To keep track of all the relevant terms in this procedure

and reduce the clutter, we will only look at the part of the
action (16) which depends explicitly on F and G, and
rewrite it in terms of the components of F and G. Since
− ϵμνλσffiffi

g
p GμνλσF ¼ −d4x ffiffiffi

g
p

F μνλσGμνλσ, we find

S ∋
Z

d4x
ffiffiffi
g

p �
−

1

4!
F μνλσGμνλσ −

R
4!

ϵμνλσffiffiffi
g

p F μνλσ − LQFT

þ PA

4!

ϵμνλσffiffiffi
g

p ðF μνλσ − 4∂μAνλσÞ

þ PB

4!

ϵμνλσffiffiffi
g

p ðGμνλσ − 4∂μBνλσÞ
�
; ð20Þ

where the second line is the Lagrange multipliers. Defining
new independent degrees of freedom

F̃ μνλσ ¼ F μνλσ − PB
ffiffiffi
g

p
ϵμνλσ;

G̃μνλσ ¼ Gμνλσ − ðPA − RÞ ffiffiffi
g

p
ϵμνλσ; ð21Þ

and recalling that the translational changes of variables as
in (21) do not change the path integral since the functional
Jacobian is unity, we can rewrite this part of the action as

S ∋
Z

d4x

� ffiffiffi
g

p ð−F̃ μνλσG̃
μνλσ þ PBðR − PAÞ − LQFTÞ

−
PA

6
ϵμνλσ∂μAνλσ −

PB

6
ϵμνλσ∂μBνλσ

�
: ð22Þ

Since F̃ and G̃ do not appear anywhere else, the integration
over one of them yields a functional Dirac δ function for the
other,

Z ¼
Z

…½DF̃ �½DG̃�ei
R

d4x
ffiffi
g

p ð−F̃ μνλσ G̃
μνλσÞ…

¼
Z

…½DG̃�δðG̃Þ…; ð23Þ

and then the integration over this one sets the correspond-
ing factor in the path integral to unity. Further, note that the
variables PA and PB are precisely ∝ κ2; λ, respectively. So,
we can make these substitutions right away:

PA ¼ 2λ; PB ¼ κ2

2
: ð24Þ

Thus, our new dual variables action with the membrane
terms from (16) included is
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S ¼
Z

d4x

� ffiffiffi
g

p �
κ2

2
R − κ2λ − LQFT

�

−
λ

3
ϵμνλσ∂μAνλσ −

κ2

12
ϵμνλσ∂μBνλσ

�

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A

−QA

Z
A − T B

Z
d3ξ

ffiffiffi
γ

p
B −QB

Z
B: ð25Þ

This action closely resembles the theory of local vacuum
energy sequester [8], but it is not the same. The main
differences are that the independent variables here are κ2

and λ instead of κ2 and Λ ¼ κ2λ, and the presence of
membranes with charges Qi. However, as we will see in
what follows, that will be of no consequence for our
considerations here. Approaching the cosmological con-
stant problem in pancosmic general relativity follows a
different path.
This form of the action lays out the framework of

pancosmic general relativity very transparently. First off,
the variables κ2 and λ are now principal dynamical
variables, which change only discontinuously by mem-
brane emissions and in discrete amounts controlled by
the units of charge QB and QA, respectively. The local
constancy of the 4-forms in the absence of a charged source
follows from the variations of (25) with respect toA and B.
The gravitational sector away from the membranes is
identical to that in the standard formulation of general
relativity thanks to the fact that the new bulk action terms
∝ ∂μAνλσ , ∂μBνλσ are completely independent of the metric,
being purely topological.
To summarize all this mathematically, we write down the

Euler-Lagrange equations obtained by varying (25) with
respect to the metric κ2, λ, Aνλσ , and Bνλσ , in that order:

κ2Gμ
ν ¼ −κ2λδμν þ Tμ

ν þ…; F̂ μνλσ ¼
κ2

2

ffiffiffi
g

p
ϵμνλσ;

Ĝμνλσ ¼
2λ − R

4

ffiffiffi
g

p
ϵμνλσ;

2nμ∂μλ ¼ QAδðr − r0Þ;
1

2
nμ∂μκ2 ¼ QBδðr − r0Þ: ð26Þ

The ellipsis in the first equation designates the generali-
zation of Israel-Gibbons-Hawking boundary terms. Here
we have reintroduced the “spectator” 4-forms F̂ ¼ dA and
Ĝ ¼ dB to utilize a more compact notation, and used
Einstein’s tensor Gμ

ν in the first line. The vector nμ is
the outward normal to a membrane, and r the coordinate
along the axis in the direction of that normal.
We cannot stress enough here that although κ2 and λ look

like fixed Lagrangian parameters in the action (25), they are
not. The variables κ2 and λ are discrete dynamical degrees
of freedom, and are completely arbitrary until one picks

their numerical values by solving the first-order differential
equations in the second line of (26). The variations of these
variables will be quantized, taking values which are integer
multiples of the charge, by which they change by mem-
brane emission. This is similar to flux monodromy models
[62–64].
In the magnetic dual form of the action, the third

derivative in the original formulation of the theory (16)
seems to have disappeared from (25). However, the
arbitrariness of κ2 is its legacy: The reason the derivative
seems to have gone away is that the duality transformation
which we carried out starting with (20) is a canonical
transformation in the dynamical sense [59], exchanging the
canonical “electric” field momentum variable πA ∼ ∂0A123

with the dual “magnetic” conjugate field variable ϕB ∼ PB,
and correspondingly for πB, ϕA. Since the gauge sym-
metries ofA and B are linearly realized, the action does not
directly depend on those variables—they are cyclic, yield-
ing the conserved magnetic fluxes of Eq. (9), and so
concealing the derivative—as in a Legendre transforma-
tion. In the more general frameworks that may exist, where
gauge symmetries would be realized nonlinearly, one
would expect both sides of the dual theory to feature extra
derivatives [61–63].
One may wonder which of these sets of variables is more

“natural” or “physical.” The simple answer is, neither—
they are all equivalent. Perhaps the most comforting
example illustrating this is the linear harmonic oscillator
with the HamiltonianH ¼ p2=2þ q2=2. Clearly, the trans-
formation ðq; pÞ → ðP;−QÞ preserves both the form of H
and the Poisson brackets, meaning either pair ðq; pÞ or
ðQ;PÞ (or any symplectic rotation of them in the Q, P
plane) is just as good. Thus, we are free to pick any of these
as our dynamical basis.
On the other hand, note that employing the electric

formulation (16) motivated by the recognition that the
measure of integration chosen by Hilbert in [1] is but a
special case of a more general set of possibilities, immedi-
ately led to the way of introducing the discrete dynamics
that can change the Planck scale and the cosmological
constant by membrane emission. As a consequence, both
standard general relativity [1,2] and its unimodular formu-
lation [9–17] are merely special limits of our theory (16),
(25). They arise in the limit when the membranes decouple,
which happens10 when T A=κ3, T B=κ3 → ∞.
Finally, by inspection of (25), we can determine the

boundary terms in addition to the tension and charge terms.
First off, the nongravitating, topological spectator terms
λ
3
ϵμνλσ∂μAνλσ and

κ2

12
ϵμνλσ∂μBνλσ in the action (25) are there

10Note that making the charges infinitesimally small would
correspond to making the variables κ2 and λ change almost
continuously. Making tensions very large, however, seizes
membrane nucleations and freezes κ2 and λ. This is just an
example of the standard realization of decoupling.
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to enforce that the magnetic dual degrees of freedom λ and
κ2 satisfy their field equations given in the second line of
Eq. (26). Once these equations are solved, i.e., λ; κ2 are
chosen to satisfy them, the spectators automatically reduce
to boundary terms, very much like the 4-form boundary
terms considered in [43,62–64]. To see it, we rewrite the
spectator terms in Eq. (25) as

−
Z

d4x

�
λ

3
ϵμνλσ∂μAνλσ þ

κ2

12
ϵμνλσ∂μBνλσ

�

¼ −
Z

d4x∂μ

�
λ

3
ϵμνλσAνλσ þ

κ2

12
ϵμνλσBνλσ

�

þ
Z

d4x

�
∂μλ

3
ϵμνλσAνλσ þ

∂μκ
2

12
ϵμνλσBνλσ

�
: ð27Þ

It is now obvious that the terms in the second line precisely
cancel the charge terms in (25). The total derivatives
integrate—by Gauss’s law—to a boundary term which
needs to be subtracted from the total action to ensure the
correct variational behavior of the 4-forms on the boundary,
generalizing similar terms encountered in massless and
massive “canonical” 4-form theories in [43,62,63]. Thus,
the 4-form induced boundary term evaluated on the
membrane world volumes is

S4−forms
boundary ¼

Z
d3ξ

��
λ

3
ϵαβγAαβγ

	
þ
�
κ2

12
ϵαβγBαβγ

	�
: ð28Þ

Here, ½…� designates the discontinuity across a membrane
(also known as the difference of the exterior and interior
limits of the bracketed quantity). Note that λ; κ2 reside
inside ½…� since both can jump if a chargeQi is emitted, as
shown in Eq. (18). Also note that since membranes are
compact and smooth, the integrals like ∼

R
A remain gauge

invariant. The “job” of these boundary terms is to cancel the
total derivatives in (27), which would have remained after
the membrane charge terms∼Qi are canceled by the 4-form
and λ; κ2 equations in (26). In practice, when computing the
Euclidean action for the on-shell solutions, we can drop
both the charge terms and the spectators. Of course, this is
nothing else but an analog of Gauss’s laws for a system of
charges in usual electromagnetism. We will keep these
terms in the action for completeness sake, but bear in mind
that they drop out on shell when it comes to actually
computing the Euclidean bounce actions, to follow in the
next section.
Further, we see that the boundary action Sboundary must

be precisely Israel-Gibbons-Hawking action, but with a
different κ2 normalizing Israel-Gibbons-Hawking integrand
on each side of a membrane:

SRboundary ¼ −
Z

d3ξ
ffiffiffi
γ

p ½κ2K�; ð29Þ

where ξα are intrinsic coordinates on the membrane, γ the
induced metric, and K the extrinsic curvature computed
relative to the outward normal defined as the trace of
Kαβ ¼ −∇αnβ. The covariant derivative here is with respect
to the induced metric on the membrane. With wisdom after
the fact, this form of (29) is inevitable, since the purpose of
Israel-Gibbons-Hawking terms is to cancel the canonical
momentum-dependent terms on the boundaries which arise
from integrations by parts of the variations of Einstein-
Hilbert action. In other words, (29) precisely cancels the
discontinuity in R generated by the tension source on the
membrane, and prevents the overcounting of the tension
contributions. This of course is just Gauss’s law for gravity.
Since we have generalized the action to

R
FR here, and

allowed F to jump across a boundary, we must slightly
generalize the boundary action to allow for the jump of
κ2—as stated above—and properly compensate for it.
Ergo, (29).
One important point which should be borne in mind is

that for noncompact geometries we should also include
boundary terms accounting for the flux of various fields at
infinity. In Lorentzian signature, where we only care about
the field equations, such terms are irrelevant. However,
in the Euclidean signature when we interpret the total
Euclidean action as a measure of probability or the rate
of a process, retaining such terms is critical, since we may
be dealing with regulated divergent integrals. Indeed,
one starts by imposing an infrared cutoff on a Euclidean
geometry to regulate the integral, covariantizing it with
boundary terms at the cutoff, and then taking the limit
where the cutoff is removed. This means that at infinity we
retain the “inside” contribution to (29), meaning the single
∝ κ2K contribution to the boundary integral with an overall
“þ” sign residing on the “interior” of the regulator wall.
This is the source “at the end of the world” conserving the
total “charge.”Wewill encounter this in the computation of
some of the bounce actions in the next section.
The total boundary action is, with all the features

elaborated above accounted for,

Sboundary ¼ S4−forms
boundary þ SRboundary: ð30Þ

With this, we have completely fixed all the dynamical
conditions controlling the evolution of the theory on and off
the membrane sources in the case of the minimal matter/
gravity couplings given by the 4-form action (16) or
equivalently its magnetic dual (25).
Before we turn to analyzing the geometric transitions

catalyzed by the membrane emissions, however, let us
quickly sketch out the ingredients of the theory for the
conformal 4-form/matter case as well. This generalization
of (25) is straightforward. The idea is to start with the
magnetic dual action, where all the terms in (25) except the
matter Lagrangian are the same. The matter Lagrangian is
replaced by
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ffiffiffi
g

p
LQFTðgμνÞ →

ffiffiffî
g

p
LQFTðĝμνÞ; ð31Þ

where ĝμν ¼ gμν
ffiffiffiffiffiffi
κ2

M2

q
using the notation of the previous

section, and, as noted, M is a UV scale controlling the
perturbative expansion of the full effective action in the
powers of F . It is now manifest that the matter loop
corrections preserve this form of the action, as long as the
regulator depends on κ=M in the same way as the matter
Lagrangian [46,47]. In other words, all matter sector
operators include powers of ð κ

MÞ1=2 controlled by their
engineering dimension. On the other hand, in general we
can also add to the action the pure Einstein-Hilbert term
replacing

κ2

2
R →

M2
Pl þ κ2

2
R: ð32Þ

We can think of this as the semiclassical effective gravity
Lagrangian term which includes matter sector loop cor-
rections in this specific theory. Even if the ∝ κ2 terms were
absent to start, the conformally coupled matter sector
would induce them via renormalization11 of M2

Pl. Thus,
the full action is

S ¼
Z � ffiffiffi

g
p �

M2
Pl þ κ2

2
R − κ2λ −

κ2

M2
LQFT

�
M
κ
gμν
��

−
λ

3
ϵμνλσ∂μAνλσ −

κ2

12
ϵμνλσ∂μBνλσ

�

þ Sboundary − T A

Z
d3ξ

ffiffiffi
γ

p
A

−QA

Z
A − T B

Z
d3ξ

ffiffiffi
γ

p
B −QB

Z
B: ð33Þ

Note that we could have written this action in terms of the
original electric 4-formsF and G and their components. We
could still do this by performing the inverse Legendre map
to the one we defined in the beginning of this section. It
clearly exists. However, it would be quite cumbersome due
to a variety of nonlinear terms which appear in the matter
sector Lagrangian; yet the answers would be the same as
when we work with the magnetic variables. Thus, we will
ignore this step and simply reset to starting right away
with (33).
Again, away from the membranes the gravitational sector

is identical to standard general relativity. The variational
equations obtained from (33) with respect to the metric κ2, λ,
Aνλσ , and Bνλσ in that order, are, after some manipulation of
the functional derivatives in the matter sector [where
ðκ=MÞ1=2 coincides with the “stiff dilaton” of [67] ]

ðM2
Pl þ κ2ÞGμ

ν ¼ −κ2λδμν þ Tμ
ν þ…;

F̂ μνλσ ¼
κ2

2

ffiffiffi
g

p
ϵμνλσ;

Ĝμνλσ ¼
2κ2λ − κ2R − T=4

4κ2
ffiffiffi
g

p
ϵμνλσ;

2nμ∂μλ ¼ QAδðr − r0Þ;
1

2
nμ∂μκ2 ¼ QBδðr − r0Þ:

ð34Þ

As before, the ellipsis in the first equation denotes the
generalization of Israel-Gibbons-Hawking boundary terms.
Comparing to (26), the only difference is the ∝ M2

Pl term in
the first equation and the ∼T term in the third (where
T ¼ Tμ

μ). As a consequence, one can easily check that
the 4-form boundary terms remain exactly the same as in the
previous case with minimal matter couplings. In particular,
Eq. (28) does not change. Our generalization of Israel-
Gibbons-Hawking action changes a little, by replacing κ2

in (36) with

κ2eff ¼ M2
Pl þ κ2: ð35Þ

With this in mind,

SRboundary ¼ −
Z

d3ξ
ffiffiffi
γ

p ½κ2effK�; ð36Þ

and we can finally turn to the nonperturbative membrane
dynamics.

III. SIC TRANSIT

The presence of membranes with nonvanishing charges
and tensions facilitates transitions in the spectrum of values
of κ2; λ. In any geometry which is locally described by a
solution of (14), with some values of κ2, λ, and the matter
sources, a membrane can nucleate quantum mechanically
with some probability. As long as the net energy density in
the region where nucleation occurs is smaller than ðκ2Þ2,
the region can be described as a locally Minkowski
space, and the formalism of Euclidean bubble nucleation,
with the bubble surrounded by a thin membrane, which
was originally developed by Coleman et al. [68–70], can
be deployed to compute the nucleation rates. Then,
Euclidean bubbles can be analytically continued back to
the Lorentzian metric, and their interior geometry can be
determined by matching conditions on a membrane pro-
vided by Israel junction conditions.
In this section, we focus on determining the membrane

nucleation rate and the matching of the exterior (parent) and
interior (offspring) geometries, in the simplest possible
cases. We imagine that both the parent and the offspring
geometries are locally maximally symmetric, with the
symmetry broken only by membrane nucleation. So, we

11Notice that this action does not have a global scale symmetry.
It should not, if it is to have a chance of linking to quantum
gravity [66].
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assume that the only nontrivial sources of the gravitational
field are the various contributions to the cosmological
constant and the membrane charges and tensions. This will
suffice to sketch out the evolution of a spacetime in the
leading-order approximation.
To this end, we will use the actions (16) and (25), Wick-

rotated to Euclidean space, determine the Euclidean geom-
etries describing various possible parent-offspring pairs,
and compute the Euclidean actions of these configurations.
Our goal is to get an estimate of the rate of a nucleation
process Γ ∼ e−Sbounce [68–70], which should be reliable at
least in the thin-wall, slow nucleation rate regime.

A. Euclidean action and field equations

Let us first Wick-rotate the action. At this point, it is
easier to work with the magnetic dual action (25), which
we need to analytically continue to Euclidean space. To
analytically continue the time, we use t ¼ −ix0E, which
yields −i

R
d4x

ffiffiffi
g

p
LQFT ¼ −

R
d4xE

ffiffiffi
g

p
LE
QFT. With the con-

ventionA0jk ¼ AE
0jk,Ajkl ¼ AE

jkl, we have F μνλσ ¼ FE
μνλσ,

and so on for B. Further, ϵ0ijk ¼ ϵE0ijk and ϵ0ijk ¼ −ϵ0ijkE .
The tension and charge terms transform to −iT i

R
d3ξ

ffiffiffi
γ

p ¼
−T i

R
d3ξE

ffiffiffi
γ

p
and iQi

R
Ai ¼ −Qi

R
Ai. The scalars donot

change (but if they include time derivatives, those terms
change accordingly). Now, we will be working with back-
grounds which are locally maximally symmetric, meaning
that hLE

QFTi ¼ ΛQFT, where ΛQFT is a matter sector cosmo-
logical constant that includes contributions to an arbitrary
order in the loop expansion.
Defining the Euclidean action by iS ¼ −SE, this yields,

using κ2eff ¼ M2
Pl þ κ2,

SE ¼
Z

d4xE

� ffiffiffi
g

p �
−
κ2eff
2

RE þ κ2λþ ΛQFT

�

−
λ

3
ϵμνλσE ∂μAE

νλσ −
κ2

12
ϵμνλσE ∂μBE

νλσ

�
þ Sboundary

þ T A

Z
d3ξE

ffiffiffi
γ

p
A −

QA

6

Z
d3ξEAE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE

þ T B

Z
d3ξE

ffiffiffi
γ

p
B −

QB

6

Z
d3ξEBE

μνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγE :

ð37Þ

It is important now to stress the difference between the
theories with the minimally coupled matter and the con-
formal 4-form/matter coupling. In the case of the minimally
coupled theory,ΛQFT is independent of the discrete variable
κ2. On the other hand, for the theory with the conformal
4-form/matter coupling,

ΛQFT ¼ κ2

M2
ðM4

UV þ…Þ ¼ κ2H2
QFT; ð38Þ

where, as before, M4
UV plays the role of the locally flat

space QFT cutoff. This is because the regulator depends on
κ2 in exactly the sameway as the dimensional parameters of
LQFT. The ellipsis stands in for subleading corrections.
From here on, we will simply absorb them into the cutoff.
As a result, if we define the total cosmological constant,

Λ ¼ ΛQFT þ κ2λ; ð39Þ

for both of our theories Λ is a linear function of κ2. The
distinction is that in the minimal case ΛQFT is κ2 indepen-
dent, whereas in the conformal 4-form/matter coupling

ΛQFT ¼ κ2
M4

UV
M2 þ � � �. Thus, in what follows we will have

the total cosmological constant as

Λ ¼
�
κ2λþ ΛQFT minimal coupling;

κ2ðλþH2
QFTÞ conformal coupline;

ð40Þ

We will look for transitions between geometries with
κ2out=in, Λout=in, where the subscripts out/in denote parent
and offspring geometries (exterior and interior of a mem-
brane, respectively). Both of the out/in geometries may be
described with the metrics

ds2E ¼ dr2 þ a2ðrÞdΩ3; ð41Þ

where dΩ3 is the line element on a unit S3. The Euclidean
scale factor a is the solution of the Euclidean “Friedmann
equation,”

3κ2eff

��
a0

a

�
2

−
1

a2

�
¼ −ðΛQFT þ κ2λÞ ¼ −Λ; ð42Þ

which follows because the bulk-metric-dependent part of
(37) is structurally the same as in standard general
relativity. The prime designates an r derivative.12 We are
focusing on at least Oð4Þ-invariant configurations and their
complex extensions since they have minimal Euclidean
action. Hence, they describe the most likely processes in
this approximation [68–70].
The idea now is to assemble together two patches of

geometry, each with a local metrics given by (41) but with
different κ2;Λ, and then use the junction conditions to
connect the patches into a quilt. Since we are working with

12We will not need the explicit form of the solutions, although
they are easy to obtain:

aðrÞ ¼ a0 sin

�
rþ δ

a0

�
for Λ > 0;

aðrÞ ¼ rþ δ for Λ ¼ 0;

aðrÞ ¼ a0 sinh

�
rþ δ

a0

�
for Λ < 0:
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geometries which have three-spheres S3 as subspaces, we
keep only the S3 invariant 3-forms A123, B123. The
magnetic dual field boundary conditions induced on a
membrane—analogous to the boundary conditions for the
electric field on the interface between two dielectrics—
follow from (37) by varying with respect to A and B.
The variations give (where for notational economy we

write them as if both a membrane charged under A and
under B are colocated; in general, of course they will
not be)

λout − λin ¼
1

2
QA;

κ2out − κ2in ¼ 2QB: ð43Þ

As stated above, out/in denote a relevant quantity just to
the right or to the left of the membrane in the coordinate
system where the membrane is at rest and where the out-
ward membrane normal vector is oriented in the direction
of the radial coordinate, and r measures the distance in this
direction.
The metric boundary conditions come from the tension-

induced curvature jump on the membrane, and can be
obtained by using Israel junction conditions. Alternatively,
we can write down Einstein’s equations in the rest frame
of the membrane and determine the discontinuity of the
second derivative. Either way, and again writing the
condition as if both A and B membranes are colocated,
we find

aout ¼ ain;

κ2eff out
a0out
a

− κ2eff in
a0in
a

¼ −
1

2
ðT A þ T BÞ: ð44Þ

Note that we can think of the first of these two equations

as just a “Gaussian pillbox” integral of a0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa2

3κ2eff

q
obtained by solving (42) for a0. Here, � in a0 allows for
either branch of the square root.
It is important to stress that even though κ2 and λ in this

equation are discontinuous across a membrane, since the
discontinuity is finite and the membrane is thin, the metric
variable a remains continuous. Similarly, a0 jumps because
the tension sources are Dirac δ functions in the thin-
wall limit.
Finally, the spectator 4-forms F̂ and Ĝ given in the first

line of Eq. (26) may also experience a discontinuity. On
shell, they are set by the geometric quantities which jump.
These discontinuities do not control the geometry match-
ing, but do contribute to Euclidean actions by generating
boundary terms (28) in Euclidean action which precisely
cancel the charge terms and the (Euclideanized) spectator
terms in (37). So as a result, on shell (dropping the index
“E” from here on)

S4−forms
boundary −

Z
d4x

�
λ

3
ϵμνλσ∂μAνλσ −

κ2

12
ϵμνλσ∂μBνλσ

�

−
QA

6

Z
d3ξAμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ

−
QB

6

Z
d3ξBμνλ

∂xμ

∂ξα
∂xν

∂ξβ
∂xλ

∂ξγ
ϵαβγ ¼ 0: ð45Þ

Thus, in fact, correctly evaluated spectator terms cancel out
in the action. Nevertheless, we will write the 3-potential
discontinuities here for completeness before we ignore
them once and for all thanks to (45). It turns out that since
the discontinuity of κ2 is finite and the metric is continuous,
the discontinuity of F̂ is also finite, and hence Aμνλ is
continuous. On the other hand, since R has a Dirac
δ-function divergence induced by the jump of a0=a, the
3-form potential Bμνλ is discontinuous, because the
Gaussian integral enclosing the membrane isI

dB ¼
I

Ĝ ¼ −
1

4

I
d4x

ffiffiffi
g

p
R: ð46Þ

Other terms appearing in the equation for G are all
continuous and therefore drop out from the integral here.
Using R ¼ −6a00=aþ � � � and integrating we find that for
all cases of interest to us,

Aμνλ out ¼ Aμνλ in;

Bμνλ out − Bμνλ in ¼ −9
�
a0out
a

−
a0in
a

�
: ð47Þ

B. The spectrum of instantons

We can now consider “elementary transitions” mediated
by the emission of a single membrane with eitherQA orQB
charge. More general cases are realized by multiple
emissions, which generically occur consecutively. In any
case, those transitions are combinations of the elementary
ones, and their rates are controlled by linear combinations
of Euclidean actions of the elementary transitions.
In determining the “spectrum” of possible instantons, we

will closely follow the excellent expose of [41,42]. Much of
our analysis, especially in Sec. III. 2 .1., overlaps with the
details of those works. However, there are some crucial
changes in the results and conclusions due to the structural
differences between the field equations here and in [41,42].
This will come up shortly, and we will pay particular
attention to them and highlight the differences as we go.
Since we are working with several theories simultane-

ously, we will try to deploy universal notation and analysis
whenever possible. In particular, the exploration of the
instantons T A, QA ≠ 0 is essentially independent of the κ2

dependence (which can vary κ2 dependence between
theories), and so we will be able to present the results in
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a general fashion. For T B, QB ≠ 0, we will look at the
specific cases separately, since the κ2 dependence makes
the analysis simpler in one of those cases.

1. T A, QA ≠ 0

The first case with T A, QA ≠ 0 and T B ¼ QB ¼ 0
obviously is similar to the thin-wall bubble nucleation in
standard general relativity and to theories with membrane
discharge of the flux screened cosmological constant.
However, there are important technical differences when
we compare to those models since in our theory the
bulk cosmological constant depends on the 4-form dual
magnetic fluxes (bi)linearly, as opposed to quadratically
[39,41–45], as is clear from Eq. (42). This will lead to
interesting new features, breaking up the spectrum of
instantons describing allowed transitions into two separate,
disjoint sectors.
In any case, the relevant boundary conditions we found

in the previous section on a membrane are

aout¼ain¼a; κ2effout¼κ2effin¼κ2eff; Aμνλout¼Aμνλin;

a0out
a

−
a0in
a
¼−

T A

2κ2eff
; λout−λin¼

1

2
QA; Bμνλout−Bμνλin¼

9T A

2κ2eff
:

ð48Þ

Let us very briefly review the meaning of these boundary
conditions. The point here is that to find the solution we
must allow λ to jump across the membrane, since it is a dual
magnetic flux to G, which changes due to the A-membrane
charge. The other jump, in a0, is accommodated by
arranging for the membrane to reside at just the right
value of a, which scans the range of the parent geometry
until it settles to the right value.
Clearly, for compact geometries, either parent or off-

spring, the range of a is bounded, and thus, for many values
of parameters a will not exist. In the case of noncompact
geometries, on the other hand, the Euclidean bounce may
involve infinite volume contributions, which are positive.
This will infinitely suppress the configuration, even if it is
not excluded “kinematically.” Thus, only a subset of
transitions will be physically relevant.

Solving Eq. (42) for a0 ¼ ζj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λa2

3κ2eff

q
with ζj ¼ �1

designating the two possible branches of the square
root, we rewrite the first two equations in the second line
of (48) as

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3κ2eff

s
− ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3κ2eff

s
¼ −

T Aa
2κ2eff

;

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3κ2eff

s
þ ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3κ2eff

s
¼ κ2QAa

3T A
: ð49Þ

The first equation is obvious. To get the second, start with
a02out − a02in ¼ −a2 κ2

κ2eff
ðλout − λinÞ=3 which follows from (42)

and the second equation on the second line of (48),
factorize the difference of squares, and use the first
equation to replace a0out − a0in. Importantly, the second
equation does not involve the background 4-form flux
on the rhs due to the linear dependence ofΛ on λ (as is clear
from the fact that the rhs depends on QA linearly, as
opposed to quadratically). This leads to differences in
solutions when compared to [41,42].
The possible configurations which can be obtained

by gluing together sections of exterior and interior
metrics (41) are counted by the variations of the sign
of Λ and the branches of solutions (ζj ¼ �1) of
Euclidean Friedmann equation (42). They must satisfy
Eqs. (49), however. The “sections” of Euclidean space,
which should be sewn together to construct the com-
plete instanton configuration are qualitatively the same
as those taxonomized by [41,42]. We sketch them
in Fig. 1.
Here, the “red” sections correspond to the possible

interior patches of the geometry, and the “blue” ones
to the exterior patches. The spherical sections S4 arise
when Λ > 0 and the horospherical sections H4 when
Λ < 0. After Wick rotation back to Lorentzian signa-
ture, S4 become patches of de Sitter spacetime and H4

turn into anti–de Sitter. The sign ζi controlling which
branch of the square root we pick, controls geomet-
rically whether the circumference of the latitude circle
on the section near the cut (the location of the
membrane represented by the dashed circle in
Fig. 1) increases (ζi ¼ þ1) or decreases (ζi ¼ −1)
by parallel transport increasing the arc length a in
the direction of the positive normal to the membrane
(directed outward), i.e., away from the coordinate
origin at the center of the inside section, which we
will take to be the north pole (see below).
Equations (49) restrict the possible combinations of

these sections already kinematically. In fact, we can
simplify Eqs. (49) by adding and subtracting them:

FIG. 1. Spherical (S4, top row) and horospherical (also known
as hyperbolic; H4, bottom row) sections which are glued together
to form instantons. Red ones are the interiors and the blue ones
the exterior geometries of the instanton. The � are the values
of ζin=out.
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ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3κ2eff

s
¼ −

T A

4κ2eff

�
1 −

2κ2effκ
2QA

3T 2
A

�
a;

ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3κ2eff

s
¼ T A

4κ2eff

�
1þ 2κ2effκ

2QA

3T 2
A

�
a: ð50Þ

Since T A > 0, the signs ζout=in are completely controlled by
the ratio

q ¼ 2κ2effκ
2jQAj

3T 2
A

: ð51Þ

Exploring the possibilities for the “assembly” of the
instanton solutions, we find

(i) if q < 1, the only allowed combination of ζ’s is
ζout ¼ −1, ζin ¼ þ1, and all other options are
excluded;

(ii) if q > 1, then we can have two combinations:
ζout ¼ −1, ζin ¼ −1 for QA < 0 and ζout ¼ þ1,
ζin ¼ þ1 for QA > 0; the other two combinations
are excluded.

The listed cases might not be automatically completely
disjoint: q > 1might evolve to q < 1, and vice versa, if and
only if κ2eff changes from bubble to bubble by the emission
of QB ≠ 0 membranes. Crucially, however, the processes
which could flip q < 1 to q > 1 can be completely blocked
off. We will discuss this issue in much more detail further
along. For now, we merely note that in a given bubble,
the membrane emissions will only yield one of the two
cases here. This is a direct consequence of the fact that ΔΛ
depends onQA linearly and not quadratically, as in [41,42].
Therefore, kinematically allowed combinations ðζout; ζinÞ
are ð−;þÞ for q < 1 and ðþ;þÞ, ð−;−Þ for q > 1. The
combination ðþ;−Þ is kinematically completely prohibited
for any signs and values of Λout=in by T A > 0. In addition,
one can check by examination of Eqs. (50) that the
instantons mediating transitions Λout ≤ 0, ζout ¼ þ1 →
Λin > 0, ζout ¼ þ1, and Λout > 0, ζout ¼ −1 → Λin ≤ 0,
ζout ¼ −1 are also kinematically prohibited. This is iden-
tical to what was found in [41,42].
The list of the possible instantons is given in the

instanton “Baedeker” of Fig. 2. We taxonomize the allowed
possibilities of ðΛout; ζout;Λin; ζinÞ which are solutions of
Eqs. (50). The classification of the possible solutions in
[41,42] is extremely convenient. The tabular representation
of Fig. 8 of that work sums the options very concisely, and
we adopt it here as well. A key qualitative difference in our
case is that the so-called type 1 instantons, comprising the
top nine examples, separated by the two double lines from
the rest in Fig. 2, are additionally divided into two subsets
depending on the local value of q. If q < 1, only
ðζout; ζinÞ ¼ ð−;þÞ are allowed. If q > 1, only ðζout; ζinÞ ¼
ðþ;þÞ or ð−;−Þ can occur.

In Fig. 2, the dashed contours depict the initial, exterior
geometry given by S4 (depicted by spherical cross sections)
or H4 (the hyperbolic cross sections). The solid contours
show the cross sections of the instantons, the blue being the
retained section of the parent in the exterior, and the red the
offspring in the interior. The empty squares are kinemat-
ically prohibited, such as, e.g., all cases ζout ¼ þ1,
ζin ¼ −1, by Eqs. (49) and (50). An important feature to
pay attention to, which is a particularly useful aspect of the
taxonomy of [41,42], is the manifest difference of the
exterior and interior geometries seen when comparing
the solid red contours with the dashed blue ones. In most
cases when the initial exterior geometry is not compact, the
bounce action is divergent. Positivity of the action then
implies those instantons are impossible dynamically, as we
are about to see explicitly. The instantons are divided into
four types by the double lines, 1 through 4, counting
clockwise from the top corner.
To illustrate how to patch the instantons together and

ensure they are solutions of (42) and (48)–(50), let us
consider a special case when both the exterior and the
interior solutions have Λ > 0, so that each is locally a
section of a 4-sphere S4. Let us also consider the configu-
ration ζout=in ¼ þ1. To coordinatize the geometry, we can

FIG. 2. The instanton Baedeker. The instantons fall into four
types divided by double lines in the table and counted clockwise
from the top corner [42]. The transitions corresponding to empty
squares are ruled out kinematically by Eqs. (49) and (50). The top

nine are further split by q ¼ 2κ2effκ
2jQAj

3T 2
A

< 1 (pale green) or q > 1

(pale gold). We keep both since κ2eff might vary independently (we
will suppress those variations later on). The “ogrelike” configu-
rations in the right column which are crossed out are allowed
kinematically but are suppressed dynamically since their bounce
action is huge and positive, Sbounce ≫ 1, diverging when anti–de
Sitter sections are noncompact (see the text).
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start with the interior solution, a section of S4 with the
radius κeff

ffiffiffiffiffiffiffiffiffiffiffiffi
3=Λin

p
. Choosing as the origin of coordinates

of the north pole, we proceed away from it along a fixed
longitude, parametrizing the distance from the pole by
the arc length a, which is zero at the north pole. At the
value of a which satisfies (49) for given parameters, we
terminate the interior by placing the membrane along
the latitude “circle” S3. Crossing the membrane at this
latitude, we are in the exterior region, which is locally
also an S4 of the radius κeff

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=Λout

p
, and we continue to

move along a longitude until we reach the south pole.
The signs ζout ¼ þ1, ζin ¼ þ1 control the location of
the latitude S3, along which the membrane resides,
relative to each pole. If the section of the S3 on the
interior does not include the equator between the north
pole and the membrane latitude, we choose ζin ¼ þ1,
since the perimeter of the latitude increases with the arc
length from the pole. On the exterior section, the
assignment for ζ is reversed: If the southern cap does
not include the equator, the radius of the latitudes is
decreasing along a longitude as a grows, reversing ζout
to −1, and vice versa if the equator is included, and so
on for other cases. We depict our chosen example
ζout ¼ þ1, ζin ¼ þ1 in Fig. 3.
It is straightforward to compute the Euclidean action

of the solution and also the bounce action. The bounce
action is defined as the difference of the membrane-
induced instanton and the Euclidean action of the parent
geometry,

SðbounceÞ ¼ SðinstantonÞ − SðparentÞ: ð52Þ

The “decay rate” is then [41,42,68]

Γ ∼ e−SðbounceÞ: ð53Þ

One can easily see that the bounce actions of instantons
of types 2 and 3 are divergent. In the type 2 cases, the
reason is that the outside, parent geometry is noncompact
and has negative curvature. Thus, the contribution to the
parent Euclidean action from the exterior geometry to the
membrane is, after integrating over the angular variables on
S3 (which yields a factor of VS3 ¼ 2π2), regulating the
exterior geometry with the infrared cutoff L and including
the exterior curvature term on the inside of the boundary at
a ¼ L, recalling that for all type 2 instantons ζout ¼ −1,

Λout < 0, and Kout ¼ 3ða0=aÞout ¼ 3 ζout
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jΛoutja2

3κ2eff

r
,

SoutðparentÞ ¼ −2π2jΛoutj
Z

L

membrane

daa3

ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jΛoutja2

3κ2eff

r þ 2π2κ2effða3KÞjL;

¼ 2π2κ2eff

 ffiffiffiffiffiffiffiffiffiffiffi
jΛoutj
3κ2eff

s
L3ð1þOð1=LÞ þ…Þ − 3L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jΛoutjL2

3κ2eff

s !

¼ −4π2κeff

ffiffiffiffiffiffiffiffiffiffiffi
jΛoutj
3

r
L3ð1þOð1=LÞ þ…Þ → −∞jL→∞: ð54Þ

The special case of Λout ¼ 0 is also divergent due to
the divergent area of the regulator boundary. Thus, the
bounce action SðbounceÞ picks up the contribution from
−SoutðparentÞ → þ∞, and so Γtype 2 → 0.

Similarly, in the case of type 3 instantons (rightmost
bottom corner of Fig. 2), the bounce action receives
divergent contributions from both the divergent exterior
and interior sections of the geometry. Again, we need to

FIG. 3. An illustration of an instanton comprised of two
sections of S4. The region around the north pole, shaded red,
has a larger curvature radius because T A > 0 by Israel junction
conditions [56].
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regulate the divergences covariantly, introduce the appro-
priate boundary termswith the cutoffs, and then take the limit
when the boundaries are sent to infinity. Equations (50) show
that in this case jΛoutj > jΛinj, and as a result, Sbounce → ∞
and so also Γtype 3 → 0. The only dynamically allowed
transitions are those mediated by the instantons of type 1,
the same as in [41,42], and as there, only the ones whose
“squares” are not blank.
Note that this conclusion about types 2 and 3 instantons

rests on the assumption that the anti–de Sitter sections are
not compact. If they were compactified, the bounce actions
need not be divergent. However, they would still be very

large and positive, proportional to the volume of the
compact region. This would suppress them relative to
the other instantons. Our discussion assumes this [39].
For type 1 instantons, the contributions in (52) coming

from the exterior of the membrane exactly cancel against
the corresponding parent action contribution, as is obvious
from Fig. 2, and we need to only integrate over the interior
up to and including membrane terms, but bearing in mind
that the spectator terms, the membrane charges, and 4-form
boundary terms mutually cancel as per our discussion
above. Then, substituting13 κ2effR ¼ 4ðκ2effλþ ΛQFTÞ ¼ 4Λ
in the bulk integrals in (37),

SðbounceÞ≡ −
Z
instanton

d4x
ffiffiffi
g

p
Λþ

Z
d3ξ

ffiffiffi
γ

p
T A þ

Z
d3ξ

ffiffiffi
γ

p ½κ2effK� þ
Z
parent

d4x
ffiffiffi
g

p
Λ

¼ −
Z

d3ξ
Z

membrane

north pole
dr

ffiffiffi
g

p jinΛin þ
Z

d3ξ
ffiffiffi
γ

p
T A þ

Z
d3ξ

ffiffiffi
γ

p ½κ2effK�

−
Z

d3ξ
Z

south pole

membrane
dr

ffiffiffi
g

p joutΛout þ
Z

d3ξ
Z

south pole

north pole
dr

ffiffiffi
g

p joutΛout: ð55Þ

We rewrote the first term in the first line of (55) splitting it into two pieces as the first term in the second and third lines to
make manifest the partial cancellation between the last two terms in the last line. This leaves us with a very simple final
expression for the bounce action. Integrating over the remainder of S3 coordinates covering the interior section,

SðbounceÞ ¼ −2π2Λin

Z
membrane

north pole
da

�
a3

a0

�
in
þ 2π2Λout

Z
membrane

north pole
da

�
a3

a0

�
out

þ 2π2a3T A þ 6π2κ2effa
2a0out − 6π2κ2effa

2a0in;

ð56Þ

where the domain of integration is over the interval of a
which covers the interior of any of the type 1 instantons from
the table inFig. 2, from thenorth pole to the “seam”where the
parent and offspring geometries are sewn together, as
depicted in Fig. 3. The boundary terms are evaluated at
the latitude a where the membrane is to be located. We
used here

R
d3ξ

ffiffiffi
γ

p ½κ2effK� ¼ 6π2a3κ2effðða0=aÞout − ða0=aÞinÞ
since κ2eff out ¼ κ2eff in ¼ κ2eff.
Note that the cancellation of the “outside” terms, which

are the contributions of the parent geometry to the instanton
and the “parent reference” actions, means we retain the
integral over the complement of the outside geometry of the

instantons. This is the residual part of the parent Euclidean
action after the outside volume contributions canceled
between the instanton and the parent actions [41,42,70].
Now, clearly, when the seam coincides with the location

of the membrane solving Eqs. (42) and (48), we have
ða0=aÞout − ða0=aÞin ¼ −T A=2κ2eff, combining the last
term in (56) with the tension term in the on-shell bounce
action. However, before computing this action on shell, it is
instructive to let a move off the membrane latitude and
consider the bounce action as a variational principle for it
[41,42]. This is a braney variant of d’Alembert’s principle
of virtual works. In that case,

Sðbounce; aÞ ¼ 2π2a3T A − 2π2

 
Λin

Z
a

north pole
da
�
a3

a0

�
in
þ 3κ2effa

2ζin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λina2

3κ2eff

s !

þ 2π2

 
Λout

Z
a

north pole
da

�
a3

a0

�
out

þ 3κ2effa
2ζout

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λouta2

3κ2eff

s !
; ð57Þ

13A subtlety in this step concerning relative signs of contributions to R was pointed out in [71], where it was noted that replacing
solutions back into the Euclidean action on shell must be done carefully. In our case, since the variables κ2eff and λ are discrete dynamical
variables, instead of Lagrangian parameters, and the boundary terms and total derivatives combine into their field equations, the sign we
obtain is the correct one. This was also noticed, e.g., in [43,72].
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plugging a0j ¼ ζj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Λja2

3κ2eff

r
in the boundary terms, as we

explained above. As a check, this expression coincides with
the bounce action of [41,42].
The minimum of Sðbounce; aÞ after solving

∂aSðbounce; aÞ ¼ 0 is precisely at the value of a which
satisfies the first of Eqs. (49). The junction conditions pick
exactly the latitude of the membrane such that the effective
“energy” of the configuration given by Sðbounce; aÞ is
minimized. As noted by Coleman et al. [68–70], the
problem of gluing together two geometric patches with
different intrinsic curvature along a membrane is physically
equivalent to the problem of emergence of a bubble wall
separating two different phases of a medium. The bubble
can only emerge if the energy cost due to the surface
tension is compensated by the energy gain of changing the
excess latent heat in the interior of the bubble. This is
precisely why the integration in Sðbounce; aÞ is over the
interior complement volume: The integral in (56) ∝ Λout is
not over the region occupied by the outside of the bubble,
which is still the original parent phase, but over its interior
complement (including the corresponding flip of the sign
ζout). The integrals in (56) and (57) comprise the energy
difference in the bulk which balances the energy of the
“areal” tension term.
Conversely, a membrane cannot nucleate when the bulk

energy gain is insufficient. The energy bound can be
understood geometrically as a condition that the membrane
latitude a must be a real number if a solution is to exist
[41,42]. We can easily solve Eqs. (50) for a,

1

a2
¼ Λout

3κ2eff
þ
�
T A

4κ2eff

�
2
�
1 −

2κ2effκ
2QA

3T 2
A

�
2

¼ Λin

3κ2eff
þ
�
T A

4κ2eff

�
2
�
1þ 2κ2effκ

2QA

3T 2
A

�
2

: ð58Þ

We see that the transitions will stop for kinematic reasons if
Λj are too negative. The real solutions for a will disappear.
This is the reason behind the empty squares in the Baedeker
of Fig. 2.
We also see that for fixed T A, QA, and κ2eff, the size of a

nucleating bubble is a monotonically decreasing function
of Λ. For q < 1, its minimal value set by Λ=κ4eff ≲ 1 is

therefore never much smaller than amin ≃ 4
κ2eff
T A

¼ 4
κ3eff
T A

κ−1eff as
long as Λ ≥ 0. This is much larger than the effective Planck
length 1=κeff for T A

κ3eff
≪ 1. The dynamics of the bubbles

q < 1 is therefore safely separated from the quantum
gravity regime when T A

κ3eff
≪ 1 and at least one of the two

cosmological terms Λ is non-negative.
We can use the equations in (58) to express a in terms

of Λout, Λin, and the membrane tension T A, eliminating
QA. The boundary condition for λj—or equivalently,

the subtraction of the two equations in (58)—yields
Λout − Λin ¼ κ2QA=2. The sum of the two equations lets
us express 1=a2 as their arithmetic mean. Then, eliminating
κ2QA ¼ 2ΔΛ and manipulating the equation yields

a2 ¼ 9T 2
A


Λout þ Λin þ 3T 2
A

4κ2eff

�
2
− 4ΛoutΛin

: ð59Þ

This is merely the thin-wall formula for the radius derived
in [70], translated to our case. However, one should take the
square root of this equation carefully in order to follow the
Baedeker structure of Fig. 2 to satisfy the “superselection”
rules imposed on the square root equations (50) which take
into account the signs ζi. This subtlety is somewhat
obscured with the procedure of calculating (59) in [70],
where it is obtained by minimizing the bounce action (57).
In the limit of taking Λout below zero, the bounce action
computed after the fact remains the same, but the pre-
scription for ζout jumps discontinuously, since otherwise
the bounce action would have diverged. We will analyze
these bounds in detail below, since their implications are
quite consequential.
We can finally write down the bounce action for the type

1 instantons in its explicit form. Evaluating the boundary
terms in Eq. (57) using the junction conditions in Eqs. (50),
we find

SðbounceÞ ¼ 2π2
�
Λout

Z
a

north pole
da

�
a3

a0

�
out

− Λin

Z
a

north pole
da

�
a3

a0

�
in

�
− π2a3T A: ð60Þ

The integrals are straightforward to compute, recalling that
they are combinations of various definite integrals of the

primitive function
R Λa2

3κ2
eff xdxffiffiffiffiffiffi

1−x
p , and that integrals may cross

over the equator Λa2
3κ2eff

¼ 1, where branches change, in which

case they have to be split into two terms.
Direct evaluation gives, irrespective of the sign of Λin,

but bearing in mind that the integral is over the inside of the
instanton volume,

2π2Λin

Z
a

north pole
da

�
a3

a0

�
¼18π2

κ4eff
Λin

�
2

3
−ζin

�
1−

Λina2

3κ2eff

�
1=2

þζin
3

�
1−

Λina2

3κ2eff

�
3=2
�
; ð61Þ

where different branches are reproduced with the sign
assignment of ζ, while the total dimensionless volume
factor always remains 1

2

R
1
0

xdxffiffiffiffiffiffi
1−x

p ¼ 2
3
. This follows from the

total volume formula for a unit S4, which is 24π2, such that
each S4 hemisphere has the volume 18π2 × 2

3
¼ 12π2.
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For the outside contribution, we have to do the integralR
a
north pole da over the complement of the outside volume.
We must flip signs when crossing the (imaginary or real)
equator, and account for the local signs of ζout which
coincide with the sign on the (canceled) outside volume to
the membrane. In the end, this produces formally the same
expression as in (61), with Λin → Λout, ζin → ζout. Indeed,
as a quick check, note that for ζout ¼ −1, the outside region
for small a is a polar cap around the south pole. As the
radius goes to zero, the integral over the outside region
vanishes. Hence, the complement must max out. And
indeed, plugging ζ ¼ −1 and a ¼ 0 in (61) produces
24π2κ4eff=Λout, and so the Euclidean action coincides with
the parent entropy given by de Sitter horizon area divided
by 4GN, as expected [57,73].
Various terms in (60) and (61) can be directly evaluated

by substituting again Eqs. (50). We will discuss these terms
shortly, when we turn to physical and phenomenological
implications of the various transitions as a function of the
background and the membrane parameters.

2. T B, QB ≠ 0

The instantons mediated by membranes with T B,QB≠0
are a new feature, and to the best of our knowledge

have never been considered previously in the literature.
Nevertheless, the analysis is quite straightforward, and it
proceeds as in the previous case. The full set of the boundary
conditions describing the jumps on a membrane are

aout ¼ ain ¼ a; λout ¼ λin ¼ λ; Aμνλout ¼Aμνλin;

κ2effout
a0out
a

− κ2eff in
a0in
a

¼−
1

2
T B; κ2out− κ2in ¼ 2QB;

Bμνλout−Bμνλ in ¼−9
�
a0out
a

−
a0in
a

�
: ð62Þ

The bulk geometry is still given by Eq. (42). However, now
the analysis of the kinematics of cutting and pasting solutions
is complicated by the κ2 dependence of the bulk solutions and
the fact that this variable jumps across the wall. Using (42)
and (62)we can obtain the equivalent of Eqs. (49) and (50) by
a straightforward manipulation. To make the notation more
compact, let us define first

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Λja2

3κ2eff j

s
: ð63Þ

Then after some manipulation, the analog of Eqs. (49) is

ζoutκ
2
eff outRout − ζinκ

2
eff inRin ¼ −

T Ba
2

;

ζoutκ
2
eff outRout þ ζinκ

2
eff inRin ¼

2a
3T B

ðκ2eff outΛout − κ2eff inΛinÞ −
4QB

T B

κ2eff out þ κ2eff in
a

: ð64Þ

The first of these equations is just the fourth of Eqs. (62).
The second is a bit more complicated, and it is obtained by
starting with κ4eff outa

02
out − κ4eff ina

02
in, evaluating it using (42),

and then factoring it and using the first of (64). We can now
add and subtract the two equations of (64) to get individual
expressions for Rj, as before. Although the notation looks
cumbersome, the formulas disentangle somewhat after
substituting Λ ¼ ΛQFT þ κ2λ, since both ΛQFT and λ are
formally independent of κ2.
We note a potential danger with the transitions catalyzed

by QB. The equation for the jump in κ2 shows that in prin-
ciple a transition inducing a negative κ2 might be possible.
Indeed, κ2in ¼ κ2out − 2QB, and thus, for a sufficiently small
κ2out, the offspring Newton’s constant could switch sign.
Inside such a bubble this would wreak havoc on local
physics since it would make perturbative gravity repulsive,
leading to spin-2 ghosts. Even if this does not happen
suddenly, if the evolution favors a succession of κ2

discharges, this could be an option.
This is a dreadful prospect. In addition to possible large

sinks that occur when a bubble of anti–de Sitter spacetime is
nucleated, insidewhich anykindof normalmatter population

triggers a black hole formation,wemight have to reckonwith
massless spin-2 ghosts as well. Thus, the question arises:
How could the ghosts be kept at bay and prevented from
crossing over?
A clue comes from noting that decreasing κ2 while holding

Λ fixed is analogous to increasing Λ at κ2 fixed. Thus, one
expects processes that might flip the sign of κ2 to be
suppressed at smaller Λ, and so such processes might end
up beinghighly suppressed and perhaps even impossible. The
technical problem is clearly with controlling the smallness
of Λ. If it fluctuates by either a variation of κ2 or a variation
of λ, or due to the QFT corrections, it may be difficult to
control the conditions which dictate themembrane dynamics.
The control can be improved with scale covariance. In the

theory with the conformal 4-form/matter coupling and a UV
regulator which does not break it (e.g., dim reg), vacuum
energy corrections come in the form ΛQFT ¼ κ2H2

QFT, as in
Eq. (38) and the second of Eqs. (40). So, the cosmological
constant to any loop order is κ2ðλþH2

QFTÞ. We can absorb
H2

QFT into λ, and setΛQFT ¼ 0 and completely forget it from
here onward. Thus, if we define the membrane charges and
tensions relative to some value of λ ¼ Λ=κ2 such that the
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transitions to the regime with ghosts are excluded, the
subsequent dynamics will preserve these conditions.
Let us show that this expectation is borne out. There is a

simple and straightforward proof that in the physically
relevant cases this limit of our theory is safe from ghosts.
We underline that the proof might exist for more general
cases as well, but at this point we have found the
conformally coupled 4-form/matter theory to be simpler
to manage and will keep with it from now on. It would be of
interest to explore the general case separately.
First of all, in this case after straightforward algebra we

can rewrite Eqs. (64) as, using κ2eff out −QB ¼ κ2eff in þQB,

ζoutκ
2
eff outRout ¼ −

T Ba
4

−
4QB

T Ba
ðκ2eff out −QBÞ

�
1 −

λa2

3

�
;

ζinκ
2
eff inRin ¼

T Ba
4

−
4QB

T Ba
ðκ2eff out −QBÞ

�
1 −

λa2

3

�
:

ð65Þ

Since Λ ¼ κ2λ and κ2eff j ¼ M2
Pl þ κ2j , this means

Rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

κ2j
M2

Pl þ κ2j

λa2

3

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

1þM2
Pl=κ

2
j

λa2

3

s
: ð66Þ

Because we are mainly interested in transitions from parent
de Sitter spaces, we take λ > 0. Next, we want to first
explore transitions which reduce κ2. We are interested in
(precluding) transitions for which κ2in < 0 for initial de
Sitter geometries. Now, κ2in < κ2out could only be facilitated
with positive membrane charges QB > 0, as seen from the
fifth of Eqs. (62). This inequality also implies that
1þM2

Pl=κ
2
out < 1þM2

Pl=κ
2
in, and therefore,

Rout < Rin: ð67Þ

So, when compared to the previous case with T A, QA ≠ 0,
the transitions which reduce κ2 are qualitatively similar
to the transitions which increase the local value of the
cosmological constant.
Having established this, we can now turn our attention to

(64), which after plugging in κ2eff out − κ2eff in ¼ 2QB, we can
rewrite as

ðζoutRout − ζinRinÞκ2eff in ¼ −
T Ba
2

− 2QBζoutRout;

ðζoutRout þ ζinRinÞκ2eff in ¼ −
8QB

T Ba
ðκ2effout −QBÞ

�
1−

λa2

3

�
þ 2QBζinRin: ð68Þ

Now we impose QB > 0, which must be true to reduce κ2

in the offspring de Sitter spacetime, and check what
happens for various combinations ðζout; ζinÞ.

It is straightforward to see that as long as κ2eff out ≫ QB,
transitions resulting in κ2 < 0 are blocked off. The argu-
ment is as follows.

(i) ðζout; ζinÞ ¼ þþ: In this case (68) is κ2eff inðRout −
RinÞ ¼ −ðT Ba

2
þ 2QBRoutÞ. Both sides are negative,

and hence, κ2eff in > 0. The second equation (68) then
shows that small values of a are excluded, since they
are incompatible with κ2eff in > 0.

(ii) ðζout; ζinÞ ¼ −−: Now, (68) is κ2eff inðRout −RinÞ ¼
ðT Ba

2
− 2QBRoutÞ due to the sign flips. If T Ba

2
>

2QBRout, κ2eff in < 0. However, this cannot occur
when κ2eff out ≫ 2QB, implying such solutions are
prohibited kinematically. The second equation then
favors small bubbles.

(iii) ðζout; ζinÞ ¼ þ−: Now, (68) is κ2eff inðRout þRinÞ ¼
−ðT Ba

2
þ 2QBRoutÞ. Since the right-hand side is

positive, the only possible solution is κ2eff in < 0,
but it cannot exist for κ2eff out ≫ 2QB.

(iv) ðζout; ζinÞ ¼ −þ: In this case, (68) reduces to
κ2eff inðRout þRinÞ ¼ ðT Ba

2
− 2QBRoutÞ. As both sides

are positive, κ2eff in > 0 for κ2eff out ≫ 2QB. In this
limit, the second equation favors larger bubbles.

The bottom line is that κ2 will not suddenly dip below zero,
and more importantly, neither will κ2off. The emission of
QB > 0may reduce the effective Planck scale, but it will do
it ever so slowly. Since these processes are analogous to the
increase in the value of the offspring cosmological con-
stant, we can expect that they will be suppressed by the
large bounce action, drawing on the results of the previous
section. We will see this is borne out shortly. Thus, the
dominant direction of evolution will be to increase κ2eff,
which means to weaken the gravitational force inside the
offspring bubbles.
The increase of κ2eff, i.e., the reduction of gravitational

strength, should also be very slow. We can arrange for it by
choosing T B andQB. This is a necessary condition to have
a chance to fit our Universe in some of these bubble worlds.
A hint for how to achieve this goal comes from our previous
analysis of T A, QA membrane dynamics. We have seen

there that requiring
2κ2effκ

2QA

T 2
A

< 1 greatly restricts the instan-

ton processes which can occur, singling out the pale-
green-shaded ones in the Baedeker of Fig. 2. Inspecting
Eqs. (65), we can easily identify the key source of potential
problems: the term ∼ 4QB

T Ba
κ2eff out. When this term is small,

equations are qualitatively similar to the q < 1 case of T A,
QA membrane dynamics. However, for small bubbles this
term might even overwhelm the tension terms in (65),
thanks to a in the denominator. Since the tension, due to its
positivity, is the barrier which protects the low energy
dynamics from problems in the T A, QA case, as well as in
the case of domain walls in general relativity, we should
ensure that it retains the same role everywhere in the
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domain of interest in pancosmic general relativity. This
means, we require that

4jQBj
T Ba

κ2eff ≪
T Ba
4

ð69Þ

for all bubbles which can form. Since a is the size of the
bubble when it nucleates, the bound is under greatest threat
from the smallest bubbles that might nucleate. Therefore,
for the semiclassical theory to remain under control, this
inequality must be true for the smallest bubbles which can
be consistently described in the local region. Since the
smallest bubbles are a ∼ 1=κeff, this finally yields our
strong form of the bound:

16
κ4effjQBj
T 2

B
≪ 1: ð70Þ

If (70) is satisfied, then (69) will hold for any bubble of size
a > 1=κeff. Additionally, the regions of space where (70)
holds will not become infested with ghosts since this will
also ensure that the processes decreasing κ2 are highly
suppressed: The regions which might be at risk of becom-
ing ghost infested will remain separated from those which
are ghost-free.
To check that this is a self-consistent regime, we can

solve explicitly Eqs. (65) for 1=a2 to obtain expressions
which are an analog of (58). After straightforward algebra,

using Taylor expansion in 16
κ4effjQBj
T 2

B
, we find14

1

a2
¼ κ2eff out

�
T B

4κ3eff out

�
2

0
B@ 1 − 2λ

3κ2eff out

16κ4eff outQB

T 2
B



1 − QB

κ2eff out

�
1 −



T B

4κ3eff out

�
216κ4eff outQB

T 2
B



1 − QB

κ2eff out

�

þO
��

κ4eff outQB

T 2
B

�
2
�1CA;

¼ κ2eff in

�
T B

4κ3eff in

�
2

0
B@ 1þ 2λ

3κ2eff in

16κ2eff inQB

T 2
B



1þ QB

κ2eff in

�
1þ



T B

4κ3eff in

�
216κ2eff inQB

T 2
B



1þ QB

κ2eff in

�

þO
��

κ4eff inQB

T 2
B

�
2
�1CA: ð71Þ

So indeed, we see that when (70) holds, in the regime of
consistent semiclassical theory with λ=κ2eff < 1, T B

4κ3eff
< 1,

QB
κ2eff

< 1, which keep the dynamics of the theory below the

local Planckian cutoff, the transitions which may change
the local value of the Planck scale, if possible, occur via the
bubbles whose size converges to

a ≃
4κ3eff
T B

κ−1eff ≫ κ−1eff ; ð72Þ

blocking Planckian scales precisely as we claimed above.
Basically, the reason for it is the terms ∝ 1=a in Eqs. (65)
which suppress the transitions that are mediated both by big
bubbles and small bubbles: The effective membrane charge
is ∝ QB=a; hence, big bubble transitions occur via the tiny
effective membrane charges, which barely scratch the
backgrounds. Small bubble transitions, on the other hand,
always involve cis-Planckian bubbles which are much
larger than κ−1eff because of (70).
If the effective charges are small, so are the variations of

the inverse curvature radius squared, λ ¼ Λ=κ2. Moreover,
the bubble nucleation processes can only occur if the
argument of the square roots in (66) are a non-negative
number. For λ > 0, this imposes the constraint

κ2λ

3κ4eff
¼ Λ

3κ4eff
<

�
T B

4κ3eff

�
2

: ð73Þ

For larger local values of the positive cosmological con-
stant Λ=κ4eff > 3ð T B

4κ3eff
Þ2, the effective Planck constant

remains frozen. In particular, the faster processes which
can occur in the discharge of λ when the cosmological
constant is large are completely blocked off for κ2eff.
Again, the only threat to the bound (70) comes from

an increase of κ2eff . However, these processes will be very
slow; Eq. (70) is very similar to the bound on (51) q < 1,
which controls the kinematics of the instantons. So,
where (70) holds, the transitions will also be restricted
to the green-shaded instantons of the Baedeker of Fig. 2.
Since the charges and tensions between the two kinds of
membranes are not correlated, we can arrange them so
that the B-wall dynamics is much slower—when allowed
—than the A-wall one. We will assume this is the case
for the remainder of this work. In the limit λ → 0, these
conclusions remain: The “blockade” of the transitions
reducing κ2eff only gets stronger and stiffer near the flat
space, as it follows from the properties of the green-
shaded instantons of Fig. 2.

IV. GLORIA MUNDI

In contrast to standard general relativity, where de Sitter
space is totally stable thanks to Bianchi identities, and
Newton’s constant is a fixed input parameter, in our
generalization of general relativity, not only does the
cosmological constant change discretely but so do the

14Each of Eqs. (65) is a quadratic equation for a2 with two
branches of solutions. Here we only keep the solution which is
perturbative in QB and ignore the other solution which has an
essential singularity when QB → 0 because it gives a2 < 0 in the
regime we consider. This rules it out on physical grounds.
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Planck scale and the QFT parameters like in the original
wormhole approach [7,74]. The discharge is quantum
mechanical and nonperturbative, it ceases in the classical
limit, and it is different from the instability to black hole
formation of [75]. This fits with ideas that an eternal, stable
de Sitter space may not exist in a UV complete theory
[76–82].
The picture of the emergent dynamical spacetime is

reminiscent of the picture advocated in the wormhole
approach to Euclidean quantum gravity [7,28,50,52–54].
That program attempted to uncover nonperturbative insta-
bility of de Sitter space which could be intrinsic to quantum
gravity, which might follow from the properties of the
semiclassical approximation of Euclidean path integral
[37–39],

Z ¼
Z

e−SE ≃ e−Sclassical

¼

8>>><
>>>:

e24π
2
κ4
eff
Λ ¼ e

Ahorizon
4GN ; Λ > 0;

eΛ
R

d4x
ffiffi
g

p
¼ 1; Λ ¼ 0;

e−jΛj
R

d4x
ffiffi
g

p
→ 0; Λ < 0; noncompact:

ð74Þ

The function Z has an essential singularity at vanishing Λ,
diverging as Λ → 0þ. It is clearly tempting to think of Z
as a partition function and use this divergence to argue
that the cosmological constant must be vanishingly small
[7,37–39].
To argue that Z is a partition function which favors any

value of Λ [83], however, one needs to decide what it is a
partition function of. More directly, what are the dynamical
degrees of freedom controlling Λ, which Z might be
counting? The approach to the cosmological constant
problem based on wormholes [7] ran into problems with
decoupling [50,52–54]. Given the notorious subtleties with
the definition and interpretation of Z [84–88], and even
its restriction to only compact Euclidean spaces (also
known as the Hartle-Hawking wave function [89]), other
approaches were also pursued.
Here we follow the approach which resembles to some

extent the ideas of [7,74] but with different ingredients. We
have defined a semiclassical picture where the theory
contains well-defined “rigid objects”—the charged mem-
branes—whose nucleation and dynamics lead to changes in
the parameters of the theory. At least in the semiclassical
limit, they automatically obey decoupling and can be
consistently included as Euclidean saddle points in the
action and therefore in Z. Our task is to outline the structure
of spacetime which membranes can seed and see what
happens.
In the next subsection, we consider quantitatively the

nucleation rates and stability of solutions in certain limits of
the theory. Following it, and using those results, we survey

the effect of membrane sources and membrane nucleation
on the spacetime in the semiclassical limit. Subsequently, in
the last subsection, we outline how the emerging picture of
the spacetime can solve the cosmological constant problem
by driving it to extremely small values in units of the
effective Planck scale.

A. Decay rates

At this point, we need to explore the quantitative aspects
of membrane emission transitions and the changes to an
initial background geometry which the transitions induce.
We are particularly interested in geometries which start
as sections of de Sitter space, since they feature more
relevant dynamics. From the consideration of the instanton
Baedeker of Fig. 2, the definition of the bounce action (52)
and the transition rate (53), as well as the formulas for the
evaluation of the various contributions to the bounce action
given in Eqs. (60) and (61), it is clear that in general the
fastest possible processes are mediated by the instanton in
the top left corner of the Baedeker in Fig. 2 for both T A,
QA ≠ 0 and T B, QB ≠ 0 cases. We will start with review-
ing this case, which is actually the most commonly
encountered case in the literature and then move to other
channels.

1. q> 1

To warm up, we now consider the fastest instantons
ðζout; ζinÞ ¼ ðþþÞ in more detail. The reason these are the
fastest channels is that the outside geometry contribution to
the bounce action for this configuration is the smallest,
which follows because in the bounce action, the outside
contribution is over the complement of the parent geometry
which defines the instanton. This can also be discerned
from the sign assignment ðζout; ζinÞ ¼ ðþþÞ in this case,
which when inserted in (60), Eq. (61) ensures the largest
cancellations between various terms in the equation. Their
“time reversed” process ðζout; ζinÞ ¼ ð−−Þ can be under-
stood straightforwardly by reversing the order of Λj and
the signs of ζj. These processes are described by the pale-
gold-shaded configurations in Fig. 2, which require

q ¼ 2κ2effκ
2jQAj

T 2
A

> 1. Note that the (þþ) processes imply

QA > 0, while (−−) use QA < 0—meaning, (þþ) lower
Λ and (−−) raise it.
Now, from Eqs. (58) we see that the membrane radius at

nucleation is a2 < 3κ2=Λj for both the parent and the
offspring geometries. When a2 is comparable to the outer
and inner de Sitter radii, however, Eqs. (58) show that the

terms ∼ð1 − Λja2

3κ2eff
Þ1=2 are much smaller than unity, and the

bounce action (60) is approximated by the difference of
the one half of the parent and offspring horizon areas
divided by 4GN,
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Sbounce ≃ −
12π2κ4effΔΛ
ΛoutΛin

; ΔΛ ¼ Λout − Λin ¼
1

2
κ2QA:

ð75Þ

Therefore, as long as Λout ≫ 3κ2effð T A
4κ2eff

Þ2ð1 − 2κ2effκ
2QA

3T 2
A

Þ2, the
initial discharge of the cosmological constant is very fast,
since Sbounce is negative. Note that the reverse processes of
increasing the cosmological constant ΔΛ < 0 can also
occur. However, their bounce action is the negative of
the action (75). Therefore, these processes are more rare,
and so the overall trend is the decrease of Λ. The
cosmological constant is repelled down from Planckian

densities. This regime will persist until Λout ∼
κ2effκ

4Q2
A

12T 2
A
.

An interesting feature of the transitions in this regime is
that the membrane radius is comparable to the background
de Sitter radii. Hence, the dynamics automatically caps the
“birth rate” at one offspring for each parent. No more. The
decay rate is fast but not prolific.
In any case, a large cosmological constant will be

discharged, on average, at a fast rate, in steps ΔΛ ¼
κ2QA=2 until its value reduces to

Λ < 3κ2eff

�
T A

4κ2eff

�
2
�
1 −

2κ2effκ
2QA

3T 2
A

�
2

∼
κ2effκ

4Q2
A

12T 2
A

¼ κ2effκ
2QA

12T 2
A

κ2QA: ð76Þ

At this point, the discharge rate slows down. For such
values of the cosmological constant, the radius of a
membrane at nucleation is much smaller than the parent
and offspring radii, a2 ≪ 3κ2=Λj. We can then compute
Sbounce in this regime to the leading order in ΔΛ, finding
Sbounce ≃ π2

6
a4ΔΛ. Evaluating this using (58) gives

Sbounce ≃
27π2

2

T 4
AΔΛh


Λout þ Λin þ 3T 2
A

4κ2eff

�
2
− 4ΛoutΛin

i
2
: ð77Þ

To compute this action, however, we now must pay more
attention to the details of the nucleation dynamics. Since
the ðζout; ζinÞ ¼ ðþþÞ instanton requires q > 1, and since

ΔΛ ¼ κ2QA=2, at least one of Λj must be larger than 3T 2
A

4κ2eff
.

Hence, (77) should be treated perturbatively in 3T 2
A

4κ2eff
and the

smaller of the two Λj. The correct limiting expression is

Sbounce ≃
27π2

2

T 4
A

ðΔΛÞ3 ; ð78Þ

which is the familiar result from the literature giving the
limit for the nucleation rate when the gravitational effects
are negligible, and field theory controls the processes

(see [68–70] and many other papers). The reverse processes
mediated by (−−) instantons still occur, but now they are
more suppressed. Substituting ΔΛ ¼ κ2QA=2, we finally
find using q > 1,

Sbounce ≃ 108π2
T 4

A

κ6Q3
A

<
144π2

3

κ4eff
κ2QA

: ð79Þ

This bounce action can still be quite big, and these
processes may be slow. In this regime, the nucleated
bubbles are quite small and in fact are much smaller than
the gravitational radii of the parent and offspring. Thus,
multiple processes of nucleating bubbles can happen in
different regions of the parent geometry if the parent
geometry is big to start with.
The real problem with the regime where q > 1,

however, is the transitions to Λ ≤ 0. Those will inevitably
occur since the limiting bounce action is finite, and the
space continues to bubble. All that needs to happen is
that Λout dips below κ2QA=2, and the next nucleation
process will lead to the formation of a bubble with
Λin < 0. The nucleation does not stop even then, since
there is a (þþ) instanton mediating decay of Λ ≤ 0
available, given by the bottom right of the type 1
instantons in the Baedeker of Fig. 2. At this point, the
nucleations can end since in such regions, even a small
amount of compressible matter will lead to the collapse
of the bubble into a black hole. Only then does the
nucleation of bubbles cease. Regions like this behave like
sinks where the evolution is irreversible [90].

2. q< 1

The case q ¼ 2κ2effκ
2jQAj

T 2
A

< 1 is a lot more interesting. First

of all, as is clear from the instanton Baedeker of Fig. 2, the
nucleation processes, now in pale green, are more
restricted. We examine them in more detail. The dS →
dS transitions are controlled by the instanton of Fig. 4. At
large Λj > κ2QA=2, the processes involve a single large
bubble with a2 ∼ 3κ2eff=Λ. To leading order, this stage is
almost the same as the large Λj stage for q > 1. The
transition rate is controlled by the bounce action (75), and

FIG. 4. The only q < 1 instanton mediating dS → dS.
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the proliferation rate is limited to one offspring per parent.
As before, the reverse transitions are also allowed but are
more suppressed.
In this case, however, this stage ends when

Λ < 3κ2eff

�
T A

4κ2eff

�
2

ð80Þ

because q < 1. Subsequent nucleations continue via pro-
duction of small bubbles, whose rate is controlled by the
bounce action

Sbounce ≃
24π2κ4eff
Λout

−
36π2κ2effT

2
A

ðΛout þ Λin þ 3T 2
A

4κ2eff
Þ2 − 4ΛoutΛin

≃
24π2κ4eff
Λout

�
1 −

8

3

κ2effΛout

T 2
A

�
; ð81Þ

where we used (80) to get the very last equation. Inside the
family tree which started at large Λ, the bubble progeny is
still limited to one per “region” since the progenitor started
out small. If the original initial bubble were large, however,
multiple bubble nucleations can also occur. In any case,
when we continue to the Lorentzian regime, the prolifer-
ation rate can be maintained by repeated successive bubble
nucleations.
It is now quite clear that Sbounce > 0 because of (80).

Further, the bounce action for this class of processes has a
pole at Λout → 0. In turn, the nucleation rate has an essential
singularity atΛout → 0, where the rate vanishes. Thus, in this
regime the small values of the cosmological constant are
metastable, and any locally Minkowski space becomes
absolutely stable to membrane nucleation processes.
Although the process of decay of a de Sitter parent to an

anti–de Sitter offspring is possible, as per the presence of
the second pale-green-shaded instanton in the Baedeker
Fig. 2, this can only happen if Λout is initially in the window
of values 0 < Λout < κ2QA=2. Even so, such de Sitter
spaces will be long-lived. We outline the structure of the
spectrum of instantons15 for this branch in Fig. 5.
The colored regions depict the stability zones: If a value
of the cosmological constant of the parent is in the red area,
it decays by a faster bubble nucleation, if it is in gold it may
decay by one more bubble nucleation, but more slowly, and
if it is in the green area, it is stable to bubble nucleation. The
top of the green zone is Minkowski space, Λ ¼ 0.

3. Δκ2eff transitions
It remains to discuss the “sustainability” of the regime

q < 1 in more detail. Since q ¼ 2κ2effκ
2jQAj

3T 2
A

< 1, the processes

which increase κ2eff could violate this condition. In turn, this
would yield transitions to the regime q > 1, where decay of
de Sitter spacetime to anti–de Sitter spacetime could
become easier and perhaps even rampant. However, as

we noted above, the regime 16
κ4effjQBj
T 2

B
≪ 1 is sustainable.

The effective Planck scale κ2eff remains frozen at least until

κ2λ

κ4eff
¼ Λ

κ4eff
< 3

�
T B

4κ3eff

�
2

: ð82Þ

In regionswhere the cosmological constant is larger, the large
bubbles which must be nucleated to change the Planck scale
are blocked off. This might seem slightly surprising at first,
but we recall that the effective charge is ∼ð1 − λa2

3
ÞQB=a. So

in the decoupling limit of gravity κ2eff → ∞, the processeswith
a fixed and large Λ are equivalent to the limitQeff → 0 with
themembrane tension being held fixed. Therefore, unsurpris-
ingly, ifwe fixT B anddecouple gravity by sending κ2eff → ∞,
we cannot possibly change the Planck scale by a membrane
nucleation with a tiny charge.
In the regime where (82) holds, transitions can happen.

However, since 16
κ4effjQBj
T 2

B
≪ 1 the only relevant processes

are the pale-green-shaded instantons of Fig. 2. The effective
Planck scale may change, but the leading-order bounce
action with QB ≪ κ2eff will be

FIG. 5. The cosmological constant spectral bands for

q ¼ 2κ2effκ
2jQA j

3T 2
A

< 1.

15Anti–de Sitter could be destabilized by the nucleation of
compact locally AdS spaces via the “ogre” instantons in the
Baedeker of Fig. 2, but we ignore those processes since they
would be highly suppressed.
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Sbounce ≃
24π2κ4eff
Λout

�
1 −

8

3

κ2effΛout

T 2
B

�
> 0; ð83Þ

which for T B ≫ T A leads to a rate which is much slower
than the cosmological constant relaxation. This also implies
that all variations of κ2eff must cease when Λout

κ4eff
≪ 1. It is

therefore possible to arrange for T B,QB so that λ dynamics
plays the main role in controlling the evolution. Some
variation of κ2 may occur, but it is extremely slow for
positive Λ > 0, either large or small. In fact, in the
subsequent article [91] we have completely decoupled
the κ2 variation by taking the limit T B → ∞ in order to
focus on the cosmological constant adjustment alone.
Hence, when its initial values are large κ2eff ≫ QB, the
theory remains in the safe zone, κ2eff > 0, far from the realm
of ghosts, and it protects q < 1 throughout. This is the “safe
stratus” of the theory’s vacua.

B. Fractal vacua

An interesting picture emerges. In the leading-order
approximation, we can describe the full “phase space”
of the Euclidean theory in Eq. (37) by the system of saddle
points, each of which extremizes the action (37) with the
solutions of the Euclidean field equations (34) classified by
the membrane sources. These classical solutions are then
interpreted as a Wick rotation of the Lorentzian spacetime
theory (if one exists), where the membrane sources are the
boundaries of the bubbles of new spacetime nucleating in a
parent geometry, changing the values of the Planck scale,
the cosmological constant, and even the QFT parameters
upon membrane wall crossing.
From this viewpoint, the gravitational field is treated

purely classically, and the membrane charges and tensions
are chosen to ensure that the relevant semiclassical dynam-
ics stays well below the local Planckian cutoff. Thus, the
theory remains within its domain of validity, and the only
quantum effect is the process of changing the spacetime

geometry by membrane discharge/bubble nucleation. The
solutions are depicted in Fig. 6.
For comparison, we also include a depiction of the

multiverse of eternal inflation from [26]. The pictorial
depictions, however, cartoonish, invite the analogy between
the membrane walls in the left panel and the wormholes
connecting various “baby” universes in the right panel.
The main bonus of our approach is the simplicity of

describing the transitions, since we “separate” the mem-
branes and the spacetimes they link from the quandaries of
full-blown quantum gravity. In fact, we may take an attitude
that whatever quantum gravity might be, it still needs to
obey decoupling to reproduce the classical limit. In this
case, we could be agnostic about it and consider the
bubbles of spacetime bounded by membranes as at least
a reasonable toy model of the deeper theory—be it a theory
of spacetime foam [27,28], wormholes [7,50–54], or what-
ever else. But at least at this level of calculations, we do not
have to contend with the problems the deeper formulations
entail. We have our semiclassical vacua; they are described
by the solutions of field equations, which are well within
their domain of validity, and they are interpreted as a
leading-order description of quantum transitions in space-
time, so we can compare them and count them (at least,
schematically).

C. How to solve the cosmological constant problem

The discussion in the previous sections showed clearly
that in our framework, de Sitter space is unstable. Once the
cosmological constant is positive and membranes are
present, the bubble nucleation in the parent geometry is
inevitable. Inside the bubbles—on average—the cosmo-
logical constant will be reduced. Thus, global de Sitter
spaces cannot exist. They “decay” by the discharge of the
cosmological constant. Subsequently, at least in the case
when q < 1, as Λ decreases, the production rate of a single
bubble slows, and it completely ceases forΛ → 0. Note that
an initially large de Sitter spacetime (with small Λ) might

FIG. 6. Left panel: an illustration of Euclidean space “boiling” in pancosmic general relativity. Each monochromatic pastille is a
universe with a locally fixed Planck scale, cosmological constant, and the QFT parameters. Those change from one pastille to another.
Right panel: an illustration of a borough of a multiverse of eternal inflation [26] (in Lorentzian signature).
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also decay into many other de Sitter spaces with smaller
cosmological constant more efficiently. It depends on the
process, the channel, and the initial condition, but the end
result is the trend toward Λ → 0.
This is good news, given the lore that the presence of

event horizons, which are unavoidable in eternal de Sitter
spacetime, obstructs the formulations of QFT in de Sitter
space. It still remains unclear how to define asymptotic free
states and the scattering S-matrix in eternal de Sitter
geometry [77–80].
It is then natural to ask if the instability of de Sitter space

offers a path for solving the cosmological constant prob-
lem. The usual formulation of the cosmological constant
problem in standard general relativity is that

(i) QFT vacuum energy contributions are big, of the
order of the cutoff M4

UV, and
(ii) unless they are canceled, order by order in pertur-

bation theory,
(iii) the resulting cosmological constant will be huge and

eternal.
The cancellation involves a counterterm whose value must
be precisely arranged to one part in as much as ∼10120,
which in the absence of a symmetry can only be done by
fine-tuning [32–34]. Thus, the problem: The conclusion
conflicts with the observations in the absence of nearly
infinite fine-tuning. This obviously cannot stand in our
generalization of general relativity, since membranes
catalyze the decay of the cosmological constant source,
making it merely “almost constant” at best but not eternal.
However, in its simplest form our theory does not yet have
the capability to solve the cosmological constant problem
naturally even if we choose a small charge to tension
ratio q < 1. Briefly, the reason is the following: With our
conformal 4-form/matter coupling, the total cosmological
constant is [see Eqs. (38) and (40)]

Λtotal ¼ κ2
�
M4

UV

M2
þ V
M2

þ λ

�
; ð84Þ

where we have now included the QFT UV contributions
∼M4

UV þ � � �, any nonvanishing QFT (or inflaton) potential
∼V, as well as our dynamical contribution ∼λ. Furthermore,
the actual physical observable is the effective curvature of the
background geometry, which we can define by Friedmann
equation,

H2 ¼ κ2

3κ2eff
Λtotal ¼

κ2

3κ2eff

�
M4

UV

M2
þ V
M2

þ λ

�
; ð85Þ

and here, κ2eff ¼ M2
Pl þ κ2. The variables λ and κ2 change

discretely (43),Δλ ¼ QA=2,Δκ2 ¼ 2QB, which means that
we can write them as

λ ¼ λ0 þ N
QA

2
; κ2 ¼ κ20 þ 2NQB; ð86Þ

where N and N are two integers.

Note that in [44], the 4-form fluxes screening the
cosmological constant were argued to be quantized in
the units of charge, amounting to setting the terms
analogous to our λ0 and κ20 to zero. We do not have any
direct reasons to do so here. We could do it without loss of

generality by absorbing those terms into
M4

UV
M2 and M2

Pl,
respectively. However, we will keep them here explicitly,
since their presence does not affect the argument.
The values of the cosmological constant term and

the curvature in some “ancient parent” geometry can be
written as

Λtotal ¼ ðκ20 þ 2NQBÞ
�
Λ0

M2
þ N

QA

2

�
;

H2 ¼ κ20 þ 2NQB

3ðM2
Pl þ κ20 þ 2NQBÞ

�
Λ0

M2
þ N

QA

2

�
; ð87Þ

where Λ0 ¼ M4
UV þ V þM2λ0. Now, through a sequence

of membrane emissions, the system can change both κ2eff
and Λtotal by gradually changing N andN up or down until
Λtotal=κ4eff approaches zero as close as it can, given the
initially fixed Λ0=M2 and the initial values of N, N . In
light of our discussion above, this will predominantly occur
by a change of N.
This brings to the forefront the deficiency of the theory as it

stands at this point. The cosmological constant changes only
in discrete steps ΔΛtotal ¼ ðκ20 þ 2NQBÞQA=2. To make
Λtotal=κ4eff < 10−120, we must either fine-tune ðκ20 þ
2NQBÞΛ0=M2 or pick an absolutely tiny value for QA
and deal with huge fluxes in the units of membrane charges.
The fact that κ2eff can also vary does not help since we cannot
suppress the curvature of the Universe without simultane-
ously tremendously suppressing the force between two
hydrogen atoms, or a sun and a planet. In a sense, this is
the avatar of the cosmological constant “no go” byWeinberg,
in this context [34,48].
The obstruction we are encountering here is that the

theory we have studied so far has cosmological constant
values which fill out the painted bands of the spectrum in
Fig. 5 discretely with fixed finite gaps between the levels.
The theory splinters into infinitely many “superselection
sectors” parametrized by the “initial value” Λ0, which
follows from the discrete variation of Λ. This is depicted in
Fig. 7, where the set of bands of the same color belong to
the same superselection sector. Unless QA is extremely
small, the “terminal” value of the cosmological constant
will be in the observationally allowed window only in
special superselection sectors with finely tuned “initial”
vacuum energies.
This problem is a straightforward one to resolve, how-

ever. We simply add to the theory one more 4-form and
arrange for it such that its magnetic dual is degenerate on
shell with λ in the bulk. It nevertheless couples to a different
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membrane with the tension and charge T Â,QÂ. Concretely,
we take the action of Eq. (33), and extend it to

S ¼ S −
Z

d4x
ffiffiffi
g

p �
κ2λ̂þ λ̂

3
ϵμνλσ∂μÂνλσ

�

− T Â

Z
d3ξ

ffiffiffi
γ

p
Â −QÂ

Z
Â: ð88Þ

The system of fluxes and membranes Â behaves exactly
as the system A, and all of the analysis to this point which
we carried our for the A-sector dynamics applies to Â. In
particular, we demand q̂ < 1, just as q < 1. With the new
sector included, however, the cosmological constant and the
curvature “quantization” laws (87) are now generalized to

Λtotal ¼ ðκ20 þ 2NQBÞ
�
Λ0

M2
þ N

QA

2
þ N̂

QÂ

2

�
;

H2 ¼ κ20 þ 2NQB

3ðM2
Pl þ κ20 þ 2NQBÞ

�
Λ0

M2
þ N

QA

2
þ N̂

QÂ

2

�
:

ð89Þ

Now we borrow a trick from the irrational axion proposal
[36] (see also [22]) and take the ratio of the chargesQA and
QÂ to be an irrational number ω,

QÂ

QA
¼ ω: ð90Þ

We can then rewrite the top line of (89) as

Λtotal ¼ ðκ20 þ 2NQBÞ
�
Λ0

M2
þQA

2
ðN þ N̂ωÞ

�
: ð91Þ

Because ω is not rational, it is straightforward to show that
for any real number ρ, there exist integers N; N̂ such that
N þ N̂ω is arbitrarily close to ρ [36,92]. Therefore, there do
exist integers N; N̂ such that N þ N̂ω is arbitrarily close to
− 2Λ0

QAM2, for which Λtotal is arbitrarily close to zero.

Crucially, this means, that there is a “discharge path”
from any large value of Λ to an arbitrarily small terminal
value. Starting with any “initial value” of Λ, there exists a
sequence of membrane discharges (with successive emis-
sion of positive or negative chargesQA orQÂ, whichever it
takes), whose end result yields a Λ arbitrarily close to zero.
This process will continue for as long as Λ > 0 at any
intermediate charge.
If a discharge in a sequence overshoots to Λ < 0, the

sequence will stop. But if it comes close to zero, but Λ is
still positive, the evolution can always continue by an up-
jump, with subsequent discharges bringing the later value
of Λ even closer to zero. Further, a priori, for any pair of N,
N that lead to a tinyΛ, there is actually a very large number
of degenerate discharge paths: Any order of discharges of
QA and QÂ which adjust N and N̂ to the correct terminal
values, which bring Λtotal to the required terminal Λ, will
produce the same answer irrespective of how the individual
steps occur. The relaxation is Brownian drift, rather than
classical smooth evolution.
At each step, Λ changes byΔΛ ∼ κ2effQA or ∼κ2effQÂ, i.e.,

by a large value. Its small terminal value is achieved as a
sum total of many such processes, due to the fact that ω of
Eq. (90) is irrational. Finally, note that in this case we are
not using a scalar field which is “gauging” such irrationally
discrete shifts, and so there is no danger of emerging global
shift symmetries lurking around, a concern which was
expressed in the context of irrational axion [36,66]. Instead,
what has happened here is that the new charge sector Â, due
to the irrational ratio of charges (90), has in fact mixed up
all the previously separated superselection sectors depicted
in Fig. 7. They all mix now, transitioning between each
other by utilizing both A; Â charges. Since the nucleation
processes are slow when Λ slips well below the cutoff, the
up-jumps which raise Λ can also happen, and the super-
selection sectors will generically get shaken and stirred
together into a very fine discretuum mesh, filling out the
spectral bands in Fig. 5 densely. In particular, there will be
many states with Λ ≃ 0 and also with Λ ≃ 10−120M4

Pl. They
will be very long-lived—the smaller the Λ, the more
persistent the geometry. Ultimately, the trend for all the

FIG. 7. The cosmological constant spectrum with many super-
selection sectors depicted by differently colored spectral levels.
The blue spectrum is tuned to get close to Λ ≃ 0, the black and
purple spectra are not.
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states with Λ > 0 to decay will remain (albeit slowly, when
q < 1 and q̂ < 1, and using up-jumps occasionally).
These stability arguments favor the value of Λ ¼ 0. This

results as a dynamical trend, where the evolution of an
initial de Sitter spacetime via the discharge mediated by
(−þ) instantons targets the attractor Λ → 0þ, precisely as
indicated by the Euclidean partition function arguments.
Indeed, we can consider (19), or better yet, its Euclidean
magnetic dual

Z ¼
Z

…DADÂDBDλDλ̂Dκ2Dg…e−SE ; ð92Þ

which in the semiclassical saddle point approximation
reduces to

Z ¼
X
λ;κ2

Z
…Dg…e−SE : ð93Þ

The saddle point approximation implies that we sum over
all classical configurations extremizing the action, which in
our case begins with summing over all Euclidean instantons
with any number of membranes included, as long as they
are allowed by Euclidean field equations which extremize
the action (37). The Oð4Þ-invariant solutions should min-
imize the action, and so it seems this is a reasonable
leading-order approximation. Thus, Z is dominated by our
instantons,

Z ¼
X

instantons

X
λ;λ̂;κ2

e−SEðinstantonÞ: ð94Þ

Even at the cartoonish level, handling this sum is
challenging. Summing over instantons means picking all
the possible configurations with an arbitrary number of
membranes included and taking into account that both A; Â
processes contribute, which allows for a very fine structure
of λ; λ̂; κ2 ranges of summation. Further, one needs to
account for possible degeneracies of a particular instanton
configuration which includes different discharge paths as
we noted above, as well as the possibility that some of the
apparently different configurations are gauge transforma-
tions of those already included. Performing this sum is
beyond the scope of this work.
We can, however, get a feel for the individual terms in the

sum. These terms reflect the evolution via membrane
discharges. The individual terms representing ancestry
trees of the evolution can be estimated using the definition
of the bounce action in Eq. (52), converting it to

SðinstantonÞ ¼ SðbounceÞ þ SðparentÞ: ð95Þ

If there is no offspring, the instanton action is given by the
parent action, which is just the negative of the horizon area
divided by 4GN of the parent de Sitter spacetime,

SðparentÞ ¼ −24π2
κ4eff
Λout

: ð96Þ

If the offspring is nth generation, we would end up
summing over the family tree, which we can try to
approximate by imagining a “dilute gas” of membranes
added one by one as the matching conditions permit,

SðinstantonÞ ¼
X
n

Sðoffspring; nÞ þ SðprogenitorÞ;

ð97Þ
using successive iterations. The “offspring” here refers to
the geometric segments inside nested bubbles separated by
the membranes. The “progenitor” geometry is the primor-
dial parent initiating the corresponding family tree. Note
that the progeny can, in principle, be produced at the
same Lorentzian time as multiple membranes, but more
importantly, as a time-ordered sequence of consecutive
nucleations.
In any case, the trees initiated by progenitors with any

initial Λ will evolve by decreasing Λ on average as long
as nucleations are possible. As per, e.g., Eq. (81), for a tree
with two generations only, SðinstantonÞ ≃ −64π2κ6eff=T

2
A.

When the offspring cosmological constant is still large,
another transition can happen, and so on, with SðinstantonÞ
growing approximately by an amount of ≃ − 64π2κ6eff=T

2
j

per step. This indicates an estimate for a family tree action,

SðinstantonÞ → −64π2κ6eff

�
nA
T 2

A
þ nÂ
T 2

Â

�
; ð98Þ

which is bounded by −24π2κ
4
eff
Λ terminal for a terminal

Λterminal ≳ 0 because membrane nucleations slow down
but can go on until Λterminal → 0þ. This implies that the
sum (94)

Z ∼
X

e24π
2
κ4
eff
Λ þ… ð99Þ

will be heavily skewed toward small values of Λ. The
emerging exponential bias may only benefit further from
the degeneracies of specific instanton configurations which
we noted above. Thus, the essential singularity of the bounce
action at Λ

κ4eff
→ 0þ and the partition function behavior indeed

conform with the dynamical trend that Λ → 0þ is an
attractor, at least in the saddle point approximation, in full
agreement with the discharge dynamics processes catalyzed
by (−þ) instantons. We infer that the dynamics to leading
order in the saddle point approximation heavily prefers

Λ
κ4eff

→ 0: ð100Þ

It is difficult to see this outcome as anything but enticing
and intriguing, to say the least. In our generalization of
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general relativity, de Sitter spacetime is unstable. Quantum
mechanics and relativity prefer a huge hierarchy between
κ2eff and the expected value of Λ. The terminal value of Λ
will be arbitrarily close to zero. Finally, as Λ → 0, the
processes cease, and the resulting (near) Minkowski space
is at least extremely long-lived. This looks like a good
approximation of reality.
As this argument goes, we still need to explain the obser-

ved strength of gravity, with GN ¼ 1
8πM2

Pl
≃10−38 ðGeVÞ−2.

Maybe this is really simply a lucky break. Alternatively,
maybe we should interpret it as a manifestation of the “weak
anthropicprinciple.” Ifwe fix chemistry, it does seem that this
ensures that our Earth is in the habitable zone in the Solar
System, neither charred nor frozen, allowing us to ponder the
problem.

V. IMPLICATIONS

If the cosmological constant is, most likely, extremely
tiny compared to M4

Pl, why is the Universe accelerating
now? If the spacetime has been bubbling forever, there exist
regions where the cosmological constant is 10−120M4

Pl
in the framework with the irrational ratio of charges.
However, they may not be typical if the Euclidean partition
function is any indication of the likelihood of a value of Λ
strongly favoring Λ → 0. In this context, it also seems
unlikely that the anthropic argument can help, since the
sum (99) has an essential singularity at (100) [37]. Even in
the context of a string landscape, it has been argued to be
nontrivial to devise a weighting of probabilities which
allows the anthropic reasoning to produce the desired result
of anthropic selection of Λ=M4

Pl ∼ 10−120 [93].
Among the possible options which might explain the

current acceleration might be
(i) a blip of transient quintessence16;
(ii) a late-stage phase transition; perhaps the “real”

cosmological constant was canceled early on, but
then a late phase transition in some gauge theory,
e.g., QCD occurred, leading to a nontrivial vacuum
structure thanks to gauge theory topology [94]; this
could lead to a cosmological constant induced by a
phase transition at late times, with values scanned by
the vacuum θ parameter, and the terminal value
selection might even be anthropic (sic) [95];

(iii) the ratio of charges QÂ=QA is rational, but it is a
fraction of two very large17 mutually prime numbers;

if so, therewouldbe a state,which could bemetastable
and have a very small cosmological constant;

(iv) our accelerating Universe seems atypical by the Z
counting, but may be typical by some other measure
[96], which might have to do with inflation [88,96]
and/or processes which set up “the initial state” [88].

As interesting and urgent as it may be, answering this
question more precisely, we fear, is beyond the scope of the
present work.
Another question concerns the problem of the so-called

“empty universe” [40], which may be an issue if the
discharge of cosmological constant is slow and occurs in
many extremely small steps, or, by a classical slow roll. The
end point will be an empty cold universe which has been
dominated by cosmological constant throughout its history.
Such a universe would be a barren wasteland because
anything in it would be inflated away before it had any
chance to make its mark. However, this may not be a
problem in our case since the relaxation of the cosmologi-
cal constant occurs in steps where Λ changes by large
amounts in each successive step. Yet the end point is
favored to be a local “vacuum” with the final net Λ much
smaller than any of the individual charges. The terminal Λ
cancellation arises as a sum total of the sequence of
emissions of charged membranes with irrational ratio
and with the final result which is effectively weighted
by Z as Λ → 0, due to an essential singularity of Z there,
rather than by a smooth gradual evolution. Thus, the
cosmological constant relaxation does not require the
eternal cosmological constant domination on its path to
zero. This is similar to how the empty universe problem is
avoided in [44]. Basically, small Λ is attained by Brownian
drift, with the terminal value being a “mean” of many large
jumps, instead of smooth evolution.
Furthermore, since the up-jumps are also possible, it can

happen that an empty universe with a nearly vanishing Λ
can “restart” itself by a rare quantum jump which increases
the cosmological constant, and then in subsequent evolu-
tion back to Λ → 0 an inflationary stage is stumbled upon
[96]. In this approach, inflation might seem to be a priori
rare, but since the system can continue exploring the phase
space, even a “rare” event will be found eventually [97]. It
has been noted that our Universe may have been preceded
by one such up-jump, but then it evolved to Λ → 0. This
can avoid potential problems with more likely smaller scale
fluctuations dubbed “Boltzmann brains” [97–100]. Thus, it
appears that a conventional cosmology can be embedded in
our framework.
It is clearly interesting to consider specific predictions

and implications for observations [101], among which
might be a past record of colliding with other bubble
worlds [102,103], applications to particle physics hierar-
chies, and maybe even late-time variations of cosmological
parameters (leading to a fractal cosmology [104]), such as
H0 and/or the masses of particles. We will return to these
issues at another time.

16This feels like a cop out, but at least now it is out there. Maybe
it is true.

17This is needed in order for the terminal value of the
cosmological constant to be close to zero. If the two mutual
primes were comparable, the theory might not even have an
attractor with a positive cosmological constant, since the possible
values of the positive cosmological constant would be too large,
and the corresponding spacetimes too short-lived. The only long-
lived values of the cosmological constant would be negative.
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VI. SUMMARY

In closing, our analysis in this article shows that we can
view the standard formulation of general relativity based on
the Einstein-Hilbert action [1,2] as a restriction of a much
bigger theory to a single (huge) domain of spacetime. The
generalization is obtained by promoting dimensional
parameters in the gravitational sector to magnetic duals
of 4-forms and the introduction of membranes charged
under those forms. Quantum mechanically, this allows for
the variation of the gravitational parameters by membrane
emission. Thus, ordinary general relativity is a restriction of
pancosmic relativity to the confines of a single bubble in
the multiverse. This implies that the multiverse was lurking
over the shoulder of general relativity all along, hiding in
plain view. Perhaps this has already been divined in the
formulation of the theory of eternal inflation [105,106]. Our
description of this multiverse might be even more basic.
Finally, we cannot resist drawing an analogy between

our generalization of general relativity, which we estab-
lished here, and fluid flow. Consider fluid flow. At small
Reynolds numbers it will be laminar, with each fluid
streamline smoothly passing by each neighbor streamline,
without intersecting each other. As the Reynolds number
goes up, being dialed by an external influence, the flow will
turn turbulent, with the streamlines intersecting, breaking
up, twisting around, and mixing together.

In some sense, we might think of pancosmic general
relativity in this way. If we fix the gravitational “cou-
plings” λ and κ2, the full evolution of the geometry with
a fixed matter contents is analogous to a single laminar
flow streamline. If we then dial λ and κ2 by hand, we
move from one streamline to another, while they remain
separated. However, when we turn on the membrane
dynamics, the “streamlines of geometry” start mixing up
and transitioning from one to another, just like they do in
turbulent flow. There is no sense of stability in this
regime, and certainly there is no global de Sitter
spacetime anymore. The “fluid” will froth and bubble
as long as it is kept in a small space, with a large
Reynolds number, or a large cosmological constant.
Reducing it may eventually restore laminar flow again,
by, for example, allowing the fluid to flow into a larger
vessel, or discharging the cosmological constant to zero,
making the resulting universe huge.
Making this analogy sounds quite fantastic even to us,

but given the ideas in, e.g., [107–110], maybe it is not.
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